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Abstract
We investigate the number of permutations that occur in random labellings of trees. 
This is a generalisation of the number of subpermutations occurring in a random 
permutation. It also generalises some recent results on the number of inversions 
in randomly labelled trees  (Cai et  al. in Combin Probab Comput 28(3):335–364, 
2019). We consider complete binary trees as well as random split trees a large class 
of random trees of logarithmic height introduced by Devroye  (SIAM J Comput 
28(2):409–432, 1998. https​://doi.org/10.1137/s0097​53979​52839​54). Split trees con-
sist of nodes (bags) which can contain balls and are generated by a random trickle 
down process of balls through the nodes. For complete binary trees we show that 
asymptotically the cumulants of the number of occurrences of a fixed permutation 
in the random node labelling have explicit formulas. Our other main theorem is to 
show that for a random split tree, with probability tending to one as the number of 
balls increases, the cumulants of the number of occurrences are asymptotically an 
explicit parameter of the split tree. For the proof of the second theorem we show 
some results on the number of embeddings of digraphs into split trees which may be 
of independent interest.
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1 � Introduction and Statement of Results

Our two main results are the distribution of the number of appearances of a fixed 
permutation in random labellings of complete binary tree and split trees. Theo-
rem 1.3 gives the distribution of the number of appearances of a fixed permuta-
tion in a random labelling of a complete binary tree. A split tree, see Sect. 1.3, 
is a random tree consisting of a random number and arrangement of nodes and 
non-negative number of balls within each node. We say an event En occurs with 
high probability (whp) if ℙ(En) → 1 as n → ∞ . Theorem 1.6 shows that for a ran-
dom split tree with high probability, a result similar to Theorem 1.3 holds for the 
number of appearances of a fixed permutation in a random labelling of the balls 
of the tree. We write a complete introduction and statement of results in terms of 
complete binary trees first before defining split trees and stating our results for 
split trees. This paper extends the conference paper [1].

1.1 � Patterns in Labelled Trees

Let V denote the node set of a tree Tn with n nodes. Define a partial ordering on 
the nodes of the tree by saying that a < b if a is an ancestor of b. Suppose we 
have a labelling of the nodes � ∶ V → [n].

We say that nodes a and b form an inversion if a < b and 𝜋(a) > 𝜋(b) . The enu-
meration of labelled trees with a fixed number of inversions has been studied by 
Gessel et al. [8], Mallows and Riordan [13] and Yan [16].

One can also extend the notion of inversions in labelled trees to longer per-
mutations. For example, the number inverted triples in a tree T with label-
ling � is the number of triples of vertices u1 < u2 < u3 with labels such 
that 𝜋(u1) > 𝜋(u2) > 𝜋(u3) . In general, we say a permutation � appears on 
the |�|-tuple of vertices u1,… , u|�| , if u1 < ⋯ < u|𝛼| and the induced order 
�(u) = (�(u1),… ,�(u|�|)) is � . Write �(u) ≈ � to indicate the induced order is the 
same: for example 527 ≈ 213 . Permutations in labelled trees have been studied 
before: Anders et al. [2] and Chauve et al. [4] enumerated labelled trees avoiding 
permutations in the labels.

We shall be interested in the number of permutations in random labellings of 
trees. From now on, for fixed trees we let � ∶ V → [n] be a node labelling chosen 
uniformly from the n! possible labellings (for split trees � is a uniformly random 
ball labelling). The (random) number of inversions in random node labellings of 
fixed trees as well as some random models of trees were studied in [7, 14] and 
extended in a recent paper [3]. The nice paper [12] by Lackner and Panholzer 
studied runs in labelled trees; i.e. the permutations 12… k and k… 21 for constant 
k. Their paper gives both enumeration results as well as a central limit law for 
runs in randomly labelled random rooted trees. This new paper finds approximate 
extensions to some of the results in [3].

We now define the notation we will use. The number of inverted triples in a 
fixed tree T is the random variable R(321, T) =

∑
u1<u2<u3

�[𝜋(u1) > 𝜋(u2) > 𝜋(u3)] 
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where the sum runs over all triples of nodes in T such that u1 is an ancestor of u2 
and u2 an ancestor of u3 . For a tree T and uniformly random node labelling define

so in particular R(21, T) counts the number of inversions in a random labelling of T. 
(For split trees we take � to be a uniformly random ball labelling and the balls get a 
partial relation of ancestor induced by the nodes: see Sect. 1.3 for details.)

Let d(v) denote the depth of v, i.e., the distance from v to the root � . For any 
u1 < ⋯ < u|𝛼| we have ℙ[�(u) ≈ �] = 1∕|�|! and so it immediately follows that,

For length two permutations, e.g. inversions, �[R(21, T)] = 1

2
Υ(T) the tree param-

eter Υ(T)
def
=

∑
v d(v) is called the total path length of T. We will state our results in 

terms of a tree parameter Υk
r
(T) which generalises the notion of total path length.

Defining Υk
r
(T) will allow us to generalize (1.1) to higher moments of R(�, T) . 

For r nodes v1,… , vr let c(v1,… , vr) be the number of ancestors that they share 
and so

which is also the depth of the least common ancestor plus one. That is 
c(v1,… , vr) = d(v1 ∨… ∨ vr) + 1 where we write v1 ∨ v2 for the least common 
ancestor of v1 and v2 . The ‘off by one error’ is because the root is in the set of com-
mon ancestors for any subsets of nodes but we use the convention that the root has 
depth 0. Also define

where the sum is over all ordered r-tuples of nodes in the tree and with the conven-

tion 
(
x

0

)
= 1 . For a single node v, d(v) = c(v) − 1 , since v itself is counted in c(v). 

So Υ(T) = Υ2
1
(T) − |V| ; i.e., we recover the usual notion of total path length. The 

k = 2 case recovers the r-total common ancestors Υ2
r
(T) =

∑
v1,…,vr

c(v1,… , vr) 
defined in [3].

Indeed the distribution of the number of inversions in a fixed tree has already 
been studied in [3]. Similarly to the way one can describe a distribution by giving 
all finite moments, we may also describe a distribution via its cumulant moments. 
The cumulants, which we denote by �r = �r(X) , are the coefficients in the Taylor 
expansion of the log of the moment generating function of X about the origin 
(provided they exist)

R(𝛼, T)
def
=

∑
u1<⋯<u|𝛼|

1[𝜋(u) ≈ 𝛼],

(1.1)𝔼[R(𝛼, T)] =
∑

u1<⋯<u|𝛼|

ℙ[𝜋(u) ≈ 𝛼] =
1

|𝛼|!
∑
v

(
d(v)

|𝛼| − 1

)
.

c(v1,… , vr)
def
=
|||
{
u ∈ V ∶ u ≤ v1, v2,… , vr

}|||

(1.2)Υk
r
(T)

def
=

∑
v1,…,vr

c(v1,… , vr)

r∏
i=1

(
d(vi)

k − 2

)
,
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thus �1(X) = �[X] and �2(X) = Var(X) . For more information on cumulants see for 
example [11, Section 6.1].

Theorem 1.1  (Cai et al. [3]) Let T be a fixed tree, and denote by �r = �r(R(21, T)) 
the rth cumulant of R(21, T). Then for r ≥ 2,

where Br denotes the rth Bernoulli number.

Remark 1.2  In essence Theorem 1.1 (Cai et al.  [3]) shows the rth cumulant of the 
number of inversions is a constant times Υ2

r
(T) . Our main result on complete binary 

trees, Theorem 1.3 (respectively Theorem 1.6 on split trees), shows that for any fixed 
permutation � of length k for complete binary trees (and whp for split trees) the rth 
cumulant is a constant times Υk

r
(Tn) asymptotically. The exact constant is defined in 

Eq. (6.1) and is a little more involved than for inversions but observe it is a function 
only of the moment r and the length of k = |�| together with the first element �1 of 
the permutation � = �1 … �k.

1.2 � Complete Binary Trees

We move on to stating our results. For the case of T a complete binary tree on 
n vertices we asymptotically recover Theorem 1.1 [3] for large n. Moreover we 
extend it to cover any fixed permutation � for complete binary trees.

The first of our theorems gives the distribution of the number of � in a random 
labelling of the nodes in a complete binary tree. This result formed Theorem 2 in 
the extended abstract version of the paper however there was an error in the defi-
nition of the constant D�,r for r > 2 which has now been corrected.

Theorem 1.3  Let Tn be the complete binary tree with n nodes and fix a permutation 
� = �1 … �k of length k. Let �r = �r(R(�, Tn)) be the rth cumulant of R(�, Tn) . Then 
for r ≥ 2 , there exists a constant D�,r depending only on � and r such that,

An explicit formula for D�,r is derived in Eq.  (6.1) and in the “Appendix”, 
we list values of D�,r for permutations � of length at most 6 and moments 
r ∈ {1,… , 5} . The explicit formula (6.1) implies the following corollary.

Corollary 1.4  Let Tn be the complete binary tree with n nodes. For permutations � of 
length 3, the variance is

log�(e�X) =
∑
r

�r�
r∕r!

�r =
Br(−1)

r

r

(
Υ2

r
(T) − |V|)

�r = D�,rΥ
k
r
(Tn) + o

(
Υk

r
(Tn)

)
.
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and more generally for � = �1�2 … �k,

Remark 1.5  The methods in the proofs are very different for inversions and general 
permutations. In [3], the method takes advantage of a nice independence property 
of inversions. For a node u let Iu be the number of inversions involving u as the top 
node: Iu = |{w ∶ u < w,𝜋(u) > 𝜋(w)}| . Then the {Iu}u are independent random vari-
ables and Iu is distributed as the uniform distribution on {0,… , |Tu|} where Tu is the 
subtree rooted at u, see Lemma 1.1 of [3].

Without a similar independence property for general permutations our route 
instead uses nice properties on the number of embeddings of small digraphs in both 
complete binary trees and, whp, in split trees. This property allows us to calculate 
the rth moment of R(�, T) directly from a sum of products of indicator variables as 
most terms in the sum are zero or negligible by the embedding property.

1.3 � Split Trees

Split trees were first defined in [5] and were introduced to encompass many families 
of trees that are frequently used in algorithm analysis, e.g., binary search trees [9], 
m-ary search trees [15] and quad trees [6]. The full definition is given below but 
note that a split tree is a random tree which consists of nodes (bags) each of which 
contains a number of balls. We will study the number of occurences of a fixed sub-
permutation � in a random ball labelling of the split tree.

The random split tree Tn has parameters b, s, s0, s1,V  and n. The integers b, s, s0, s1 
are required to satisfy the inequalities

and V = (V1,… ,Vb) is a random non-negative vector with 
∑b

i=1
Vi = 1 (the compo-

nents Vi are probabilities).
We define Tn algorithmically. Consider the infinite b-ary tree U  , and view each 

node as a bucket or bag with capacity s. Each node (bag) u is assigned an independ-
ent copy Vu of the random split vector V  . Let C(u) denote the number of balls in 
node (bag) u, initially setting C(u) = 0 for all u. Say that u is a leaf if C(u) > 0 and 
C(v) = 0 for all children v of u, and internal if C(v) > 0 for some proper descendant 
v, i.e., v > u . We add n balls labeled {1,… , n} to U  one by one. The jth ball is added 
by the following “trickle-down” procedure.

� (R(�, Tn)) =

{
1

45
Υ3

2
(Tn)(1 + o(1)) for � = 123, 132, 312, 321

1

180
Υ3

2
(Tn)(1 + o(1)) for � = 213, 231

� (R(�, Tn)) =

⎧
⎪⎨⎪⎩

1

((k−1)!)2

�
1

2k−1
−

1

k2

�
Υk

2
(1 + o(1)) for �1 ∈ {1, k}�

1

(2k−1)(k−�1)!(k+�1−2)!
−

1

(k!)2

�
Υk

2
(1 + o(1)) for �1 ∈ {2,… , k − 1}.

(1.3)2 ≤ b, 0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s + 1 − s0.
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1.	 Add j to the root.
2.	 While j is at an internal node (bag) u, choose child i with probability Vu,i , where 

Vu = (Vu,1,… ,Vu,b) is the split vector at u, and move j to child i.
3.	 If j is at a leaf u with C(u) < s , then j stays at u and we set C(u) ← C(u) + 1 . If j is 

at a leaf with C(u) = s , then the balls at u are distributed among u and its children 
as follows. We select s0 ≤ s of the balls uniformly at random to stay at u. Among 
the remaining s + 1 − s0 balls, we uniformly at random distribute s1 balls to each 
of the b children of u. Each of the remaining s + 1 − s0 − bs1 balls is placed at a 
child node chosen independently at random according to the split vector assigned 
to u. This splitting process is repeated for any child which receives more than s 
balls.

Once all n balls have been placed in U  , we obtain Tn by deleting all nodes u such 
that the subtree rooted at u contains no balls. Note that an internal node (bag) of 
Tn contains exactly s0 balls, while a leaf contains a random amount in {1,… , s} . 
We can assume that the components Vi of the split vector V  are identically dis-
tributed. If this was not the case they can anyway be made identically distributed 
by using a random permutation, see [5]. Let V be a random variable with this dis-
tribution. We assume, as previous authors, that ℙ

{
∃i ∶ Vi = 1

}
< 1 . For this paper 

we will also require that the internal node (bag) capacity s0 is at least one so that 
there are some internal balls to receive labels.

For example, if we let b = 2, s = s0 = 1, s1 = 0 and V  have the distribution of 
(U, 1 − U) where U ∼ Unif[0, 1] , then we get the well-known binary search tree.

An alternate definition of the random split tree is as follows. Consider an infi-
nite b-ary tree U  . The split tree Tn is constructed by distributing n balls (pieces 
of information) among nodes of U  . For a node u, let nu be the number of balls 
stored in the subtree rooted at u. Once nu are all decided, we take Tn to be the 
largest subtree of U  such that nu > 0 for all u ∈ Tn . Let Vu = (Vu,1,… ,Vu,b) be the 
independent copy of V  assigned to u. Let u1,… , ub be the child nodes of u. Con-
ditioning on nu and Vu , if nu ≤ s , then nui = 0 for all i; if nu > s , then

where Mult denotes multinomial distribution, and b, s, s0, s1 are integers satisfying 
(1.3). Note that we have 

∑b

i=1
nui ≤ n (hence the “splitting”). Naturally for the root � , 

n� = n . Thus the distribution of (nu,Vu)u∈V(U) is completely defined.
The balls inherit a partial order from the partial ordering of the nodes in the 

split tree. We write u1 < u2 if node u1 is an ancestor of node u2 , u1 > u2 if u2 is an 
ancestor of u1 and finally u1 ⟂ u2 is neither u1 nor u2 is an ancestor of the other 
node. For balls j1, j2 in nodes (bags) u1, u2 respectively j1 < j2 if u1 < u2 and 
j1 ⟂ j2 if u1 ⟂ u2 . We say that balls j1, j2 are incomparable, j1 ⟂ j2 if they are in 
the same node (bag).

This next theorem is our other main result. We determine the distribution of 
the number of occurences of a fixed subpermutation in a random ball labelling of 
the split tree. Denote the random variable for the number of occurences of � in a 
uniformly random ball labelling of split tree Tn by R(�, Tn).

(nu1 ,… , nub ) ∼ Mult(n − s0 − bs1,Vu,1,… ,Vu,b) + (s1, s1,… , s1),
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Theorem 1.6  Fix a permutation � = �1 … �k of length k. Let Tn be a split tree with 
split vector V = (V1,… ,Vb) and n balls. Let �r = �r(R(�, Tn)) be the rth cumulant of 
R(�, Tn) . For r ≥ 2 the constant D�,r is defined in Eq. (6.1). Whp the split tree Tn has 
the following property.

Our theorem says the following. Generate a random split tree Tn , whp it has the 
property that the random number of occurrences of any fixed subpermutation in a ran-
dom ball labelling of Tn has variance and higher cumulant moments approximately a 
constant times a ‘simple’ tree parameter of Tn.

Remark 1.7  We may contrast this with Theorem 1.12 of [3]. That theorem states the 
distribution of the number of inversions in a random split tree; where the distribu-
tion is expressed as the solution of a system of fixed point equations. Determining 
the distribution of Υk

r
(Tn) would extend Theorem 1.12 of [3] about inversions to gen-

eral permutations.

1.4 � Embeddings of Small Digraphs

Certain classes of digraphs, defined below, will be important in the proof of Theo-
rem 1.3. Loosely the digraphs we will consider are those that may be obtained by tak-
ing r copies of the directed path Pk and iteratively fusing pairs of vertices together. It 
will also matter how many embeddings each digraph has into the complete binary tree. 
In Proposition 4.1 we show the counts for most digraphs in such a class are of smaller 
order than the counts of a particular set of digraphs in the class. The main work in the 
proof of this proposition is to show that the number of embeddings of any digraph H , 
up to a constant factor, depends only on the numbers of two types of vertices in H . We 
separate this result out as a theorem, Theorem 1.8, which we prove in Sect. 2.

We now define the particular notion of embedding small digraphs into a tree which 
will be important. Define a digraph to be a simple graph together with a direction on 
each edge. We shall consider only acyclic digraphs i.e. those without a directed cycle.

In the complete binary tree we have a natural partial order, the ancestor relation, 
where the root is the ancestor of all other nodes. Any fixed acyclic digraph also induces 
a partial order on its vertices where v < u if there is a directed path from v to u. For an 
acyclic digraph H , define [H]Tn to be the number of embeddings � of H to distinct nodes 
in Tn such that the partial order of vertices in H is respected by the embedding to nodes 
in Tn under the ancestor relation.

Observe that the inverse of embedding �−1 need not respect relations. If u ⟂ v in H , 
i.e. u, v are incomparable in H then we can embed so that 𝜄(u) < 𝜄(v) , 𝜄(u) > 𝜄(v) or 
�(u) ⟂ �(v) in Tn . For an example of this take the digraph  and denote by P

�
 the 

rooted path on � nodes. Notice that in  two of the vertices are incomparable but 

�r = D�,rΥ
k
r
(Tn) + o

(
Υk

r
(Tn)

)
.

[H]Tn
def
= |{𝜄 ∶ V(H) → V(Tn) injective such that if u < v inH then 𝜄(u) < 𝜄(v) in Tn}|.
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the vertices of the digraph can be embedded into the nodes of a path which are com-
pletely ordered. The counts are [ ]P4 = 2  and in general [ ]P = 2

4
.

A particular star-like digraph Sk,r will be important. This is the digraph obtained 
by taking r directed paths of length k and fusing their source vertices into a sin-
gle vertex. Alternatively the theorem can be stated in terms of star counts as 
[S|�|,r]Tn = Υ

|�|
r (Tn)(1 + o(1)) : see Lemma 4.2.

A vertex in a directed graph is a sink if it has zero out-degree. Define 
A0(H) ⊆ V(H) to be the set of sinks in digraph H. Recall that a directed acyclic 
graph defines a partial order on the vertices: v < u if there is a directed path from 
v to u. If v < u we say that u is a descendant of v. Define A1(H) ⊆ V(H) to be the 
vertices with exactly one descendant which is a sink. We will call vertices in A1(H) 
ancestors as they are ancestors of a single sink. Define A2(H) to be the remainder 
A2(H) = V(H)�{A0(H) ∪ A1(H)} . We call those in A2(H) common-ancestors as they 
are the common ancestor of at least two sinks (see Fig. 1). Observe if H is a directed 
forest then the sinks are the leaves. However, H need not be a forest and indeed a 
sink may have indegree more than one as in the rightmost sink in Fig. 1.

For the split tree Tn and an acyclic digraph H , define [H]Tn to be the number of 
embeddings � of vertices in H to distinct balls in Tn such that the partial order of 
vertices in H is respected by the embedding to balls in Tn under the ancestor relation.

Theorem  1.8  Let H be a fixed directed acyclic graph and let Tn be the complete 
binary tree of height m with n = 2m+1 − 1 vertices. Then writing |A0| = |A0(H)| for 
the number of sink (green) vertices and |A1| = |A1(H)| for the number of ‘ancestor’ 
(blue) vertices

This improves on bounds provided in the conference version of this paper  [1]. 
Similarly for split trees we show that the expected number of embeddings of a fixed 
acyclic digraph H , to constant factors, depends only on the number of sink and 
‘ancestor’ vertices in H.

[H]Tn = Θ(n|A0|(ln n)|A1|).

Fig. 1   An example of a 
directed acyclic graph H with 
sink (green circle), ‘ancestor’ 
(blue diamond) and ‘common-
ancestor’ (red square) nodes 
indicated by colour and shape. 
This particular digraph is in G4,7 
and it appears in the seventh 
moment calculations of R(�,T) 
for |�| = 4 (Color figure online)
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Theorem 1.9  Let H be a fixed directed acyclic graph and let Tn be a split tree with 
split vector V = {V1,… ,Vb} and n balls. Then writing |A0| = |A0(H)| for the num-
ber of sink (green) vertices and |A1| = |A1(H)| for the number of ‘ancestor’ (blue) 
vertices there exist constants c = c(H) and c� = c�(H) such that for large enough n,

and whp

In the extended abstract version of this paper  [1], in Lemma  7, we proved the 
weaker upper bound that for constant c′′ whp [H]Tn ≤ c��n|A0|(ln n)|A1|(ln ln n)|A2| , i.e. 
a dependence also on the number of ‘common-ancestor’ (red) vertices in H . It is a 
little trickier to prove the new upper bound. However, we are rewarded by a tighter 
bound on the number of embeddings; the expected number of embeddings is now 
determined only by the numbers of sink (green) and ‘ancestor’ (blue) vertices up 
to constant factors. It would be interesting to obtain tail bounds on the number of 
embeddings of small digraphs in a random split tree and we leave this as an open 
question.

2 � Embeddings of Small Digraphs into the Complete Binary Tree

In this section we prove Theorem 1.8 concerning upper and lower bounds on the 
number of embeddings of a fixed digraph H , thought of as constant, into a complete 
binary tree Tn with n vertices.

We prove the lower bound of Theorem 1.8 first as the upper bound will require 
some preparatory lemmas.

Proof  (of lower bound of Theorem 1.8)
We restrict attention to embeddings where all ‘common-ancestors’ of H are 

embedded very near the root of Tn , the sink vertices are embedded to leaves of Tn 
and the ‘ancestor’ vertices are placed on the path between the root of Tn and the leaf 
to which their descendant sink was embedded (see Fig.  2). There are sufficiently 
many such embeddings to obtain the lower bound. In fact we restrict a little further 
to make it easy to check all the embeddings are valid.

The first task is to embed the vertices in A2 close to the root in such a way that 
A2 is embedded to ancestors of the nodes to which A1 and A0 are embedded and 
also such that the ordering within the vertices in A2 is preserved. As H is an acyclic 
digraph the directed edges define a partial order on all vertices of H and in particular 
for those in A2 . Thus this relation can be extended to a total order. Fix such a total 
order <∗ on V(H) , one which extends the partial order on V(H) , and relabel vertices 
in A2 so that v1 <∗ … <∗ v|A2| . Thus we may embed v1 to the root � in Tn and each 
vi+1 to a child of the node to which vi was embedded and the relation between ver-
tices in H will be preserved by their embedding in Tn ; i.e. we may embed A2 to the 

�
[
[H]Tn

]
≤ cn|A0|(ln n)|A1|

[H]Tn ≥ c�n|A0|(ln n)|A1|.
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nodes on the path from � to some u∗ at depth |A2| − 1 . Fix such a node u∗ and let T∗ 
be the subtree of Tn from u∗.

Label the sinks A0 = {s1,… , s|A0|} and vertices in A1 according to which sink 
they are the ancestors of Ai

1

def
= {v ∈ A1 ∶ v < si}.

We obtain a subcount of [H]Tn by embedding A2 onto the path from � to u∗ , 
embedding A0 to leaves of T∗ and then for each i in turn embedding vertices in Ai

1
 on 

the path from u∗ to the embedding of si . There are m − |A2| − 1 vertices on the path 
from si to u∗ and at most |A1| of them already have an ancestor vertex embedded onto 
to them (i.e. from Aj

1
 for some j < i ). Thus

where the first binomial coefficient counts the number of ways to embed A0 and the 
ith binomial coefficient in the product counts the ways to embed Ai

1
 . Now because 

H is fixed |A0| , |A1| and |A2| are all O(1). Hence for large m the RHS of Eq. (2.1) has 
first term of order Θ(2m|A0|) and the product over i is of order Θ(m

∑
i �Ai

1
�) = Θ(m�A0�) 

so the lower bound follows.� □

The key observation to prove the upper bound in Theorem 1.8 is that for most 
pairs of nodes in a complete binary tree their least ‘common ancestor’ is very 
near the root. We make the required condition precise in the assumption of the 
next lemma, and show it implies the upper bound on the number of embeddings 
of H . It then suffices to prove that the condition holds for complete binary trees. 
This allows us to recycle the lemma to show the corresponding result in split 
trees.

Define c(u1, u2) to be the number of ‘common ancestors’ of nodes u1 and u2.

(2.1)[H]Tn ≥

�
2m−�A2�
�A0�∏i

��
m − �A2� − �A1� − 1

�Ai
1
�

�

Fig. 2   Schematic for the lower 
bound construction in Theo-
rem 1.8. The colours indicate 
the positions in the complete 
binary tree to which the ‘com-
mon-ancestor’ (red), ‘ances-
tor’ (blue) and sink (green) 
vertices are embedded. Recall 
A2 = A2(H) denotes the set of 
‘common-ancestor’ vertices of 
H (Color figure online)
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Lemma 2.1  Let H be a fixed directed acyclic graph and let Tn be any tree with n 
nodes and height m. Then writing |A0| = |A0(H)| for the number of sink (green) ver-
tices, |A1| = |A1(H)| for the number of ‘ancestor’ (blue) vertices and |A2| = |A2(H)| 
for the number of ‘common-ancestor’ (red) vertices,

where the sum is over ordered pairs of distinct nodes in Tn.

Proof  Label the sinks A0 = {s1,… , s|A0|} and vertices in A1 according to which sink 
they are the ancestors of Ai

1

def
= {v ∈ A1 ∶ v < si} . Similarly partition ‘common-

ancestor’ vertices into disjoint sets {Ai,j

2
}1≤i<j≤|A0| according to the lexicographi-

cally least pair of sinks si and sj for which it is an ancestor. Formally a vertex v ∈ A2 
is in Ai,j

2
 if v is the ancestor of sinks si and sj but not an ancestor of a sink sk for 

k < max{i, j}.
Suppose sinks si and sj are embedded to vertices ui and uj in Tn . Then to complete 

the embedding of ancestors of si , vertices in Ai
1
 must be embedded to ancestors of 

ui in Tn and there are at most d(ui) options. Likewise vertices in Ai,j

2
 i.e. ‘common-

ancestors’ of sinks si and sj must be embedded to a common ancestor of ui and uj in 
the tree. Thus, recalling c(ui, uj) denotes the number of common ancestors of ui and 
uj,

where the sum is over distinct nodes u1,… , u|A0| and the product i ≠ j is over pairs 
ui, uj in u1,… , u|A0| . Fix a particular embedding of the sinks to u1,… , u|A0| and we 
shall bound both terms in the product in (2.2). Recall that for the (blue) ‘ancestor’ 

vertices, 
∑

i �Ai
1
� = �A1� so 

∏
i

�
d(ui)�Ai

1
�
�

≤ (maxi d(ui))
�A1� . It will suffice to use the 

trivial bound that all vertices have depth at most the height of the tree, i.e. 
maxi d(ui) ≤ m . And so,

Similarly, for the (red) ‘common-ancestor’ vertices 
∑

i≠j �Ai,j

2
� = �A2� as the sets Ai,j

2
 

are disjoint. Thus

Hence substituting the bounds above into the expression in (2.2),

[H]Tn ≤ m|A1|n|A0|−2
∑
ui,uj

c(ui, uj)
|A2|

(2.2)[H]Tn ≤
∑

u1,…,u|A0 |

∏
i

(
d(ui)|Ai

1
|
)∏

i≠j

(
c(ui, uj)

|Ai,j

2
|

)
.

∏
i

(
d(ui)|Ai

1
|
)

≤ m|A1|.

∏
i≠j

(
c(ui, uj)

|Ai,j

2
|

)
≤ max

i≠j
c(ui, uj)

|A2| ≤
∑
i≠j

c(ui, uj)
|A2|.
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which is the required result. � □

There is one more result we need and then the upper bound in Theorem 1.8 will fol-
low very fast.

Lemma 2.2  Let H be a fixed directed acyclic graph and let Tn be a complete binary 
tree with n vertices and height m. Then for any positive integer �,

the sum is over ordered pairs of distinct nodes in Tn

Proof  Associate with each vertex v ∈ V(Tn) a binary string of length at most m in 
the usual way: the root has string ∅ , children of the root are labelled 0 and 1 and 
two vertices in the same subtree at depth d have the same initial d-length substring. 
Now 

∑
u1,u2

�[c(u1, u2) ≥ �] is precisely the number of ordered pairs which share a 
common (� − 1)-length initial substring in their labels; i.e. ordered pairs with both 
vertices in the same depth (� − 1) subtree.

Let T�−1
1

,… , T�−1

2�−1
 be the subtrees at depth � − 1 . Since Tn is a complete binary 

tree |T�−1
i

| = 2m−�+1 − 1 . Recall n = 2m+1 − 1 and so |T�−1
i

| ≤ n2−� . Now

as required. � □

Proof  (of upper bound in Theorem 1.8) Observe Lemma 2.2 implies

Since |A2| is a constant the sum 
∑∞

�=1
(
1

2
)���A2� converges to a constant, say 

� = �(|A2|) . Thus by Lemma 2.1 we get

 � □

(2.3)[H]Tn ≤ m|A1|
∑
ui,uj

c(ui, uj)
|A2|

∑
u1,…,u|A0 |�ui,uj

� ≤ m|A1|n|A0|−2
∑
ui,uj

c(ui, uj)
|A2|

∑
u1,u2

�[c(u1, u2) ≥ �] ≤ 2−�+1n2.

∑
u1,u2

�[c(u1, u2) ≥ �] =

2�−1∑
i=1

|T�−1
i

|2 ≤ n22−�+1

∑
ui,uj

c(ui, uj)
|A2| ≤

∑
ui,uj

∞∑
�=1

�[c(ui, uj) ≥ �]�|A2| ≤ n2
∞∑
�=1

(
1

2
)�−1�|A2|.

[H]Tn ≤ m|A1|n|A0|−2
∑
ui,uj

c(ui, uj)
|A2| ≤ �m|A1|n|A0| = O(m|A1|n|A0|).
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3 � Embeddings of Small Digraphs into the Split Trees

In this section we prove Theorem 1.9 concerning upper and lower bounds on the 
number of embeddings of a fixed digraph H , thought of as constant, into a ran-
dom split tree with n balls. We begin by briefly listing some results on split trees 
from the literature that will be useful for us.

For split vector V  define � =
∑

i �
�
Vi lnVi

�
 . The average depth of a node is 

∼
1

�
ln n  [10, Cor 1.1]. Moreover almost all nodes are very close to this depth. 

Define a node v to be good if it has depth

and then whp 1 − o(1) proportion of the nodes in the split tree are good [10, Theo-
rem 1.2]. That whp in a split tree all good nodes have a Θ(ln n) depth and almost all 
nodes are good is the only result about split trees required for the proof of the lower 
bound on [H]Tn in Theorem 1.9. For the upper bound we need a bit more.

We will apply Proposition 3.1 below which is stated as Remark 3.4 in [10] 
(this remark refers to the proof of [10, Theorem 1.2] which is stated above).

Proposition 3.1  Let Tn be a split tree with n balls. For any constant r > 0 there is a 
constant K > 0 , such that the expected number of nodes with d(v) ≥ K ln n is O( 1

nr
).

We will use Proposition 3.1 as well as the property that most pairs of balls 
have their least common ancestor node very close to the root which we prove in 
Lemma 3.4.

We begin with the lower bound, the upper bound is proven at the end of this 
Sect. 3.

Proof  (of the lower bound of Theorem 1.9)
We describe a strategy to embed H into Tn . The details of the proof are then to 

show that whp this strategy can be followed to obtain a valid embedding of H and 
that there are sufficiently many different such embeddings to achieve the lower 
bound.

The idea is as follows: first embed ‘common-ancestor’ vertices along a path to 
some node u∗ near the root of Tn so that the subtree from u∗ has ñ balls where this ñ 
is a constant proportion of the total number of balls n. Now consider the split tree 
with ñ balls and embed ‘ancestor’ and sink vertices into that. Embed sink vertices to 
‘good’ balls in the tree (i.e. depth very close to the expected depth) and the ‘ances-
tor’ vertices to balls which are in nodes on the path between u∗ and the embedding 
of that ancestor’s descendant. See Fig. 3.

We embed the ‘common-ancestor’ vertices, A2(H) , to the balls in the nodes on 
the path between a node, u∗ say, at depth |A2| − 1 and the root, using one ball per 
node. This is so far effectively the same as in the binary case. And we will later 
embed the sink and ‘common-ancestor’ vertices to balls in the subtree Tu∗.

|d(v) − 1

�
ln n| ≤ ln0.6 n
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We need to confirm there is some node u∗ at depth L = |A2| − 1 with ñ balls in 
its subtree. Each node (bag) has capacity at most s0 (internal nodes) or s (leaves) 
and there are at most (bL+1 − 1) nodes, a constant number, at depth less than L, so 
n − O(1) balls remaining. These balls are shared between bL , a constant, number of 
subtrees Tu . Hence by pigeon-hole principle some vertex u∗ has ñ = Θ(n) balls in its 
subtree.

Now work in the split tree Tñ . Embed the sink vertices to any balls in good nodes 
v1,… , v|A0| in the split tree so these have depth Ω(ln ñ) . There are Θ(ñ|A0|) ways 
to embed them. In H label the sink vertices s1,… , s|A0| and Aj

1
⊂ A1(H) to be the 

‘ancestor’ vertices with sj as their lone descendant. Vertices in Aj

1
 can be embedded 

to balls anywhere between vj and u∗ and so there are Θ((ln ñ)|A
j

1
|) ways to do that for 

each j. All up there are Ω(ñ|A0|(ln ñ)|A1|) ways to embed A0(H) ∪ A1(H) into balls of 
Tñ . But now as ñ = Θ(n) we are done.� □

The rest of this section is devoted to proving the upper bound of Theorem 1.9. 
To prove the upper bound on the expected number of embeddings of a fixed 
digraph into a split tree we begin by proving the split tree analogue of Lemma 2.1 
which was for complete binary trees. Define cn(b1, b2) to be the number of node 

Fig. 3   Schematic for the construction in lower bound of Theorem 1.9. The colours indicate the positions 
in the split tree to which the ‘common-ancestor’ (red), ‘ancestor’ (blue) and sink (green) vertices are 
embedded. Recall A2 = A2(H) denotes the set of ‘common-ancestor’ vertices of H (Color figure online)
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common ancestors of balls b1 and b2 . The lemma shows that the number of 
embeddings of H to balls in Tn can be bounded above by a function of the number 
of balls, the height of the tree and the number of node common ancestors. Note 
that the following lemma is deterministic and is true for any instance of a split 
tree.

Lemma 3.2  Let H be a fixed directed acyclic graph and let Tn be a split tree with 
s0 > 0 , n balls and height m. Then writing |A0| = |A0(H)| for the number of sink 
(green) vertices, |A1| = |A1(H)| for the number of ‘ancestor’ (blue) vertices and 
|A2| = |A2(H)| for the number of ‘common-ancestor’ (red) vertices,

the sum is over ordered pairs of distinct balls in Tn

Proof  As in the proof of Lemma 2.1, label the sinks A0 = {s1,… , s|A0|} and verti-
ces in A1 according to which sink they are the ancestors of Ai

1

def
= {v ∈ A1 ∶ v < si} . 

Also let Aij

2
 be the ‘common-ancestor’ vertices in A2 which are ancestors of both 

sink si and sj.
Suppose sinks si and sj are embedded to balls bi and bi′ in Tn . Then to complete 

the embedding ancestors of si , i.e. vertices in Ai
1
 must be embedded balls in node 

ancestors of bi in Tn and there are at most s0d(bi) options as each node ancestor of bi 
has s0 balls. Likewise vertices in Ai,j

2
 i.e. common-ancestors of sinks si and sj must be 

embedded to balls in common ancestor nodes of bi and bj in the tree. Thus,

where the sum is over distinct balls b1,… , b|A0| and the product i ≠ i′ is over pairs 
bi, bi′ in b1,… , b|A0| . The expression above is very similar to Eq. (2.3) in the proof 
of Lemma 2.1 and the proof follows now in an identical way so we omit the details. 
Notice the upper bound for split trees simply picks up an additional factor of 
 s|A1|+|A2|
0

.� □

Lemma 3.3  Let j and j′ be any two distinct balls, and v a node with split vector 
V

v = (Vv
1
,… ,Vv

b
) . Let y be the probability that balls j and j′ pass to the same child 

node of node v conditional on the event that both balls reach node v. (We say a ball 
passes to a child node whether it stays at that child or continues further down the 
tree via that child node). Then,

Proof  If a ball j reaches node v there are three possible scenarios

[H]Tn ≤ s
|A1|+|A2|
0

m|A1|n|A0|−2
∑
bi,bi�

cn(bi, bi� )
|A2|

[H]Tn ≤
∑

b1,…,b|A0 |

∏
i

(
s0d(bi)|Ai

1
|

)∏
i≠i�

(
s0cn(bi, bi� )

|Ai,i�

2
|

)
.

y ≤

b∑
i=1

(Vv
i
)2
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•	 (i) ball j is chosen as one of the s0 balls to remain at node v when all n balls have 
been added to the tree.

•	 (ii) ball j is chosen as one of the bs1 balls which are distributed uniformly so each 
child of v receives s1 of them.

•	 (iii) ball j chooses a child of v with probabilities given by the split vector V v.

For each of these possible scenarios we give the probability that balls j, j′ pass to the 
same child of node v. Observe that swapping the scenarios for j, j′ gives the same 
probability so we list only one possibility. We summarise these in a table and then 
provide the proof of each line below the table. 

(i) (ii) (iii) Probability 
that  j, j′ pass to 
same child

j, j′ 0
j j′ 0
j j′ 0

j, j′ s1−1

bs1−1

j j′ 1

b

j, j′
∑

i V
2

i

Now, if either or both of the balls stay at node v then self-evidently they cannot 
pass to the same child of v, thus the situations indicated in the first three rows have 
probability zero.

The first interesting case is if both balls are in situation (ii), i.e. are both chosen to 
be part of the bs1 nodes that are distributed uniformly such that each child receives s1 

balls. Fix a child of v, the number of ways both j, j′ pass to that child is 
(
s1
2

)
 ; and 

thus there are bs1(s1 − 1)∕2 ways for j, j′ to pass to the same child of v. Then simply 
divide by bs1(bs1 − 1)∕2 to get the probability that j, j′ pass to the same child of v. 
This finishes this case.

The next interesting case is if ball j is in situation (ii) and ball j′ is in situation 
(iii). In this case ball j′ goes to each child v with probability indicated by the split 
vector. The probability that ball j goes to the same node as j′ is 1 / b; and indeed it 
didn’t matter the probability with which j′ passes to each child of v.

The last case to consider is if both j, j′ are in situation (iii), i.e. they pass to child 
i of node v with probability Vi as given by the split vector. Thus the probability they 
both go to child i of node v is 

∑
i V

2
i
 ; and the probability they pass to the same child 

of v is then simply the sum over the children of v as required.
After justifying each line in the table it now suffices only to show that 

s1−1

bs1−1
<

1

b
≤
∑

i V
2
i
 . The first is immediate,

s1 − 1

bs1 − 1
=

1

b
−

b − 1

b(bs1 − 1)
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and the second follows by Jensen’s inequality.� □

We write cn(j, j�) to denote the number of nodes which are common ancestors 
of balls j, j′ and cn(j) the number of nodes which are ancestors of ball j, includ-
ing the node containing ball j. Similarly, write cn(u) to be the number of nodes 
which are ancestors of node u including node u itself. Lastly denote by j ∨n j

� the 
node which is the least common-ancestor of balls j and j′ ; note if j and j′ are in 
the same node then this node is j ∨n j

� . Observe that the number of nodes which 
are ancestors of a ball is one more than the depth cn(j) = d(j) + 1 and similarly 
cn(j, j

�) = d(j ∨n j
�) + 1.

After recalling this notation, we can use it to express the probability y in the 
statement of Lemma 3.3. Observe that the event that the balls j and j′ both reach 
node v can be expressed as j, j′ ≥ v or equivalently (j ∨n j) ≥ v.

Now y was defined as the probability that balls j and j′ pass to the same child 
node of node v conditional on the event that both balls reach node v and condi-
tional on node v having split vector V v = (Vv

1
,… ,Vv

b
) . So

We may now also state the required lemma for split trees (this lemma plays a very 
similar role to the bound proven for 

∑
u1,u2

�[c(u1, u2) ≥ �] in the proof of Theo-
rem 1.8 for complete binary trees).

Lemma 3.4  Let j, j′ be any two distinct balls in the split tree with split vector 
V = (V1,… ,Vb) . For � ≥ 1,

Proof  The idea is to establish, using Lemma 3.3, the probability that two balls fol-
low the same path through the tree to some specified level given they followed the 
same path through the tree to the level before. We condition on {V v}

v
 the set of all 

split vectors in the split tree. For � ≥ 1

The first term is less than 
∑

i(V
u
i
)2 by Lemma 3.3. For the second term note the fol-

lowing. If balls j and j′ have at least � common ancestors then their least common 
ancestor, the node j ∨n j

� must have at least � common ancestors. In particular j ∨n j
� 

itself or a node on the path from j ∨n j
� to the root must have precisely � ancestors 

and so,

y = ℙ
[
cn(j, j

�) ≥ cn(v) + 1 || j, j� ≥ v, V
v
]
.

ℙ
[
cn(j, j

�) ≥ � + 1
]
≤ 𝔼

[∑
i

V2
i

]�

.

ℙ
[
cn(j, j

�) ≥ � + 1 || cn(j, j
�) ≥ �, {V v}v

]

=
∑

u ∶ cn(u)=�

ℙ
[
cn(j, j

�) ≥ � + 1 || j, j� ≥ u, V
u
]

× ℙ
[
j, j� ≥ u || cn(j, j

�) ≥ �, {V v}v∶c(v)<�
]
.



606	 Algorithmica (2020) 82:589–615

1 3

(Another way to see this is that for j and j′ to have at least � common ancestors there 
must be some node u which is an ancestor of both j and j′ such that node u has pre-
cisely � ancestors.) Hence we get that

where 
∑

u pu = 1 and also the pu depend only on split vectors for nodes v with 
cn(v) < � , i.e. closer to the root than node u and so the pu are independent of the {
V
w
}
w ∶ cn(w)=�

 . We can now calculate the probability that balls j, j′ have � + 1 ances-
tors conditioned on having � by taking expectations (over split vectors) and using 
the tower property of expectations.

where the inequality in the third line followed by  (3.4). We are basically done. 
Notice that the root is the ancestor of any two balls, so the event cn(j, j�) ≥ 1 has 
probability one and we have our ‘base case’. Hence

as required.�  □

The previous lemma implies the next proposition almost immediately.

Proposition 3.5  Let C > 0 be any constant and let Tn be a split tree with n balls. 
Then there exists a constant 𝛽 > 0 such that

(3.1)
∑

u ∶ cn(u)=�

pu
def
=

∑
u ∶ cn(u)=�

ℙ

[
j, j� ≥ u | cn(j, j

�) ≥ �,
{
V

v
}
v∶c(v)<�

]
= 1.

(3.2)
ℙ
[
cn(j, j

�) ≥ � + 1 | cn(j, j
�) ≥ �, {V v}v∶cn(v)<�

]

≤
∑

u ∶ cn(u)=�

pu

∑
i

(Vv
i
)2.

ℙ
[
cn(j, j) ≥ � + 1 || j, j� ≥ �

]

= 𝔼

[
�{cn(j, j

�) ≥ � + 1} || cn(j, j
�) ≥ �,

{
V

v
}
v∶cn(v)<�

]

≤
∑

u ∶ cn(u)=�

pu

∑
i

𝔼
[
(Vu

i
)2
]

= 𝔼

[∑
i

V2
i

]
.

ℙ
[
cn(j, j

�) ≥ � + 1
]

= ℙ
[
cn(j, j) ≥ 1

] �∏
h=1

ℙ
[
cn(j, j

�) ≥ h + 1 || cn(j, j
�) ≥ h

]

≤

(
𝔼

[∑
i

V2
i

])�
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where the sum is over balls b1, b2.

Proof  By Lemma 3.4, there exists a constant a < 1 such that for any positive inte-
ger �,

hence as earlier in the proof of the upper bound in Theorem 1.8 this implies

and again since C and a < 1 are constants the sum 
∑∞

�=1
a��C converges to a con-

stant, say � = �(a,C) and we are done.� □

We are now ready to prove our upper bound on the expected number of 
embeddings.

Proof  (of the upper bound of Theorem 1.9) Fix a digraph H , and we will show that 
there exists a constant c = c(H) such that

It is important to have a strong bound on the likely height of the split tree. We apply 
Proposition 3.1. Choose K′ such that ℙ(h(Tn) > K� ln n) ≤ n−|H|−1 . Let B denote the 
(bad) event that h(Tn) > K� ln n , and denote by Bc the complement of this event.

Define random variable X = X(Tn) to be X =
∑

b1,b2
cn(b1, b2)

�A2� . Observe that 
because X is non-negative and by law of total expectation 𝔼

[
X | Bc

]
≤ 𝔼[X]∕ℙ(Bc) 

and so, by Proposition 3.5, for n large enough,

Now by Lemma 3.2

In particular, by conditioning on Bc : the event that the height being less than K′ ln n , 
and by Eq. (3.4),

It remains now to bound the expected number of embeddings conditioning on B , 
�
[
[H]Tn | B

]
 . We may use a very simple bound that for any tree with n balls, H 

�

[∑
b1,b2

cn(b1, b2)
C

]
≤ �n2,

∑
b1,b2

�[c(b1, b2) ≥ �] ≤ a�−1n2.

∑
b1,b2

c(b1, b2)
C ≤

∑
b1,b2

∞∑
�=1

�[c(b1, b2) ≥ �]�C ≤ n2
∞∑
�=1

a�−1�C.

(3.3)�
[
[H]Tn

]
≤ cn|A0|(ln n)|A1|.

(3.4)�
[
X | Bc

]
≤ �n2∕(1 − n−|H|−1).

[H]Tn ≤ s
|A1|+|A2|
0

h(Tn)
|A1|n|A0|−2X(Tn)

𝔼
[
[H]Tn | Bc

]
ℙ(Bc) < s

|A1|+|A2|
0

𝛽(K� ln n)|A1|n|A0|.
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can be embedded at most n|H| times, as each vertex in H embedded to one of the n 
balls in the tree. This suffices as now 𝔼

[
[H]Tn | B

]
ℙ(B) ≤ n−1 . Hence we may take 

c = c(H) to be 2s|H|
0

K′|A1� and we have shown the Eq. (3.6) as required. � □

4 � Embeddings: Stars are More Frequent than Other Connected 
Digraphs

After having proved some properties of embedding counts for our two classes of 
trees, complete binary trees and split trees, we show these imply the desired results 
on cumulants of the number of appearances of a permutation in the node labellings 
of complete binary trees, respectively ball labellings in split trees.

Say a sequence of trees Tn with n nodes (respectively balls) is explosive if for any 
fixed acyclic digraph H

Thus Sect. 2 was devoted to showing complete binary trees are explosive and Sect. 3 
to showing split trees are explosive whp. This section proves the cumulant results 
using only this explosive property of the tree classes. The first result, Proposi-
tion 4.1, shows that the number of embeddings of most digraphs we will need to 
consider are of smaller order than the number of embeddings of a particular digraph 
the ‘star’ Sk,r which we define below. The other result of this section is to show the 
asymptotic number of embeddings of Sk,r is asymptotically the same as our extended 
notion of path length Υk

r
(Tn) in Lemma 4.2.

The set Gk,r is the set of acyclic digraphs which may be obtained by taking r cop-
ies of the path Pk and iteratively fusing pairs of vertices together. Likewise labelled 
H′ in G′

k,r
 are those obtained by fusing together j labelled paths Pk keeping both sets 

of labels when a pair of vertices are fused. The set G′
3,2

 is illustrated in Fig. 4.
Formally let Gk,r be the set of directed acyclic graphs H on (k − 1)r edges (allow-

ing parallel edges), such that the edge set can be partitioned into r directed paths 
P1,… ,Pr , each on k − 1 edges. For H ∈ Gk,r write H′ for H together with a labelling 
V1,… ,Vr , where Vi are the k vertices in Pi (note some vertices have multiple labels). 
Likewise write G′

k,r
 for the labelled set of graphs.

Denote by Sk,j the digraph composed by taking j copies of the path Pk and fusing 
the  j source vertices into a single vertex. We shall refer to this as a star graph but 
note it is only really stars if k = 2.

Proposition 4.1  Fix k,  r and let H be a connected digraph in the set Gk,r . If Tn is 
explosive and H ≠ Sk,r then

Proof  First observe that Sk,r has r sink vertices, (k − 2)r ancestor vertices and exactly 
one common-ancestor vertex. Thus by the explosive property of Tn

Ω(n|A0|(ln n)|A1|) = [H]Tn = o(n|A0|(ln n)|A1|+1).

[H]Tn = o
(
[Sk,r]Tn

)
.
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Now fix H ∈ Gk,r�Sk,r and fix a labelling V1,… ,Vr on H . Again by the explosive 
property

Hence if |A0(H)| ≤ r − 1 then [H]Tn = o([Sk,r]) and so we would be done. Thus we 
may assume that A0(H) = r and it will suffice to show that A1(H) < (k − 2)r.

As the digraph H is connected, each path Vi must have at least one fused vertex. 
Consider the path labelled Vi = (vi

1
,… , vi

k
) . We know vi

k
 is a sink vertex and not 

fused with any other vertex otherwise we would have A0(H) < r . If vertex vi
j
 on path 

Vi is fused with another vertex, it must be a vertex on a different path to avoid creat-
ing a directed cycle, and so vi

j
 and vi

j−1
,… , vi

1
 would become common-ancestors. 

Thus if vi
j
 is fused to another vertex there are at most (k − j − 1) ancestor vertices in 

path Vi . Hence A1(H) ≤ (k − 2)r with equality only if we fused just the source verti-
ces vi

1
 of each path Vi . But fusing just the source vertices would yield Sk,r and so for 

our digraph A1(H) ≤ (k − 2)r − 1 and we are done. � □

We will also need the following lemma in the proof of Proposition 6.1. Recall the 
tree parameter Υk

r
(Tn) , defined in Eq. (1.2), extends the notion of total path length of 

a tree.

[Sk,r]Tn = Ω(nr(ln n)(k−2)r).

(4.1)[H]Tn = o(n|A0(H)|(ln n)|A1(H)|+1).

Fig. 4   The set G′
3,2

 . Labels of the first path V1 = (v1
1
, v2

1
, v3

1
) indicated by black arrows between the nodes 

and respectively brown arrows for labels of the second path V2 = (v1
2
, v2

2
, v3

2
) . The actual labels are sup-

pressed. Colours and shapes of nodes indicate sink (green circle), ‘ancestor’ (blue diamond) and ‘com-
mon-ancestor’ (red square) nodes respectively. These labelled directed acyclic graphs appear in variance 
calculations of R(�) for |�| = 3 (Color figure online)
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Lemma 4.2  Fix k, r. If Tn is explosive then

Proof  The star Sk,r consists of r directed paths of length k (rays) with their source 
vertices fused to a common vertex. Let � denote the common vertex, and label all 
other vertices vi,j for 1 ≤ i ≤ r and 2 ≤ j ≤ k , where (�, vi,2, vi,3,… , vi,k) makes up ray 
i.

As a warmup we count the number of ways to embed Sk,r into a tree Tn . Suppose 
the leaves v1,k, v2,k,… , vr,k are mapped to u1,… , ur in Tn . Then � must be mapped to 
one of the c(u1,… , ur) common ancestors of u1,… , ur . Having done this, for each i 
we choose k − 2 vertices between ui and �(�) , to which we map vi,2,… , vi,k−1 . So the 
total number of ways is

We now show that (4.2) is asymptotically Υk
r
(Tn) . The directed star, Sk,r can be 

constructed by taking r directed paths of length k and fusing their source vertices 
together to a common vertex. Let Fk,r be the set of graphs obtained by taking r 
directed paths of length k and fusing one non-sink vertex from each path together to 
a common vertex and possibly additional pairs of vertices from paths where vertices 
were at or above this common vertex . So, Sk,r ∈ Fk,r , but as for k > 2 the common 
fused vertex need not be the source vertex of each path, there may be many other 
digraphs in Fk,r.

We now count the number of ways to embed H ∈ Fk,r into a tree Tn . Let � denote 
the common vertex to all paths. Label all other unlabelled vertices vi,j for 1 ≤ i ≤ r 
and 1 ≤ j ≤ k , where (vi,1, �, vi,3,… , vi,k) makes up ray i if it was the second vertex of 
path i that was fused.

Recall for any H ∈ Fk,r the sinks of each path are not fused. Suppose the sinks/
leaves v1,k, v2,k,… , vr,k are mapped to u1,… , ur in Tn . Then � must be mapped to one 
of the c(u1,… , ur) common ancestors of u1,… , ur . Having done this, for each i we 
choose k − 2 between the root of Tn and ui to which we map vi,2,… , vi,k−1 . (The num-
ber of the k − 2 vertex mapped above and below �(�) is dependent on which vertex 
on path i was common vertex in H ). Thus,

However there are only finitely many digraphs Fk,r and all of these are connected 
digraphs also in the set Gk,r . Therefore by Proposition 4.1

and we are done. � □

[Sk,r]Tn = Υk
r
(Tn)(1 + o(1)).

(4.2)[Sk,r]Tn =
∑

u1,…,ur

c(u1,…,ur)∑
�=0

r∏
i=1

(
d(ui) − �

k − 2

)
.

∑
H∈Fk,r

[H]Tn =
∑

u1,…,ur

c(u1,… , ur)

r∏
i=1

(
d(ui)

k − 2

)
= Υk

r
(Tn).

∑
H∈Fk,r

[H]Tn = [Sk,r]Tn (1 + o(1))
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5 � Labelling Stars

In the proof of Proposition 6.1 where we calculate the moments of the distribu-
tion of the number of � that occur in a random labelling of our tree we will con-
sider indicators over small subsets of vertices. A star Sk,� can be formed by fusing 
together � length k paths at their source vertices. For Sk,� with a uniform label-
ling, we calculate the probability each of the � paths is labelled with respect to � 
in Proposition 5.1.

Proposition 5.1  Let � be a permutation of length k, Sk,� be the digraph defined ear-
lier and let � ∶ V(Sk,�) → [(k−1)� + 1] be a uniform random labelling of the verti-
ces of Sk,� . Then the probability that every Vi induces a labelling of relative order � 
is,

Proof  First note that for each Vi to induce the relative order � , i.e. a ‘correct’ label-
ling there is only one possible label for the root � . This is obvious if �1 = 1 since 
then the root must receive the label ‘1’. For general �1 , each Vi∖� must have �1 − 1 
labels less than the label at the root �(�) and k − �1 labels greater than �(�) ; hence 
we must have �(�) = (�1 − 1)� + 1 . Note that we may choose a uniform labelling 
� by first choosing the label at the root �(�) and then choosing uniformly from all 
labellings of Sk,r∖� with the remaining labels. Thus, as there is only one possible 
label for the root, the probability it is labelled correctly is ((k−1)� + 1)−1.

It now remains to calculate the probability that the non-root vertices are labelled 
correctly given that �(�) = (�1 − 1)� + 1 . We count the number of correct labell-
ings. Note there are (�1 − 1)� labels less than the root i.e. ‘small’ labels and 
(k − �1)� labels greater than the root, ‘big’ labels, remaining. Again each Vi must 
receive �1 − 1 of the ‘small’ labels and k − �1 of the ‘big’ labels. As the labels of 
Vi must induce � once we choose which labels appear on Vi∖� then they can only 
be placed in one way. Hence the number of correct labellings of Sk,�∖� (assuming 
�(�) = (�1 − 1)� + 1 ) is

Note the total number of possible labellings of Sk,�∖� is ((k − 1)�)! and so the prob-
ability of correctly labelling Sk,� is

and the result follows. � □

ak,�(�)
def
=

(
(�1 − 1)�

)
!((k − �1)�)!(

(�1 − 1)!(k − �1)!
)�
((k − 1)� + 1)!

(
(�1−1)�

�1−1,… , �1−1

)(
(k−�1)�

k−�1,… , k−�1

)
.

(
(�1 − 1)�

)
!((k − �1)�)!(

(�1 − 1)!(k − �1)!
)�
((k − 1)� + 1)!
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6 � Cumulants Moments

By exploiting only the explosive property of binary and (whp) of split trees we will prove 
the moments result for both classes at once, using Proposition 4.1. In particular observe 
that Theorems 1.3 and 1.6 are both implied by taking Proposition 6.1 along with the 
lemmas proving complete binary trees are explosive and split trees are whp explosive.

To define the constant D�,r used in Proposition 6.1 and Theorems 1.3 and 1.6 we 
use some basic notation of partitions. We write P(r) to indicate the set of all parti-
tions of [r] and note {{1}{2, 3, 4}} and {{2}{1, 3, 4}} form different partitions of [4]. 
Given a partition � = {s1,… , s

�
} of {1,… , r} with set sizes ri = |si| we let |�| = � 

denote the number of parts in � . Noting a|�|,�(�) is the constant defined in Proposi-
tion 5.1 we may now define D�,r by

Proposition 6.1  Suppose Tn is explosive. Let �r = �r(R(�, Tn)) be the rth cumulant of 
R(�, Tn) . Then for r ≥ 2,

Proof  We fix a permutation � with |�| = k and an explosive tree Tn on n nodes, and 
consider the random variable

where we sum over vertex sets U ⊆ Tn of size |U| = |�| which are ordered under the 
partial ordering of Tn , i.e. U = {u1,… , uk} with u1 < ⋯ < uk.

In order to calculate the cumulants of X, we use mixed cumulants (see e.g. [11, 
Section  6.1]). Given a set of random variables X1,… ,Xr , we denote the mixed 
cumulant by �(X1,… ,Xr) . For now, we only need the following properties.

1.	 If X1 = X2 = ⋯ = Xr then �(X1,… ,Xr) equals the rth cumulant �r(X1) of X1,
2.	 �(X1,… ,Xr) is multilinear in X1,… ,Xr,
3.	 �(X1,… ,Xr) = 0 if there exists a partition [r] = A ∪ B such that {Xi ∶ i ∈ A} and 

{Xi ∶ i ∈ B} are independent families.

We then have

(6.1)D�,r

def
=

∑
�∈P(r)

(−1)|�|−1(|�| − 1)!
∏
s∈�

a|�|,|s|(�).

�r = D�,rΥ
|�|
r
(Tn) + o(Υ|�|

r
(Tn)).

X = R(�, Tn) =
∑
U

�[�(U) ≈ �],

�r(X) = �(X,X,… ,X) = �

(∑
U1

�[�(U1) ≈ �],… ,
∑
Ur

�[�(Ur) ≈ �]

)

=
∑

U1,…,Ur

�(�[�(U1) ≈ �],… , �[�(Ur) ≈ �]).
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Now, suppose {U1,… ,Ur} is a family such that [r] = A ∪ B with UA = ∪i∈AUi and 
UB = ∪i∈BUi disjoint. Then {�[�(Ui) ≈ �] ∶ i ∈ A} and {�[�(Ui) ≈ �] ∶ i ∈ B} are 
independent families. Indeed, conditioning on the label sets �(UA),�(UB) , the ran-
dom variables are determined by the internal order given to labels within UA and UB , 
respectively, and this order is independent. Saying that the family {U1,… ,Ur} is 
connected if there is no such partition A ∪ B , it follows that

Let {U1,… ,Ur} be a connected family. We can write Ui = {ui,1,… , ui,k} with 
ui,1 < ⋯ < ui,k for each i. Let H be the graph on vertex set U = U1 ∪⋯ ∪ Ur with 
an edge from ui,j to ui,j+1 for each i and j < k . The graph H is a connected member 
of Gk,r . As the term �(�[�(U1) ≈ �],… , �[�(Ur) ≈ �]) only depends on the labels of 
vertices in U, it is a function of H which we denote by �(H) . Then

By Proposition 4.1, this sum is dominated by the term corresponding to H = Sk,r . 
We conclude that

But by Lemma 4.2 [Sk,r]Tn = Υk
r
(Tn)(1 + o(1)) and so it remains only to show 

�(Sk,r) = D�,r . The mixed cumulant �(X1,… ,Xr) may be defined by (see e.g. [11, 
Section 6.1])

where we sum over all partitions of {1,… , r} into nonempty sets {I1,… , Iq}, q ≥ 1.
Let V1,… ,Vr denote the vertex sets of the r “rays” of Sk,r ; each Vi has size k and 

induces a path of length k, V1 ∪⋯ ∪ Vr covers Sk,r , and the Vi intersect only at the 
root of Sk,r . We have

and need to establish �
�∏

j∈I �[�(Vj) ≈ �]
�
 for any I ⊆ [r] . By symmetry, this is 

determined by the size of I, and so for 1 ≤ � ≤ r,

�r(X) =
∑

U1,… ,Ur

connected

�(�[�(U1) ≈ �],… , �[�(Ur) ≈ �]).

�r(X) =
∑

H ∈ Gk,r

connected

[H]Tn�(H).

�r(X) = (1 + o(1))[Sk,r]Tn�(Sk,r).

�(X1,… ,Xr) =
�

I1,…,Iq

(−1)q−1(q − 1)!

q�
p=1

�

⎡⎢⎢⎣
�
j∈Ip

Xj

⎤⎥⎥⎦
,

�(Sk,r) = �(�[�(V1) ≈ �],… , �[�(Vr) ≈ �]),

ak,� = �

[
�∏
j=1

�[�(Vj) ≈ �]

]
.
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is the probability that, under a labeling of Sk,� chosen uniformly at random, each ray 
respects the permutation � which we calculated in Proposition 5.1. Hence we have

This may now be written as

summing over partitions � of [r] which is the constant D�,r as required. � □
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Appendix

See Table 1.

�(Sk,r) =
∑

I1,…,Iq

(−1)q−1(q − 1)!

q∏
p=1

ak,|Ip|

=

r∑
q=1

∑
r1+⋯+rq=r

(
r

r1,… , rq

)
(−1)q−1(q − 1)!

q∏
p=1

ak,rp .

�(Sk,r) =
∑
�

(−1)|�|−1(|�| − 1)!
∏
p∈�

ak,|p|,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 1   Values of D�,r for � of lengths 2–6 and moments r = 1,… , 5

|�| �1 ∈ ? 1 2 3 4 5

2 {1, 2} 1

2

1

22 ⋅3
0 −1

23 ⋅3⋅5
0

3 {1, 3} 1

2⋅3

1

32 ⋅5

2

33 ⋅5⋅7

−2

33 ⋅52 ⋅7

−23

34 ⋅5⋅7⋅11

3 {2} 1

2⋅3

1

22 ⋅32 ⋅5

−1

22 ⋅33 ⋅5⋅7

−1

23 ⋅33 ⋅52 ⋅7

1

22 ⋅34 ⋅5⋅7⋅11

4 {1, 4} 1

23 ⋅3

1

26 ⋅7

1

28 ⋅5⋅7

−3

211 ⋅5⋅72 ⋅13

−3

212 ⋅72 ⋅13

4 {2, 3} 1

23 ⋅3

13

26 ⋅32 ⋅5⋅7

−1

28 ⋅33 ⋅5⋅7

−5591

211 ⋅33 ⋅52 ⋅72 ⋅11⋅13

199

212 ⋅34 ⋅5⋅72 ⋅11⋅13

5 {1, 5} 1

23 ⋅3⋅5

1

22 ⋅34 ⋅52

1

22 ⋅34 ⋅53 ⋅13

29

23 ⋅37 ⋅54 ⋅13⋅17

−107

22 ⋅38 ⋅55 ⋅7⋅13⋅17

5 {2, 4} 1

23 ⋅3⋅5

37

26 ⋅34 ⋅52 ⋅7

53

28 ⋅34 ⋅53 ⋅7⋅11⋅13

−849839

211 ⋅37 ⋅54 ⋅72 ⋅11⋅13⋅17

−1041109

212 ⋅38 ⋅55 ⋅72 ⋅11⋅13⋅17⋅19

5 {3} 1

23 ⋅3⋅5

1

26 ⋅3⋅52 ⋅7

−19

28 ⋅33 ⋅53 ⋅7⋅11⋅13

−732

211 ⋅33 ⋅54 ⋅72 ⋅11⋅13⋅17

10061

212 ⋅34 ⋅55 ⋅72 ⋅11⋅13⋅17⋅19

6 {1, 6} 1

24 ⋅32 ⋅5

1

28 ⋅34 ⋅11

1

213 ⋅36 ⋅11

1

214 ⋅37 ⋅7⋅112

−19

219 ⋅39 ⋅7⋅112 ⋅13

6 {2, 5} 1

24 ⋅32 ⋅5

1

28 ⋅32 ⋅52 ⋅11

509

213 ⋅36 ⋅53 ⋅7⋅11⋅13

−233⋅619

213 ⋅37 ⋅54 ⋅7⋅112 ⋅13⋅17⋅19

−18928549

219 ⋅39 ⋅55 ⋅7⋅112 ⋅13⋅17⋅19⋅23

6 {3, 4} 1

24 ⋅32 ⋅5
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28 ⋅34 ⋅52 ⋅7⋅11

1

211 ⋅36 ⋅53 ⋅7⋅13

−211⋅9341

215 ⋅37 ⋅54 ⋅72 ⋅112 ⋅13⋅17⋅19

−47⋅3701

217 ⋅39 ⋅55 ⋅72 ⋅11⋅13⋅17⋅19⋅23
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