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Abstract
A splittable good provided in n pieces shall be divided as evenly as possible among
m agents, where every agent can take shares from at most F pieces. We call F the
fragmentation and mainly restrict attention to the cases F = 1 and F = 2. For F = 1,
the max–min and min–max problems are solvable in linear time. The case F = 2 has
neat formulations and structural characterizations in terms of weighted graphs. First
we focus on perfectly balanced solutions. While the problem is strongly NP-hard in
general, it can be solved in linear time if m ≥ n − 1, and a solution always exists in
this case, in contrast to F = 1. Moreover, the problem is fixed-parameter tractable
in the parameter 2m − n. (Note that this parameter measures the number of agents
above the trivial threshold m = n/2.) The structural results suggest another related
problem where unsplittable items shall be assigned to subsets so as to balance the
average sizes (rather than the total sizes) in these subsets. We give an approximation-
preserving reduction from our original splitting problem with fragmentation F = 2
to this averaging problem, and some approximation results in cases when m is close
to either n or n/2.
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1 Introduction

1.1 General Problem Statement

Suppose that n pieces of a good are given, with sizes x1, . . . , xn . The good shall be
divided among m agents, thereby respecting certain fairness criteria and restrictions.
In a solution, let y1, . . . , ym denote the amounts that the agents receive, and let zi j be
the amount that agent j receives from piece i . Clearly, the conditions y j = ∑n

i=1 zi j
for all agents j and

∑m
j=1 zi j ≤ xi for all pieces i must be fulfilled. All mentioned

variables are non-negative. The agents are identical.
Ideally we would like to divide the good evenly and completely, that is: y1 = · · · =

ym and
∑n

i=1 xi = ∑m
j=1 y j . Without further restrictions it is a trivial problem to

find mn numbers zi j that satisfy these demands. But suppose that we also want to
limit the fragmentation, in the following sense. Let F be some fixed positive integer.
Every agent shall get parts of at most F distinct pieces. Formally, for every j we allow
zi j > 0 for at most F indices i . These indices can be chosen in the solution; only their
number is limited by F . As opposed to this, every piece may be divided among an
unlimited number of agents.

1.2 Motivations

We discuss a few motivations; for other natural applications see also [20] where a
closely related problem is treated.

Imagine that some pieces of land, at n different locations and with areas x1, . . . , xn ,
shall be assigned to farmers in a fair manner. Besides getting a fair share, it would be
desirable for every single farmer to get only a few different fields, rather than several
scattered ones, such that the farmer does not have to divide activities between many
different locations. Only the amounts of land are of interest, but there are no specific
geometric restrictions, as it is trivial to cut, e.g., a rectangle into smaller rectangles,
once the desired sizes are decided.

One may also think of applications in scheduling, where the xi are durations of
n jobs that shall be divided among m workers, in such a way that they get equal
workloads, and every worker is concerned with only a few different jobs, in order to
limit context switching. Of course, in such a scenario we have to assume that the jobs
can be arbitrarily split and also parallelized. To be more specific, an example where
these assumptions are realistic is grading of the n exercises of an exam by m graders.
Note that every grader dealing with an exercise has to become acquainted with that
exercise, which causes extra work independent of the actual amount of solutions to
grade. Therefore it seems appropriate to simply count the number F of different jobs
(exercises), rather than adding fractions of graded solutions.

1.3 Related Topics

Prominent problems in Discrete Optimization, in various application domains, deal
with cuttingor connecting items from rawmaterials, e.g., theCuttingStock andSkiving
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Stock problems; see [17]. An action that is mathematically equivalent to cutting is
packing items into containers, as in the Bin Packing and Knapsack problems [16].
(In fact, Skiving Stock is also known as Dual Bin Packing). However, the problems
we consider here differ from all the mentioned problems in one way or another For
instance, in the “Stock” problems we are given large amounts of items of only a few
different sizes, and in the Bin Packing and Knapsack problems the sizes of items to
be packed (or cut out) are prescribed.

Non-preemptive versions of scheduling with cardinality constraints have been con-
sidered, e.g., in [3,6,15].

There is a rich literature on fair division problems which became very popular
under the name fair cake-cutting: A resource called a “cake” shall be divided among
several agents, under various fairness requirements and geometric restrictions such as
connectivity [2] or order. Some work assumes indivisible goods. The agents are not
always identical but they may have different preferences and utilities as, e.g., in [5].
Much of the research in the field considers not only the division results but also the
division process as a game, in settings where the intended divisions cannot be exactly
realized, and different agents cut and choose pieces, e.g., in [7]. In envy-free divisions,
agents have no incentives to change their own shares for others. We refer to a survey
[19] of algorithms for cutting a cake represented by an interval.

The work being closest to ours is [20]; we discuss it below in Sect. 1.4 in the context
of results.

1.4 Our Results

In Sect. 2 we formally define splitting problems where the good shall be divided
completely and the minimum share shall be maximized (Max–Min Splitting) or
vice versa (Min–Man Splitting). We call a solution perfect if all shares are equal.

In Sect. 3 we consider the case of fragmentation F = 1, which is solvable in linear
time. One way1 is to reduce both of our problems in linear time to the problem solved
in [20]. Rephrased in our terminology, that problem requires to give equal shares of
maximum size to all agents and waste the rest of the good. The optimum is found
by linear-time selection in a set of candidate values. However, for our problems with
full distribution of the good we independently developed an alternative approach (to
generating the candidate set and proving correctness) which appears more intuitive
and concise.

The main focus of the paper is, however, the case of fragmentation F = 2. First
of all, notice that there is a “jump” from F = 1 to F = 2, in that the problem totally
changes its quality: The restrictive demand F = 1 allows only very uneven solutions
for some instances. In particular, if m = n, the only possible solution is to deliver one
piece to every agent, regardless of their sizes, whereas F = 2 gives us the option to cut
the large pieces. Interestingly enough, a perfect solution with F = 2 exists whenever
m ≥ n − 1, and it can even be constructed in a rather straightforward way. We expect
that the differences in the problem’s behavior between F = 2 and larger F are then
less drastic.

1 The author is indebted to the anonymous reviewer who pointed out this possibility.
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Solutions for F = 2 can be naturally described by weighted graphs that we call
solution graphs. As a side remark, this makes the case F = 2 a fractional version of
the famous degree realization problem (see, e.g., [9] as an entry point, and [10] for
a related editing problem) which requires to construct a graph whose vertex degrees
equal a given sequence of integers. Based on the solution graphs, we present in Sect. 4 a
linear-time elimination algorithm that finds, as said above, a perfect solution whenever
m ≥ n − 1, we prove strong NP-completeness for m < n − 1, and NP-completeness
already for the special case when m is slightly smaller than n − 1. Moreover, the
problem is NP-complete for any constant F > 2 as well.

It also follows that the problems cannot befixed-parameter tractable in the parameter
n − m, under standard hypotheses. However, this is different at the other end of the
range of m: Note that m ≥ n/2 is necessary for a solution to exist. Moreover, finding
a perfect solution is trivial when m = n/2 (with n even). Thus it is natural to consider
the problem parameterized by the “distance to triviality” m − n/2, or equivalently,
2m − n. Indeed, we show that the problem of assigning equal amounts to all agents,
or reporting that the instance does not allow that, is fixed-parameter tractable in the
parameter 2m − n.

In Sect. 5 we use the previous structural results to reduce Max–Min Splitting
and Min–Man Splitting for F = 2 to a new problem that asks to divide a set of
unsplittable items in bags (subsets) such that, roughly speaking, the average sizes in
the bags are close to each other. The reduction preserves approximation ratios, but
the reformulation with unsplittable items makes it easier to design approximation
algorithms, as illustrated in Sect. 6. (A separate overview of these results is given in
Sect. 6.) The problem resembles load balancing, but since averages rather than sums
must be balanced, it also behaves quite differently.

2 Preliminaries

Throughout the paper, F is a fixed positive integer called the fragmentation. Common
to all problem variants are the input and some of the constraints:
Splitting:
Given: n positive numbers x1, . . . , xn , and an integer m.
Find: non-negative numbers zi j and y j (for i = 1, . . . , n and j = 1, . . . ,m) subject
to:
∀ j : y j = ∑n

i=1 zi j ,∀i : ∑m
j=1 zi j ≤ xi ,

∀ j : |{i | zi j > 0}| ≤ F ,
and further constraints and objectives specified below.

The positive numbers zi j and the numbers y j are sometimes called shares. The
problems require to find shares, or to recognize that no such numbers can satisfy the
constraints. The above general constraints merely say that the share of every agent is
the sum of shares from the different pieces, one can distribute at most the available
amount of goods, and for every agent the fragmentation is bounded by F .

To fully specify the actual problems we only mention the additional constraints
below, in order to avoid repetitions.

123



1302 Algorithmica (2020) 82:1298–1328

Perfect Splitting: ∀i : ∑m
j=1 zi j = xi , and all shares y j are equal.

We refer to a solution of Perfect Splitting as a perfect solution. There, all agents
get equal shares, and no goods are held back. The Perfect Splitting problem is to
find a perfect solution or to recognize that no perfect solution exists.
Min–Max Splitting: ∀i : ∑m

j=1 zi j = xi , and the largest share, max j y j , is mini-
mized.
Max–Min Splitting: ∀i : ∑m

j=1 zi j = xi , and the smallest share, min j y j , is
maximized.

In the last two problems, still all goods must be distributed, but in general the agents
get different shares. If a perfect solution exists, then this is also the optimal solution
to both Min–Max and Max–Min Splitting. The last two problems differ in their
motivations: TheMin–Max problem appears more appropriate for applications where
someworkmust be divided completely, and the goal is not to load any individual agents
too much. TheMax–Min problem aims at giving everyone a guaranteed amount of a
good, being as large as possible.

In the followingwe can always assumem ≥ n/F , since otherwise there is obviously
no solution that assigns all goods to agents. In particular, for F = 1 we assume that
m ≥ n agents are present.

Another trivial remark is that we can, without loss of generality, multiply all sizes xi
by the same factor, e.g., in order to normalize their sum to some desired “convenient”
value. The term scaling at several places in the paper refers to this action that does not
change the given problem instance.

In the case F = 2 it is quite natural to represent any solution to a problem instance
as a weighted graph:

Definition 1 The solution graph of a solution to (Perfect, Min–Max, Max–Min)
Splitting with F = 2 is a weighted graph with n vertices and m edges, specified
as follows. We create a vertex of weight xi for the i th piece. Every edge uv has two
ports at the vertices u and v. The solution specifies a set of m edges and 2m weights
of their ports. Specifically, if the j th edge has a port at the i th vertex, then the weight
of this port is zi j . The weight of the j th edge, y j , is the sum of the weights of the two
ports of the j th edge. Similarly, the weights of all ports at the i th vertex must sum up
to xi . An edge can also be a loop at one vertex, and in this case it is immaterial how
its weight is divided into weights of the two ports.

Vertices and edges represent pieces and agents, respectively.Note that parallel edges
may exist, since several agents may have shares from the same pieces. (Later we will
see that parallel edges are not needed, but the definition allows them.)

The well-known Selection problem asks to find the t th smallest number in an
unsorted set of n elements, for a prescribed number t . It can be solved in O(n) time
[4], with a relatively large hidden constant that can, however, be improved by random-
ization.

A problem with input size n and another input parameter k is fixed-parameter
tractable (FPT) if some algorithm can solve it in O( f (k) · p(n)) time, where f is
some computable function of the parameter k, and p is some polynomial that must
not depend on k. A problem kernel of an instance of an FPT problem is an equivalent
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instance that can be computed in polynomial time and whose size depends only on
the parameter. We refer to [18] for an introduction.

3 The CaseWithout Fragmentation (F = 1)

First we studyMin–Max Splitting andMax–Min Splitting, which also subsumes
the special case of Perfect Splitting, for fragmentation F = 1.

Trivially, either of the first two problems always permits an optimal solution where,
for every piece i , all zi j > 0 are equal, since otherwise we can balance these values
without making the solution worse. Thus, such a solution is fully characterized by a
vector (p1, . . . , pn) with

∑n
i=1 pi = m, where pi is the number of indices j with

zi j > 0. For every such i, j we obviously have y j = zi j = xi/pi . This observation
suggests the following definition.

Definition 2 We define Y to be the sequence of all numbers xi/p, where i = 1, . . . , n
and p = 1, . . . ,m, sorted in decreasing order. For k = 1, . . . ,mn let Y [k] denote the
value at position k in Y .

The same value xi/pmay come from different i and p, therefore a value may occur
multiple times in Y . However, we can break ties arbitrarily and sort equal values in any
order. Formally this can also be achieved by random and infinitesimal perturbations
of the values xi . We will henceforth assume that all values in Y are distinct, hence Y is
strictly monotone decreasing. This avoids circumstantial treatment of specific cases.

Intuitively, the pi should be roughly proportional to the xi . But the efficient com-
putation of exact optimal solutions is less obvious and is addressed below. Note that
we only count the time for solving the actual problem, i.e., for computing the numbers
pi , whereas the final “physical” division of goods among the m agents is not part of
the computation. Adopting the unit cost measure where comparisons and algebraic
operations with real numbers take constant time, the time bounds are independent of
m which may be arbitrarily larger than n.

3.1 Maximizing theMinimum

The following Lemma 1 dealswith the problem being inverse toMax–Min Splitting
and yields a characterization of the optimal solution in Lemma 2.

Lemma 1 For any fixed y with 0 < y ≤ mini xi , let k be the maximum number of
agents such that everyone can obtain an amount at least y. Then we have:

(a) k = ∑n
i=1 pi , where pi := �xi/y� > 0.

(b) k is the maximum index with Y [k] ≥ y.
(c) Y [k] = mini xi/pi .

Proof (a) For every i we can divide the i th piece among at most �xi/y� agents. Sum-
mation over all i yields the assertion. Due to the assumption on y we have pi > 0 for
all i .
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(b) Note that xi/si ≥ y holds for all i and all si ≤ pi , and there exist k such pairs
(i, si ). Hence at least k members of Y are greater than or equal to y, that is, Y [k] ≥ y.
Since xi/(pi + 1) < y holds for all i , we also see that no further members of Y have
this property.

(c) As said above, the k values xi/si (si ≤ pi ) are exactly those members of Y
being greater than or equal to y, that is, they are the first k items in Y , and clearly
mini xi/pi is the last of them. ��

Lemma 2 The optimal objective value forMax–Min Splitting with F = 1 equals

maxmin
j

y j = min{Y [m],min
i

xi },

where the maximum is taken over all solutions.

Proof Case 1 Y [m] < mini xi . We apply Lemma 1 to y := Y [m]. Due to (b), the
maximum number k of agents that can be served equals the maximum index k with
Y [k] ≥ Y [m]. This implies k = m. In other words, m agents can obtain an amount of
at least Y [m] each.

Assume that m agents can obtain more, say an amount of y′ > y each, where still
y′ < mini xi . We apply Lemma 1 to y′. Due to (b), the maximum number k′ of agents
that can be served equals the maximum index k′ with Y [k′] ≥ y′ > y = Y [m]. This
implies k′ < m. Hence we have shown by contradiction that m agents cannot obtain
any amount larger than y.

Case 2 Y [m] ≥ mini xi . We apply Lemma 1 to mini xi . Part (c) implies that
Y [k] = mini xi/pi ≤ mini xi ≤ Y [m], thus k ≥ m. That is, m agents can be served
with an amount at leastmini xi . Butmini xi is also a trivial upper boundon the objective
value, which proves the assertion also in this case. ��

It is trivial to check in O(n) timewhether allm agents can get shares of size mini xi .
If so, this solution is optimal, and we are done. From now on we can suppose that this
trivial case has been checked negatively. Thus, we have Y [m] < mini xi , and Y [m] is
the optimal value by Lemma 2.

For a good time bound we must find the value Y [m] without naively generating all
m − 1 preceding elements of Y . The intuition for a faster approach is to search for the
optimal value near the average amount given to the agents.

Lemma 3 Let ȳ := ∑n
i=1 xi/m be the average amount given to the m agents, and

let k be the maximum number of agents such that every agent can actually obtain an
amount at least ȳ. Then Y [k] ≥ Y [m] and m − k ≤ n.

Proof Clearly, ȳ ≥ min j y j holds in any solution, hence ȳ ≥ maxmin j y j (where
the maximum is taken over all solutions). Now, Lemma 2 implies ȳ ≥ Y [m], and
Lemma 1 applied to ȳ gives Y [k] ≥ ȳ ≥ Y [m].

For i = 1, . . . , n we define qi := xi/ȳ, with integer part and fractional part
pi := �qi� and ri := qi − �qi�, respectively. Lemma 1 (a) states that k = ∑n

i=1 pi .

123



Algorithmica (2020) 82:1298–1328 1305

Thus we observe:

k =
n∑

i=1

pi =
n∑

i=1

(qi − ri ) ≥
n∑

i=1

qi − n = m − n.

From this chain of inequalities we get m − k ≤ n. ��
Based on these inequalities we will now give an efficient algorithm for Max–Min

Splitting. Remember that the trivial case was already excluded.

Algorithm MaxMin1

1. Compute ȳ := ∑n
i=1 xi/m and all pi := �xi/ȳ�.

2. Compute k := ∑n
i=1 pi and Y [k] := mini xi/pi .

3. If m ≤ k then y := Y [k]. Go to step 5.
4. If m > k then:

4.1. Create the set R of the n ratios xi/pi sorted in decreasing order.
4.2. Mark the rightmost (i.e., smallest) element of R.
4.3. Move a pointer in R from left to right, i.e., starting at the largest ratio. For every

ratio xi/pi encountered by the pointer, compute pi := pi + 1, compute xi/pi ,
and insert xi/pi at the correct position in the sorted set R.

4.4. Stop when the pointer is m − k positions to the right of the marked element, and
let y be the element found there.

5. Recompute all pi by pi := �xi/y�.
Theorem 1 Max–Min Splitting with F = 1 can be solved in O(n log n) time.

Proof We run AlgorithmMaxMin1. Steps 1 and 2 cost O(n) time, and they are correct
due to Lemma 1. By Lemma 2, the optimal value is Y [m]. We must show that the
computed value y equals Y [m]. Lemma 3 ensures that Y [k] ≥ Y [m] and m − k ≤ n.
If m ≤ k, then Y [m] = Y [k], and Step 3 outputs the correct y. If m > k, then we only
have to find the next m − k members of Y after Y [k], and since m − k ≤ n, these are
at most n further members.

We show that Step 4 generates Y [k], . . . ,Y [m] and stops at Y [m]. Since Y [k] =
mini xi/pi , the last element of the initial R in Step 4.2 (the marked element) is Y [k].
Whenever we insert a new ratio, its position in R is to the right of the pointer. For this
reason, and because R comprises all elements of Y between the marked Y [k] and the
pointer, we are at Y [m] when we stop.

To support fast insertions we host R in a priority queue. Thus Step 4 runs in
O(n log n) time. Step 5 computes the final values pi in O(n) time. ��

3.2 Minimizing theMaximum

In order to minimize max j y j we use the sequence Y from Definition 2 as well. For
formal reasons we also set Y [0] := ∞. The scheme is pretty much the same as for
Max–Min Splitting, but as the two problems are not symmetric, care must be taken
for several details that are different.
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Lemma 4 For any fixed y > 0 that does not appear in Y , let k ≥ n be the minimum
number of agents needed such that every agent has to take an amount at most y. This
number k satisfies:

(a) k = ∑n
i=1 pi , where pi := �xi/y�.

(b) k is the maximum index with Y [k − n] ≥ y.
(c) Y [k − n] = mini xi/(pi − 1).

Proof (a) For every i we must split the i th piece among at least �xi/y� agents. Sum-
mation over all i yields the assertion.

(b) Note that xi/si ≥ y holds for all i and all si ≤ pi −1, and there exist k−n such
pairs (i, si ). Hence at least k − n members of Y are greater than or equal to y, that is,
Y [k − n] ≥ y. Since xi/pi < y holds for all i , we also see that no further members of
Y have this property.

(c) As seen above, the k − n values xi/si (si ≤ pi − 1) are exactly those members
of Y being greater than or equal to y, that is, they are the first k − n items in Y , and
clearly mini xi/(pi − 1) is the last of them. ��
Lemma 5 The optimal objective value forMin–Max Splitting with F = 1 equals

minmax
j

y j = Y [m − n + 1],

where the minimum is taken over all solutions.

Proof WeapplyLemma4 to y := Y [m−n+1]+δwith an infinitesimal δ > 0, added in
order tomeet the requirement that y itself does not occur inY . Due to (b), Theminimum
number k of agents equals the maximum index k with Y [k − n] > Y [m − n + 1].
This implies k = m. In other words, m agents have to take an amount of at most
Y [m − n + 1] + δ each. Since δ can be made arbitrarily small, their maximum load is
bounded by Y [m − n + 1].

Assume that the m agents have to take even less, say y′ < Y [m − n + 1]. We apply
Lemma 4 to y′. Due to (b), the minimum number k′ of agents equals the maximum
index k′ with Y [k′ − n] ≥ y′. Since, in particular, Y [m + 1 − n] ≥ y′, this implies
k′ ≥ m + 1. This shows that more than m agents are needed to bound their maximum
load by any amount smaller than Y [m − n + 1]. ��

We have already seen that Y [m] can be determined from ȳ in O(n log n) time. Since
n is known from the instance, an algorithm similar to MaxMin1 can also determine
Y [m − n + 1], which yields the optimal solution for Min–Max Splitting due to
Lemma 5. We can readily state:

Theorem 2 Min–Max Splitting with F = 1 can be solved in O(n log n) time.

3.3 Splitting in Linear Time

Wehave shown for both problems that the optimal value is found at a certain position in
the sequenceY fromDefinition 2. For easier presentationwe first gave O(n log n)-time
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algorithms. At a closer look, O(n)-time Selection can be used instead: Remember
fromAlgorithmMaxMin1 and Theorem 1 that we only need to find the r th largest ratio
(with r := m − k > 0) after Y [k]. A remark is that the O(n log n)-time algorithms
are likely to be faster for moderate n, due to the hidden constant factor in linear-time
Selection.

Note that the sought element Y [m] is not simply the r th largest ratio xi/(pi + 1),
since several ratios xi/p with the same index i but varying pmay be larger than Y [m].
Instead we will exploit a simple separation property:

Lemma 6 For positive numbers x, x ′, p, q it is impossible that x > x ′ and

x

q
>

x ′

p
>

x ′

p + 1
>

x

q + 1
.

Proof Clearly, the ratio of the two outer numbers is larger than the ratio of the two
inner numbers:

x

q
· q + 1

x
>

x ′

p
· p + 1

x ′ .

It follows q < p. But this implies (q + 1)x ′ < (p + 1)x , which contradicts the last
inequality in the given chain. ��

We need some precautions and special definitions to prepare for the algorithm. We
find the maximum xi in O(n) time, and by renaming we assume that x1 = maxi xi .
For every positive integer q, the bin with index q is the interval (x1/q, x1/(q + 1)].
We define a simple procedure that takes as input a set S of ratios of the form xi/pi
(pi integer), generates new ratios, and puts them into the correct bins:

Procedure Gen(S)
For every ratio xi/pi in S, compute q with x1/q < xi/(pi + 1) ≤ x1/(q + 1), and
put xi/(pi + 1) in the bin with index q.

Algorithm MaxMin1Lin
(Without loss of generality, assume that x1 = maxi xi .)

1. Compute ȳ := ∑n
i=1 xi/m and all pi := �xi/ȳ�.

2. Compute k := ∑n
i=1 pi and Y [k] := mini xi/pi .

3. If m ≤ k then y := Y [k]. Go to step 5.
4. If m > k then:

4.1. Create the set S of the n ratios xi/pi . Run Gen(S).
4.2. Compute the index q of the bin containing Y [k].
4.3. Repeat, until the processed bins together contain at least m − k ratios smaller

than Y [k]:
4.3.1. Create the set S of all ratios smaller than Y [k], in the bin with index q.
4.3.2. Run Gen(S). Set q := q + 1.
4.4. Let s be the number of ratios smaller than Y [k] in all bins except the current

bin, r := m − k, and t := r − s.
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4.5. Let y be the t th largest element in the current bin.
5. Recompute all pi by pi := �xi/y�.

Theorem 3 Max–Min Splitting and Min–Max Splitting with F = 1 can be
solved in O(n) time.

Proof For Max–Min Splitting we run Algorithm MaxMin1Lin. Preparations and
Steps 1–3 (which are identical to MaxMin1) take O(n) time. Computing the index q
of the bin that contains a given number requires O(1) time, using divisions. Hence
Gen(S) costs O(|S|) time, which is O(n) in Step 4.1.

We look for the r th largest ratio smaller thanY [k]. Due to Step 2, the ratios generated
in Step 4.1 are smaller than Y [k]. Furthermore, Lemma 6 ensures that every bin
contains at most one ratio xi/p for every i . In particular, all ratios produced by Gen(S)
from the set S in a bin are always put in later bins. From Lemma 3 we havem−k ≤ n.
Hence all runs of Gen in Step 4 take O(n) time in total. Trivially, O(n) time also
suffices to count the ratios in Step 4.3 and to calculate s and t . The t th largest ratio
in the final bin is our Y [m], and Step 4.5 is done by a Selection algorithm in O(n)

time.
For Min–Max Splitting we can proceed similarly, since the only difference is

the place of the optimal solution in Y (as specified in Lemma 5). ��

4 Perfect Solutions for Fragmentation F=2

In this section we study Perfect Splitting when F = 2. Remember our notion of
solution graphs from Definition 1 in Sect. 2.

First we characterize the instances of Perfect Splitting that have a solution. An
instance is given by n positive vertex weights x1, . . . , xn and an integer m. We scale
the weights such that

∑n
i=1 xi = m. Hence a perfect solution must satisfy y j = 1 for

all j . That is, all edge weights must be 1.

4.1 Many Agents Make it Easy

In the following result, a forest2 is a graph without cycles, that is, a graph whose
connected components are trees. Similarly to the time bounds for F = 1, we do not
count the time for the trivial post-processing that actually splits the pieces. Therefore
the time will not depend on m.

Algorithm Perfect2

1. Mark every vertex i large if xi > 1, normal if xi = 1, medium if 1/2 < xi < 1,
and small if 0 < xi ≤ 1/2.

2. While m > n do:
Attach a loop to some large vertex i , update xi := xi − 1 and m := m − 1.

3. If m = n then:
3.1. If all vertices are normal, then append another loop to each, and stop.

2 In the conference version a tree was claimed due to an inaccurate step, but there are counterexamples.
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3.2. Else attach a loop to a large vertex i , update xi := xi − 1 and m := m − 1.
4. While m = n − 1 and n > 2 do:

4.1. Choose two vertices i and j with xi + x j > 1 and x j < 1 as follows:
Either take two medium vertices i and j ,
or take a large or normal vertex i , and a medium or small vertex j .

4.2. Join vertices i and j by an edge, where the port at j gets the weight x j , and the
port at i gets the weight 1 − x j . Update x j := 0 and xi := xi − 1 + x j > 0,
hence m := m − 1 and n := n − 1.

5. If m = 1 and n = 2 then join the two vertices by an edge, where the ports get
the weights of the vertices.

Theorem 4 Every instance of Perfect Splitting with F = 2 and m ≥ n − 1 has a
solutionwhose solution graph is a forest, possibly with loops attached to some vertices.
Moreover, we can compute, for some solution, the edges of the forest and the number
of loops at each vertex in O(n) time.

Proof We run Algorithm Perfect2 that constructs a solution graph. It successively
creates certain edges of weight 1 and reduces the remaining weights xi of the incident
vertices accordingly. (Note that only the weights of the ports are needed to describe the
solution, and the original xi can be recovered afterwards). Similarly,m and n are used
as variables to denote the number of edges yet to create, and the number of remaining
vertices of positive weight, respectively.

As long asm > n, there exists a large vertex i , and we can do Step 2 untilm = n is
reached. Clearly, we do not have to create the loops explicitly in O(m) time, instead
we compute the number �i of loops attached to every vertex i : Choose numbers
�i ≤ �xi� − 1 such that

∑
i �i = m − n. This can be done by O(n) arithmetic

operations.
Next suppose that m = n. If all vertices are normal, then we are obviously done

after Step 3.1. If not all vertices are normal, then some large vertex still exists, and
Step 3.2 applies. Thus we reach m = n − 1 in this case.

From now on suppose that m = n − 1. For n > 2 we claim that the vertices i and
j requested by Step 4.1 do exist. The correctness of Step 4.2 is then evident, and so is
the correctness of Step 5.

In fact, since m < n, at least one medium or small vertex exists. If some large
or normal vertex exists, too, then the claim is true. Thus suppose that all vertices
are medium or small. If two medium vertices exists, the claim is also true. Thus
suppose that all vertices are small, except atmost onemediumvertex.Now the equation
m = n − 1 restricts the possibilities as follows.

If at least two small vertices exist, say the first two are small, then we have x1+x2 ≤
1, and since also xi < 1 holds for all i ≥ 3, this is possible only if n = 2 and x1 =
x2 = 1/2. If only one small vertex exists, then trivially n = 2 and m = x1 + x2 = 1.
The case that no vertex is small is impossible, since then n = 1 andm = x1 > 0. This
way, each case leads to a contradiction, proving the claim.

In every step, the updates of weights take O(1) time. The next edge is always built
from two vertices from certain classes (large, normal, medium, small). Since arbitrary
vertices from the respective classes can be chosen, it suffices to maintain four unsorted
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sets of vertices. Thus we can also update these four sets and pick the needed vertices
in O(1) time. It follows an overall time bound O(n).

As for the shape of the solution graph, consider the graph of edges inserted by
the algorithm until any moment. We show the following invariant: Every connected
component C of this graph retains at most one vertex with positive weight, and C is
a tree, possibly with additional loops. This is trivially true in the beginning.

Consider any new edge that is not a loop. Prior to insertion of this edge, the weights
of its vertices were positive, and upon insertion, the weight of exactly one of them
drops to zero. Furthermore, since the two (positive) vertices were in two different
connected components, the new edgemerges these two connected components. Hence
the invariant is preserved. It follows that the final solution graph is a forest, possibly
with loops at some vertices. ��

It is apparent from the proof Theorem 4 that an instance has, in general, many
different solutions. One can argue that a small number of non-loop edges is preferable,
as they correspond to agents that actually have to take shares from different pieces.
Therefore we found it interesting, besides the time bound, that the solution graph can
be forced to be a forest. It arises the question how difficult it is to compute a solution
to Perfect Splitting with F = 2 and m ≥ n − 1 that also minimizes the number
of non-loop edges. Note that we cannot simply attach loops as long as possible. For
instance, if the vertex weights are 1.8, 0.1, 0.1, we can get two edges with weights
0.9 + 0.1 at their ports, but if we begin with a loop, then the remaining instance 0.8,
0.1, 0.1 has no solution any more.

4.2 Structural Characterization and Hardness

Theorem 4 settles the case m ≥ n − 1. In the following we also allow m < n (but
m ≥ n/2, as said in Sect. 2). The conditions in Theorem 4 suggest the following
concepts.

Definition 3 Let V be a set of elements, also called vertices, which are indexed by
1, . . . , n. (We identify elements with their indices.) Assume that every vertex i has
a positive weight xi . We call I ⊆ V an integral set if

∑
i∈I xi is an integer. We call

I ⊆ V a heavy set if
∑

i∈I xi ≥ |I | − 1.

With this terminology, the instances allowing perfect solutions can be characterized
as follows. Remember that the total amount of goods is m, and therefore every agent
gets an amount of 1, without loss of generality.

Theorem 5 An instance of Perfect Splitting with F = 2 and a set V of n vertices
of weights x1, . . . , xn where

∑n
i=1 xi = m (the number of agents) admits a solution if

and only if V can be partitioned into heavy integral sets.

Proof “only if”: Suppose that there exists a perfect solution. Since F = 2, the solution
can be represented as a solution graph G as in Definition 1, with vertex set V and with
m edges (some of which may be loops). LetC(k) denote the kth connected component
ofG; the indexing is arbitrary. Let nk andmk denote the number of vertices and edges,
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respectively, in C(k). Since every edge has weight 1, we get for each k that the vertex
set Vk of C(k) is integral. Specifically, the sum of vertex weights in C(k) equals mk .
Due to connectivity we also have mk ≥ nk − 1, thus Vk is a heavy set.

“if”: Suppose that V has a partitioning into integral sets Vk which are also heavy.
The latter means that mk ≥ nk − 1, where nk is the number of vertices of Vk , and mk

now denotes their total weight. We may consider every Vk as an instance of Perfect
Splitting with the given vertices and their weights, and with mk agents. Due to
mk ≥ nk − 1 and Theorem 4, this instance has a solution with mk agents. Since
m = ∑

k mk , the solutions to all these instances Vk combined form a solution to the
entire instance with m agents. ��

While Perfect Splitting with F = 2 is easy for m ≥ n − 1 due to Theorem 4,
the complexity jumps when m < n − 1. The reason is that, unfortunately, it is hard to
find a partitioning as required in Theorem 5, as we will show below. At first glance,
hardness might appear counterintuitive, because with fragmentation F = 2 it should
always be possible, within an elimination process as in Theorem 4, to take one piece
and then the complementary amount (missing to sum 1) from some other piece. But
the catch is that the remaining pieces might be too small to pair them up, and then the
fragmentation F = 2 is not sufficient. Actually, we can show hardness by a reduction
from 3- Partition. This problem is a natural candidate that has been used earlier for
reductions to similar packing and scheduling problems as in [8].

In the following, note that amultiset, as opposed to a set, may contain several equal
elements, and they are counted with their multiplicity, e.g., the multiset {x, x, y} has
three elements.

Theorem 6 Perfect Splitting with F = 2 is strongly NP-complete, and so are
Max–Min Splitting and Min–Max Splitting.

Proof We will give a polynomial-time reduction from the strongly NP-complete 3-
Partition problem to Perfect Splitting. We call any multiset with exactly three
elements a triplet. An instance P of 3- Partition is amultiset with 3k positive rational
numbers that shall be partitioned into k triplets such that the sum of the numbers in
each triplet is the same. By scalingwe can assume that the sum of the given numbers be
k, hence the sum in each triplet must be 1. We can also assume r ≤ 1 for all numbers r
in P , since otherwise P has, trivially, no solution. We fix some small constant d > 0,
in fact, any number d with 0 < d < 1/3 will do.

For the reduction we take any given instance P with the above properties, and we
transform every number r from P into 2(1/3+ dr)/(1+ d). Let Q be the multiset of
these transformed numbers. They enjoy the following properties:

(a) Any three numbers from P sum up to 1 if and only if the three transformed
numbers in Q sum up to 2.

(b) The sum of all numbers in Q is 2(3k/3 + dk)/(1 + d) = 2k.

Let n := 3k and m := 2k. Now we can view Q as an instance of Perfect Splitting
with F = 2, where n is the number of pieces, and m = 2k is both the number of
agents and the total amount to distribute.
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Assume that P has a solution. Then each of its k triplets has the sum 1. Due to
(a), the three transformed numbers in Q have the sum 2. Hence the triplets form a
partitioning of Q into heavy integral sets. By Theorem 5, Q has a perfect solution.

Conversely, suppose that Q has a perfect solution. Using Theorem 5 again, Q can
be partitioned into heavy integral sets. Since n − m = k and the sets are heavy, the
partitioning must consist of at least k sets.

Remember that r ≤ 1 holds for all r from P . Hence any single number in Q
is at most 2(1/3 + d)/(1 + d) < 1. Any two numbers in Q have a sum at least
(4/3)/(1+ d) > 1 and at most 4(1/3+ d)/(1+ d) < 2. Hence any integral set needs
at least three elements. It follows that Q is partitioned into exactly k triplets. Using
again that these sets are heavy, we see that the sum in each triplet is at least 2. Since,
due to (b), the total sum equals 2k, the sum in each triplet is exactly 2. Using (a) again,
it follows that each corresponding triplet in P has the sum 1. That means, P has a
solution.

Since Perfect Splitting is a special case of the two optimization problems, the
last assertion follows immediately. ��

NP-hardness (but not necessarily in the strong sense) holds already when m is
slightly smaller than n − 1, and the proof is less technical. Together with Theorem 4)
this establishes a dichotomy.

Theorem 7 Perfect Splitting with F = 2 and m = n − t is NP-complete for
every constant t ≥ 2, and so are Max–Min Splitting and Min–Max Splitting.
Moreover, NP-completeness holds already for instances with sizes xi < 1 for all i .

Proof First let t = 2. Consider any instance where m = n − 2, and xi < 1 for all
i . Any partitioning into heavy integral sets necessarily consists of exactly two sets I
and J , with

∑
i∈I xi = |I | − 1 and

∑
j∈J x j = |J | − 1. Due to Theorem 5, such an

instance has a solution if and only if it can be partitioned into sets I and J with these
properties.

On this basis we give a reduction from the NP-complete Subset Sum problem
[8] to Perfect Splitting. An instance of Subset Sum consists of positive rational
numbers y1 . . . , yn and another value s, and the goal is to find a subset I of indices
such that

∑
i∈I yi = s. Subset Sum is NP-complete already in the case that s =∑n

k=1 yk/2. By scaling we can also assume that
∑n

k=1 yk = 2, hence we have to
divide the sum into 1 + 1. Now we can also assume yk < 1 for all k, since otherwise
the instance has, trivially, no solution. Finally, we simply set xk := 1− yk for all k, to
get an instance of Perfect Splitting with F = 2 and m = n − 2. Equivalence of
the instances of both problems is evident.

For every fixed t > 2 we construct the above instance and create 2(t − 2) further
items xi = 1/2. Since these additional items must form t − 2 pairs in any partitioning
into heavy integral sets, equivalence is evident here, too. ��
Theorem 8 Perfect Splitting is NP-complete for every constant fragmentation
F > 2, and so are Max–Min Splitting and Min–Max Splitting.

Proof This is established by a reduction from the case of fragmentation 2, with xi < 1
for all i , which is NP-complete by Theorem 7. (We abandon the constant t = n −m.)
In such instances, every agent must get shares from exactly two pieces.
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For themoment we slightly tweak the problem and allow also dummy pieces of size
0. Given any instance with fragmentation 2 and sizes smaller than 1, we add (F −2)m
dummy pieces. The instance with fragmentation 2 has a perfect solution if and only
if the resulting instance with fragmentation F has. The equivalence still holds if all
dummy pieces have some equal size δ, where δ is some very small but positive number.

��

4.3 Few Agents Make it Easy, Too

Inspecting the reductions that we used to show hardness results, one can notice that
they produce instances with m/n ≥ 2/3. Next we will see that Perfect Splitting
with F = 2 becomes “easy” if m is close to the smallest possible value n/2.

In the following we consider graphs and refer to any connected component with
two vertices and one edge as a pair, and to any connected component with three
vertices and two edges as a triplet. An isolated vertex is one that builds a connected
component on its own. Note that the mentioned connected components have no loops.
A neat small combinatorial observation on graphs will be used to bound the kernel
size in the subsequent FPT result.

Lemma 7 Let n and m be fixed, where n/2 < m < (2/3)n. Let t = 2m − n, and let q
denote the number of vertices not being in pairs. Among all graphs that have exactly
m edges and n vertices, none of them being isolated, there is a graph that maximizes
q and only consists of pairs and t triplets. Consequently, q ≤ 3t .

Proof Consider any graph with m and n as specified. Since m ≤ n − 2 (for n ≥ 6),
it has at least two connected components. Since m < (2/3)n, we even have that
some connected component is a pair, because in all other connected components, the
edges-to-vertices ratio is at least 2/3.

Let C be some connected component that is not a tree. Then we can remove an
edge from C such that C still remains connected. We re-insert this edge so as to
merge two connected components. Since no vertices were isolated, this change does
not create a new pair, hence q can only increase. Moreover, the number of connected
components strictly decreases. The latter implies that, after a sequence of such changes,
all connected components are trees.

If some connected component is a tree with at least four vertices, then we can
remove a leaf and its incident edge. The remainder of the tree is still connected and
is not a pair. We append the edge and the leaf to some pair (recall that a pair exists).
Altogether this strictly increases q.

It follows that, in some graph with maximum q, all connected components are pairs
and triplets. Let p and t ′ be the number of pairs and triplets, respectively. Clearly we
have m = p + 2t ′ and n = 2p + 3t ′, hence t = 2m − n = t ′. Since we have shown
above that q ≤ 3t ′ = 3t , we get that at most 3t vertices are not in pairs. ��
Theorem 9 Perfect Splitting with F = 2 is fixed-parameter tractable (FPT) in
the parameter t = 2m − n.
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Proof Consider an instance of Perfect Splittingwith F = 2 that has s solution.We
also consider a partitioning as specified in Theorem 5 and refer to its heavy integral
sets as bags. Let i and j be any two indices with xi + x j = 1.

Assume that i and j are in different bags, say, in I ∪ {i} and J ∪ { j}, respectively,
where i /∈ I and j /∈ J . We replace them with two new bags {i, j} and I ∪ J . The pair
{i, j} is obviously a heavy integral set. Since the original bags were integral and the
weight xi + x j = 1 has been removed, I ∪ J is also integral. The original bags were
heavy, that is, I ∪ {i} and J ∪ { j} has weight at least |I | and |J |, respectively. Since
xi + x j = 1, we see that I ∪ J has a total weight at least |I | + |J | − 1, which means
that this bag is heavy, too. Together this shows the existence of an alternative solution
where {i, j} is a bag.

Assume that i and j are in the same bag, but together with further indices, say,
K ∪ {i, j} is a bag, where K �= ∅ and i, j /∈ K . We split it in two bags K and {i, j}.
Clearly, K is integral. Since K ∪{i, j}was heavy, it has a total weight at least |K |+1.
Hence, at least a weight of |K | remains in K , which means that K is also heavy. This
shows again the existence of an alternative solution where {i, j} is a bag on its own.

We are ready to devise an FPT algorithm. First we pair up indices i and j with
xi + x j = 1, as long as possible. Then we solve the remaining instance. That is, we
search for a partitioning as in Theorem 5, of the set of indices that have not been paired
up.

We claim that the given instance has a perfect solution if and only if this remaining
instance has. The “if” direction is trivial. The “only if” statement holds due to the
above exchange arguments: If a solution exists at all, then it can be transformed into a
solution where any desired pair {i, j} with xi + x j = 1 forms a bag. We also remark
that, trivially, the pairs are uniquely determined up to isomorphism.

The pairing phase is easily implemented in O(n log n) time: Sort the list of weights,
and then traverse it simultaneously in ascending and descending order.

If a solution graph exists then, by Lemma 7, the remaining instance can have at
most 3t vertices. Hence, if more than 3t vertices are not paired up, we know that
the instance has no perfect solution. In the positive case we may solve the remaining
instance naively by exhaustive search. ��

By way of contrast, Theorem 7 excludes an FPT (even an XP) algorithm in the
parameter b = n − m, unless P=NP. In the next section we study approximation
algorithms for fixed and small b or t .

5 Partitioning with Balanced Ratios

In this section we first introduce a seemingly very different problem, now with indi-
visible items. However, we show that it is closely related to Splitting, through the
structural properties from Sect. 4. Besides, it may also be natural and interesting in its
own right.
Min–Max (Max–Min) Ratio:
Given: n positive numbers x1 ≥ · · · ≥ xn (without loss of generality sorted in non-
increasing order), and integers b and ϕ. We shall use the abbreviation x := ∑n

i=1 xi .
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Find: a partitioning of the index set {1, . . . , n} into b bags Bj ( j = 1, . . . , b) so as
to minimize (maximize) the maximum (minimum) of the ratios s j/(n j − ϕ), where
n j := |{i : i ∈ Bj }| denotes the number of indices in the j th bag, s j := ∑

i∈Bj
xi

is the sum of the values xi associated to these indices, and more than ϕ indices are in
each bag, i.e., the constraint ∀ j : n j > ϕ is satisfied. We refer to s j/(n j − ϕ) as “the
ratio of the bag” Bj .

The number ϕ is a constant “offset” in the denominator. The case ϕ = 0 requires
to balance the averages in the bags, rather than the sums, as it is the case in load
balancing problems. Imagine, for example, that the numbers xi are scores indicating
the strengths of individuals with respect to some skill, and a fixed number of temporary
training teams shall be formed, where the teams should have similar average strengths
(to obtain mixed teams where weaker members can learn from stronger ones, and
the teams can compete), whereas the sizes of teams are less important. However, we
were led to the problems by their connection to the respective Splitting problems:
Positive numbers ϕ might appear artificial, but we will see below that the case ϕ = 1
provides a useful reformulation of the Splitting problems. We will consider generic
but constant ϕ, as the offset does not change very much the structure and treatment of
the problems.

Theorem 10 For every instance of Min–Max (Max–Min) Splitting with F = 2
and b := n − m ≥ 2 there exists an optimal solution where the set of pieces is
partitioned into b bags such that: the j th bag has n j > 1 pieces and is devoted to
m j = n j − 1 agents,

∑b
j=1 n j = n, and all agents assigned to the same bag get the

same share.

Proof Consider any solution and its solution graph. Clearly, it has at least b connected
components. For every j , let the j th component contain n j vertices and m j ≥ n j − 1
edges (where m j ≥ 1 if n j = 1). We refer to the vertex sets of the components as
bags, and we note that m j agents are assigned to the j th bag. Using Theorem 4, we
can give all agents assigned to any one bag exactly the average amount in this bag. If
some bag with m j ≥ n j exists, we can change the solution be merging this bag with
another bag. Averaging over the merged bag can only improve the solution, that is,
the maximum (minimum) share assigned to the agents can only decrease (increase).
By doing such merge operations as long as possible, we end up with exactly b bags
with the claimed properties. ��
Theorem 11 Any given approximation algorithm forMin–Max (Max–Min) Ratio
withϕ = 1 yields an approximation algorithm forMin–Max (Max–Min) Splitting
with F = 2, with the same approximation ratio and asymptotic time bound.

Proof Consider any instance I of Min–Max (Max–Min) Splitting with F = 2.
We solve instead the instance J of Min–Max (Max–Min) Ratio with ϕ = 1,
b = n − m, and with the given values xi .

Theorem 10 yields that I has some optimal solution that translates into an optimal
solution to J with the same objective value.

Now we take the approximate solution to J computed by the assumed approxi-
mation algorithm, say with approximation ratio c. Finally we transform it back into a
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solution to I with the same objective value, by applyingAlgorithm Perfect2 separately
to each bag Bj . This yields a c-approximate solution to I.

Perfect2 runs in O(n j ) time due to Theorem 4. Hence it needs O(n) time for
all bags, which affects the time bound for the approximation algorithm by at most a
constant factor, since any algorithm trivially needs at leastΩ(n) time to read the input.

��
Theorem 11 provides a reduction that preserves the approximation ratio. Another

view is that it separates the easy and hard part of the Splitting problems: While
averaging within the bags is easy (Theorem 4), the difficulty is to find a partitioning
into b = n − m bags that balances the shares per agent across the different bags.

Due to Theorem 11 we can henceforth consider Min–Max (Max–Min) Ratio
with ϕ = 1 in order to study approximation algorithms for Min–Max (Max–Min)
Splitting. This turns out to be conceptually simpler (since we only have to take
discrete decisions), and the simple translation using b = n−m andAlgorithmPerfect2
is given by Theorem 11.

6 Approximation Algorithms forMin–Max (Max–Min) Ratio

SinceMin–Max Splitting andMax–Min Splittingwith F = 2 and generalm and
n (where n/2 ≤ m ≤ n − 2) are strongly NP-complete due to Theorem 6, they do not
allow FPTAS unless P=NP. However, we can still obtain various approximation results
through Min–Max Ratio and Max–Min Ratio. We start with some preparations.

Let us scale any instance such that
∑n

i=1 xi = n. We call a piece large if xi ≥ 1 and
small if xi < 1. For every large piece we define its gain to be xi − 1. For every small
piece we define its loss to be 1− xi . These definitions naturally extend to subsets: Let
g and � be the sum of gains and losses, respectively, of the large and small pieces in a
subset. We call g − � the gain of the subset if g ≥ �, and we call � − g the loss of the
subset if � ≥ g. Note that both the gain and the loss of the set of all n pieces is zero.

For better readability, any fractional term which should actually be an integer (i.e.,
some number of elements) is rounded to the next integer, but we omit ceiling brackets.
For any constant a we use that

1/(n − a) = (1/n)(n/(n − a)) = (1/n)(1 + a/(n − a)) = (1 + o(1))(1/n),

n/(n − a) = 1 + a/(n − a) = 1 + (1 + o(1))(a/n),

where o(1) is some function that vanishes for n going to infinity.
The next lemma provides some simple bound.

Lemma 8 Let ϕ and b be fixed integers. In every partitioning of a set of n pieces with∑n
i=1 xi = n into b bags, there exists a bag with ratio at least (at most) 1 + (1 +

o(1))(bϕ/n). Consequently, this expression is a lower (upper) bound on the objective
value of Min–Max (Max–Min) Ratio.

Proof For the moment we re-scale the instance such that
∑n

i=1 xi = n − bϕ. Given a
partitioning, we assign to every bag n j − ϕ “slots” (in case ϕ = 1 they correspond to
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the edges in a solution graph) and imagine that the total size of all pieces in each bag
is evenly divided among its slots. Hence the ratio of any bag equals the size per slot.
Since we have n − bϕ slots in all bags together, clearly, there exist slots with sizes
at least and at most 1, respectively. Finally we multiply the sizes again by the inverse
scaling factor, namely n/(n − bϕ) = 1 + (1 + o(1))(bϕ/n). ��

These general bounds are also the best possible ones for both problems,witnessedby
the simplest instance where xi = 1 for all i . Provided that b divides n, the partitioning
into b bags with n/b pieces gives all bags a ratio that matches our bound. Hence a
general lower (upper) bound referring to only ϕ, b, n cannot be made larger (smaller)
than that.

In the following we give approximation results for various types of instances. Here
is an outline.

We mainly consider the situation when b/n is small, that is, when m is close to n.
One may interpret b/n as the “distance to the easy case” of the Splitting problems
(in Theorem 4). The concept of gain and loss allows us to formulate intuitive rules to
balance the ratios of bags.

For Min–Max Ratio we must treat the cases when most pieces are small (Theo-
rem 12) or large (Theorem 13) by different strategies of forming bags, but in both cases
we arrive at approximation factors of the form1±Θ(b/n) for any fixedϕ (Corollary 1).

For Max–Min Ratio we get the same type of approximation results, but the
problem has a quite different structure which requires different approaches and some
other upper boundsbesides that fromLemma8.Webeginwithϕ = 0 (Theorem14with
Corollary 2), because this is also the basis of our result for any positiveϕ (Theorem15).
There remains a downside of the algorithm used: it demands at least (ϕ + 1)b large
pieces. By another modification we get rid of this extra assumption. We show this for
ϕ = 1, the case being relevant for Max–Min Splitting (Theorem 16). Again, this
solution makes use of the case ϕ = 0, mainly through an initial pairing of 2b pieces
and some scaling.

Next we are wondering about approximation schemes that reduce the relative error
Θ(b/n) to an arbitrarily small ε at the cost of higher running times. Using rounding
and dynamic programming we obtain FPTAS for every fixed b = n − m, however
with b in the exponent of the running time (Theorems 17 and 18).

Here, the rounding schemes need some attention, since we have to balance ratios
in the end, and the numbers of pieces in the bags are not prescribed. The case of large
b/n (up to 1/2) requires different algorithms again, since the previous algorithms
are tailored to small b/n. and their approximation guarantees would be poor or even
meaningless. By other rounding schemes we obtain FPTAS also for ϕ = 1 and every
fixed t = 2m − n, however with t in the exponent of the running time (Theorems 19
and 20). Once more, some detail of the analysis hinges on a bound shown earlier for
the case ϕ = 0.
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6.1 Min–Max Ratio, Mostly Small Pieces

Theorem 12 Every instance ofMin–Max Ratiowith
∑n

i=1 xi = n, where themajor-
ity of pieces are small, permits a solutionwith objective value at most 1+(1+o(1))b/n
if ϕ = 0, and at most 1 + (1 + o(1))(4ϕ + 2)b/n if ϕ > 0, and such a solution can
be constructed in O(n) time.

Proof First we compute the median and separate the n/2 largest from the n/2 smallest
pieces. We first put some small pieces, below the median, into one bag, and we stop
as soon as the loss of this bag exceeds ϕ.

Let p and s, respectively, be the number of pieces and the sum of their values xi in
the formed bag. Since the loss of every piece is smaller than 1, the loss p − s of the
bag satisfies ϕ < p − s < ϕ + 1. We also see that the ratio s/(p − ϕ) of the bag is
smaller than 1.

We iterate this process, that is, we put further small pieces below the median in
another bag until its loss exceeds ϕ. We repeatedly build more bags until one of these
cases appears:

(1) The number of such bags reaches b′ := b − 1. Then we put all remaining pieces
in the bth bag.

(2) Half of the pieces are used up. Then we abort the process, leaving the current bag
unfinished at the moment.

All bags formed so far consist exclusively of small pieces. If case (1) applies, we have
created b′ bags, with at most n/2 pieces and a loss of at most b′(ϕ + 1) in total. The
remaining q ≥ n/2 pieces are put in the bth bag. Trivially, its gain is at most b′(ϕ+1).
This bounds the sum of the sizes of pieces in this bag by q + b′(ϕ + 1). The ratios
of the other bags are bounded by 1, as seen above. The ratio of the last bag is now at
most

(q + b′(ϕ+1))/(q−ϕ)=1+(b′(ϕ+1)+ϕ)/(q − ϕ)≤1+ v(bϕ + b′)/(n/2 − ϕ)

= 1 + 2(bϕ + b′)/(n − 2ϕ).

If case (2) applies, the n/2 smallest pieces also have together a loss atmost b′(ϕ+1),
hence the total gain of the n/2 largest pieces is at most b′(ϕ + 1), too. The smallest of
the latter pieces (the median) has therefore a size at most 1+ 2b′(ϕ + 1)/n. It follows
trivially that the size of each of the n/2 smallest pieces is bounded by this term.

Now we change the partitioning in case (2) as follows. We create one bag of the
n/2 largest pieces and divide the n/2 others arbitrarily into b′ bags, each with n/(2b′)
pieces. The ratio in the large bag is at most 1 + 2(bϕ + b′)/(n − 2ϕ) by the same
calculation as before (with q = n/2). The ratio in each of the small bags is at most

(1 + 2b′(ϕ + 1)/n)(n/(2b′))/(n/(2b′) − ϕ) = (n + 2b′(ϕ + 1))/(n − 2b′ϕ)

= (n − 2b′ϕ + 4b′ϕ + 2b′))/(n − 2b′ϕ) = 1 + (4ϕ + 2)b′/(n − 2b′ϕ).

The proved upper bounds on the ratios of bags are:

1, 1 + 2(1 + o(1))(bϕ + b′)/n, 1 + (1 + o(1))(4ϕ + 2)b′/n.
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The latter expression is asymptotically the maximum. With b′ < b we finally get the
simpler term 1 + (1 + o(1))(4ϕ + 2)b/n.

For ϕ = 0 we get a better result with a much simpler construction and calculation:
Each of the b′ smallest pieces forms a bag on its own, and the n− b′ largest pieces are
put in one bag. Since the gain in the large bag is smaller than b′, its ratio is bounded
by n/(n − b′) = 1 + (1 + o(1))b/n.

The time is obvious; note that no sorting is required. ��

6.2 Min–Max Ratio, Mostly Large Pieces

For the sake of the following lemma, temporarily some xi are allowed to be negative.

Lemma 9 A set of n pieces of sizes x1 ≥ · · · ≥ xn, with x1 > 0, can be partitioned
into b bags such that every bag contains exactly �n/b� or �n/b� pieces, and the sums
differ pairwise by at most d, where d = x1 if xn ≥ 0, and d = x1 − xn if xn < 0. Such
a partitioning can be constructed in O(n log b) time.

Proof We assume that b is a divisor of n, otherwise we additionally create b�n/b�−n
dummy pieces with xi = 0. We partition the set of pieces arbitrarily into n/b subsets
of b pieces. Starting from b empty bags we apply the following procedure n/b times:
sort the bags in descending order of sums, sort the next b pieces in ascending order,
and add one piece to each bag, in this order. It is straightforward to verify the invariant
that, after every such step, the sums in the bags differ pairwise by at most d. The time
is dominated by sorting the bags n/b times in O(b log b) time. ��
Theorem 13 Every instance ofMin–Max Ratiowith

∑n
i=1 xi = n, where themajor-

ity of pieces are large, permits a solution with objective value at most 1 + (1 +
o(1))(2ϕ + 4)b/n, which can be constructed in O(n log b) time.

Proof Initially we let every piece be a bag on its own. Then we successively add single
small pieces arbitrarily to bags that have a gain, as long as each of them retains some
gain. That is, we stop only when no further small pieces can be added to any bag
without creating a loss. The emptied bags are deleted.

Since the majority of pieces were large, after this procedure we still have at least
n/2 bags. No bag has a gain larger than 1, because otherwise we can do another step:
Since the sum of gains equals the sum of losses, there still remains some single piece
with a loss, and since its loss is smaller than 1, we can add it to the alleged bag.

Now we treat the current bags as “super-pieces” and use Lemma 9 to put them into
exactly b bags. However, instead of the sizes but we use the gains in the role of the
values xi , where a loss � counts as a negative gain −�.

Eventually, every bag contains at least n/(2b) super-pieces, thus at least n/(2b)
pieces. The gains of the super-pieces differ pairwise by at most 2, hence so do the
gains of the final bags. Since the sum of gains is zero, it follows that the gain of every
bag is at most 2. Altogether this bounds the ratios by (n/(2b) + 2)/(n/(2b) − ϕ) =
(n + 4b)/(n − 2bϕ), which can be written as (n − 2bϕ + 2bϕ + 4b)/(n − 2bϕ) =
1 + (1 + o(1))(2ϕ + 4)b/n.

The time bound comes from Lemma 9. ��
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6.3 Min–Max Ratio, Approximation Results

Corollary 1 Min–Max Ratio can be solved within the following approximation fac-
tors:

– 1 + (1 + o(1))b/n in O(n) time, if ϕ = 0 and most pieces are small,
– 1 + (1 + o(1))(3ϕ + 2)b/n in O(n) time, if ϕ > 0 and most pieces are small,
– 1 + (1 + o(1))(ϕ + 4)b/n in O(n log b) time, if most pieces are large.

Proof Divide the upper bounds from Theorems 12 and 13 by the general lower bound
from Lemma 8. ��

The true approximation ratio (compared to the optimal solution of the respective
instance) might be even closer to 1. One indicator that there might exist fast algorithms
improving upon the results of Corollary 1 is that the algorithm in Theorem 12 appears
a little counterintuitive. It may be more natural to mix large and small pieces in a bag.
(On the other hand, for the maximum ratio it does not matter too much whether the
largest pieces are in the same bag or in different bags.) In any case, an improved result
would also require stronger lower bounds being sensitive to the instances.

6.4 Max–Min Ratio

We remind the reader that the sizes of pieces are sorted: x1 ≥ · · · ≥ xn .

Proposition 1 In every partitioning into b or more bags, the bth largest average of
the bags is at most xb. In particular, xb is an upper bound on the objective value of
Max–Min Ratio with ϕ = 0.

Proof We call the b largest pieces major, and the others minor. Consider the b bags
with the b largest averages, where ties are broken arbitrarily. If some of these b bags
contains only minor pieces, then obviously the average in this bag is at most xb. The
other case is that each of these b bags contains exactly one major piece. Then the
average in the bag with a major piece of size xb is again at most xb. The second
assertion follows trivially. ��
Theorem 14 Every instance of Max–Min Ratio with ϕ = 0 and with

∑n
i=1 xi = n

permits a solution whose objective value is at leastmin{xb, 1− (1+o()))(4b−2)/n}.
It can be constructed in O(n) time.

Proof Let a ≥ 1 be the largest indexwith a ≤ b and xa ≥ 1; note that a exists. Initially
we put the b largest pieces in the b bags, i.e., one in each bag. Then we successively
add single pieces arbitrarily to the first a bags, as long as each of them retains some
gain. That is, we stop only when no more pieces can be added to any bag without
creating a loss.

Assume that still a or more pieces are outside the bags. Since the total loss of these
pieces is at most the total gain of the first a bags, we get that the smallest loss of such
a piece is at most the largest gain among the first a bags. But then we can add another
piece to some bag, contradicting the stop criterion.
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Hence some number q < a of pieces remain outside the bags. In the final phase we
will assign them to the first a bags in a special way. Let p denote the total number of
pieces in the first a bags. Since more than n − a pieces are now in the bags, and each
of the b− a last bags holds exactly one piece, we have p > n − a − (b− a) = n − b.

Let p j denote the number of pieces in the j th bag, j ≤ a. Remember that all
these bags still have a gain, and the loss of every piece is smaller than 1. Hence, if we
assign q j further pieces to the j th bag, then its loss is at most q j , and therefore its
ratio is still at least 1 − q j/(p j + q j ) ≥ 1 − q j/p j . This lower bound is also valid if
q j = 0. Now observe that maximizing min j (1 − q j/p j ) is equivalent to maximizing
min j | q j>0 p j/q j , under the constraint

∑a
j=1 q j = q.

Specificallywe proceed as follows.Assume p1 ≥ · · · ≥ pa by re-indexing. Initially
let q1 := 1 and q j := 0 for all j > 1. Let k be the smallest index such that qk = 0
(hence initially k = 2). We successively add single pieces to the bags according to the
following rule. We pick an index j < k with largest p j/q j . If p j/(q j + 1) ≥ pk then
we set q j := q j + 1, else we set qk := 1 followed by k := k + 1. This step is repeated
until all pieces are assigned.

We have the following invariant for all j < k: all p j/q j differ pairwise by factors
at most 2, and p j/q j ≥ pk . This is vacuously true in the beginning, and every step
preserves the invariant (in either branch of the if-then-else clause) since p j/(q j +1) ≥
p j/(2q j ) and pk ≥ pk+1.

In the final state, pk is the largest number of pieces of a bag that did not receive
further pieces. From our invariant we can conclude several things. The q considered
pieces have been assigned to bags containing a total of at least qpk pieces. The other
a− k+1 bags that have not received further pieces (and thus still have a gain) contain
a total of at most (a − k + 1)pk pieces. Hence the former bags (that now have a loss)
contain at least a fraction q/(q + a − k + 1) of the p > n − b original pieces in our a
bags. If all p j/q j were equal, their value would be at least (pq/(q + a− k + 1))/q =
p/(q+a−k+1) > (n−b)/(2a−1) ≥ (n−b)/(2b−1), where we used q < a ≤ b.
Since the various p j/q j differ by factors at most 2, the smallest one is still larger than
(n − b)/(4b− 2). That is, min j≤a(1− q j/p j ) > 1− (4b− 2)/(n − b), which yields
the claimed result. In the case a < b (equivalently xb < 1) we notice that the other
b − a bags still contain only single pieces whose smallest size equals xb.

As for the time bound O(n); note that we need not sort the pieces. ��
Corollary 2 Max–Min Ratio with ϕ = 0 and

∑n
i=1 xi = n can be solved to

optimality if xb < 1 − (1 + o(1))(4b − 2)/n, and otherwise within a factor
1 − (1 + o(1))(4b − 2)/n of optimum, in O(n) time.

Proof This follows instantly from Theorem 14, the upper bound xb from Lemma 1,
and the trivial upper bound 1. ��
Theorem 15 Max–Min Ratio with ϕ > 0,

∑n
i=1 xi = n, and x(ϕ+1)b ≥ 1 can be

solved within a factor 1− (1+ o(1))(4b− 2+ (b− 1)ϕ)/n of optimum in O(n) time.

Proof We proceed as in Theorem 14 and only discuss the modifications. Due to the
assumption x(ϕ+1)b ≥ 1 it is trivial to build b initial bags, eachwith exactlyϕ+1 pieces
and a gain. Thenwe successively add the other pieces to the bags, following literally the
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procedure in the proof of Theorem 14 and temporarily disregarding the positive offset
ϕ. Precisely as before, 1 − (4b − 2)/(n − b) is a lower bound on the minimum ratio.
Since, trivially, a bag cannot have more than n pieces, the offset ϕ raises this bound
by a factor at least n/(n−ϕ). This yields a lower bound 1− (1+o(1))(4b−2−ϕ)/n
on the ratios. Together with the upper bound 1 + (1 + o(1))bϕ/n from Lemma 8 we
obtain the claimed result. ��

6.5 Max–Min Ratio for' = 1, Unrestricted

The assumption x(ϕ+1)b ≥ 1 in Theorem 15 can be weakened, but then it becomes
more technical. Actually we only need to be able to quickly construct a partitioning
of the largest (ϕ + 1)b pieces into b bags with exactly ϕ + 1 pieces and a gain. We
give a modified algorithm specifically for ϕ = 1, but now for arbitrary values xi . The
following quantity plays a central role.

Definition 4 We define σ := min1≤ j≤b x j + x2b+1− j .

Next we prove σ to be an upper bound in the case of ϕ = 1.

Lemma 10 In every partitioning into b or more bags with at least two pieces each, the
bth largest average of the bags is at most σ/2. In particular, σ is an upper bound on
the objective value ofMax–Min Ratio with ϕ = 1.

Proof The second assertion follows indeed from the first one, since with ϕ = 1, the
ratio of a bag is at most twice its average. Now we prove the first assertion.

We call the 2b largest pieces major, and the others minor. The 2-average of a bag
is the average of sizes of its two largest pieces. The principal bags are the b bags with
largest 2-averages. (Ties are broken arbitrarily.)

We claim that the bth largest 2-average is at most σ/2. Then, so is the bth largest
average, by the following argument: The average of a bag is at most its 2-average.
Hence there cannot exist b averages exceeding the bth largest 2-average.

To prove the claim we consider the majors in the b principal bags. If some principal
bag has no majors, then its 2-average is, trivially, at most σ/2, and we are done. If
some principal bag hasmore than twomajors, then wemove its smallest major to some
principal bag with only one major (which must exist), thus raising the 2-averages of
both bags. After exhaustive application of this rule, every principal bag has either one
major or two majors. Assume that a major exists in some bag B ′ that is not principal.
Then some principal bag B has only one major. We exchange a minor of B and a
major of B ′. This can only increase the 2-average of B and decrease the 2-average
of B ′. After exhaustive application of this rule, we have got exactly two majors in
every principal bag. We have never changed the set of principal bags nor decreased
any 2-average therein. Finally, another straightforward exchange argument shows that
the smallest 2-average in the principal bags is maximized if each x j is paired up with
x2b+1− j . ��
Theorem 16 Max–Min Ratio with ϕ = 1 and

∑n
i=1 xi = n can be solved to

optimality if σ < 1 − (1 + o(1))(3b − 2)/n, and otherwise within a factor 1 −
(1 + o(1))(4b − 2)/n of optimum, in O(n) time.
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Proof We slightly modify the algorithm from Theorem 14: Initially we pair up the 2b
largest pieces to form b bags, each of them having two pieces, and with minimum sum
σ . We also pretend that these two pieces in each bag form only one piece whose size
is the sum of the two. Thus we can henceforth work with ϕ = 0 instead of the true
ϕ = 1. Since the number of pieces is now n− b, we multiply all sizes with the scaling
factor (n − b)/n = 1 − b/n, such that the sum of all sizes equals n − b.

We sort the b bags by descending sums and continue exactly as in the proof of
Theorem 14. Note that now (1− b/n)σ gets the role xb had in Theorem 14. Thus we
obtain a solution whose objective value is at least min{(1−b/n)σ, 1−(1+o(1))(4b−
2)/(n − 2b)}.

To recover the original sizes we eventually re-scale by the factor n/(n − b) =
1 + b/(n − b) and obtain min{σ, 1 − (1 + o(1))(3b − 2)/n}. Finally we invoke the
upper bounds σ and 1 + (1 + o(1))b/n, from Lemmas 8 and 10. ��

6.6 Approximation Schemes for Few Bags

Min–Max Ratio vaguely resembles the minimum makespan scheduling problem
which is well studied. It is also strongly NP-complete, but it has a PTAS, and even an
FPTAS when the number of machines (here corresponding to the number b of bags)
is fixed; see [11–13]. However, the objectives are also quite different: The goal in
makespanminimization is to balance the b sums, whereas wewish to balance, roughly,
the averages in the bags. The knapsack problem admits a well-known FPTAS, too,
running in O(n3/ε) time [14].

Those approximation schemes follow some basic ideas: Every input value (here xi )
is rounded to the next smaller or larger value in some limited set of discrete values.
The rounded instance can then be solved to optimality in reasonable time by dynamic
programming. The actual solution is recovered by memoization and backtracing in
the standard way. Replacing the rounded values in the solution by their original values
finally causes some approximation error. The finer the discrete set is, the larger is
the time but the smaller is the error. The challenge is now to adapt the details of this
technique toMin–Max Ratio and Max–Min Ratio.

Two natural rounding regimes come to mind: The discrete set could be the set of
integer multiples of some fixed δ > 0, or a sorted set whose consecutive members
differ by factors at most 1 + ε, for some fixed ε > 0 (e.g., powers of 1 + ε). If the
rounded xi are multiples of δ, then so are the sums of all possible subsets. Moreover,
the ratios of all possible bags have absolute errors at most δ. In the latter regime, the
rounded xi have relative errors at most ε, and hence, so have the ratios of all possible
bags.

The dynamic programming phase would construct bags by successively adding
pieces. We only need to keep track of the numbers of pieces and the sums of their sizes
in the bags.

In the following we will first use an equidistant discrete set.

Lemma 11 For any given instance ofMin–Max (Max–Min) Ratiowith
∑n

i=1 xi =
n, and for any given δ > 0, a solution that deviates from the optimum by an absolute
error of at most δ can be obtained in O((n2/δ)b) time.
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Proof For the given δ > 0 and for every index i , let vi be the unique integer with
viδ ≤ xi < (vi + 1)δ. We round every xi , that is, we replace it with viδ. We also
arrange the pieces in an arbitrary order.

Then we do standard dynamic programming. We assign the pieces (in the fixed
order) to the b bags in all possible ways. However, we do not store the actual assign-
ments but only a vector of 2b numbers: the number of pieces and the sum of their
rounded values, in each of the b bags, and if the same vector is produced multiple
times, we retain only one copy.

Finally we take the optimal rounded solution according to the objective function at
hand (minimizing the maximum or maximizing the minimum ratio, for the given ϕ).
Invalid solutions having fewer than ϕ + 1 pieces in some bag are discarded.

Since the largest possible sum in every bag is trivially n, we need only O(n/δ)

discrete values. Thus there exist only O(nb(n/δ)b/b!) different vectors. As already
said, the absolute errors of the averages of the bags are at most δ. If ϕ > 0, the absolute
errors of the ratios of the bags can be larger by some constant factor, but then we work
with some smaller step length Θ(δ) instead, which adds only a constant factor to the
time bound. The time for dynamic programming is b times the number of vectors.

��
Theorem 17 Min–Max Ratio can be solved within a factor 1 + ε of optimum in
O((n2/ε)b) time.

Proof We apply Lemma 11 with δ := ε and observe that the absolute error of the
objective also bounds its relative error, since the objective value is trivially at least 1.

��
For Max–Min Ratio the way is the same, with only slightly different details:

Now, the previous results (that culminated in Corollary 2 and Theorem 16) ensure that
either the problem can be solved to optimality, or the objective is at least some large
fraction of 1, such that it suffices again to apply Lemma 11, with some δ := Θ(ε).
This yields:

Theorem 18 Max–Min Ratio with ϕ ≤ 1 can be solved within a factor 1 − ε of
optimum in O((n2/ε)b) time.

6.7 Approximation Schemes for Many Small Bags

We finally consider the case of ϕ = 1 and large b/n, close to the threshold 1/2. It is
more convenient to use the parameter t := 2m − n again. We will get a FPTAS for
any fixed t . As one ingredient we need a hybrid of the two standard rounding regimes
discussed in the previous section.

Lemma 12 Let δ > 0 be fixed. Consider a set of positive real numbers with an average
of at least 1. Let us round every number smaller than 1 to the next integer multiple of
δ, and every number larger than 1 to the next power of 1+ δ with an integer exponent.
(We may round upwards or downwards arbitrarily.) Then the average of the rounded
values has a relative error O(δ), compared to the true average.
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Proof Say we have k numbers in our set. The absolute error of the sum of all numbers
below 1 is O(kδ). Since the overall sum is at least k, the numbers below 1 contribute
a relative error O(δ) to the overall sum. So do the numbers above 1, due to their
rounding. Hence the relative error of the sum (and of the average) is still O(δ). ��

Rephrasing Lemma 7, at most 3t pieces are in bags with more than two pieces, and
at most t such bags can exist. In analogy to our FPT result for Perfect Splitting
(Theorem 9) we refer to the set of these bags as the “kernel” (somewhat abusing this
term).

Theorem 19 Min–Max Ratio with ϕ = 1 can be solved within a factor 1 + ε of
optimum in (Θ(1) log t · ε−1)4t · O(n) time.

Proof We scale the given instance of Min–Max Ratio such that x1 = t . Since, in
particular, the bag with the largest piece has a number of pieces limited by O(t), its
average and ratio is Ω(1), i.e., bounded from below by some positive constant. Hence
the objective value (the maximum ratio) is Ω(1), too.

For some δ > 0 that will be specified later, we round the values xi ≤ 1 to integer
multiples of δ, and we round the values xi > 1 to powers of 1+ δ. Next we decide on
the entire kernel, i.e., we select pieces to form the bags with more than two pieces, in
all possible ways.

By standard calculations, there exist only Θ(1) log t · δ−1 different discrete values.
Since pieces with the same rounded size are not distinguished, there exist no more
than (Θ(1) log t · δ−1)4t different choices of a kernel: To see this, let us describe the
kernel as a sequence of bags separated by “end of bag” symbols, and every bag as a
sequence of pieces. The exponent 4t accounts for the at most 3t pieces and at most t
“end of bag” symbols.

For every possible kernel we pair up the remaining pieces in an optimal way (the
largest with the smallest, etc.), in O(n) time, and we compute themaximum ratio of all
bags. Eventuallywe pick theminimum solution. Note that we need the sorted sequence
of sizes for the pairing, but actually we only have to count the number of pieces with
each rounded size, and the rounded sizes are sorted in advance by bucketsorting.

Due to the lower bound Ω(1) it suffices to choose some suitable δ := Θ(ε). Then,
after applying another constant scaling factor, Lemma 12 ensures a relative error of at
most the desired ε. ��

Max–Min Ratio can be treated similarly but needs a different scaling of the
discrete values. The following FPTAS uses a coarse 4-approximation to calibrate the
rounding.

Theorem 20 Max–Min Ratio with ϕ = 1 and t ≤ n/3 can be solved within a factor
1 − ε of optimum in (Θ(1) log t · ε−1)4t · O(n) time.

Proof Suppose that we know already some interval [u, v] that contains the objective
value of the given instance. We mark all pieces larger than some Θ(tv) as “large”.

Since the number of pieces in every bag is limited by O(t), large pieces cannot
belong to bags that attain the minimum ratio. That is, the exact sizes of these pieces
are not relevant.
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For all other pieces not marked as ‘large”, we round the values xi ≤ v to integer
multiples of some δv, and we round the values xi > v to powers of 1 + δv.

Due to the bounded sizeΘ(tv), there exist nomore thanΘ(1) log t ·(δv)−1 different
discrete values.

The rest works as in Theorem 19, except that “minimum” and “maximum” are
swapped.

Since u bounds the objective value from below, it suffices to choose some δ :=
Θ(εu/v) to obtain the desired ε. This finally results in the time bound (Θ(v/u) log t ·
ε−1)4t · O(n).

It remains to specify the requested interval [u, v]. The following paragraph is not
part of the algorithm description, but it only proves that u = xb/2 and v = 2xb are
suitable, which also means v/u = O(1).

By Lemma 1, some upper bound on the objective value ofMax–Min Ratio with
ϕ = 0 is given by xb, where b = (n − t)/2 is the number of bags. With ϕ = 1, the
objective can increase by a factor at most 2. Therefore v = 2xb is a valid upper bound.
We generate a trivial solution as follows. We put each of the b largest pieces into an
own bag, and we add at least one and at most two smaller pieces to each bag. (Since
t ≤ n/3, we have b ≥ n/3, and b ≤ n/2 holds, too.) Clearly, the ratio in every bag is
at least xb/2. Therefore u = xb/2 is a valid lower bound. ��

7 Further Research

We list various questions that are either unsolved or go beyond the scope of this paper.
One direction is tomodify the problemdefinitions in order to pay attention to further

aspects. For instance, a solution toMax–Min Splittingmay be perceived as unfair,
as some agents get much more than the guaranteed minimum, because the entire good
must be divided. (In particular, the sum of the F smallest sizes of pieces is a trivial
upper bound on the objective value.) To circumvent these issues we may relax the
problem and aim at giving maximal but equal amounts to all agents, possibly leaving
the remainder of goods unused, or allow some agents to exceed the fragmentation F .
Yet another question is to what extent a “combined” problem, aiming at a minimum
ratio of the largest and smallest share, behaves differently thanMin–Max Splitting
and Max–Min Splitting separately.

We have concentrated on F = 1 and the “graph-theoretic” case F = 2 which is
already subtle. It may be possible to generalize several results to any fixed F > 2.

The non-uniqueness of solutions to Perfect Splitting with F = 2 suggests
further extensions of this problem. For instance, let us equip the vertex setwith pairwise
distances (spatial distances, dissimilarity of tasks, etc.). Then we may prefer perfect
solutions where also some distance measure is minimized, such as the maximum or
the sum of the lengths of the chosen edges.

It remains open whether the exact Min–Max (Max–Min) Average problems
with ϕ = 1 are FPT in the parameter t = 2m − n. There is an essential difference
to Perfect Splitting: The proof of Theorem 9 shows that we can simply cut off
the pairs with sum 1 first. This part cannot be straightforwardly generalized to Min–
Max (Max–Min) Splitting. Since the sums can deviate from 1, it is not clear which
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pieces we should pair up. Our results on small t are only parameterized approximation
schemes. Approximation allowed us to round the values, such that the number of
essentially different pieces to choose from (for the kernel) does not depend on n.
Actually we conjecture W [1]-hardness due to relationship with the k-Sum problem
[1], but we could not establish a reduction from that problem either.

In order to extend the efficiently solvable cases discovered before, we have focused
on small b or t . But we have not considered the worst-case approximation ratios that
can be achieved in polynomial timewhenm ranges over thewhole interval [n/2, n−2].
Some more efficient PTAS may be possible, too.

Finally, solutions from any algorithms may be further improved by a local search
post-processing, e.g., by pairwise exchange operations of pieces between the bags.
For our particular problems it might be useful to characterize solutions that are local
optima with respect to such exchange steps.
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