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Abstract
It is well known that any set of n intervals in R

1 admits a non-monochromatic col-
oring with two colors and a conflict-free coloring with three colors. We investigate
generalizations of this result to colorings of objects in more complex 1-dimensional
spaces, namely so-called tree spaces and planar network spaces.

Keywords Conflict-free coloring · Non-monochromatic coloring · Tree · Planar
networks

1 Introduction

Conflict-free colorings, or CF-colorings for short, were introduced by Even et al. [8]
and Smorodinsky [14] to model frequency assignment to base stations in wireless
networks. In the basic setting one is given a set S of objects in the plane—often disks
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are considered—and the goal is to assign a color to each object such that the following
holds: for any point p in the plane such that the set Sp := {D ∈ S | p ∈ D} of
objects containing p is non-empty, Sp must contain an object whose color is different
from the colors of the other objects in Sp. Even et al. proved, among other things,
that any set of disks admits a CF-coloring with O(log n) colors. This bound is tight
in the worst case. Since then many different geometric variants of CF-colorings have
been studied. For example, Har-Peled and Smorodinsky [9] generalized the result to
objects with near-linear union complexity, Even et al. [8] considered the dual version
of the problem, Alon and Smorodinsky [3] proved better bounds for CF-coloring disks
when the arrangement of disks is shallow, and Chen et al. [5] studied on-line versions
of the problem. See the survey by Smorodinsky [16] for an overview of the results up
to 2013. A restricted type of a CF-coloring is a unique-maximum (UM) coloring, in
which the colors are identified with integers, and the maximum color in the set Sp is
required to be unique. Another type of coloring, often used as an intermediate step to
obtain a CF-coloring, is non-monochromatic (NM). In an NM-coloring—sometimes
called a proper coloring—we only require that, for any point p in the plane, if the
set Sp contains at least two elements, not all of them have the same color. Smorodinsky
[15] showed that, if an NM-coloring of k elements using β(k) colors exists for every k,
then one can CF-color n elements with O(β(n) log n) colors.

CF- or NM-coloring objects in R
1 is significantly easier than in the planar case.

In R1 the objects become intervals (assuming we require the objects to be connected)
and a folklore result states that any set of intervals in R1 can be CF-colored with three
colors and NM-colored with two colors. This is achieved by the chain methods, which
we describe in Sect. 1.1. Thus, unlike in the planar case, the number of colors for a
CF- or NM-coloring of intervals in R1 does not depend on the number of intervals to
be colored. The fact that CF- and NM-coloring intervals in R

1 is easy explains why
there is not much work on coloring intervals. Exceptions are the papers by Abam et al.
[1] on the online version of the problem, and by De Berg et al. [7] on the dynamic
version.

We are interested in 1-dimensional spaces that have a more complex topology
than R

1. In particular, we consider network spaces: 1-dimensional spaces with the
topology of an arbitrary (finite) graph. It is convenient to view a network spaceN as
being embedded in R

2, although the embedding is actually immaterial. In this view
the nodes ofN are points in R2, and the edges are simple curves connecting pairs of
nodes and otherwise disjoint. We let d : N 2 → R+ denote the geodesic distance on
N . In other words, for two points p, q ∈ N —these points may lie in the interior of an
edge—we let dist(p, q) denote the minimum Euclidean length of any path connecting
p to q inN . We consider two special types of network spaces, tree spaces and planar
network spaces, whose topology is that of a tree and a planar graph, respectively.

The objective of this paper is to investigate the number of colors needed to CF-
or NM-color a set A of n objects in a network space, where we consider various
classes of connected objects. (Here CF- and NM-colorings are defined as above. We
define Sp to be the set of objects containing p, that is {o ∈ A | p ∈ o}. A CF-coloring
of the objects in A is now defined as a coloring such that, for any point p ∈ N
with Sp �= ∅, the set Sp contains an object with a unique color. Moreover, an NM-
coloring of the objects in A is defined as a coloring such that, for any point p ∈
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N with Sp containing at least two elements, the set Sp is not monochromatic.) In
particular, we consider (metric) balls onN —the ball centered at p ∈ N of radius ρ

is defined as B(p, ρ) := {q ∈ N | dist(p, q) � ρ}— and, for tree spaces, we also
consider arbitrary connected subsets as objects. Note that if the given network space is
a single non-self-intersecting curve, then our setting (both for balls and for connected
subspaces) reduces to coloring intervals in R1. The main question we want to answer
is: How does the maximum number of colors needed to NM- or CF-color a set A of
objects in a network space depend on the complexity of the network space and of the
objects to be colored?

Our resultsWe assume without loss of generality that the nodes in our network space
either have degree 1 or degree at least 3—there are no nodes of degree 2. Nodes of
degree 1 are also called leaves, and nodes of degree at least 3 are also called internal
nodes.

We start by considering colorings on a tree space, which we denote by T . Let A
be the set of n objects that we wish to color, where each object T ∈ A is a connected
subset of T . Note that each such object is itself also a tree. From now on we refer
to the objects in A as “trees,” and always use “tree space” when talking about T .
Observe that internal nodes of a tree are necessarily internal nodes of T , but a tree
leaf may lie in the interior of an edge of T . We investigate CF- and NM-chromatic
number of trees on a tree space as a function of the following parameters:

– k, the number of leaves of the tree space T ;
– �, the maximum number of leaves of any tree in A ;
– n, the number of objects in A .

We define the CF-chromatic number X tree,trees
cf (k, �; n) as the minimum number of

colors sufficient to CF-color any setA of n trees with at most � leaves each, in a tree
space with at most k leaves. The NM-chromatic number X tree,trees

nm (k, �; n) is defined
similarly. Rows 3 and 4 in Table 1 give our bounds on these chromatic numbers. Notice
that the upper bounds do not depend on n. In other words, any set of trees in a tree
space can be colored with a number of colors that depends only on the complexity of
the tree space T and of the trees in A . (Obviously the number of objects, n, is an
upper bound on these chromatic numbers as well. To avoid cluttering the statements,
we usually omit this trivial bound.)

We also study balls in tree spaces. Here it turns out to be more convenient to not
use k (the number of leaves) as the complexity measure of T , but t , the number of
internal nodes of T .

We are interested in the chromatic numbers X tree,balls
cf (t; n) and X tree,balls

nm (t; n).
Rows 5 and 6 of Table 1 state our bounds for these chromatic numbers.

After studying balls in tree spaces, we turn our attention to balls in planar network
spaces. Our bounds on the corresponding chromatic numbers Xplanar,balls

cf (t; n) and

Xplanar,balls
nm (t; n) are contained in row 7 and 8 of Table 1.

Related resultsAbovewe consideredCF- andNM-colorings in a geometric setting, but
they can also be definedmore abstractly. ACF-coloring on a hypergraphH = (V , E)

is a coloring of the vertex set V such that, for every (non-empty) hyperedge e ∈ E ,
there is a vertex in e whose color is different from that of the other vertices in e. In an
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Table 1 Overview of our results. The folklore result for intervals on the line (that is, in R1) is explained in
Sect. 1.1. The rest of the table uses the the following parameters: k, the number of leaves of the tree space;
t , the number of internal nodes (that is, nodes of degree at least 3) of the (tree or planar network) space; �,
the maximum number of leaves of any tree to be colored; n, the number of objects

Space Objects Coloring Upper bound Lower bound Reference

Line Intervals NM 2 2 Folklore

CF 3 3

Tree Trees NM min(� + 1, 2
√
6k) min(� + 1, � 1+

√
1+8k
2 �) Sect. 2

CF O(� log k)
⌊
log2 min(k, n)

⌋

Balls NM 2 2 Sect. 3.1

CF 	log t
 + 3 	log(t + 1)

Planar Balls NM 4 4 Sect. 3.3

CF 	log4/3 t
 + 3 	log(t + 1)


NM-coloring any hyperedge with at least two vertices should not be monochromatic.
Smorodinsky’s survey [16] also gives an overview of results on CF-colorings in this
abstract setting.

The basic geometric version mentioned above—coloring objects inR2 with respect
to points—can be phrased in terms of hypergraphs by letting the set of objects cor-
respond to the node set V and, for each point p in the plane, creating a hyperedge
e := Sp. Another avenue for constructing a hypergraph H to be colored is to start
with a graph N , let the vertices of H be the nodes of N and create hyperedges
for (the sets of vertices of) certain subgraphs of N . For example, Pach and Tardos
[12] considered the case where hyperedges are all the node neighborhoods. For this
case, Abel et al. [2] recently showed that a planar graph can always be CF-colored
with only three colors, if we allow some nodes to be uncolored. (If not, we can use
a dummy color, thereby increasing the number of colors to four.) CF-coloring nodes
with respect to neighborhoods has also been studied for various types of geometric
intersection graphs; see the paper by Keller and Smorodinsky [11] and the references
therein. As another example, we can let the hyperedges be induced by all the paths
in the graph. This setting is equivalent to an older notion of node ranking [4], or
ordered coloring [10]. Note that in the above results the goal is to color the nodes
of a graph. We, on the other hand, do not want to color nodes, but objects (con-
nected subsets) in a network space (which has a graph topology, but is a geometric
object).

1.1 Preliminaries

We regularly make use of a folklore technique called the chain methods, to color
intervals in R

1 in a non-monochromatic or conflict-free fashion. This serves as a
warm up but is also used as a tool later. We first explain the NM chain method, that
uses at most two colors. We order the intervals left-to-right by their left endpoints (in
case of ties, we take the longest interval first) and color them in this order using the
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Fig. 1 Both chain methods applied to the same instance. The top coloring is non-monochromatic, and the
bottom one is conflict-free (Color figure online)

so-called active color which is defined as follows. We start with green1 as the active
color. We color the first interval, then change the active color to red. We then use the
following procedure: we color the next interval I in the ordering using the active color,
then if the right endpoint of I is not contained in any other already colored interval,
we change the active color from red to green or green to red.

To obtain a CF-coloring the chain method proceeds as follows. First, the interval
with the leftmost left endpoint—in case of ties, the longest such interval—is colored
green. Next, the following procedure is repeated until we get stuck: Let I be the
interval colored last. Among all intervals whose left endpoint lies in I and that are not
contained in it, color the one extending farthest to the right red (if I is green) or green
(if I is red). This creates a chain of alternating green and red intervals. Each remaining
interval is now either completely covered by the already colored intervals, or it lies
completely to the right of them. The former intervals are given a dummy color (grey),
the latter intervals are colored by applying the above procedure again. Figure 1 shows
an NM- and CF-coloring of an example instance.

Lemma 1 There is an NM-coloring of intervals on a line using two colors, and a
CF-coloring using three colors.

Proof We prove the CF-coloring is conflict-free; the proof for the NM-coloring is
similar. Consider a point p contained in an interval. It is clear that p is contained in
either a red or a green interval. We suppose without loss of generality it is contained
in a red interval I0 = [a0, b0]. We show it is not contained in another red interval. Let
us suppose by contradiction that it is contained in another red interval I1 = [a1, b1]
with a1 � a0. Then p must also be contained in a green interval I2 = [a2, b2],
with a1 � a2 � a0. Moreover, we have that b2 < b1. Thus, I2 starts in I0 and
extends further than I1, hence should have been chosen to be colored green, which
is a contradiction. Therefore, p is always contained in at most one red interval, and
similarly, in at most one green interval, and is always contained in a green or in a red
interval. Thus the coloring is conflict-free. ��

1 Hereafter, we either identify colors with integers or we use actual colors (red, green, etc.) in our descrip-
tions, whichever is more convenient.
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Fig. 2 The original tree T (left), the set
⋃

e∈E(T ) e ∩ T (middle), and the new tree T ′ (right)

2 Trees on Tree Spaces

2.1 The Upper Bound

Overview of the coloring procedure.
Let T be a tree space with k leaves and let A be a set of n trees in T , each

with at most � leaves. We describe an algorithm that NM-colors A in two phases:
first, we select a subset C ⊆ A of size at most 6k − 12 and color it with at
most min

(
� + 1, 2

√
6k

)
colors. In the second phase we extend this coloring to the

whole set A without using new colors.
An edge e of T is a leaf edge if it is incident to a leaf; the remaining edges are

internal. We define C ⊆ A as the set of at most 6k − 12 trees selected as follows.
For every pair (e, v), where e is an edge of T and v is an endpoint of e that is not
a leaf of T , we choose two trees containing v and extending the furthest into e (if
they exist), that is, trees T of A containing v for which length(T ∩ e) is maximal,
and place them in A (e, v). If two or more trees of A fully contain e, then A (e, v)

contains two of them, chosen arbitrarily. If a tree contains an internal edge e fully, it
may be chosen by both endpoints. We now define A (e) := A (e, u) ∪ A (e, v) for
each internal edge e = uv,A (e) := A (e, v) for each leaf edge e = uv with non-leaf
endpoint v, andC := ⋃

A (e), with the union taken over all edges e ofT . ThenA (e)
contains at most four trees for any internal edge e and at most two trees for any leaf
edge e. IfT has at most k leaves, it has at most k leaf edges and at most k−3 internal
edges; recall that T has no degree-two nodes. Thus |C | � 6k − 12, as claimed. We
first explain how to color C .

Coloring C We color C in two steps. Let T ∈ C be a tree. We define E(T ) to be the
set of edges e of T with T ∈ A (e). Firstly, if � > 2

√
6k we select all subtrees T

with |E(T )| �
√
6k, and give each of them a unique color. Since

∑
e |A (e)| �

6k − 12, there are at most
√
6k − 1 such trees, so we use at most

√
6k − 1 colors.

For each uncolored T ∈ C , we create a new tree T ′, defined as the smallest tree
containing

⋃
e∈E(T ) e ∩ T ; see Fig. 2. T ′ has at most �′ := min(�,

√
6k) leaves

because |E(T )| <
√
6k. Define C ′ := {T ′ | uncolored T ∈ C }.

The second step is to color C ′. We need the following lemma, which shows that an
NM-coloring of C ′ carries over to C .
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Fig. 3 A coloring of trees (left) and an illustration of the invariant for v (right) (Color figure online)

Lemma 2 Any NM-coloring of C ′ corresponds to an NM-coloring of C , that is, if we
give each tree T ∈ C the color of the corresponding tree T ′ ∈ C ′ then we obtain an
NM-coloring.

Proof Let q be a point on an edge e ofT contained in at least two trees ofC (if no such
trees exists, the coloring is trivially non-monochromatic at q). Since q is contained in at
least two trees ofC , it is also contained in two trees ofA (e). Call these trees T1 and T2.
Note that T1 either receives a color in the first coloring step—namely, when � > 2

√
6k

and |E(T1)| �
√
k—or T ′

1 ∈ C ′ contains q, since e ∈ E(T1). A similar statement
holds for T2. Since the colors used in the first step are unique and C ′ is NM-colored,
this implies that T1 and T2 have different colors. Hence, C is NM-colored. ��

Next we show how to NM-color C ′. Fix an arbitrary internal node r ofT and treat
T as rooted at r . Our coloring procedure for C ′ maintains the following invariant:
any path from r to a leaf v ofT consists of three disjoint consecutive subpaths (some
possibly empty), in this order, as illustrated in Fig. 3:

– a non-monochromatic subpath containing the root on which at least two trees are
colored with at least two different colors,

– a singly-colored subpath covered by exactly one colored tree, and
– an uncolored subpath containing the leaf on which no tree is colored.

Observation 3 Any set of trees containing r and satisfying the invariant described
above is NM-colored if we disregard uncolored trees.

We color the trees T ∈ C ′ that contain r in an arbitrary order, using �′ + 1 colors,
as follows: for each leaf v of T , we follow the path from v to the root r to find a
singly-colored part. Note that if we find a singly-colored part—by the invariant there
is at most one such part on the path from v to r—we cannot use that color for T . Since
T has at most �′ leaves, this eliminates at most �′ colors. Hence, at least one color
remains for T .

Lemma 4 The procedure described above maintains the invariant and colors all trees
of C ′ containing r with at most �′ + 1 colors.

Proof Suppose the invariant holds before the coloring of T . Thenwe need tomake sure
the invariant still holds after T has been colored. Let w be a leaf ofT and πw the path
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Fig. 4 When recursing on the subspace rooted at r ′ (leftmost), the invariant does not hold anymore (middle
left), as the parts are switched on the edge between r and r ′. To remedy this, we first color the tree extending
the farthest into that edge (middle right), starting from r ′. We then trim the tree space to fix the invariant
(rightmost) (Color figure online)

from w to the root. Let v be the closest point to w in πw ∩T . Note that v always exists
as r ∈ πw ∩ T . Now let πv ⊆ πw be the path from v to r . It is obvious that πw ∩ T =
πv . Then the part of πv that was uncolored (if it was non-empty) now is singly-
colored. The part that was singly-colored now becomes non-monochromatic, as we
eliminated that color for T , while the part that was already non-monochromatic stays
non-monochromatic. Therefore the invariant is indeed maintained for πw, concluding
the proof. ��

Once all the trees containing r are colored we delete r fromT , that is, we consider
the space T \{r}, and we take the closures of the resulting connected components.
This creates a number of subspaces such that each uncolored tree in C ′ is contained
in exactly one of them. Consider such a subspaceT ′ and let r ′ be the neighbor of r in
T ′.We nowwant to recursively color the uncolored trees inT ′, taking r ′ as the root of
T ′. However, the invariant might not hold on the edge e from r ′ to the old root r : Since
now r is considered a child of r ′, the order of the three parts might switch on e—see
Fig. 4. Suppose this is the case, and let ce be the color of the singly-colored part on
the edge e. (If the singly-colored part is empty, we can cut the tree between the non-
monochromatic and the uncolored part and recurse immediately, which maintains the
invariant.) Note also that, for the order to switch, the non-monochromatic part needs
to end on e, and therefore the only color used in any singly-colored part of the tree
rooted at r ′ is ce. We overcome this problem by carefully choosing the order in which
we color the trees containing r ′. Namely, we fist color the tree T extending the farthest
into e. In this case, there is only one color forbidden, namely ce. We can therefore
easily color T . We then trim the tree space T ′ to remove any non-monochromatic
and single colored part, as shown in Fig. 4. This restores the invariant, and so we can
continue the coloring process.

Lemma 5 C admits an NM-coloring with min(� + 1, 2
√
6k) colors.

Proof The fact that the procedure above produces an NM-coloring follows from Lem-
mas 2 and 4. When � > 2

√
6k we use

√
6k − 1 colors to deal with trees T with

|E(T )|�√
6k and �′ + 1 � min(�,

√
6k)+ 1�

√
6k + 1 colors for the other trees, giv-

ing 2
√
6k colors in total. When ��2

√
6k we do not treat the trees with |E(T )|�√

6k
separately, so we just use �′ + 1�min(�,

√
6k)+1��+1 colors. ��
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Extending the coloring from C to A Let c : C → N be an NM-coloring on C . We
extend the coloring toA as follows. We start by coloring all trees inA \C containing
an internal node of T using an arbitrary color already used. We then treat all edges
in an arbitrary order, coloring all trees contained in the edge, as follows.

Let e = rr ′ be an arbitrary edge of T and A ∗(e) be the set of uncolored trees
contained in e. We color A ∗(e) as follows. We first color the set of uncolored trees
contained in e naively using the chain method. For this we use two new colors, which
are used for all chains—we can re-use the same two colors for the chains, since trivially
the chains in two different edges e, e′ do not interact. However, we can avoid using
two extra colors and re-use the colors from C as explained next.

First, if c uses a single color, then each node of T is contained in at most one tree.
We then forget the trivial coloring c and use the chain method from scratch onA . We
start at an arbitrarily fixed leaf u of T , and for any other leaf u′, we consider the path
between u and u′ and use the chain method on the trees restricted to this path. Note
that a tree T can be encountered on several different paths, but it receives the same
color each time (since all these paths start at u and are identical up to the moment T
is reached). Moreover, the coloring is non-monochromatic, since any point in T is
contained in a path from u to some leaf u′.

We may now suppose that c uses at least two colors. Let Tr ∈ A (e, r) and Tr ′ ∈
A (e, r ′), be the trees extending the farthest into e (arbitrarily chosen in case of a tie).
Note that these trees might not exist. Also note that Tr and Tr ′ are not in A ∗(e). We
define the following colors.

– Let cr be the color of Tr , if Tr exists, and an arbitrary color otherwise.
– Let cr ′ be the color of Tr ′ , if Tr ′ exists, and c(Tr ′) �= c(Tr ) (if Tr does not exist,
we assume this is always true), and an arbitrary color different from cr otherwise.

We then do the following.

(a) If Tr fully contains e, we color all trees in A ∗(e) using cr ′ .
(b) If Tr ′ fully contains e, we color all trees in A ∗(e) using cr .
(c) Otherwise, we use the chainmethod forNM-colorings using cr and cr ′ onA ∗(e)∪

{Tr } ∪ {Tr ′ }. We start from r with color cr so that Tr is the first tree colored and
keep its color. We then check if the color of Tr ′ changed. If so, let Cr ′ ⊆ C be the
subset of trees contained in the subspace rooted at r ′ (including e but not r ) and
excluding Tr ′ . We exchange cr and cr ′ in Cr ′ ; see Fig. 5.

The following lemma proves the extended coloring is non-monochromatic.

Lemma 6 Any NM-coloring c on C can be extended to A without using any extra
color if c uses two colors or more, and with two colors otherwise.

Proof Let A1 be the subset of trees in A \C that contain an internal node of T , and
letA2 be the remaining trees inA \C . By Lemma 5, we have an NM-coloring on C .
To prove that the method described above gives us an NM-coloring on C ∪ A2, we
show that the following invariant holds each time an edge is colored: the coloring
on C ∪ A2 is non-monochromatic when restricted to colored trees. It is clear that
before the first edge is colored, the coloring is non-monochromatic as at this point the
only trees colored are exactly those in C . We hence only have to show the invariant
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Fig. 5 If the color of Tr ′ changes with the chain method, we swap the labels of the old and new colors of Tr ′
in the subspace rooted at r ′ (Color figure online)

still holds after coloring an edge e = rr ′. If we are in cases (a) or (b), the invariant
trivially holds. It remains to consider the third case.

In case (c) we use the chain method on A ∗(e) ∪ {Tr } ∪ {Tr ′ }, which imme-
diately implies the coloring is non-monochromatic on e. To prove it is also
non-monochromatic elsewhere, let p /∈ e be a point contained in at least two trees.
Then we only have to show that the label swap we performed on one side of e keeps
the coloring non-monochromatic. The point p cannot be contained in one tree con-
taining r and one tree containing r ′ at the same time, because no tree contains e fully.
Therefore, p is contained in at least two trees from one side of e, hence two trees of
different color.

Furthermore, the trees inA1 received an arbitrary color already used. To prove that
this gives an NM-coloring for A = C ∪ A1 ∪ A2, it suffices to prove that each tree
T ∈ A1 is doubly-covered by C , that is, any point q ∈ T is contained in at least
two trees in C . To this end, let e be an edge such that q ∈ e. Then, since T /∈ C
and T contains an endpoint v of e, the two trees in A (e, v) contain q. Hence, T is
doubly-covered by C , as claimed. ��

Theorem 7 1. X tree,trees
nm (k, �; n) � min

(
� + 1, 2

√
6k

)
.

2. X tree,trees
cf (k, �; n) = O(� log k).

Proof For theNM-coloring part of the theorem,weuseLemmas 5 and6. For the second
part, if � > 2

√
6k we again reduce C to C ′ using at most

√
6k − 1 colors. Then use

the result by Smorodinsky [15] on the NM-coloring on C ′ provided by Lemma 4.
Since this coloring uses at most �′ + 1 colors and |C ′| � 6k − 12, the CF-coloring
uses O(� log k) colors. We then extend the coloring to A using similar techniques as
for the NM-coloring. This coloring uses O(

√
k log k) colors if � > 2

√
6k, which is in

O(� log k), and directly O(� log k) colors otherwise. Note that a direct application of
the result of Smorodinsty [15] would give a O(� log n) bound instead. ��
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Fig. 6 An example of the
non-monochromatic lower
bound for k = 6, � = 3,
and n = 4. The tree T1 is drawn
in gray

2.2 The Lower Bound

We show a lower bound for the number of colors needed to NM-color a set of trees in
a tree space.

Theorem 8 For all n, k, and �, there exist a tree space T with k leaves and a set A
at most n trees on T , each with at most � leaves, such that any non-monochromatic

coloring of A uses at least min
(
� + 1,

⌊
1+√

1+8k
2

⌋
, n

)
colors. In other words,

X tree,trees
nm (k, �; n) � min

(
� + 1,

⌊
1+√

1+8k
2

⌋
, n

)
.

Proof Let T be a star with k leaves. We construct the set A of m trees such that,
for each pair of trees T , T ′ ∈ A , there is a leaf of T contained in T and T ′, and no
other tree fromA . Consequently, each tree inA must be assigned a distinct color. To
this end, we define m := min(� + 1,m′, n), where m′ := �(1 + √

1 + 8k)/2� is the
largest integer such that

(m′
2

)
� k. Then, for every pair {i, j} with 1 � i < j � m,

we choose a distinct leaf of T and associate it with {i, j}. The total number of such
pairs is

(m
2

)
�

(m′
2

)
� k, hence we can indeed associate a distinct leaf to each pair.

Let now A := {T1, . . . , Tm} be the set of trees defined as follows: for each i =
1, . . . ,m, the tree Ti is defined as the tree containing all the leaves associated with
pairs {i, j} for some j �= i , i.e., Ti is the union, for all j �= i , of edges from the root
to a leaf associated with {i, j}. Figure 6 shows an example.

We now have to prove that the construction is possible within the parameters. Recall
thatm � n sowe have indeed atmost n trees inA , and thatm � m′ wherem′ is chosen
to ensure k leaves are enough. We therefore only have to show that no tree Ti , . . . , Tm
has more than � leaves. However, the number of leaves of each tree Ti is at mostm−1,
aswe only create atmost one leaf for Ti for each Tj with j �= i . Hence, sincem � �+1,
each tree has at most � leaves. Thus, the construction does not violate the parameters.

Finally, each tree needs a distinct color, and since there are m trees, the number of

colors needed is m = min(� + 1, � 1+√
1+8k
2 �, n). ��
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Since any CF-coloring is also an NM-coloring, the lower bound in Theorem 8
holds for CF-coloring as well. The next theorem gives a stronger lower bound for
CF-coloring in the case � = 2, that is, when the objects are paths.

Theorem 9 For all n and k, there exist a tree space T with k leaves and a set A
of at most n paths in T such that any conflict-free coloring of A uses at
least �log2 min(k, n)� colors. In other words,

X tree,paths
cf (k; n) � �log2 min(k, n)�.

Proof Let T be a rooted complete binary tree of height h = �log2 min(k, n)�. Note
that T has at most min(k, n) leaves. For each leaf v of T , we define πv to be the
path from v to the root r of T . Our set A of objects is now defined as A := {πv |
v a leaf of T }. (Trivially, |A | � n.)

Let c : A → N be a conflict-free coloring of A . We prove that c uses at least h =
�log2 min(k, n)� colors by induction on the height h ofT . If h = 0, then there is only
one degenerate path, i.e., a path of length 0, and the claim trivially holds. Suppose now
that the claim holds for a tree of height h � 0, and suppose the height of T is h + 1.
Since c is a conflict-free coloring, among the paths containing the root r1 := r of T ,
theremust be a pathπ1 of unique color. Since by construction all paths inA contain the
root, the color of π1 is unique among all paths. Let r2 be the child of r1 not contained
in π1. We now use the induction hypothesis on the subtree rooted at r2 with paths
containing r2 cut above it. Among these paths, there are h that use distinct colors.
Moreover, none of these path can use c(π1), as this color is unique among all paths.
Hence, we have indeed h + 1 paths using distinct colors. This concludes the proof.

��
The following theorem is a direct consequence of the previous two.

Theorem 10 For all n, k, and �, there exist a tree space T with k leaves and a setA
of at most n trees in T with at most � leaves each such that any conflict-free coloring

of A uses at least min
(
� + 1,

⌊
1+√

1+8k
2

⌋)
or �log2 min(k, n)� colors, whichever is

higher. In other words,

X tree,trees
cf (k, �; n) � max

{
min

(
� + 1,

⌊
1+√

1+8k
2

⌋)

�log2 min(k, n)�.

3 Balls in Tree Spaces and on Planar Network Spaces

In this section we restrict the objects to balls. LetN be a network space, dist : N 2 →
R a distance function on N , and let A be a set of balls on N . We define the cov-
erage covx (B) of a node x by a ball B = B(p, ρ) containing x as covx (B) :=
ρ − dist(p, x). Given a node x contained in at least one ball from A , we define Bx

as the ball maximizing the coverage of x , where we break ties using an arbitrary but
fixed ordering on the balls. We say that Bx is assigned to x . Note that Bx does not
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exist if no ball contains x , and that a ball can be assigned to multiple nodes. We will
regularly use the following lemma regarding the assigned balls.

Lemma 11 Let N be a network space and x be an internal node of N .

(i) IfN is a tree space, letT1, . . . ,Tdeg(x) denote the subtrees resulting from remov-
ing x from N or, more precisely, the closures of the connected components of
T \{x}. Let p be a point in some subtree Ti and suppose p is contained in a ball
B ∈ A whose center lies in T j with j �= i . Then p ∈ Bx .

(ii) Suppose x is contained in at least one ball in A . Let π be a shortest path from x
to the center of Bx , and let y be a node on the path π . Then Bx is also assigned
to y, that is, Bx = By.

Proof Part (i) follows immediately from the definition of Bx . To prove part (ii), suppose
for a contradiction that By �= Bx for some y ∈ π . Thus, covy(By) � covy(Bx ).
Because π is a shortest path from x to the center of Bx , we have that covx (Bx ) =
covy(Bx ) − dist(x, y). Moreover, covy(By) − dist(x, y) � covx (By) because of
the triangle inequality. Hence, covx (Bx ) � covx (By) � covy(By) − dist(x, y) �
covy(Bx ) − dist(x, y) = covx (Bx ). Thus covx (Bx ) = covx (By) and covy(Bx ) =
covy(By). However, this is a contradiction, as in case of a tie, we use the fixed ordering
to choose which ball to assign to a node. ��

3.1 Tree Spaces: The Upper Bound

For balls on a tree space T , the upper bounds from Theorem 7 with � = k apply.
Below we improve upon these bounds using the special structures of balls. Let T be
a tree with t internal nodes. We present algorithms to NM-color balls on trees using
two colors, and CF-color them with log t + 3 colors.

Let A be a set of n balls on T . Let also C := {B = B(c, ρ) | ∃x : B = Bx } be
the set of balls assigned to at least one internal node. Recall that an internal node x is
assigned the ball maximizing the coverage of x .
NM-coloring. We use a divide-and-conquer approach to NM-color A . If t = 0, that
is, T consists of a single node or a single edge, we use the chain method for NM-
coloring with colors green and red. If t > 0, then we proceed as follows. Let e = uv

be an edge ofT . LetTu , respectivelyTv , be the closure of the connected component
of T \e containing u, respectively v. Recall that Bu is the ball assigned to u and Bv

the ball assigned to v. We may assume that both Bu or Bv exist, for otherwise the
recursion is trivial. Observe that Bu and Bv may coincide. We define

A (u) := { balls B ∈ A whose center lies in Tu} ∪ {Bu}.

We recursively colorA (u) in Tu , obtaining colorings ofA (u) with colors green and
red. In the recursive calls on A (u), we “clip” the balls to within Tu . Note that the
clipped balls are still balls in the spaceTu . This is clear for the balls whose center lies
in Tu . The center of Bu may not lie in Tu , but in that case it behaves within Tu as a
ball with center u and radius covu(Bu). We handle Tv similarly.
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Fig. 7 On the left, we have the two different initial cases, i.e., on the top, Bu �= Bv , on the bottom, Bu = Bv .
In the middle, the recursive call is made. On the right, we use the two recursive colorings and swap colors
if needed (Color figure online)

LetA (e) := A \(A (u) ∪A (v)) be the set of the remaining balls. In other words,
A (e) contains the balls whose center is contained in e, except for Bu and Bv . We
color A (e), possibly swapping colors in A (u) or A (v), as follows.

– If Bu = Bv , we first ensure that it gets the same color in both A (u) and A (v)

by swapping colors in one of the two subsets if necessary. We then color all balls
in A (e) green if Bu is red, and red if Bu is green.

– If Bu �= Bv , let π be a longest simple path in T containing u and v. We
colorA (e)∪{Bu, Bv} restricted toπ using the non-monochromatic chainmethod.
We then possibly swap colors in A (u) and A (v) so that Bu and Bv match the
colors they were given by the chain method.

Both cases are illustrated in Fig. 7.

Theorem 12 Xballs,trees
nm (t; n) = 2.

Proof The coloring obviously uses two colors. It remains to show it is non-
monochromatic. We use induction on t . If t = 0, the coloring is non-monochromatic
since it uses the chain method.

Suppose now that t � 1 and that the claim holds for any tree space with fewer
than t internal nodes. Let p be a point contained in at least two balls.

If p is contained in balls only ofA (v), only ofA (u), or only ofA (e), it is contained
in at least two balls of different colors. Indeed, the colorings of A (v) and A (u) are
non-monochromatic since they use the method on a tree with fewer than t internal
nodes and we can use the induction hypothesis. A (e) is non-monochromatic due to
the chain method.

It remains to consider the case where p is contained in balls from at least two of
the sets A (u), A (v), and A (e). We distinguish two cases: p is contained in a ball
of A (e) and p is not contained in a ball of A (e).

If p is contained in a ball B of A (e), we can assume without loss of generality
that p is also contained in a ball of A (v). By Lemma 11(i), we have that p ∈ Bv .
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If Bu = Bv then all balls in A (e) are given a different color than Bv hence p is
contained in two balls of different color. If Bu �= Bv then we use the chain method
on π . Hence, if p ∈ π , it is contained in two balls of different color. To show that
if p /∈ π then p is still contained in two balls of different colors, it suffices to notice
that for any subset of balls of A (e) in which p is contained, the point p′ ∈ π at
distance d(u, p) from u is contained in the same set of balls from A (e) as π is the
longest path containing e.

On the other hand, if p is not contained in a ball ofA (e), then it is contained in at
least one ball fromA (u) and one fromA (v). By Lemma 11we have that p ∈ Bu∩Bv .

We then have two cases. If Bu = Bv , then p is contained in another ball of A (u)

or A (v), and then the coloring is non-monochromatic by the induction hypothesis.
Otherwise Bu and Bv are part of the chainA (e)∪ {Bu, Bv}, and hence p is contained
in at least two balls of different color. ��

CF-coloring The second algorithm CF-colors A using 	log t
 + 3 colors. As before,
define C := {B = B(c, ρ) | ∃x : B = Bx }. We explain how to color C and
then extend the coloring to A . Let r be a node whose removal results in subtrees
each of at most t/2 internal nodes. We color Br (if it exists) with a color indicating
the current level of recursion (which is 1 in this initial call). Let T1, . . . ,Tdeg(r) be
subtrees resulting from removing r , that is, the closures of the connected components
ofT \{r}. For each i = 1, . . . , deg(r), we recurse onTi with the balls from C whose
centers lie in Ti . In such a recursive call, we consider a node to be an internal node
when it was an internal node in the original space T and when it has not yet been
selected as a splitting node in a previous call. Hence, when t = 0 in a recursive call
on a subtree T ′ ⊂ T , then T ′ must be a single edge both of whose endpoints have
already been treated.

The recursion stops when there are no more balls left (which must be the case when
we have a recursive call with t = 0).

Lemma 13 The above algorithm CF-colors C using 	log t
 colors.

Proof The number of colors used follows immediately from the fact thatT is split into
trees of at most t/2 internal nodes. We now show the coloring is indeed conflict-free
by showing that it is a unique-minimum coloring: for any point p the minimum color
among the colors of the balls containing p is unique. Let p ∈ T be a point contained
in two balls B1 = B(p1, ρ1) and B2 = B(p2, ρ2) both of color i . We show that this
implies the existence of a ball containing p with a lower color value. Let v1 be the
node B1 is assigned to, and v2 the node B2 is assigned to. Since B1 and B2 have the
color i , they were contained in different trees when they were colored in the recursive
process. Let v0 be the node that disconnected v1 and v2 and let B0 be the ball assigned
to v0. Note that c(B0) < i .

We prove that p ∈ B0. Let π be the unique simple path between p and v0. It cannot
be the case that both p1 ∈ π and p2 ∈ π . Suppose without loss of generality that p2 /∈
π . Since p ∈ B2, we have that covv0(B2) � dist(p, v0). And since covv0(B0) �
covv0(B2), we have that p ∈ B0, concluding the proof. ��
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Fig. 8 Example of the lower
bound construction with t = 3.
For clarity purposes, only B2 is
displayed, in gray

We now wish to extend the coloring to balls in A \C . To this end, define T ′ :=
T \ ∪ C to be the part of T that remains after removing all points covered by the
balls in C .

We finish the coloring with three more colors (using the chain method for CF-
colorings) as explained next, resulting in 	log t
 + 3 colors. We use the following
lemma to show that the remaining balls can be reduced to intervals on disjoint lines.
Note that the lemma does not use any assumption of tree spaces and can hence be
applied also to planar network spaces.

Lemma 14 For any ball B /∈ C , we have {p ∈ B | p /∈ ∪C } ⊆ e, where e is the edge
containing the center of B.

Proof Suppose for a contradiction that there is a point p /∈ e contained in B but
not in ∪C . Consider the endpoint v of e belonging to a geodesic from the center
of B to p. We claim that covv(B) > covv(Bv), contradicting the definition of Bv .
Indeed, covv(B) > dist(v, p) (since v lies on the geodesic from B’s center to p) and
covv(Bv) < dist(v, p) (since p /∈ C and, hence, p /∈ Bv). ��

Using these lemmas, we can upper bound the chromatic number as follows.

Theorem 15 X tree,balls
cf (t; n) � 	log t
 + 3.

3.2 Tree Spaces: The Lower Bound

Lemma 16 X tree,balls
cf (t; n) � 	log(t + 1)
 .

Proof LetT be as follows. We take t + 2 points p1, . . . , pt+2 in the plane, with pi =
(i, 0) for each i = 1, . . . , t + 2, and we link consecutive points with a unit distance
segment. We then take t + 2 additional points p′

1, . . . , p
′
t+2, with p′

i = (i, t + 2),
and for each i = 1, . . . , t + 2 we link pi and p′

i with a segment of length t + 2.
Note that p1 and pt+2 do not count as internal nodes as their degree is two. Finally, we
place t+1 balls B1 = B(c1, t+2), . . . , Bt+1 = B(ct+1, t+2), for all i = 1, . . . , t+1,
with ci = (i + 2

3 , 0), see Fig. 8.
Consider the hypergraph H whose nodes are the balls Bi , and whose hyperedges

are the subsets of balls such that there is a point p ∈ T contained in exactly that subset
(and no other balls). We claim (and prove below) that the set of hyperedges is exactly
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the set {{Bi , Bi+1, . . . , Bj } | i � j}. In other words, there is a hyperedge for a subset
of balls if and only if there is an interval on the x-axis containing exactly the centers of
these balls. Hence, we can apply the 	log(t + 1)
 lower bound for CF-coloring points
with respect to intervals [8].

Observe that any p with y-coordinate 0 is contained in all balls, we can hence
disregard those points. To prove the claim, note that if ci is the ball center nearest
to p, then dist(p, c1) > dist(p, c2) > · · · > dist(p, ci ) and dist(p, ci+1) > · · · >

dist(p, ct+2), which implies that any hyperedge is of the form {Bi , Bi+1, . . . , Bj }. On
the other hand, the point (�( j + i)/2� , t + 2 − ( j − i)/2) is contained in exactly the
balls Bi , Bi+1, . . . , Bj . ��

3.3 Planar Network Spaces

NM-coloring. We first explain how to NM-color balls on a planar network space N .
Let again C be the set {B = B(c, ρ) | ∃x : B = Bx }. We create a graph GC whose
node set is C and whose edge set is defined as follows: there is an edge between B
and B ′ if and only if there is an edge vv′ in T with Bv = B and Bv′ = B ′. It follows
from Lemma 11 that for any ball B, the set of nodes of N to which B is assigned,
together with the edges between these nodes, is a connected set. Therefore, GC is
planar as well since its nodes correspond to disjoint connected subspaces in the planar
space N . We now use the Four Color Theorem to color GC and we give each ball
in C the same color as the corresponding node in GC .

Lemma 17 The coloring on C is non-monochromatic and uses at most four colors.

Proof It is clear that the coloring uses at most four colors. Now let p be a point
contained in two balls B1 and B2 of the same color. Let v1 and v2 be nodes of N
with B1 = Bv1 and B2 = Bv2 . Let π1 and π2 be two shortest paths between p
and v1, v2, respectively. If all the nodes in π1 ∪ π2 are either assigned B1 or B2,
then there is an edge between B1 and B2 in GC and hence B1 and B2 are given
different colors. Therefore there must be a node v in π1 ∪ π2 (we assume without
loss of generality that v ∈ π1) with Bv /∈ {B1, B2} and c(Bv) = c(B1). Note that
if c(Bv) = c(B1) for all v ∈ π1, then there must be an edge between two balls of
the same color in GC which is a contradiction, hence there must be a vertex v ∈ π1
with c(Bv) �= c(B1). Since π1 is a shortest path between v1 and p, and since v ∈ π1,
we have that π1 contains a shortest path between v and p. Moreover, covv(Bv) �
covv(B1) � d(v, p), which implies that p ∈ Bv and concludes the proof. ��

We now wish to extend the coloring to balls in A \C . To this end, define N ′ :=
N \ ∪ C to be the part of N that remains after removing all points covered by the
balls in C . The proof of the following lemma is similar to the proof of Lemma 14.

Lemma 18 Consider a ball B ∈ A \C , and let B ′ := B ∩ N ′. Then B ′ is contained
in a single edge of N ′.

For each edge e of N ′, let A (e) denote the set of balls contained in e. Let u and
v denote the endpoints of the edge in N containing e. We color the uncolored balls
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in e using the chain method with two colors different from c(Bu) and c(Bv). We have
now colored the balls in C as well as the balls inA \C that lie at least partially inN ′.
Next we explain how to color the remaining balls, which are fully covered by the balls
in C .

Lemma 19 For any uncolored ball B, there is a set of at most three colored balls such
that B is contained in their union.

Proof Any uncolored ball B is contained in ∪C . If B is fully contained in a single
edge e of N , it must be covered by the two balls from C extending the farthest
into e, starting from each of the two endpoints. If not, let v be a node contained in B.
Now B\Bv is contained in a single edge e ofN and so B\Bv can be covered by two
balls (as just explained), which implies that B can be covered by three balls. ��

Using this lemma, we can easily finish the NM-coloring by coloring each uncolored
ball with a color different from the three colored balls provided by Lemma 19.

Theorem 20 Xplanar,balls
nm (t; n) = 4.

Proof The coloring obviously uses four colors at most. Moreover, it is easy to see the
coloring is non-monochromatic. It remains to show that there is an instance requiring
at least four colors. To that purpose, let N be an embedding of K4 where all edges
have length one. Then, for each node v ofN , we create the ball B(v, 2/3). Since no
two balls can have the same color, we need at least four colors. ��
CF-coloring We now explain how to CF-color balls on a planar network. As before,
define C := {B = B(c, ρ) | ∃x : B = Bx }. We first CF-color C using the fol-
lowing recursive algorithm introduced by Smorodinsky [15]: we select a maximum
independent set in C1 := C , we give it a color indicating the current level of recur-
sion (which is 1 in this initial call), place all uncolored balls in C2, and recurse. We
claim that for all i , the Delauney graph Di := (Ci , Ei ) on the balls in Ci is planar,
where Ei := {{B1, B2} | ∃p ∈ N : p ∈ B1 ∩ B2 and ∀B /∈ {B1, B2} : p /∈ B}.
Lemma 21 Di is planar.

Proof We draw Di using the drawing ofN as follows: each ball is represented by its
center. Then, for every edge in Di , we find a witness, that is a point contained in the
intersection of the two balls and not in any other ball. We finally draw the edge as two
geodesics on N : one from one endpoint to the witness point, and the other from the
witness point to the other endpoint.

We claim that this drawing is plane. Suppose by contradiction that it is not the case
and there is a crossing between the two edges B1B3 and B2B4. Suppose also that the
endpoints of the two edges are distinct: the argument when an endpoint is shared is
similar. Since we based our drawing on N , a planar graph, the point where the two
edges cross must be a node x inN . Let w13 be the witness of the edge B1B3 and w24
the witness of B2B4. Figure 9 shows the two crossing edges, with the crossing node x
in the middle, and the two witnesses w13 and w24 used to draw the geodesics.

Suppose, without loss of generality, that the distance from x to w24 is greater than
or equal to the distance from x tow13. Thus, the distance from the center of B1 tow24
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Fig. 9 We suppose for a
contradiction that the
edges B1B3 and B2B4 cross.
The crossing point is a node x
ofN . Let w13 be the witness of
the edge B1B3 and w24 the
winess of B2B4

is greater than or equal to that to w13. Hence, w13 is also contained in the ball B1,
which contradicts the definition of a witness. Thus, the drawing is plane. ��

Using this lemma and the Four Color Theorem, we can find an independent in
Di of size at least |Ci |/4. Thus, |Ci+1| � (3/4) · |Ci |, which implies that the total
number of colors for C is 	log4/3 t
. (Note: Finding a four-coloring can be done in
quadratic-time by the algorithm of Robertson et al. [13]. Alternatively, we can use
a linear-time algorithm [6] to find an independent set of size at least n/5, leading
to 	log5/4 t
 colors.)

After coloring C , we still need to color the balls in A \C . Using Lemma 14, we
have that for any such ball B, the set of points contained in B but not in any ball in C
is contained in one edge of N . Therefore, if we cut ∪C out of N , the remaining
space is a union of disjoint segments, and any object that is not colored is contained in
at most one segment. We can therefore use the chain coloring on each segment with
the two additional colors and the dummy one.

Finally, any point in ∪C is contained in a ball in C of unique color, and any point
not in ∪C , is contained in at most one ball of each of the two additional colors.
Therefore, the coloring is conflict-free. This yields the following theorem.

Theorem 22 Xplanar,balls
cf (t; n) � 	log4/3 t
 + 3.

4 Concluding Remarks

We studied NM- and CF-colorings on network spaces, where the objects to be colored
are connected regions of the network space. We showed that the number of colors can
be bounded as a function of the complexity (which depends on the type of space and
of objects) of the network space and the objects, rather than on the number of objects.
All our bounds are tight up to some constants, except for X tree,trees

cf (k, �; n) where the
upper bound is a factor � away from the lower bound. Closing this gap remains an
open problem. It would also be interesting to find bounds on general connected objects
on any network space, or other settings where the number of colors depends on the
complexity of the space and objects rather the number of objects.
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