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Abstract
We consider a random permutation drawn from the set of permutations of length n that
avoid some given set of patterns of length 3. We show that the number of occurrences
of another pattern σ has a limit distribution, after suitable scaling. In several cases, the
number is asymptotically normal; this contrasts to the cases of permutations avoiding
a single pattern of length 3 studied in earlier papers.
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1 Introduction

Let Sn be the set of permutations of [n] := {1, . . . , n}, and S∗ := ⋃
n�1Sn . If

σ = σ1 · · · σm ∈ Sm and π = π1 · · · πn ∈ Sn , then an occurrence of σ in π is a
subsequence πi1 · · · πim , with 1 � i1 < · · · < im � n, that has the same order as σ ,
i.e., πi j < πik ⇐⇒ σ j < σk for all j, k ∈ [m]. We let nσ (π) be the number of
occurrences of σ in π , and note that

∑

σ∈Sm

nσ (π) =
(
n

m

)

, (1.1)

for every π ∈ Sn . For example, an inversion is an occurrence of 21, and thus n21(π)

is the number of inversions in π .

Partly supported by the Knut and Alice Wallenberg Foundation.

B Svante Janson
svante.janson@math.uu.se
http://www2.math.uu.se/∼svante/

1 Department of Mathematics, Uppsala University, PO Box 480, 751 06 Uppsala, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00586-5&domain=pdf
http://orcid.org/0000-0002-9680-2790


Algorithmica (2020) 82:616–641 617

We say that π avoids another permutation τ if nτ (π) = 0; otherwise, π contains
τ . Let

Sn(τ ) := {π ∈ Sn : nτ (π) = 0}, (1.2)

the set of permutations of length n that avoid τ . More generally, for any set T =
{τ1, . . . , τk} of permutations, let

Sn(T ) = Sn(τ1, . . . , τk) :=
k⋂

i=1

Sn(τi ), (1.3)

the set of permutations of length n that avoid all τi ∈ T . We also let S∗(T ) :=⋃∞
n=1Sn(T ) be the set of T -avoiding permutations of arbitrary length.
The classes S∗(τ ) and, more generally, S∗(T ) have been studied for a long time,

see e.g.Knuth [16, Exercise 2.2.1–5], Simion and Schmidt [20], Bóna [3]. In particular,
one classical problem is to enumerate the setsSn(τ ), either exactly or asymptotically,
see Bóna [3, Chapters 4–5]. We note the fact that for any τ with length |τ | = 3,Sn(τ )

has the same size |Sn(τ )| = Cn := 1
n+1

(2n
n

)
, the nth Catalan number, see e.g. [16,

Exercises 2.2.1–4,5], [20], [21, Exercise 6.19ee,ff], [3, Corollary 4.7]; furthermore,
the cases when T consists of several permutations of length 3 are all treated by Simion
and Schmidt [20]. (The situation for |τ | � 4 is more complicated.)

The general problem that concerns us is to take a fixed set T of one or several
permutations and let πT ;n be a uniformly random T -avoiding permutation, i.e., a
uniformly random element of Sn(T ), and then study the distribution of the random
variable nσ (πT ;n) for some other fixed permutation σ . (Only σ that are themselves
T -avoiding are interesting, since otherwise nσ (πT ;n) = 0.) One instance of this
problem was studied already by Robertson, Wilf and Zeilberger [18], who gave a
generating function for n123(π132;n). The exact distribution of nσ (π τ ;n) for a given
n was studied numerically in [15], where higher moments and mixed moments are
calculated for small n. We are mainly interested in asymptotics of the distribution of
nσ (πT ;n), and of its moments, as n → ∞, for some fixed T and σ .

In the present paper we study the cases when T is a set of two or more permutations
of length 3. We consider 8 different cases separately; by symmetries, see Sect. 2.2,
these cover all 30 non-trivial cases of such forbidden sets T . (See Sect. 2.5 for the
trivial cases.) These 8 cases are included (together with a few others for reference) in
Table 1.

The cases when T = {τ } for a single permutation τ of length |τ | = 3 were studied
in [12,13] (by symmetries, only two such cases have to be considered), and the cases
when T contains a permutation of length � 2 are trivial (there is then at most one
permutation in Sn(T ) for any n); hence the present paper completes the study of
forbidding one or several permutations of length � 3. The case of forbidding one or
several permutations of length� 4 seemsmuchmore complicated, but there are recent
impressive results in some cases by Bassino et al. [2] and Bassino et al. [1].

The expectation Enσ (πT ;n), or equivalently, the total number of occurences of σ

in all T -avoiding permutations, has previously been treated in a number of papers for
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Table 1 The table shows whether nσ (πT ;n) has limits of type I (normal) or II (non-normal); furthermore,
the exponent α = α(σ) such that Enσ (πT ;n) is of order nα is given in the column for the type. The last

column shows the exceptional cases, if any, where the asymptotic variance vanishes. Cn := 1
n+1

(2n
n

)
is a

Catalan number; Fn+1 is a Fibonacci number (F0 = 0, F1 = 1); sn−1 is a Schröder number; D(σ ) is the
number of descents and B(σ ) is the number of blocks in σ

T |Sn(T )| Type I Type II As. variance = 0

∅ n! |σ |
{132} Cn (|σ | + D(σ ))/2 m · · · 1
{321} Cn (|σ | + B(σ ))/2 1 · · ·m
{132, 312} 2n−1 |σ |
{231, 312} 2n−1 B(σ ) 1 · · ·m
{231, 321} 2n−1 B(σ ) 1 · · ·m
{132, 321} (n

2
) + 1 |σ |

{231, 312, 321} Fn+1 B(σ ) 1 · · ·m
{132, 231, 312} n |σ |
{132, 231, 321} n |σ | − 1 or |σ | 1 · · ·m
{132, 213, 321} n |σ |
{2413, 3142} sn−1 |σ |

various cases, beginning with Bóna [5,7] (with τ = 132). In particular, Zhao [23] has
given exact formulas when |σ | = 3 for the (non-trivial) cases treated in the present
paper, where T consists of two or more permutations of length 3.

The cases studied here (except some trivial, degenerate cases), all have asymptotic
distributions of one of the following two types. We denote convergence in distribution

by
d−→ and convergence in probability by

p−→.

I. Normal Limits. For the non-restricted case of uniformly random permutations in
Sn , it is well-known that if πn is a uniformly random permutation inSn , then nσ (πn)

has an asymptotic normal distribution as n → ∞ for every fixed permutation σ ; more
precisely, if |σ | = m � 2 then, as n → ∞,

nσ (πn) − 1
m!

(n
m

)

nm−1/2
d−→ N

(
0, γ 2) (1.4)

for some γ 2 > 0 depending onσ ; seeBóna [4,6] and Janson,Nakamura andZeilberger
[15, Theorem 4.1]. We obtain below similar asymptotic normal results in several cases
(Sects. 4, 5, 6, 8); note that the asymptotic normality in particular implies concentration
in these cases, in the sense

nσ (πT ;n)
Enσ (πT ;n)

p−→ 1. (1.5)
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II. Non-normal Limits Without Concentration. On the other hand, in other cases
(Sects. 3, 7, 9, 10, 11) we find a different type of limit, where

nσ (πT ;n)
nα

d−→ Wσ , (1.6)

for some non-trivial positive random variable Wσ (also depending on T ). The same
holds in the case T = {2413, 3142} studied by Bassino, Bouvel, Féray, Gerin and
Pierrot [2].

We summarize the results of the present paper, together with some older results
from [2,4,6,12,13,15], in Table 1; for reference, we include the number |Sn(T )| of
T -avoiding permutations of length n, see e.g. [16, Exercises 2.2.1-4,5], [21, Exer-
cise 6.19ee,ff], [3, Corollary 4.7], [20], and [22]. We see no obvious pattern in the
occurence of the two types of limits; nor do we know whether these are the only
possibilities for a general set T of forbidden permutations.

Remark 1.1 In the present paperwe consider for simplicity often only univariate limits;
corresponding multivariate results for several σ1, . . . , σk follow by the same methods.
In particular, (1.4) and all instances of normal limit laws below extend to multivariate
normal limits, with covariance matrices that can be computed explicitly.

Remark 1.2 In the present paper we study only the numbers nσ of occurences of some
pattern in π τ ;n . There is also a number of papers by various authors that study other
properties of random τ -avoiding permutations, see e.g. the references in [13]; such
results will not be considered here.

2 Preliminaries

2.1 Notation

Let ι = ιn be the identity permutation of length n. Let ῑn = n · · · 21 be its reversal.
Letπ = π1 · · · πn be a permutation.We say that a value πi is amaximum ifπi > π j

for every j < i , and a minimum if πi < π j for every j < i . (These are sometimes
called LR maximum and LR minimum.) Note that π1 always is both a maximum and
a minimum.

By joint convergence in distribution for an infinite family of random variables
(depending on n) wemean convergence in the product topology, i.e., joint convergence
for every finite subset.

2.2 Symmetries

There are many cases treated in the present paper, but the number is considerably
reduced by three natural symmetries (used by many previous authors). For any per-
mutation π = π1 · · ·πn , define its inverse π−1 in the usual way, and its reversal and
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complement by

π r := π ◦ ῑ = πn · · ·π1, (2.1)

πc := ῑ ◦ π = (n + 1 − π1) · · · (n + 1 − πn). (2.2)

These three operations are all involutions, and they generate a groupG of 8 symmetries
(isomorphic to the dihedral group D4). It is easy to see that, for any permutations σ

and π ,

nσ−1(π−1) = nσ r(π r) = nσ c(πc) = nσ (π), (2.3)

and consequently, for any symmetry s ∈ G,

nσ s(π s) = nσ (π). (2.4)

For a set T of permutations we define T s := {τ s : τ ∈ T }. It follows from (2.4) that

Sn(T
s) = {π s : π ∈ Sn(T )}, (2.5)

and, furthermore, that for any permutation σ ,

nσ s(πT s;n)
d= nσ (πT ;n). (2.6)

We say that the sets of forbidden permutations T and T s are equivalent, and note that
(2.6) implies that it suffices to consider one set T in each equivalence class {T s : s ∈
G}. We do this in the sequel without further comment. (We choose representatives
T that we find convenient. One guide is that we choose T such that the identity
permutation ιn avoids T .)

2.3 Compositions and Decompositions of Permutations

If σ ∈ Sm and τ ∈ Sn , their composition σ ∗ τ ∈ Sm+n (in the literature often
denoted σ ⊕ τ ) is defined by letting τ act on [m + 1,m + n] in the natural way; more
formally, σ ∗ τ = π ∈ Sm+n where πi = σi for 1 � i � m, and π j+m = τ j + m
for 1 � j � n. It is easily seen that ∗ is an associative operation that makes S∗ into
a semigroup (without unit, since we only consider permutations of length � 1). We
say that a permutation π ∈ S∗ is decomposable if π = σ ∗ τ for some σ, τ ∈ S∗,
and indecomposable otherwise; we also call an indecomposable permutation a block.
Equivalently, π ∈ Sn is decomposable if and only if π : [m] → [m] for some
1 � m < n. See e.g. [8, Exercise VI.14].

It is easy to see that any permutation π ∈ S∗ has a unique decomposition π =
π1∗· · ·∗π� into indecomposable permutations (blocks) π1, . . . , π� (for some, unique,
� � 1); we call these the blocks of π .

We shall see that some (but not all) of the classes considered below can be charac-
terized in terms of their blocks. (See [2] for another, more complicated, example.)
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2.4 U-statistics

An (asymmetric) U -statisticis a random variable of the form

Un =
∑

1�i1<···<id�n

f
(
Xi1 , . . . , Xid

)
, n � 0, (2.7)

where X1, X2, . . . is an i.i.d. sequence of random variables and f is a given function of
d � 1 variables. These were (in the symmetric case) introduced by Hoeffding [9]; see
further e.g. [14] and the references there. We say that d is the order of theU -statistic.

We shall use the central limit theorem for U -statistics, originally due to Hoeffding
[9], in the asymmetric version given in [10, Theorem 11.20] and [14, Corol-
lary 3.5 and (moment convergence) Theorem 3.15]. Let, with X denoting a generic
Xi ,

μ := E f (X1, . . . , Xd), (2.8)

fi (x) := E
(
f (X1, . . . , Xd) | Xi = x

)
, (2.9)

βi j := Cov
(
fi (X), f j (X)

)
, (2.10)

β2 :=
d∑

i, j=1

(i + j − 2)! (2d − i − j)!
(i − 1)! ( j − 1)! (d − i)! (d − j)! (2d − 1)!βi j . (2.11)

Note that fi (x) in [14] is fi (x) − μ in the present notation.

Proposition 2.1 [10,14] Suppose that f (X1, . . . , Xd) ∈ L2. Then, with the notation
in (2.8)–(2.11), as n → ∞,

Un − (n
d

)
μ

nd−1/2
d−→ N

(
0, β2). (2.12)

Furthermore, β2 > 0 unless fi (X) = μ a.s. for i = 1, . . . , d.
Moreover, if f (X1, . . . , Xd) ∈ L p for some p � 2, the (2.12) holds with conver-

gence of all moments of order � p. �
Example 2.2 A uniformly random permutation πn of length n (without other restric-
tions) can be constructed as the relative order of X1, . . . , Xn , where Xi are i.i.d. with,
for example, a uniform distribution U(0, 1). For any given permutation σ ∈ Sm , we
can then write nσ (πn) as a U -statistic (2.7) for a suitable indicator function f . Then
Proposition 2.1 yields a limit theorem showing that nσ (πn) is asymptotically normal.
See [15] for details.

We shall also use a renewal theory version of Proposition 2.1. With the notations
above, assume (for simplicity) that Xi � 0. Define Sn := ∑n

i=1 Xi , and let for each
x > 0

N−(x) := sup{n : Sn < x}, (2.13)
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N+(x) := inf{n : Sn � x} = N−(x) + 1. (2.14)

Remark 2.3 The definitions (2.13)–(2.14) differ slightly from the ones in [14], where
instead Sn � x and Sn > x are used. This does not affect the asymptotic results used
here. Note that the event {Sk = n for some k � 0} equals {SN+(n) = n} in the present
notation.

The following results are special cases of [14, Theorems 3.11, 3.13(iii) and 3.18]
(with somewhat different notation). N±(x) means either N−(x) or N+(x); the results
holds for both.

Proposition 2.4 [14] Suppose that f (X1, . . . , Xd) ∈ L2, X ∈ L2, X � 0 a.s., and
ν := EX > 0. Then, with notations as above, as x → ∞,

UN±(x) − ν−dμd!−1xd

xd−1/2
d−→ N

(
0, γ 2), (2.15)

where

γ 2 := ν1−2dβ2 − 2
ν−2dμ

(d − 1)! d!
d∑

i=1

Cov
(
fi (X), X

) + ν−2d−1μ2

(d − 1)!2 Var
(
X

)
. (2.16)

Moreover, γ 2 > 0 unless fi (X) = μ
ν
X a.s. for i = 1, . . . , d. �

Proposition 2.5 [14] Suppose in addition to the hypotheses in Proposition 2.4 that X
is integer-valued. Then (2.15) holds also conditioned on SN+(x) = x (cf. Remark 2.3)
for integers x → ∞. �
Proposition 2.6 [14] Suppose in addition to the hypotheses in Proposition 2.4 or 2.5
that f (X1, . . . , Xd) ∈ L p and X ∈ L p for every p < ∞. Then the conclusion (2.15)
holds with convergence of all moments. �

2.5 Trivial Cases

We consider in the present paper sets T ⊆ S3. Then, see [20], the following cases are
trivial in the sense that for all n � 5, |Sn(T )| = 0, 1 or 2.

(i) T = {123, 321},
(ii) |T | = 3 and T ⊃ {123, 321},
(iii) |T | � 4.

We ignore these cases in the sequel. This leaves 6 cases with |T | = 1 (Sect. 3), 14
cases with |T | = 2 (Sects. 4–7), and 16 cases with |T | = 3 (Sects. 8–11). Symmetries
reduce these to the 2 + 4 + 4 = 10 non-equivalent cases discussed below.
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3 Avoiding a Single Permutation of Length 3

There are 6 cases where a single permutation of length 3 is avoided, but by the symme-
tries in Sect. 2.2 these reduce to 2 non-equivalent cases, for example 132 (equivalent
to 231, 213, 312) and 321 (equivalent to 123). These cases are treated in detail in [12]
and [13], respectively. Both analyses are based on bijections with binary trees and
Dyck paths, and the well-known convergence in distribution of random Dyck paths
to a Brownian excursion, but the details are very different, and so are in general the
resulting limit distributions.

For comparison with the results in later sections, we quote the main results of
[12] and [13], referring to these papers for further details and proofs. Recall that the
standard Brownian excursion e(x) is a random non-negative function on [0, 1].

First, for 132, let

λ(σ) := |σ | + D(σ ) (3.1)

where D(σ ) is the number of descents in σ , i.e., indices i such that σi > σi+1 or (as
a convenient convention) i = |σ |. Note that 1 � D(σ ) � |σ |, and thus

|σ | + 1 � λ(σ) � 2|σ |, (3.2)

with the extreme values λ(σ) = |σ | + 1 if and only if σ = 1 · · · k, and λ(σ) = 2|σ |
if and only if σ = k · · · 1, for some k = |σ |.
Theorem 3.1 [12] There exist strictly positive random variables �σ such that

nσ (π132;n)/nλ(σ)/2 d−→ �σ , (3.3)

as n → ∞, jointly for all σ ∈ S∗(132). Moreover, this holds with convergence of all
moments.

For a monotone decreasing permutation k · · · 1, �k···1 = 1/k! is deterministic, but
not for any other σ . �

The limit variables�σ inTheorem3.1 canbe expressed as functionals of aBrownian
excursion e(x), see [12]; the description is, in general, rather complicated, but some
cases are simple.

Example 3.2 In the special case σ = 12,�12 = √
2

∫ 1
0 e(x) dx , see [12, Example 7.6];

this is (apart from the factor
√
2) the well-known Brownian excursion area, see e.g.

[11] and the references there.
For the number n21 of inversions, we thus have

(n
2

) − n21(π132;n)
n3/2

= n12(π132;n)
n3/2

d−→ �12 = √
2

∫ 1

0
e(x) dx . (3.4)

BySect. 2.2, the left-hand side can also be seen as the number of inversions n21(π231;n)
or n21(π312;n), normalized by n3/2, where we instead avoid 231 or 312.
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Theorem 3.3 [13] Let σ ∈ S∗(321). Let m := |σ |, and suppose that σ has � blocks
of lengths m1, . . . ,m�. Then, as n → ∞,

nσ (π321;n)/n(m+�)/2 d−→ Wσ (3.5)

for a positive random variable Wσ that can be represented as

Wσ = wσ

∫

0<t1<···<t�<1
e(t1)m1−1 · · · e(t�)m�−1 dt1 · · · dt�, (3.6)

where wσ is positive constant.
Moreover, the convergence (3.5) holds jointly for any set of σ ∈ S∗(321), and with

convergence of all moments.

Example 3.4 Let σ = 21. Then w21 = 2−1/2, see [13], and thus (3.5)–(3.6), with
� = 1 and m1 = m = 2, yield for the number of inversions,

n21(π321;n)
n3/2

d−→ 2−1/2
∫ 1

0
e(x) dx . (3.7)

Note that the limit in (3.7) differs from the one in (3.4) by a factor 2.

4 Avoiding {132, 312}
In this section we avoid T = {132, 312}. Equivalent sets are {132, 231}, {213, 231},
{213, 312}.

It was shown by Simion and Schmidt [20] that |Sn(132, 312)| = 2n−1, together
with the following characterization (in an equivalent formulation).

Proposition 4.1 [20, Proposition12]Apermutationπ belongs to the classS∗(132, 312)
if and only if every entry πi is either a maximum or a minimum. �

We encode a permutation π ∈ Sn(132, 312) by a sequence ξ2, . . . , ξn ∈ {±1}n−1,
where ξ j = 1 if π j is a maximum in π , and ξ j = −1 if π j is a minimum. This
is by Proposition 4.1 (and its proof in [20]) a bijection, and hence the code for a
uniformly random π132,312;n has ξ2, . . . , ξn i.i.d. with the symmetric Bernoulli distri-
bution P(ξ j = 1) = P(ξ j = −1) = 1

2 . We let ξ1 have the same distribution and be
independent of ξ2, . . . , ξn .

Let σ ∈ Sm(132, 312) have the code η2, . . . , ηm . Then πi1 · · · πim is an occurrence
of σ in π if and only if ξi j = η j for 2 � j � m. Consequently, cf. Sect. 2.4,
nσ (π132,312;n) is a U -statistic

nσ (π132,312;n) =
∑

i1<···<im

f
(
ξi1, . . . , ξim

)
, (4.1)
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where

f
(
ξ1, . . . , ξm

) :=
m∏

j=2

1{ξ j = η j }. (4.2)

Note that f does not depend on the first argument. It follows that, with the notation
(2.8)–(2.11),

μ = E f
(
ξ1, . . . , ξm

) = 2−(m−1), (4.3)

fi (ξ) =
{
0, i = 1,

2−(m−2)1{ξ = ηi }, 2 � i � m,
(4.4)

βi j = Cov
(
fi (ξ), f j (ξ)

) = 22−2mηiη j , i, j � 2, (4.5)

β2 = 22−2m
m∑

i, j=2

(i + j − 2)! (2m − i − j)!
(i − 1)! ( j − 1)! (m − i)! (m − j)! (2m − 1)!ηiη j . (4.6)

Proposition 2.1 yields:

Theorem 4.2 For any m � 2 and σ ∈ Sm(132, 312), as n → ∞,

nσ (π132,312;n) − 21−mnm/m!
nm−1/2

d−→ N
(
0, β2), (4.7)

with β2 > 0 given by (4.6).
Moreover, (4.7) holds with convergence of all moments.

Example 4.3 For the number of inversions, we have σ = 21 and m = 2, η2 = −1.
Thus, (4.4) yields f1(ξ) = 0 and f2(ξ) = 1{ξ = −1}. We find, from (4.3)–(4.6),
μ = 1

2 , β22 = 1
4 and β2 = 1

12 , and thus Theorem 4.2 yields

n21(π132,312;n) − n2/4

n3/2
d−→ N

(
0, 1

12

)
, (4.8)

Remark 4.4 It is easily seen from (4.1)–(4.2) that the expected number of occurrences
Enσ (π132,312;n) = 21−m

(n
m

)
, for every σ ∈ Sm(132, 312); hence the expectation

depends only on the length m = |σ |.
The variance depends not only on |σ |, not even asymptotically, by (4.6).

5 Avoiding {231, 312}
In this section we consider T = {231, 312}. The only equivalent set is {132, 213}.

It was shown by Simion and Schmidt [20] that |Sn(231, 312)| = 2n−1, together
with the following characterization (in an equivalent form).
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Proposition 5.1 [20, Proposition12]Apermutationπ belongs to the classS∗(231, 312)
if and only if every block in π is decreasing, i.e., of the type �(� − 1) · · · 21 for some
�. �

Hence there exists exactly one block of each length � � 1, and a permutation π ∈
S∗(231, 312) is uniquely determined by the sequence of block lengths. In this section,
letπ�1,...,�b denote the permutation inS∗(231, 312)with block lengths �1, . . . , �b, i.e.,

π�1,...,�b := ῑ�1 ∗ · · · ∗ ῑ�b . (5.1)

If σ, π ∈ S∗(231, 312), then in an occurrence of σ in π , each block in σ has to be
mapped into a block in π , and distinct blocks have to be mapped into distinct blocks.
Conversely, any such increasing map [m] → [n] defines an occurence of σ . It follows
that if σ = π�1,...,�b , then

nσ

(
πL1,...,LB

) =
∑

1�i1<···<ib�B

b∏

j=1

(
Li j

�i

)

. (5.2)

This is similar to a U -statistic (2.7), but note that if we write π231,312;n as πL1,...,LB ,
then the block lengths L1, . . . , LB are not independent (since their sum is fixed = n),
and the number of blocks B is random. However, we can analyze this variable using
the renewal theory in Sect. 2.4 as follows.

First,mark each endpoint of the blocks inπ ∈ Sn(231, 312)by1, andmark all other
indices in [n] by 0. Thus π defines a string ξ1, . . . , ξn ∈ {0, 1}n , where necessarily
ξn = 1 but ξ1, . . . , ξn−1 are arbitrary. This yields a bijection between Sn(231, 312)
and the 2n−1 such strings; hence, we obtain a uniformly random π231,312;n by letting
ξ1, . . . , ξn−1 be i.i.d. Be( 12 ), i.e., with P(ξi = 0) = P(ξi = 1) = 1

2 .
We change notation a little, to avoid problems at the endpoint, and define ξ ′

1, ξ
′
2, . . .

as an infinite i.i.d. sequence with ξ ′
i ∼ Be( 12 ). Regard each i with ξ ′

i = 1 as the end
of a block, and let X1, X2, . . . , be the successive lengths of these (infinitely many)
blocks. Then Xi are i.i.d. with

Xi ∼ Ge( 12 ). (5.3)

Given n, we then may let ξi := ξ ′
i for 1 � i < n, and ξn := 1; this determines

ξ1, . . . , ξn as above, and thus a uniformly random π231,312;n . With this construction,
the number of blocks in π231,312;n is, recalling (2.13)–(2.14), B = N+(n), and the
block lengths are
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Li =
{
Xi , i < N+(n)

n − ∑
i<N+(n) Xi � XN+(n), i = N+(n).

(5.4)

Consequently, if σ = π�1,...,�b and we define

f (x1, . . . , xb) :=
b∏

j−1

(
xi
�i

)

, (5.5)

then (5.2) and (2.7) show that

UN−(n) � nσ (π231,312;n) � UN+(n). (5.6)

Consequently, the asymptotic result in (2.15), which holds for bothUN−(n) andUN+(n),
holds also for nσ (π231,312;n).

Remark 5.2 Alternatively, we can obtain (ξi ) from (ξ ′
i ) by conditioning on ξ ′

n = 1, and
note that this holds when SN+(n) = n (see Remark 2.3), and then nσ (π231,312;n) =
UN+(n). The result then follows from Proposition 2.5.

To calculate the parameters, note that, by (5.3), X has the probability generating
function

g(z) := EzX =
∞∑

k=0

2−k zk = z

2 − z
= 2

2 − z
− 1 (5.7)

and it follows that for any integers k, l � 0 with (k, l) �= (0, 0),

E

((
X

k

)(
X

�

))

= [zkw�]E(
(1 + z)X (1 + w)X

)
(5.8)

= [zkw�]g((1 + z)(1 + w)
)

(5.9)

= [zkw�] 2

2 − (1 + z)(1 + w)
(5.10)

= [zkw�] 2

1 − z − w − zw
(5.11)

= 2D(k, �) = 2
k∧�∑

i=0

(k + � − i)!
(k − i)! (� − i)! i ! (5.12)

where D(k, �) denotes the Delannoy numbers. (D(k, �) is, e.g., the number of lattice
paths from (0, 0) to (k, �) with steps (1, 0), (0, 1) or (1, 1); see [21, Example 6.3.8]
and [19, A008288 and A001850] and the references there.) Simple calculations then
yield

ν = EX = 2, (5.13)
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Var(X) = 2. (5.14)

μ = E

b∏

j=1

(
X

�i

)

=
b∏

j=1

E

(
X

�i

)

= 2b, (5.15)

fi (X) = 2b−1
(
X

�i

)

, (5.16)

βi j = Cov
(
fi (X), f j (X)

) = 22b−1D(�i , � j ) − 22b, (5.17)

Cov
(
fi (X), X

) = 2bD(�i , 1) − 2b+1 = (2�i − 1)2b. (5.18)

Consequently, we obtain by Propositions 2.4 and 2.6 asymptotic normality in the
following form.

Theorem 5.3 Let σ ∈ Sm(231, 312) have block lengths �1, . . . , �b. Then, as n → ∞,

nσ (π231,312;n) − nb/b!
nb−1/2

d−→ N
(
0, γ 2), (5.19)

where γ 2 can be calculated by (2.16) and (5.13)–(5.18).
Moreover, (5.19) holds with convergence of all moments. �

Example 5.4 For the number of inversions, we have σ = 21 and b = 1, �1 = 2. A
calculation yields γ 2 = 6, and Theorem 5.3 yields

n21(π231,312;n) − n

n1/2
d−→ N (0, 6). (5.20)

Remark 5.5 Theorem 5.3 shows that the typical order of nσ (π231,312;n) depends only
on the number of blocks b in σ (but not on the length |σ |); more precisely, the asymp-
totic mean depends only on b. (Cf. the different situation when avoiding {132, 312}
in Sect. 4, see Remark 4.4.) Calculations (assisted by Maple) show, however, that the
asymptotic variance γ 2 depends not only onm and b; for example σ = 2143 = ῑ2 ∗ ῑ2
has γ 2 = 6 while σ = 3214 = ῑ3 ∗ ῑ1 has γ 2 = 52/3.

Remark 5.6 The asymptotic variance γ 2 = 0 when σ = ιm = 1 · · ·m, in which case
b = m and all blocks have length 1. This can be seen directly, since all other patterns
occur only Op(nm−1) times (by Theorem 5.3), and thus ιm occurs

(n
m

) − Op(nm−1)

times. This argument also shows that the asymptotic variance of n1···m(π231,312;n) is
of the order n2m−3.

It follows from Proposition 2.4 that γ 2 > 0 for any other σ ∈ S∗(231, 312).

6 Avoiding {231, 321}
In this sectionwe consider T = {231, 321}. Equivalent sets are {123, 132}, {123, 213},
{312, 321}.

It was shown by Simion and Schmidt [20] that |Sn(231, 321)| = 2n−1, together
with the following characterization (in an equivalent form).
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Proposition 6.1 ([20, Proposition 12]) A permutation π belongs to the class S∗
(231, 321) if and only if every block in π is of the type �12 · · · (� − 1) for some
�. �

Thus, as in Sect. 5, a permutation in S∗(231, 321) is determined by its sequence
of block lengths, and these can be arbitrary. In this section, let π�1,...,�b denote the
permutation in S∗(231, 321) with block lengths �1, . . . , �b.

Again, in an occurrence of σ in π , each block in σ has to be mapped into a block
in π . However, this time, several consecutive blocks in σ may be mapped to the same
block in π , provided they have length 1. Moreover, if a block of length � � 2 in σ is
mapped to a block in π , then the first element has to be mapped to the first element.
Hence, we obtain instead of (5.2), if σ = π�1,...,�b ,

nσ

(
πL1,...,LB

) =
∑

1�i1<···<ib�B

b∏

j=1

h�i (Li j ) + R, (6.1)

where

h�(x) :=
{
x, � = 1,
(x−1
�−1

)
, � � 2,

(6.2)

and R counts the occurrences where less than b different blocks in πL1,...,LB are used.
We represent the block lengths as in Sect. 5, in particular (5.3)–(5.4), again using
an infinite i.i.d. sequence Xi ∼ Ge( 12 ). Then, the main term in (6.1) is sandwiched
betweenU -statistics as in (5.6), and we can apply Proposition 2.4 to it. (Alternatively,
we can use Proposition 2.5 as in Remark 5.2.)

By (5.7), EzX−1 = (2 − z)−1, and calculations similar to (5.8) yield

E

((
X − 1

k

)(
X − 1

�

))

= D(k, �), k, � � 0. (6.3)

Hence

Eh�(X) =
{
D(� − 1, 0) = 1, � � 2,

2, � = 1.
(6.4)

Simple calculations then yield, in addition to (5.13)–(5.14), letting b1 be the number
of blocks of length 1,

μ =
b∏

j=1

Eh�i (X) = 2b1, (6.5)

fi (X) =
{
2b1

(X−1
�i−1

)
, �i � 2,

2b1−1X , �i = 1,
(6.6)
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βi j = Cov
(
fi (X), f j (X)

) =

⎧
⎪⎨

⎪⎩

22b1D(�i − 1, � j − 1) − 22b1 , �i , � j � 2,

22b1
(
�i − 1

)
, �i � 2 > � j = 1,

22b1−1, �i = � j = 1

(6.7)

Cov
(
fi (X), X

) =
{
2b1+1

(
�i − 1

)
, �i � 2,

2b1 , �i = 1.
(6.8)

Consequently, we obtain by Propositions 2.4 and 2.6 asymptotic normality in the
following form.

Theorem 6.2 Let σ ∈ Sm(231, 321) have block lengths �1, . . . , �b. Then, as n → ∞,

nσ (π231,321;n) − 2b1−bnb/b!
nb−1/2

d−→ N
(
0, γ 2), (6.9)

where γ 2 can be calculated by (2.16) and (6.5)–(6.8).
Moreover, (6.9) holds with convergence of all moments.

Proof The argument above yields the stated limit for the first (main) term on the
right-hand side of (6.1). We show that the remainder term R is negligible.

The term R can be split up as a sum
∑b−1

d=1 Rd , where Rd counts the occurences
that use d blocks in π = πL1,...,LB . Each Rd may be written as a sum over d-tuples of
blocks, and thus bounded as in (5.6) by someU -statisticsU (d)

N+(n) of order d. Applying
Proposition 2.4 (or Proposition 2.1, together with N+(n) � n) to the latter, we find

Rd = Op(nd) = Op(nb−1), and thus Rd/nb−1/2 p−→ 0. For moments, we similarly
have by Proposition 2.6 or 2.1 E|Rd |p = O

(
n pd

) = O
(
n p(b−1)

) = o
(
n p(b−1/2)

)
.

Hence, each Rd is negligible in the limit (6.9), and the result follows. �
Example 6.3 For the number of inversions, we have σ = 21 and b = 1, �1 = 2,
b1 = 0. A calculation yields γ 2 = 1/4, and Theorem 6.2 yields

n21(π231,321;n) − n/2

n1/2
d−→ N

(
0, 1

4

)
. (6.10)

In fact, we have the exact distribution

n21(π231,321;n) ∼ Bi
(
n − 1, 1

2

)
. (6.11)

To see this, note that, by Proposition 6.1, if we define ξ2, . . . , ξn by

ξi := 1{no block begins at position i}, (6.12)

then every sequence ξ2, . . . , ξn ∈ {0, 1}n−1 occurs for exactly one permutation in
Sn(231, 321), and thus ξ2, . . . , ξn are i.i.d. Be( 12 ). (This is a minor variation of the
similar argument in Sect. 5.) Furthermore, for each j � 2, the number of inversions
i j with i < j equals ξ j , so the total number is

∑n
2 ξi ∼ Bi(n − 1, 1

2 ).
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Remark 6.4 Unlike in Sect. 5, here the asymptotic mean depends not only on the
number of blocks in σ , but also on their lengths.

Remark 6.5 As in Sect. 5, the asymptotic variance γ 2 = 0 when σ = ιm = 1 · · ·m,
in which case b = m and all blocks have length 1, but γ 2 > 0 for any other σ ∈
S∗(231, 321).

7 Avoiding {132, 321}
In this sectionwe consider T = {132, 321}. Equivalent sets are {123, 231}, {123, 312},
{213, 321}.

It was shown by Simion and Schmidt [20] that |Sn(132, 321)| = (n
2

)+1. (The case
Sn(132, 321) is thusmore degenerate than the cases considered above, in the sense that
the allowed set of permutations is much smaller; |Sn(132, 321)| grows polynomially
as (roughly) n2, compared to 2n−1 in the previous cases forbidding two permutations
of length 3.) [20] gave also the following characterization. Given k, � � 1 andm � 0,
let, in this section,

πk,�,m := (� + 1, . . . , � + k, 1, . . . , �, k + � + 1, . . . , k + � + m) ∈ Sk+�+m .

(7.1)

Thus πk,�,m consists of three increasing runs of lengths k, �, m (where the third run is
empty when m = 0).

Proposition 7.1 ([20, Proposition 13])

Sn(132, 321) = {
πk,�,n−k−� : k, � � 1, k + � � n

} ∪ {ιn}. (7.2)

�
For asymptotic results, we may ignore the case when π132,321;n = ιn , which has

probability 1/(
(n
2

) + 1) = o(1). Conditioning on π132,321;n �= ιn , we see by Proposi-
tion 7.1 that π132,321;n = πK ,L,n−K−L , where K and L are random with (K , L)

uniformly distributed over the set {K , L � 1 : K + L � n}. As n → ∞, we

thus have (K/n, L/n)
d−→ (X ,Y ) with (X ,Y ) uniformly distributed on the trian-

gle {(X ,Y ) ∈ R
2+ : X + Y � 1}. Equivalently, letting Z := 1 − X − Y ,

(K

n
,
L

n
,
n − K − L

n

)
d−→ (X ,Y , Z) ∼ Dir(1, 1, 1), (7.3)

where we recall that the Dirichlet distribution Dir(1, 1, 1) is the uniform distribution
on the simplex {(x, y, z) ∈ R

3+ : x + y + z = 1}.
If σ = πi, j,p for some i, j, p, then it is easily seen that an occurrence of σ in πk,�,m

is obtained by selecting i , j and p elements from the three runs of πk,�,m , and thus

nσ (πk,�,m) =
(
k

i

)(
�

j

)(
m

p

)

. (7.4)
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Similarly, if σ = ιi , then an occurrence of σ in πk,�,m is obtained by selecting i
elements from either the union of the first and last run, or from the union of the two
last. Hence, by inclusion-exclusion,

nσ (πk,�,m) =
(
k + m

i

)

+
(

� + m

i

)

−
(
m

i

)

. (7.5)

These exact formulas together with the description of π132,321;n above and (7.3)
yield the following asymptotic result.

Theorem 7.2 Let σ ∈ S∗(132, 321). Then the following hold as n → ∞.

(i) If σ = πi, j,p for some i, j, p, then

n−(i+ j+p)nσ (π132,321;n)
d−→ Wi, j,p := 1

i ! j ! p! X
iY j Z p, (7.6)

where (X ,Y , Z) ∼ Dir(1, 1, 1).
(ii) If σ = ιi , then

n−i nσ (π132,321;n)
d−→ Wi := 1

i !
(
(X + Z)i + (Y + Z)i − Zi ), (7.7)

with (X ,Y , Z) ∼ Dir(1, 1, 1) as in (i).

Moreover, these hold jointly for any set of suchσ , andwith convergence of all moments.
In particular, in case (i),

n−(i+ j+p)
Enσ (π132,321;n)

d−→ EWi, j,p = 2

(i + j + p + 2)! (7.8)

and in case (ii),

n−i
Enσ (π132,321;n)

d−→ EWi = 4i + 2

(i + 2)! (7.9)

Proof The limits in distribution (7.6) and (7.7) hold (with joint convergence) by the
discussion before the theorem. Moment convergence holds because the normalized
variables in (7.6) and (7.7) are bounded (by 1). Finally, the expectation in (7.8) is easily
computed using the multidimensional extension of the beta integral [17, (5.14.2)],
which implies

EXaY bZc = 2�(a + 1)�(b + 1)�(c + 1)

�(a + b + c + 3)
, a, b, c > −1. (7.10)

For the expectation in (7.9), we note also that X + Z
d= Y + Z ∼ B(2, 1), a Beta

distribution; the result follows by a short calculation. �
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Higher moments of Wi, j,p follow also from (7.10).

Corollary 7.3 The number of inversions has the asymptotic distribution

n−2n21(π132,321;n)
d−→ W := XY , (7.11)

with (X ,Y ) as above; the limit variable W has density function

2 log
(
1 + √

1 − 4x
) − 2 log

(
1 − √

1 − 4x
)
, 0 < x < 1/4, (7.12)

and moments

EWr = 2
r !2

(2r + 2)! , r > 0. (7.13)

Proof We have 21 = π1,1,0, and thus (7.6) yields (7.11). The formula (7.13) for the
moments EWr = EXrY r follow by (7.10). Finally, for 0 < t < 1/4, P(W > t) =
P(XY > t) equals 2 times the area of the set {(x, y) ∈ R

2+ : x + y � 1, xy > t}. A
differentiation and a simple calculation yield (7.12). �
Example 7.4 For the four allowed patterns of length 3, we find

n−3
En123(π132,321;n) → EW3 = 7

60
, (7.14)

n−3
En213(π132,321;n) → EW1,1,1 = 1

60
, (7.15)

n−3
En231(π132,321;n) → EW2,1,0 = 1

60
, (7.16)

En312(π132,321;n) = EW1,2,0 = 1

60
. (7.17)

(See Zhao [23] for exact formulas for finite n.) Note that by (7.8), all Wi, j,q with
the same i + j + q have the same expectation; their distributions differ, however, in
general, as is shown by higher moments. For example, in the present example, by
(7.10), EW 2

1,1,1 = 2/7! and EW 2
2,1,0 = 3/7!.

The expected number of occurrences of σ can also easily be found exactly for finite
n, as follows. As noted above, (7.8) shows that all σ in (i) of the same length occur in
π132,321;n with asymptotically equal frequencies. In fact, this holds also exactly, for
any n. (Note also that (7.8) is an immediate consequence of (7.18).)

Theorem 7.5 Let σ = πi, j,p, with i, j � 1 and p � 0. Then, for any n,

Enσ (π132,321;n) =
( n+2
i+ j+p+2

)

(n
2

) + 1
. (7.18)
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Proof By (7.4) and the discussion before it, for any given k, �,m, the number
of occurences of σ in πk,�,m equals the number of sequences q1, . . . , qi , q ′

1, . . . ,

q ′
j , q

′′
1 , . . . , q ′′

p such that

1 � q1 < · · · < qi � k < q ′
1 < · · · < q ′

j � � < q ′′
1 < · · · < q ′′

m � n. (7.19)

Since σ does not occur in ιn , the total number of occurences of σ in all ele-
ments of Sn(132, 321) is thus, recalling (7.2), equal to the number of all sequences
(q1, . . . , qi , k, q ′

1, . . . , q
′
j , �, q

′′
1 , . . . , q ′′

m) of integers satisfying (7.19). By increasing
k and all q ′

r by 1, and � and all q ′′
s by 2, we obtain a bijection with the collection of

all subsets of i + j + q + 2 elements of {1, . . . , n + 2}. Hence, the total number of
occurrences is

( n+2
i+ j+p+2

)
, and (7.18) follows. �

8 Avoiding {231, 312, 321}
We proceed to avoiding sets of three permutations. In this section we avoid T =
{231, 312, 321}. An equivalent set is {123, 132, 213}.

It was shown by Simion and Schmidt [20] that |Sn(231, 312, 321)| = Fn+1, the
(n + 1)th Fibonacci number (with the initial conditions F0 = 0, F1 = 1); they also
gave the following characterization (in an equivalent form).

Proposition 8.1 [20, Proposition 15∗] A permutation π belongs to the class S∗
(231, 312, 321) if and only if every block in π is decreasing and has length � 2,
i.e., every block is 1 or 21. �

Cf. Proposition 5.1; we have here added the restriction that block lengths are 1 or
2. With this restriction in mind, we use again the notation (5.1) and note that (5.2)
holds. A permutation π ∈ Sn(231, 312, 321) is thus of the form πL1,...,LB for some
sequence L1, . . . , LB of {1, 2} with sum n; furthermore, this yields a bijection with
all such sequences.

Define p to be the (inverse) golden ratio:

p :=
√
5 − 1

2
, (8.1)

so that p + p2 = 1. Let X be a random variable with the distribution

P(X = 1) = p, P(X = 2) = p2. (8.2)

Consider an i.i.d. sequence X1, X2, . . . of copies of X , and let Sn := ∑n
i=1 Xi . Then

for any sequence �1, . . . , �b with b � 1, �i ∈ {1, 2} and ∑b
1 �i = n,

P
(
Xi = �i , i = 1, . . . , b

) =
b∏

i=1

p�i = pn . (8.3)
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This probability is thus the same for all such sequences, whichmeans that, conditioned
on the event that Sb = n for some (unspecified) b � 1, the sequence (X1, . . . , Xb)

is equidistributed over all {1, 2}-sequences with sum n; we have seen above that this
equals the distribution of the sequence of block lengths (L1, . . . , LB) of a random
permutation π231,312,321;n in Sn(231, 312, 321). Consequently, recalling (2.14) and
Remark 2.3,

(L1, . . . , LB)
d= (

(X1, . . . , XN+(n)) | SN+(n) = n
)
. (8.4)

It follows from this and (5.2) that if σ = π�1,...,�b ∈ S∗(231, 312, 321), and f is
defined by (5.5), then nσ (π231,312,321;n) has the same distribution as UN+(n) condi-
tioned on SN+(n) = n. Consequently, Proposition 2.5 applies and yields asymptotic
normality of nσ (π231,312,321;n), and Proposition 2.6 adds moment convergence.

To find the parameters, let σ have b1 blocks of length 1 and b2 blocks of length 2
(so b1 + b2 = b and b1 + 2b2 = |σ |). Then, noting (X

2

) = X − 1,

ν = EX = p + 2p2 = 2 − p = 5 − √
5

2
, (8.5)

Var X = p3 = 2p − 1 = √
5 − 2, (8.6)

E

(
X

2

)

= P(X = 2) = p2 = 1 − p, (8.7)

μ = (2 − p)b1(1 − p)b2 =
(5 − √

5

2

)b1(3 − √
5

2

)b2
, (8.8)

fi (X) =
{

(2 − p)b1−1(1 − p)b2X , �i = 1,

(2 − p)b1(1 − p)b2−1(X − 1), �i = 2,
(8.9)

βi j =

⎧
⎪⎨

⎪⎩

(2 − p)2b1−2(1 − p)2b2(2p − 1), �i = � j = 1,

(2 − p)2b1−1(1 − p)2b2−1(2p − 1), �i = 1 < � j = 2,

(2 − p)2b1(1 − p)2b2−2(2p − 1), �i = � j = 2.

(8.10)

Cov
(
fi (X), X

) =
{

(2 − p)b1−1(1 − p)b2(2p − 1), �i = 1,

(2 − p)b1(1 − p)b2−1(2p − 1), �i = 2.
(8.11)

We summarize.

Theorem 8.2 Let σ ∈ Sm(231, 312, 321) have block lengths �1, . . . , �b. Then, as
n → ∞,

nσ (π231,312,321;n) − μnb/b!
nb−1/2

d−→ N
(
0, γ 2), (8.12)

where μ is given by (8.8) and γ 2 can be calculated by (2.16) and (8.5)–(8.11).
Moreover, (8.12) holds with convergence of all moments. �
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Example 8.3 For the number of inversions, σ = 21, b = 1 = b2 and b1 = 0. Hence,
μ = 1 − p = (3 − √

5)/2 and, by a calculation, γ 2 = (2 − p)−3Var X = 5−3/2.
Consequently,

n21(π231,312,321;n) − 3−√
5

2 n

n1/2
d−→ N

(
0, 5−3/2). (8.13)

Remark 8.4 Again, γ 2 > 0 unless σ = ιm .

9 Avoiding {132, 231, 312}
In this section we avoid {132, 231, 312}. Equivalent sets are {132, 213, 231},
{132, 213, 312}, {213, 231, 312}.

It was shown by Simion and Schmidt [20] that |Sn(132, 231, 312)| = n, together
with the following characterization (in an equivalent form). In this section, let

πk,� := ῑk ∗ ιl = (k, . . . , 1, k + 1, . . . , k + �) ∈ Sk+�, k � 1, � � 0. (9.1)

Note that π1,� = ι1+�.

Proposition 9.1 [20, Proposition 16∗]

Sn(132, 231, 312) = {πk,n−k : 1 � k � n}.

�
Cf. Propositions 4.1 and 5.1, which characterize supersets. (Equivalently, π ∈

S∗(132, 231, 312) if the first block is decreasing and all other blocks have length 1.)
Hence, the random π132,231,312;n = πK ,n−K , where K ∈ [n] is uniformly random.

As n → ∞,

K/n
d−→ U ∼ U(0, 1). (9.2)

Furthermore, if σ = πk,�, then it is easy to see that

nσ

(
πK ,n−K

) =
⎧
⎨

⎩

(K
k

)(n−K
�

)
, k � 2,

K
(n−K

�

) + (n−K
�+1

)
, k = 1.

(9.3)

Theorem 9.2 Let σ ∈ S∗(132, 231, 312). Then the following hold as n → ∞, with
U ∼ U(0, 1).

(i) If σ = πk,m−k with 2 � k � m, then

n−mnσ (π132,231,312;n)
d−→ Wk,m−k := 1

k! (m − k)!U
k(1 −U )m−k . (9.4)
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(ii) If σ = π1,m−1 = ιm, then

n−mnσ (π132,231,312;n)
d−→ W1,m−1 := 1

(m − 1)!U (1 −U )m−1 + 1

m! (1 −U )m

= 1

m!
(
1 + (m − 1)U

)
(1 −U )m−1.

(9.5)

Moreover, these hold jointly for any set of suchσ , andwith convergence of all moments.
In particular, in case (i),

n−m
Enσ (π132,231,312;n)

d−→ EWk,m−k = 1

(m + 1)! , k � 2, (9.6)

and in case (ii),

n−m
Enσ (π132,231,312;n)

d−→ EW1,m−1 = 2

(m + 1)! . (9.7)

Proof The limits in distribution (9.4) and (9.5) hold (with joint convergence) by (9.3)
and (9.2). Moment convergence holds because the normalized variables in (9.4) and
(9.5) are bounded (by 1). Finally, the expectations in (9.6)–(9.7) are computed by
standard beta integrals. �
Corollary 9.3 The number of inversions has the asymptotic distribution

n−2n21(π132,231,312;n)
d−→ W := U 2/2 (9.8)

with U ∼ U(0, 1). Thus, 2W ∼ B( 12 , 1), and W has moments

EWr = 1

2r (2r + 1)
, r > 0. (9.9)

Proof We have 21 = π2,0 by (9.1), and (9.4) yields (9.8). The remaining statements
follow by simple calculations. �

10 Avoiding {132, 231, 321}
In this section we avoid {132, 231, 321}. Equivalent sets are {123, 132, 231},
{123, 213, 312}, {213, 312, 321}, {123, 132, 312}, {123, 213, 231}, {132, 312, 321},
{213, 231, 321}.

It was shown by Simion and Schmidt [20] that |Sn(132, 231, 321)| = n, together
with the following characterization (in an equivalent form). In this section, let

πk,� := (k, 1, . . . , k − 1, k + 1, . . . , k + �) ∈ Sk+�, k � 1, � � 0. (10.1)
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Note that πk,� equals π1,k−1,� in the notation (7.1) of Sect. 7 if k � 2, and ι1+� if
k = 1.

Proposition 10.1 [20, Proposition 16∗]

Sn(132, 231, 321) = {πk,n−k : 1 � k � n}.

�
Cf. Proposition 7.1, which characterizes a superset.
Hence, the random π132,231,321;n = πK ,n−K , where K ∈ [n] is uniformly random.

Obviously, as n → ∞, (9.2) holds in this case too. Furthermore, if σ = πk,�, then it
is easy to see, e.g. by (7.4)–(7.5), that

nσ

(
πK ,n−K

) =
⎧
⎨

⎩

(K−1
k−1

)(n−K
�

)
, k � 2,

(n−1
�+1

) + (n−K
�

)
, k = 1.

(10.2)

Theorem 10.2 Let σ ∈ S∗(132, 231, 321). Then the following hold as n → ∞, with
U ∼ U(0, 1).

(i) If σ = πk,m−k with 2 � k � m, then

n−(m−1)nσ (π132,231,321;n)
d−→ Wk,m−k := 1

(k − 1)! (m − k)!U
k−1(1 −U )m−k .

(10.3)

(ii) If σ = π1,m−1 = ιm, then

n−mnσ (π132,231,321;n) = 1

m! + O
(
n−1) p−→ 1

m! . (10.4)

Moreover, these hold jointly for any set of suchσ , andwith convergence of all moments.
In particular, in case (i),

n−(m−1)
Enσ (π132,231,321;n)

d−→ EWk,m−k = 1

m! , k � 2. (10.5)

Proof By (10.2) and (9.2), similarly to the proof of Theorem 9.2. �
Corollary 10.3 The number of inversions n21(π132,231,321;n) has a uniformdistribution
on {0, . . . , n − 1}, and thus the asymptotic distribution

n−1n21(π132,231,321;n)
d−→ U ∼ U(0, 1). (10.6)

Proof By (10.1), 12 = π2,0, and thus (10.2) yields n21(πK ,n−K ) = K − 1. �
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11 Avoiding {132, 213, 321}
In this section we avoid {132, 213, 321}. An equivalent sets is {123, 231, 312}.

It was shown by Simion and Schmidt [20] that |Sn(132, 213, 321)| = n, together
with the following characterization (in an equivalent form). In this section, let

πk,� := (� + 1, . . . , � + k, 1, . . . , �) ∈ Sk+�, k � 1, � � 0. (11.1)

Note that πk,� equals πk,�,0 in the notation (7.1) of Sect. 7 if � � 1, and ιk if � = 0.

Proposition 11.1 ([20, Proposition 16∗])

Sn(132, 213, 321) = {πk,n−k : 1 � k � n}.

�
Cf. Proposition 7.1, which again characterizes a superset.
Hence, the random π132,213,321;n = πK ,n−K , where K ∈ [n] is uniformly random,

and (9.2) holds again. Furthermore, if σ = πk,�, then it is easy to see, e.g. by (7.4)–
(7.5), that

nσ

(
πK ,n−K

) =
⎧
⎨

⎩

(K
k

)(n−K
�

)
, � � 1,

(K
k

) + (n−K
k

)
, � = 0.

(11.2)

Theorem 11.2 Let σ ∈ S∗(132, 213, 321). Then the following hold as n → ∞, with
U ∼ U(0, 1).

(i) If σ = πk,m−k with 1 � k � m − 1, then

n−mnσ (π132,213,321;n)
d−→ Wk,m−k := 1

k! (m − k)!U
k(1 −U )m−k . (11.3)

(ii) If σ = πm,0 = ιm, then

n−mnσ (π132,213,321;n)
d−→ Wm,0 := 1

m!
(
Um + (1 −U )m

)
. (11.4)

Moreover, these hold jointly for any set of suchσ , andwith convergence of all moments.
In particular, in case (i),

n−m
Enσ (π132,213,321;n)

d−→ EWk,m−k = 1

(m + 1)! , 1 � k < m, (11.5)

and in case (ii),

n−m
Enσ (π132,213,321;n)

d−→ EWm,0 = 2

(m + 1)! . (11.6)
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Proof By (11.2) and (9.2), similarly to the proof of Theorem 9.2. �
Corollary 11.3 The number of inversions has the asymptotic distribution

n−2n21(π132,213,321;n)
d−→ W := U (1 −U ), (11.7)

with U ∼ U(0, 1). Thus, 4W ∼ B(1, 1
2 ), and W has moments

EWr = �(r + 1)2

�(2r + 2)
, r > 0. (11.8)

Proof We have 21 = π1,1 by (11.1), and thus (11.3) yields (11.7). The remaining
statements follow by simple calculations, using 4W = 1 − (2U − 1)2 and a beta
integral. �
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