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Abstract
We study the House Allocation problem (also known as the Assignment problem),
i.e., the problem of allocating a set of objects among a set of agents, where each agent
has ordinal preferences (possibly involving ties) over a subset of the objects. We focus
on truthful mechanisms without monetary transfers for finding large Pareto optimal
matchings. It is straightforward to show that no deterministic truthful mechanism can
approximate a maximum cardinality Pareto optimal matching with ratio better than 2.
We thus consider randomised mechanisms. We give a natural and explicit extension
of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the
House Allocation problem where preference lists can include ties. We thus obtain
a universally truthful randomised mechanism for finding a Pareto optimal matching
and show that it achieves an approximation ratio of e

e−1 . The same bound holds even
when agents have priorities (weights) and our goal is to find a maximum weight (as
opposed to maximum cardinality) Pareto optimal matching. On the other hand we
give a lower bound of 18

13 on the approximation ratio of any universally truthful Pareto
optimal mechanism in settings with strict preferences. By using a characterisation
result of Bade, we show that any randomised mechanism that is a symmetrisation of
a truthful, non-bossy and Pareto optimal mechanism has an improved lower bound of
e

e−1 . Since our new mechanism is a symmetrisation of RSDM for strict preferences,
it follows that this lower bound is tight. We moreover interpret our problem in terms
of the classical secretary problem and prove that our mechanism provides the best
randomised strategy of the administrator who interviews the applicants.
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1 Introduction

We study the problem of allocating a set of indivisible objects among a set of agents.
Each agent has private ordinal preferences over a subset of objects—those they find
acceptable, and each agent may be allocated at most one object. This problem has been
studied by both economists and computer scientists. When monetary transfers are not
permitted, the problem is referred to as the House Allocation problem (henceforth
abbreviated by HA [1,20,38] or the Assignment problem [9,19] in the literature. In
this paper we opt for the term House Allocation problem. Most of the work in the
literature assumes that the agents have strict preferences over their acceptable objects.
However, it often happens though that an agent is indifferent between two or more
objects. Here we let agents express indifference, and hence preferences may involve
ties unless explicitly stated otherwise.

It is often desired that as many objects as possible become allocated among the
agents—i.e., an allocation of maximum size is picked, hence making as many agents
happy as possible. Usually, depending on the application of the problem, we are
required to consider some other optimality criteria, sometimes instead of, and some-
times in addition to, maximising the size of the allocation. Several optimality criteria
have been considered in the HA setting, and perhaps the most studied such concept is
Pareto optimality (see, e.g., [1,2,12,15,33]), sometimes referred to as Pareto efficiency.
Economists, in particular, regard Pareto optimality as the most fundamental require-
ment for any “reasonable” solution to a non-cooperative game. Roughly speaking, an
allocation μ is Pareto optimal if there does not exist another allocation μ′ in which no
agent is worse off, and at least one agent is better off, inμ′. In this work we are mainly
concerned with Pareto optimal allocations of maximum size, but will also consider
weighted generalisations.

The relatedHousingMarket problem (HM) [29,30,34] is the variant of HA inwhich
there is an initial endowment, i.e., each agent owns a unique object initially (in this
case the numbers of agents and objects are usually defined to be equal). In this setting,
the most widely studied solution concept is that of the core, which is an allocation of
agents to objects satisfying the property that no coalitionC of agents can improve (i.e.,
every agent in C is better off) by exchanging their own resources (i.e., the objects they
brought to the market). In the case of strict preferences, the core is always non-empty
[30], unique, and indeed Pareto optimal.When preferencesmay include ties, the notion
of core that we defined is sometimes referred to as the weak core. In this case a core
allocation need not be Pareto optimal. Jaramillo and Manjunath [21], Plaxton [27],
and Saban and Sethuraman [32] provide polynomial-time algorithms for finding a core
allocation that does additionally satisfy Pareto optimality. Our problem differs from
HM in that there is no initial endowment, and hence our focus is on Pareto optimal
matchings rather than outcomes in the core.

For strictly-ordered preference lists, Abraham et al. [2] gave a characterisation of
Pareto optimal matchings that led to an O(m) algorithm for checking an arbitrary
matching for Pareto optimality, where m is the total length of the agents’ preference
lists. This characterisation was extended to the case that preference lists may include
ties by Manlove [24, Sect. 6.2.2.1], also leading to an O(m) algorithm for checking
a matching for Pareto optimality. For strictly-ordered lists, a maximum cardinality
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Pareto optimal matching can be found in O(
√
n1m) time, where n1 is the number of

agents [2]. The fastest algorithm currently known for this problem when preference
lists may include ties is based on minimum cost maximum cardinality matching and
has complexity O(

√
nm log n) (see, e.g., [24, Sec. 6.2.2.1], where n is the total number

of agents and objects.
As stated earlier, agents’ preferences are private knowledge. Hence, unless they

find it in their own best interests, agents may not reveal their preferences truthfully.
An allocation mechanism is truthful if it gives agents no incentive to misrepresent
their preferences. Perhaps unsurprisingly, a mechanism based on constructing a max-
imum cardinality Pareto optimal allocation is manipulable by agents misrepresenting
their preferences (Theorem 2.3 in Sect. 2). Hence, we need to make a compromise
and weaken at least one of these requirements. In this work, we relax our quest for
finding a maximum cardinality Pareto optimal allocation by trading off the size of
a Pareto optimal allocation against truthfulness; more specifically, we seek truthful
Pareto optimal mechanisms that provide good approximations to the maximum size.

Under strict preferences, Pareto optimal matchings can be computed by a classi-
cal algorithm called the Serial Dictatorship Mechanism (SDM) (see, e.g., [1]), also
referred to as the Priority Mechanism (see, e.g., [9]). SDM is a straightforward greedy
algorithm that takes each agent in turn and allocates to him themost preferred available
object on his preference list. Precisely due to this greedy approach, SDM is truthful.
Furthermore, SDM is guaranteed to find a Pareto optimal allocation that has size at
least half that of a maximum one, merely because any Pareto optimal allocation has
size at least half that of a maximum one (see, e.g., [2]). Hence, at least in the case of
strict preferences, we are guaranteed an approximation ratio of 2. Can we do better? It
turns out that if we stay in the realm of deterministic mechanisms, a 2-approximation
is the best we can hope for (Theorem 2.3, Sect. 2).

Hencewe turn to randomisedmechanisms in order to achieve a better approximation
ratio. The obvious candidate to consider is the RandomSerial DictatorshipMechanism
(RSDM) (see, e.g., [1]), also known as the Random Priority mechanism (see, e.g., [9]),
that is defined for HA instances with strict preferences. RSDM randomly generates
an ordering of the agents and then proceeds by running SDM relative to this ordering.

When indifference is allowed, finding a Pareto optimal allocation is not as straight-
forward as for strict preferences. For example, one may consider breaking the ties
randomly and then applying SDM. This approach, unfortunately, may produce an
allocation that is not Pareto optimal. To see this, consider a setting with two agents, 1
and 2, and two objects, o1 and o2. Assume that 1 finds both objects acceptable and is
indifferent between them, and that 2 finds only o1 acceptable. The only Pareto optimal
matching for this setting is the one inwhich 1 and 2 are assigned o2 and o1 respectively.
Assume that 1 is served first and that, as both objects are equally acceptable to him,
is assigned o1 (after an arbitrary tie-breaking). Therefore when 2’s turn arrives, there
is no object remaining that he finds acceptable, and is hence left unmatched, resulting
in a matching that is not Pareto optimal.

Few works in the literature have considered extensions of SDM to the case where
agents’ preferences may include ties. However Bogomolnaia and Moulin [10] and
Svensson [35] provide an implicit extension of SDM (in the former case for dichoto-
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mous preferences)1 but do not give an explicit description of an algorithm. Aziz et al.
[4] provide an explicit extension for a more general class of problems, including HA.
Pareto optimal matchings in HA can also be found by reducing to the HM setting [21],
which involves creating dummy objects as endowments for the agents. This allows
one of the aforementioned algorithms for HM [21,27,32] to be utilised to find a Pareto
optimal matching in the core. However the reduction increases the instance size, and
in particular the number of agents n1 and the maximum length of a tie in any agent’s
preference list. Consequently, even the fastest truthful Pareto optimal mechanism for
HM, that of Saban and Sethuraman [32], has time complexity no better than O(n31) in
the worst case.

Contributions of this Paper In this paper we provide a natural and explicit extension
of SDM for the setting in which preferences may exhibit indifference. We argue that
our extension is more intuitive than that of Aziz et al. [4] when considering specifically
HA. Moreover, as the mechanism of Saban and Sethuraman [32] does not consider
the agents sequentially, it is difficult to analyse its approximation guarantee. Our
algorithm runs in time O(n21γ+m), where γ is the maximum length of a tie in any
agent’s preference list and m is the total length of the agents’ preference lists. This
is faster than the algorithm in [32] when γ = o(n1) and m = o(n31). We prove
the following results that involve upper and lower bounds for the approximation ratio
(relative to the size of a maximum cardinality Pareto optimal matching) of randomised
truthful mechanisms for computing a Pareto optimal matching:

1. By extending RSDM to the case of preference lists with ties, we give a universally
truthful randomised mechanism2 for finding a Pareto optimal matching that has
an approximation ratio of e

e−1 with respect to the size of a maximum cardinality
Pareto optimal matching.

2. We give a lower bound of 18
13 on the approximation ratio of any universally truthful

Pareto optimal mechanism in settings with strict preferences. By using a charac-
terisation result of Bade [7], we show that any randomised mechanism that is a
symmetrisation3 of a truthful, non-bossy4 and Pareto optimal mechanism has an
improved lower bound of e

e−1 . Since our new mechanism is a symmetrisation of
RSDM for strict preferences, it follows that this lower bound is tight.

3. We extend RSDM to the setting where agents have priorities (weights) and our
goal is to find a maximum weight (as opposed to maximum cardinality) Pareto
optimal matching. Our mechanism is universally truthful and guarantees a e

e−1 -

1 An agent’s preference list is dichotomous if it comprises a single tie containing all acceptable objects.
2 A randomisedmechanism is universally truthful if it is a probability distribution over truthful deterministic
mechanisms. This is the strongest known notion of truthfulness for randomised mechanisms.
3 This technical term is defined formally in Sect. 6; intuitively, a symmetrisation of a deterministic mech-
anism is a randomised mechanism that chooses uniformly at random a permutation of the agents, reassigns
the agents’ roles according to this random permutation, and then executes the deterministic mechanism
with these new assignments of the roles.
4 A deterministic mechanism in settings with strict preferences is non-bossy if no agent can misreport
his preferences in such a way that his allocation is not changed but the allocation of some other agent is
changed.
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approximation with respect to the weight of a maximum weight Pareto optimal
matching.

4. We finally observe that our problem has an “online” or sequential flavour similar
to secretary problems.5 Given this interpretation, we prove that our mechanism
uses the best random strategy of interviewing the applicants in the sense that any
other strategywould lead to an approximation ratio worse than e

e−1 (see also below
under related work).

Discussion of Technical Contributions As observed above via a simple example,
SDM with arbitrary tie breaking need not lead to a Pareto optimal matching in gen-
eral. Indeed, the presence of indifference in agents’ preference lists introduces major
technical difficulties. This is because decisions with respect to objects in one tie can-
not be committed to when an agent is considered, as they may block some choices
for future agents. When extending SDM from strict preferences to preferences with
ties, we first present an intuitive mechanism, called SDMT-1, based on the idea of
augmenting paths. It is relatively easy to prove that SDMT-1 is Pareto optimal and
truthful. We also show that SDMT-1 is able to generate any given Pareto optimal
matching. However, it is difficult to analyse the approximation guarantee of the ran-
domised version of SDMT-1. For this purpose we build on the primal-dual analysis
of Devanur et al. [16]. They employ a linear programming (LP) relaxation of the
bipartite weighted matching problem. They prove that their dual solution is feasible in
expectation for the dual LP and use it to show the approximation guarantee. Towards
this goal they prove two technical lemmas, a dominance lemma and a monotonicity
lemma. The randomised version of SDMT-1 uses random variables Yi for each agent
i ∈ N to generate a random order in which agents are considered. Considering agent
i and fixed values of the random variables Y−i of all other agents, Devanur et al. [16]
define a threshold yc, which as Yi varies determines when agent i is matched (to an
object) or unmatched (dominance lemma). (Note that we will denote the threshold yc

as θ .) The monotonicity lemma shows how values of the dual LP variables change
when Yi varies. To extend the definition of yc, we need to remember the structure
of all potential augmenting paths in SDMT-1, and for this purpose we introduce a
second mechanism, SDMT-2. Interestingly, SDMT-2 is inspired by the idea of top
trading cycle mechanisms, see, e.g., [32], however it retains the “sequential” nature
of SDMT-1. The two mechanisms, SDMT-1 and SDMT-2, are equivalent: they match
the same agents, giving them objects from the same ties. This implies that SDMT-2 is
also truthful and Pareto optimal. SDMT-2 is the key to defining the threshold yc: its
running time is no worse than that of SDMT-1, but it implicitly maintains all relevant
augmenting paths arising from agents’ ties.We prove themonotonicity and dominance
lemmas for SDMT-2 by carefully analysing the structure of frozen subgraphs that are
generated from the relevant augmenting paths; here frozen roughly means that they

5 In the secretary problem, an administrator is willing to hire the best secretary out of n rankable applicants
for a position. The applicants are interviewed one-by-one in random order. A decision about each particular
applicant is to be made immediately after the interview. Once rejected, an applicant cannot be recalled.
During the interview, the administrator can rank the applicant among all applicants interviewed so far, but
is unaware of the quality of yet unseen applicants. The question is about the optimal strategy to maximise
the probability of selecting the best applicant.
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will not change subsequently. Finally, we would like to highlight that our proof of
an 18

13 lower bound on the approximation ratio of any universally truthful and Pareto
optimal mechanism uses Yao’s minmax principle and an interesting case analysis to
account for all such possible mechanisms.

RelatedWork This work can be placed in the context of designing truthful approxi-
matemechanisms for problems in the absence of monetary transfer [28]. Bogomolnaia
and Moulin [9] designed a randomised weakly truthful and envy-free mechanism,
called the Probabilistic Serial mechanism (PS), for HA with complete lists. Very
recently the same authors considered the same approximation problem as ours but
in the context of envy-free rather than truthful mechanisms, and for strict preference
lists and unweighted agents [11]. They showed that PS has an approximation ratio of
e

e−1 , which is tight for any envy-free mechanism. Bhalgat et al. [8] investigated the
social welfare of PS and RSDM. Tight deterministic truthful mechanisms for weighted
matching markets were proposed by Dughmi and Ghosh [18] and they also presented
an O(log n)-approximate random truthful mechanism for the Generalised Assign-
ment Problem (GAP) by reducing, with logarithmic loss in the approximation, to the
solution for the value-invariant GAP. In subsequent work Che et al. [14] provided an
O(1)-approximation mechanism for GAP. Aziz et al. [5] studied notions of fairness
involving the stochastic dominance relation in the context of HA, and presented var-
ious complexity results for problems involving checking whether a fair assignment
exists. Chakrabarty and Swamy [13] proposed rank approximation as a measure of
the quality of an outcome and introduced the concept of lex-truthfulness as a notion
of truthfulness for randomised mechanisms in HA.

RSDM is related to online bipartite matching algorithms. The connection was
observed by Bhalgat et al. [8], who noted the similarity between RSDM and the
RANKING algorithm of Karp et al. [22]. Karp et al. [22] proved that the expected size
of the matching given by their RANKING algorithm is at least e−1

e times the optimal
size. Bhalgat et al. [8] observed that RSDM will essentially behave the same way as
RANKING for instances of HA where the agents’ preference lists relate to the order
in which the objects arrive. Hence for this family of instances an approximation ratio
of e

e−1 holds for RSDM.
The weighted version of our problem is related to two widely-studied online set-

tings, known in the literature as the online vertex-weighted bipartite matching problem
[3] and secretary problems [6]. In our problem the administrator holds all the objects
(they can be thought of as available positions), and all agents with unknown preference
lists are applicants for these objects. Each applicant also has a private weight, which
can be thought of as their quality (reflecting the fact that some of an agent’s skills
may not be evident from their CV, for example). However we assume that they cannot
overstate their weights (skills), because they might be checked and punished. This is
similar to the classical assumption of no overbidding (e.g., in sponsored search auc-
tions). Applicants are interviewed one-by-one in a random order. When an applicant
arrives he chooses his most-preferred available object and the decision as to whether
it is allocated to him is made immediately, and cannot be changed in the future.

Our weighted agents correspond to weighted vertices in the vertex-weighted bipar-
tite matching context, but our objects do not arrive online as in the setting of [3].
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However, if the preference ordering of each agent in our setting, over his acceptable
objects, coincides with the arrival order of the objects in [3], then the two problems
are the same. In the transversal matroid secretary problem, see, e.g., [17], objects are
known in advance as in our setting, weighted agents arrive in a (uniform) randomorder,
and the goal is to match them to previously unmatched objects. The administrator’s
goal is to find a (random) arrival order of agents that maximises the ratio between
the total weight of matched agents and the maximum weight of a matching if all the
agents preference lists are known in advance. We show that even if the weights of all
agents are the same, our algorithm uses the best possible random strategy; no other
such strategy leads to better than e

e−1 -approximate matching.

Organisation of the Paper The remainder of the paper is organised as follows. In
Sect. 2 we define notation and terminology used in this paper, and show the straightfor-
ward lower bound for the approximation ratio of deterministic truthful mechanisms.
SDMT-1 and SDMT-2 are presented in Sects. 3 and 4 respectively, and in the latter
section it is proved that the two mechanisms are essentially equivalent. The approxi-
mation ratio of e

e−1 for the randomised version of the two mechanisms is established
in Sect. 5, whilst Sect. 6 contains our lower bound results. Finally, some concluding
remarks are given in Sect. 7.

2 Definitions and Preliminary Observations

Let N = {1, 2, . . . , n1} be a set of n1 agents and O = {o1, o2, . . . , on2} be a set of
n2 objects. Let n = n1 + n2. Let [i] denote the set {1, 2, . . . , i}. We assume that each
agent i ∈ N finds a subset of objects acceptable and has a preference ordering, not
necessarily strict, over these objects. We write ot �i os to denote that agent i strictly
prefers object ot to object os , and write ot �i os to denote that i is indifferent between
ot and os . We use ot �i os to denote that agent i either strictly prefers ot to os or is
indifferent between them, and say that i weakly prefers ot to os . In some cases a weight
wi is associated with each agent i , representing the priority or importance of the agent.
Weights need not be distinct. Let W = (w1, w2, . . . , wn1). To simplify definitions,
we assume that all agents are assigned weight equal to 1 if we are in an unweighted
setting.

We assume that the indifference relation is transitive. This implies that each agent
essentially divides his acceptable objects into different bins or indifference classes
such that he is indifferent between the objects in the same indifference class and has
a strict preference ordering over these indifference classes. For each agent i , let Ci

k ,
1 ≤ k ≤ n2, denote the kth indifference class, or tie, of agent i . We also assume
that if there exists l ∈ [n2], where Ci

l = ∅, then Ci
q = ∅, ∀q, l ≤ q ≤ n2. We

let L(i) = (Ci
1 �i Ci

2 �i · · · �i Ci
n2) and call L(i) the preference list of agent

i . We abuse notation and write o ∈ L(i) if o appears in preference list L(i), i.e., if
agent i finds object o acceptable. We say that agent i ranks object o in kth position if
o ∈ Ci

k . We denote by rank(i, o) the rank of object o in agent i’s preference list and
let rank(i, o) = n2 + 1 if o is not acceptable to i . Therefore ot �i os if and only if
rank(i, ot ) < rank(i, os), and ot �i os if and only if rank(i, ot ) = rank(i, os).
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Let L = (L(1), L(2), . . . , L(n1)) denote the joint preference list profile of all
agents. We write L(−i) to denote the joint preference list profile of all agents except
agent i ; i.e., L(−i) = (L(1), . . . , L(i − 1), L(i + 1), . . . , L(n1)). Let L denote the
set of all possible joint preference list profiles. An instance of HA is denoted by
I = (N , O, L,W ). We drop W and write I = (N , O, L) if we are dealing with an
instance where agents are not assigned weights, or equivalently if they all have the
same weight. Let I denote the set of all possible instances of HA.

Amatchingμ is a subset of N×A such that each agent and object appears in at most
one pair of μ. If (i, o) ∈ μ, agent i and object o are said to be matched together, and
o is the partner of i and vice versa. If (i, o) ∈ μ for some o, we say that i is matched,
and unmatched otherwise. The definitions of matched and unmatched for an object
are analogous. If agent i is matched, μ(i) denotes the object matched to i . Similarly
if object o is matched, μ−1(o) denotes the agent matched to o. In what follows, we
will refer to the underlying graph of I , which is the undirected graph G0 = (V , E)

where V = N ∪ O and E = {(i, o), i ∈ N , o ∈ L(i)}. We also use μ to denote a
matching (in the standard graph-theoretic sense) in G0. The size of a matching μ is
equal to the number of agents matched underμ. In the presence of weights, the weight
of a matching is equal to the sum of the weights of the matched agents.

For two given matchings μ1, μ2, we will frequently use μ1 ⊕ μ2 to denote the
symmetric difference with respect to their sets of edges. An alternating path in G0,
given a matching μ1, is a path that consists of edges that alternately belong to μ1 and
do not belong to μ1. An augmenting path in G0 is an alternating path where the first
and the last vertices on the path are unmatched inμ1. To augment along an augmenting
path, given matching μ1, means that a new matching μ2 is created by removing edges
on the path that belong to μ1 and adding edges on the path that do not belong to μ1.

A matching μ is Pareto optimal if there is no other matching under which some
agent is better off while none is worse off. Formally, μ is Pareto optimal if there is no
other matching μ′ such that (1) μ′(i) �i μ(i) for all i ∈ N , and (2) μ′(i ′) �i ′ μ(i ′)
for some agent i ′ ∈ N . Manlove [24, Sect. 6.2.2.1] gave a characterisation of Pareto
optimal matchings in instances of HA (potentially with ties) in terms of a number of
graph-theoretic structures, which we will now define.

An alternating path coalition w.r.t. μ comprises a sequence P = 〈i0, i1, . . . ,
ir−1, ok〉, for some r ≥ 1, where i j is a matched agent (0 ≤ j ≤ r − 1) and ok is an
unmatched object. If r = 1 then i0 strictly prefers ok to μ(i0). Otherwise, if r ≥ 2, i0
strictly prefers μ(i1) to μ(i0), i j weakly prefers μ(i j+1) to μ(i j ) (1 ≤ j ≤ r − 2),
and ir−1 weakly prefers ok to μ(ir−1).

An augmenting path coalitionw.r.t.μ comprises a sequence P = 〈i0, i1, . . . , ir−1,

ok〉, for some r ≥ 1, where i0 is an unmatched agent and ok is an unmatched object.
If r = 1 then i0 finds ok acceptable. Otherwise, if r ≥ 2, i j is a matched agent
(1 ≤ j ≤ r − 1), i0 finds μ(i1) acceptable, i j weakly prefers μ(i j+1) to μ(i j )
(1 ≤ j ≤ r − 2), and ir−1 weakly prefers ok to μ(ir−1).

A cyclic coalitionw.r.t.μ comprises a sequenceof applicants P = 〈i0, i1, . . . , ir−1〉,
for some r ≥ 2, all matched inμ, such that i j weakly prefersμ(i j+1) toμ(i j ) for each
j (0 ≤ j ≤ r −1), and i j strictly prefers μ(i j+1) to μ(i j ) for some j (0 ≤ j ≤ r −1)
(all subscripts are taken modulo r when reasoning about cyclic coalitions).
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Proposition 2.1 ([24]) Given an instance I of HA and a matching μ in I , μ is Pareto
optimal if and only if μ admits no alternating path coalition, no augmenting path
coalition, and no cyclic coalition.

LetM denote the set of all possible matchings. A deterministic mechanism φ maps
an instance of HA to a matching, i.e., φ : I → M. Let R : M → [0, 1] denote
a distribution over possible matchings (which we also call a random matching); i.e.,∑

μ∈M R(μ) = 1. A randomised mechanism φ is a mapping from I to a distribution
over possible matchings, i.e., φ : I → Rand(M), where Rand(M) is the set of all
random matchings. A deterministic mechanism is Pareto optimal if it always returns
a Pareto optimal matching. A randomised mechanism is Pareto optimal if it always
returns a distribution over Pareto optimal matchings.

Agents’ preferences are private knowledge and an agent may prefer not to reveal
his preferences truthfully if it is not in his best interests, for a given mechanism.
A deterministic mechanism φ is dominant strategy truthful (or truthful) if agents
always find it in their best interests to declare their preferences truthfully, no matter
what other agents declare, i.e., for every joint preference list profile L , for every
agent i , and for every possible declared preference list L ′(i) for i , φ(L(i), L(−i)) �i

φ(L ′(i), L(−i)).A randomisedmechanismφ isuniversally truthful if it is a probability
distribution over deterministic truthful mechanisms.

Denote by w(φ(I )) the (expected) weight of the (random) matching generated by
mechanism φ on instance I ∈ I, and by w(I ) the weight of a maximum weight
matching in I . The approximation ratio of φ is then defined as maxI∈I w(I )

w(φ(I )) . Note
that a maximum weight matching has the same weight as a maximum weight Pareto
optimal matching, as the following proposition shows.

Proposition 2.2 Given an instance I of HA, a maximumweight matching has the same
weight as a maximum weight Pareto optimal matching.

Proof We provide a procedure for transforming a maximum weight matching μ in I
to a Pareto optimal matching μ′ in I with the same weight.

Let G0 be the underlying graph for I and let G ′
0 be the subgraph of G0 induced

by N ′ ∪ A, where N ′ is the set of agents who are matched in μ. Define the cost of
each edge (i, o j ) in G ′

0 to be rank(i, o j ). Find a maximum cardinality matching μ′
of minimum cost in G ′

0. It is easy to see that μ and μ′ are of the same cardinality and
have the same weight, as they each match all agents in N ′. It remains to show that μ′
is Pareto optimal in I .

If μ′ is not Pareto optimal in I then by Proposition 2.1, μ′ admits a coalition C
that is either an alternating path coalition, or an augmenting path coalition, or a cyclic
coalition. If C is an augmenting path coalition then μ′ ⊕ C has larger weight than μ,
a contradiction as μ is a maximum weight matching. Hence C is an alternating path
coalition or a cyclic coalition. In either case letμ′′ = μ′ ⊕C . Then |μ′′| = |μ′| but the
cost of μ′′ is less than the cost of μ′, a contradiction as μ′ is a maximum cardinality
minimum cost matching in G ′

0. Hence μ′ is Pareto optimal in I . ��
We now give a straightforward lower bound for the approximation ratio of any

deterministic truthful mechanism for HA with strict preferences.
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Theorem 2.3 No deterministic truthful mechanism for HA can achieve approximation
ratio better than 2. The result holds even for strict preferences.

Proof Consider an HA instance I with two agents, 1 and 2, and two objects, o1 and o2.
Assume that both agents have weight 1 and strictly prefer o1 to o2. Then I admits two
matchings of size (weight) 2. Assume, for a contradiction, that there exists a truthful
mechanism φ with approximation ratio strictly smaller than 2. Then in I , φ must pick
one of the two matchings of size 2. Assume, without loss of generality, that φ picks
μ = {(1, o2), (2, o1)}. Now, assume that agent 1 misrepresents his acceptable objects
and declares o1 as the only object acceptable to him. Let I ′ denote the instance of
HA so obtained. As φ is truthful, when executed on I ′ it must not assign o1 to 1, or
else 1 finds it in his best interests to misrepresent his preferences as he would strictly
prefer his allocated object in I ′ to his allocated object in I . Hence φ must return a
matching of size at most 1 (by assigning an object to agent 2) when applied to I ′.
However, I ′ admits a matching of size 2, namely μ′ = {(1, o1), (2, o2)}. Therefore
the approximation ratio of φ is at least 2, a contradiction. ��
Corollary 2.4 No deterministic truthful Pareto optimal mechanism for HA can achieve
approximation ratio better than 2. The result holds even for strict preferences.

As mentioned in Sect. 1, the upper bound of 2 is achievable via SDM for HA
with strict preferences [2]. If weights and ties exist, simply ordering the agents in
decreasing order of their weights and running SDMT-1 (see Algorithm 1 in Sect.
3) or SDMT-2 (see Algorithm 2 in Sect. 4) gives a deterministic truthful and Pareto
optimal mechanismwith approximation ratio 2 (Theorem 3.6 in Sect. 3). This resolves
the problem for deterministic mechanisms and motivates looking into relaxing our
requirements. In the following sections we look for randomised truthful mechanisms
that construct ‘large’ weight Pareto optimal matchings.

3 First Truthful Mechanism: SDMT-1

3.1 Introduction

When preferences are strict, SDM produces a Pareto optimal matching. However
when indifference is allowed, finding an arbitrary Pareto optimal matching is not as
straightforward as in the case of strict preferences, as illustrated via an example in
Sect. 1.

In Sect. 3.2 we introduce SDMT-1, Serial Dictatorship Mechanism with Ties, a
mechanism that generalises SDM to the case where agents’ preferences may involve
ties. Then in Sect. 3.3, we show that SDMT-1 is truthful and is guaranteed to produce
a Pareto optimal matching. We further show that SDMT-1 is capable of generating
any given Pareto optimal matching.
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Algorithm 1: Serial Dictatorship Mechanism with Ties, version 1 (SDMT-1)
Input: Agents N ; Objects O; Preference list profile L; An order of agents σ

Output: Matching μ

Let G = (N ∪ O, E), E ← ∅, μ ← ∅.
for each agent i ∈ N in the order of σ do

Let � ← 1
Step (*): if Ci

�
�= ∅ then

E ← E ∪ {(i, o) : o ∈ Ci
�
}; // all new edges are non-matching edges

if there is an augmenting path from i in G then
augment along this path and update μ accordingly; // i is provisionally allocated some
o ∈ Ci

�
and (i, o) is now a matching edge

end
else

E ← E \ {(i, o) : o ∈ Ci
�
}

� ← � + 1; Go to Step (*)
end

end
end
Return μ; //each matched agent is allocated his matched object

3.2 Mechanism SDMT-1

Let I = (N , O, L) be an instance of HA, and let a fixed order σ of the agents be
given. Assume, w.l.o.g., that σ(i) = i for all agents i ∈ N . The formal description of
SDMT-1 is given in Algorithm 1; an informal description follows.

SDMT-1 constructs an undirected bipartite graph G = (V , E) where V = N ∪ O
and the set of edges E changes during the execution of SDMT-1; initially E = ∅.
The mechanism returns a matching μ; initially μ = ∅. It then proceeds in n1 phases,
where each phase corresponds to one iteration of the for loop in Algorithm 1. In phase
i , agent i is considered and the objects in i’s preference list are examined in the order
of the indifference classes they belong to. Recall that Ci

� denotes the �’th indifference
class of agent i . When objects o ∈ Ci

� are examined, edges (i, o) are provisionally
added to E for all o ∈ Ci

�. We then check whether μ admits an augmenting path in G
that starts from agent i . If such a path exists, we augment along that path and modify
μ accordingly. This would mean that agent i is assigned some o ∈ Ci

� and every other
agent already matched is assigned an object that he ranks in the same indifference
class his previous object. Otherwise – if μ admits no augmenting path in G – edges
(i, o) are removed from E for all o ∈ Ci

�. In general, once an agent i is assigned an
object o ∈ Ci

� he will remain matched in μ, although he may be required to exchange
o for another object in Ci

� in order to allow a newly-arrived agent to receive o.
Notice that, at any stage of the mechanism, an edge (i, o) belongs to E if and only if

either agent i is matched in μ and o �i μ(i), or SDMT-1 is at phase i and examining
the indifference class to which o belongs. Therefore, it is fairly straightforward to
observe the following.

Observation 3.1 At the end of phase i of SDMT-1, if agent i is assigned no object then
he will be assigned no object when SDMT-1 terminates. Otherwise, if i is provisionally
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assigned an object o, then he will be allocated an object that he ranks the same as o
in the final matching.

3.3 Properties of SDMT-1

Before proceeding to prove our main claim, namely that SDMT-1 is truthful and
produces a Pareto optimal matching, let us discuss a relevant concept that is both
interesting in its own right and useful in the proofs that follow. In practice agents
may have priorities and the mechanism designer may wish to ensure that the agents
with higher priorities are served before satisfying those with lower priorities. Roth
et al. [31] studied this concept under the term priority matchings in the case where
each agent’s preference list is one single tie. This work was motivated by the kidney
exchange problem in which patients are assigned priorities based on various criteria;
e.g., children and hard-to-match patients have higher priorities. Prior to Roth et al.
[31], Svensson [35] studied a similar concept under the name queue allocation in a
setting similar to ours. We formally define this concept using the terminology strong
priority matching, reflecting both the definition in [31] and the fact that preference
lists are more general than single ties.

In general, assume that we are given an ordering of the agents σ = i1, . . . , in1 .
However, recall that in this section we are assuming, without loss of generality, that
i j = j , i.e.,σ = 1, 2, . . . , n1. For eachmatchingμ, the signature ofμw.r.t.σ , denoted
by ρ(μ, σ ), is a vector

〈
ρ1, . . . , ρn1

〉
where for each i ∈ [n1], ρi = rank(i, μ(i))

if i is matched under μ, and ρi = n2 + 1 otherwise. A matching μ is a strong
priority matching (SPM)w.r.t. σ if ρ(μ, σ ) is lexicographically minimum, taken over
all matchings μ. That is, (i) the highest priority agent 1 has one of his first-choice
objects (assuming L(1) �= ∅); (ii) subject to (i), there is no matching μ′ such that
μ′(2) �2 μ(2), where 2 is the agent with the second-highest priority; (iii) subject to
(i) and (ii), there is no matching μ′′ such that μ′′(3) �3 μ(3), where 3 is the agent
with the third-highest priority, etc. It is easy to see that a given HA instance may admit
more than one SPM w.r.t. σ , but all of them have the same signature. When σ is fixed
and known, we simply say that μ is an SPM.

Theorem 3.2 Thematching produced by SDMT-1 is a strong priority matchingw.r.t. σ .

Proof Let μk denote the matching at the end of phase k (hence μn1 = μ). Assume,
for a contradiction, that the claim does not hold. Hence μ is not an SPM in I . Let
μ∗ be an SPM in I . Let i be the first agent in σ (i.e., the lowest-indexed agent) who
strictly prefers his partner under μ∗ to his partner under μ, i.e., μ∗(i) �i μ(i) and
μ∗( j) � j μ( j), ∀ j < i (we denote this fact by D1). Therefore, in phase i of SDMT-1
no augmenting path has been found starting from (i, o), for any object o such that
o �i μ∗(i) (we denote this fact by D2). Also, it follows from D1 and Observation 3.1
that, μ∗( j) � j μi−1( j), ∀ j < i (we denote this fact by D3).

Let G∗ denote the graph G in phase i during the examination of the indifference
class to which μ∗(i) belongs. By D2, G∗ must admit no augmenting path w.r.t. μi−1.
We show, however, thatG∗ admits an augmenting path starting from i . To see this note
that, by D1 and D3, and by the construction of edges E , edges ( j, μ∗( j)) belong to
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G∗ ∀ j < i . If μ∗(i) is unmatched in μi−1 then (i, μ∗(i)) constitutes an augmenting
path of size 1 in G∗. Otherwise, let j1 denote the partner of μ∗(i) under μi−1 (note
that j1 < i). It follows from D1 and D3, and the construction of E , that j1 is matched
under μ∗. If μ∗( j1) is unmatched under μi−1 then we have found an augmenting
path of length 3. Otherwise, let j2 denote the partner of μ∗( j1) under μi−1 (note that
j2 < i). The same argument we used for j1 can be used for j2, resulting in either the
discovery of an augmenting path of size 5 or reaching a new agent. We can repeatedly
use this argument and each time we either find an augmenting path (and stop) or visit
an agent that appears in σ before i . As each agent is assigned at most one object in
every matching, and vice versa, the agents jr that we encounter on our search for an
augmenting path are all distinct. Therefore, since there are a finite number of agents
and objects, we are bound to reach an object o that is unmatched under μi−1, hence
exposing an augmenting path in G∗, a contradiction. ��
Corollary 3.3 The matching produced by SDMT-1 is a Pareto optimal matching.

Proof By Theorem 3.2, SDMT-1 produces an SPM. It follows from Theorems 1 and
2 in [35] that any SPM is a Pareto optimal matching. Hence, the matching produced
by SDMT-1 is a Pareto optimal matching. ��

SDMT-1 is truthful, no matter which augmenting path is selected in each phase
of the mechanism, as the next result shows. The proof idea is as follows. Note that
when an agent’s turn arrives, SDMT-1 assigns him an object from what the algorithm
identifies as his “best possible indifference class”; i.e., the top-most indifference class
from which he can be assigned an object without harming any previously-arrived
agent. Then as soon as he is assigned an object, by Observation 3.1, he is guaranteed
to be allocated the same object, or one that he equally values, when the algorithm
terminates. Hence, as long as we can show that the algorithm correctly identifies these
“best possible indifference classes”, it is straightforward to see that no agent can benefit
from misreporting. The proof of the next theorem formalises this argument.

Theorem 3.4 The mechanism SDMT-1 is truthful.

Proof Assume, for a contradiction, that the claim does not hold. Let i be the first agent
in σ (i.e., the lowest-indexed agent) who benefits frommisrepresenting his preferences
and reporting L ′(i) instead of L(i). Let L ′ = (L ′(i), L(−i)).

Letμ denote thematching returned by SMDT-1 on instance I = (N , O, L), i.e., the
instance in which agent i reports truthfully, and let μ∗ denote the matching returned
on instance I ′ = (N , O, L ′). Then in I , μ∗(i) �i μ(i) and μ( j) � j μ∗( j), ∀ j < i .

By Theorem 3.2, μ is an SPM in I , and μ∗ is an SPM in I ′. Suppose that in I ,
μ( j) � j μ∗( j), for some j < i . Let k be the smallest integer such thatμ(k) �k μ∗(k)
in I . As k < i , for each j (1 ≤ j ≤ k), agent j has the same preference list in I and
I ′, by construction of L ′. Hence μ∗ cannot be an SPM in I ′ after all, a contradiction.

It follows that in I , μ∗(i) �i μ(i) and μ( j) � j μ∗( j), ∀ j < i . We now obtain a
contradiction to the fact that μ is an SPM in I . ��

We now show a bound on the time complexity of SDMT-1. Let γ denote the size
of the largest indifference class for a given instance I .
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Theorem 3.5 SDMT-1 terminates in time O(n21γ+m).

Proof For each agent i matched under μ, let �i denote the length of the indifference
class to which μ(i) belongs. Let |L(i)| denote the length of agent i’s preference list,
∀i ∈ N . Searching for an augmenting path in a graph G = (V , E) can be done in time
O(|E |) using Breadth-First Search (BFS). Hence the search for an augmenting path in
eachphase i canbedone in timeO(�1+�2+· · ·+�i−1+|L(i)|). ThereforeSDMT-1 ter-
minates in timeO((n1−1)·�1+(n1−2)�2+· · ·+�n1−1+∑

i∈N |L(i)|). However, �i ≤
γ , ∀i ∈ N , therefore (n1 − 1) · �1 + (n1 − 2)�2 + · · · + �n1−1 + ∑

i∈N |L(i)| ≤
n21γ + m, where m is the number of (agent,object) acceptable pairs. Hence SDMT-1
terminates in time O(n21γ+m). ��

As noted in Sect. 1, in the strict preferences case, any Pareto optimal matching is at
least half the size of a maximum size such matching. The same is true in the general
case with indifferences, since any Pareto optimal matching is a maximal matching in
the underlying bipartite graph G0 for I , and any maximal matching in G0 is at least
half the size of a maximum matching in G0 [23]. Hence SDMT-1 obviously achieves
approximation ratio 2 when we are concerned with the cardinality of the matching.
We next show that, when agents are assigned arbitrary weights, SDMT-1 achieves the
same approximation ratio (relative to a maximum weight Pareto optimal matching) if
the agents are ordered in σ in non-increasing order of their weights.

Theorem 3.6 SDMT-1 achieves approximation ratio of 2 relative to the size of a maxi-
mum weight Pareto optimal matching, if the agents are ordered in σ in non-increasing
order of their weights.

Proof Given an HA instance I , let μ be the matching produced by SDMT-1 and let μ′
be a maximum weight Pareto optimal matching in I . List the agents matched under
each of these matchings in non-increasing order of weight. Let i1, . . . , ik denote such
an order under μ, and let i ′1, . . . , i ′l denote such an order under μ′.

Take any agent i ′r who is matched underμ′, to say o, but not matched underμ (if no
such agent exists then μ is itself a maximum weight Pareto optimal matching). Note
that, as μ is Pareto optimal, o must be matched under μ, for otherwise μ ∪ {(i ′r , o)}
Pareto dominates μ. As SDMT-1 generates an SPMw.r.t. σ (Theorem 3.2) and agents
are listed in non-increasing order of weight under σ , it follows that omust be allocated
inμ to an agent is who has at least as large a weight as i ′r (for otherwise (μ\{(is, o)})∪
{(i ′r , o)} has a lexicographically smaller signature than μ, a contradiction).

We claim that is must be matched under μ′ as well, as otherwise (μ′ \
{(i ′r , o)})∪{(is, o)} has a higher weight than μ′, a contradiction. (Recall that a maxi-
mum weight Pareto optimal matching must be a maximum weight matching as well
by Proposition 2.2.) Hence we have established that, for each agent i ′r matched under
μ′ but not matched under μ, there exists a unique agent is , with weight at least as
large as that of i ′r , who is matched under μ. Thus if N1 is the set of agents matched
in μ′ and N2 is the set of agents matched in μ, it follows that wt(N2) ≥ wt(N1\N2),
where wt(N ′) is the sum of the weights of the agents in N ′, for N ′ ⊆ N . Also
wt(N2) = wt(N2\N1) + wt(N2 ∩ N1) ≥ wt(N2 ∩ N1) = wt(N1) − wt(N1\N2) ≥
wt(N1) − wt(N2), hence the result. ��
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It is known (see, e.g., [2]) that, in the case of strict preferences, not only can
we find a Pareto optimal matching using SDM, but we can also generate all Pareto
optimal matchings by executing SDM on all possible permutations of the agents. In
other words, given any Pareto optimal matching μ, there exists an order of the agents
such that executing SDM on that order returns μ. A similar characterisation of Pareto
optimal matchings holds in the case of preferences with ties. This is stated by the
following result, whose proof is given in the Appendix.

Theorem 3.7 Any Pareto optimal matching can be generated by some execution of
SDMT-1.

4 RandomisedMechanismwithWeights and Ties

In this sectionwewill analyse ourmechanism for theweighted version of our problem.
Our algorithm in the next section is truthful with respect to agents’ preferences and
weights (under the no-overbidding assumption, see also the beginning of Sect. 6)
and provides an e

e−1 -approximate Pareto optimal matching. We will show in Sect.
6 that, even if the weights of all agents are the same our algorithm uses the best
possible random strategy – no other such strategy leads to better than e

e−1 -approximate
matching.

4.1 Second Truthful Mechanism: SDMT-2

The approximation ratio analysis of the randomised version of SDMT-1 is complex,
because it requires additional information which is not maintained by SDMT-1. For
the sake of the analysis, we introduce a variant of SDMT-1, called SDMT-2. After
introducing some terminology we present SDMT-2, and then establish the equivalence
between SDMT-1 and SDMT-2. Pareto optimality and truthfulness of SDMT-2 will
then follow from this equivalence and these same two properties of SDMT-1. We will
prove that the randomised version of SDMT-2 is e

e−1 -approximate. By the equivalence
of the two algorithms, a randomised version of SDMT-1 has the same approximation
ratio.

Let o1 � o2 � · · · � on2 be a common order of all the objects. This order
will be used to break possible ties in SDMT-2. In what follows we will use use
lower case letters from the beginning of the alphabet to name individual objects,
e.g., a, b, c, d, e, f , g, h. We define now some notions that will be used to describe
algorithm SDMT-2. These definitions will refer to any time point during an execution
of this algorithm. In the course of the algorithm agents will be (temporarily) allocated
subsets of objects from their preference list. When an agent is allocated a subset of
objects we say that he owns these objects. Let S ⊆ N and suppose that some of the
agents in S have been allocated some objects and the allocated objects to each agent
appear in the same indifference class of this agent. At any time during the execution of
the algorithm, each agent who is allocated more than one object is called labelled and
unlabelled otherwise. Likewise, at any point during the execution of the algorithm, let
i ∈ N , and let B ⊆ L(i) be such that i is not currently allocated any object in B. The
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Agent 7
(d, e, g, h)

Unlabelled 5
(b, c, e, g)

Unlabelled 3
(d, h, f, o)

Unlabelled 6
(a, h, o)

Unlabelled 4
(e, f, p)

Labelled 1
(a, b, c, d, e)

Labelled 2
(f, p)

Fig. 1 The trading graph TG(7, {g, h}, [6]), h denotes h is owned currently by the agent. Objects in the
parentheses below each agent represent a single indifference class of that agent. The common order of the
objects is a � b � c � d � e � f � g � h � o � p (used in the text below)

trading graph (TG) is a directed graph TG(i, B, S) with {i} ∪ S as the set of nodes,
and arcs defined as follows: Let agent i point to each agent in S who owns any object
in B. For each unlabelled agent, e.g., j ∈ S, to which i points, suppose the current
object allocated to j is in j’s kth indifference class C j

k . Then let j point to each agent

in S who currently owns any object in C j
k not owned by j . Continue this process for

the new pointed-to and unlabelled agents until no agent in S needs to point to other
agents. See Fig. 1 for an example of how TG(7, {g, h}, [6]) is constructed: agent 7
points to agent 5 and 6 since currently agent 5 owns g and agent 6 owns h; then, as
agent 5 is unlabelled, agent 5 points to agents 4 and 1 since agent 4 owns e and agent
1 owns b and c; similarly, agent 6 points to agents 1 and 3; agent 3 points to 1 and 6;
only agents 1 and 2 are labelled.

Let H = {a ∈ L(i) | there is a (directed) path from i to a labelled agent in TG
(i, a, S)} . Note that, as labelled agents do not point to any agents, no intermedi-
ate agent on a directed path is labelled. Note that H may be empty, and it can be
found, for instance,6 by breadth first search (BFS). If H �= ∅, let � be the highest
indifference class of i with H ∩Ci

� �= ∅. Define max TG(i, L(i), S) to be the highest
order object in H ∩ Ci

� (e.g., in Fig. 1, max TG(7, {d, e, g, h}, [6]) = g). We also
explicitly define max TG(i, L(i), S) = ∅ if H = ∅. If max TG(i, L(i), S) �= ∅, then
there is a path from i to a labelled agent in TG(i, a, S), which can be found by BFS.
Suppose the path is (i0, i1, i2, . . . , ik), where i0 = i and only ik is labelled. Now
denote Trading(i, a, S) to be a procedure that allocates the object owned by is+1 to is ,
for s = 0, 1, . . . , k−1. Note that ik may own more than one object for which ik−1 has
pointed to ik . In this case, the highest order object among such objects is allocated to
ik−1. After trading, if ik still owns more than one object, keep ik labelled and unlabel
ik otherwise. In Fig. 1, considering procedure Trading(7, g, [6]), we note that there
are two paths from agent 7 to a labelled agent: (7, 5, 1) and (7, 5, 4, 2). Procedure
Trading(7, g, [6]) can use any of those two paths. If Trading(7, g, [6]) uses the first
path, then it allocates g to agent 7 and b to agent 5, since b � c, and keeps agent
1 labelled. If procedure Trading(7, g, [6]) uses the second path, then it allocates g

6 Here, what only matters is the reachability, that is, existence of such directed path in TG(i, a, S) from
agent i to a labelled agent.
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Algorithm 2: Serial Dictatorship Mechanism with Ties, version 2 (SDMT-2)
Input: Agents N ; Objects O; Preference list profile L; An order of agents σ , w.l.o.g. let σ(i) = i ,

∀i ∈ N
Output: Matching
Let O1 ← O // O1 is the set of currently unallocated objects
for each agent i ∈ N in the order of σ do

Define j1 =
{
min{ j : Oi ∩ Ci

j �= ∅} if Oi ∩ L(i) �= ∅;
n2 + 1 otherwise.

j2 =
{
min{ j : max TG(i, L(i), [i − 1]) ∈ Ci

j } if max TG(i, L(i), [i − 1]) �= ∅;
n2 + 1 otherwise.

if j1 ≤ j2 then
Allocate all the objects in Oi ∩Ci

j1
to i ; Label i if |Oi ∩Ci

j1
| ≥ 2; Oi+1 ← Oi\(Oi ∩Ci

j1
)

end
else

Trading(i,max TG(i, L(i), [i − 1]), [i − 1]); Oi+1 ← Oi
end

end
For each labelled agent, allocate to him the highest order object he currently owns.
For each unlabelled agent, if he currently owns an object, allocate it to him.
Output the matching.

to agent 7 and e to agent 5, anf f to agent 4, since f � p, and changes agent 2 to
unlabelled.

Recall that Ci
n2+1 = ∅, ∀i ∈ [n1]. With these preliminaries, we present our algo-

rithm SDMT-2 (see Algorithm 2). In the following, we will refer to kth iteration of the
“for loop” in SDMT-2 as the kth loop. Observe that in the kth loop, j1 is the highest
indifference class of i where i can obtain unallocated objects, and j2 is the highest
indifference class of i where i can obtain objects from the allocated objects without
hurting the agents prior to i .

Observation 4.1 For each agent i , after i’s turn in “for loop” of SDMT-2, if i is
allocated no object, then he will be allocated no object when SDMT-2 terminates.
Otherwise, if i is provisionally allocated some objects in his turn, then in the final
matching he will be allocated an object in the same indifference class as his initially
allocated objects.

Observation 4.2 For each agent i , after i’s turn, if i is allocated an object o ∈ Ci
j ,

then all the objects in ∪ j
k=1C

i
k have been allocated to either i or to some agents prior

to i . Once an object is allocated, it remains allocated until the end of the for loop.

Now we establish the equivalence of SDMT-1 and SDMT-2.

Theorem 4.3 Given the same input, SDMT-1andSDMT-2match the same set of agents.
Furthermore, for each matched agent i , the object allocated to i in SDMT-1 is in the
same indifference class of i as the object allocated to him in SDMT-2. This equivalence
between SDMT-1 and SDMT-2 holds for any fixed common order� of the objects used
in SDMT-2 and it is also independent of how SDMT-2 finds the directed paths from
agent i to a labelled agent in the trading graph TG(i, L(i), [i − 1]).
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Proof We will prove the following two facts inductively which simply implies the
conclusion of Theorem 4.3. Without loss of generality, suppose the order of agents is
σ(i) = i , ∀i ∈ N . Until the step i ,

1. for each agent k ≤ i − 1, the allocated objects of SDMT-1 and SDMT-2 to k are
in the same indifference class, (if one of them is empty, the other is empty as well)

2. for each � ≤ n2, and a ∈ Ci
�, there is an augmenting path starting from (i, a) in

SDMT-1 if and only if a is unallocated in SDMT-2 or there is a path from i to a
labelled agent in TG(i, a, [i − 1]) in SDMT-2.

Consider the base case, for agent 1, obviously property 1 is true since they are all empty
sets. Now, for property 2, let � ≤ n2 and a ∈ C1

� , then there is an augmenting path
from (1, a) in SDMT-1 and a is unallocated in SDMT-2. This shows both implications
of property 2 for agent 1.
For the proof of the induction step, suppose properties 1 and 2 are true for all the steps
k ≤ i − 1, we now prove that they are true for step i . For property 1, by inductive
hypothesis, property 1 holds for any k ≤ i − 2. Since property 2 holds for agent i − 1
by inductive hypothesis, the objects allocated to agent i − 1 in SDMT-1 and SDMT-2
will be in the same indifference class, thus, property 1 holds for step i . Now property
2 will be proved true for agent i , for each � ≤ n2, and a ∈ Ci

�:
For ⇒ direction, if there is an augmenting path starting from (i, a) in SDMT-1,

and if a is allocated previously in SDMT-2, suppose the new matching generated in
SDMT-1 due to the augmenting path is (k, μ(k)), k ≤ i , where μ(i) = a. By property
1 of inductive hypothesis and Observation 4.2, all the objects in {μ(k), k ≤ i} have
been allocated to some agents k ≤ i − 1 in SDMT-2. For object b, we use ν−1(b)
to denote the agent whom b is allocated to in SDMT-2. Now consider the following
path in TG(i, a, [i − 1]): let i1 = ν−1(μ(i)), and if i1 is labelled then we are done,
otherwise, let i2 = ν−1(μ(i1)). If i2 is labelled, then we are done, otherwise continue
this process. Finally, we will reach by this process a labelled agent among the agents in
[i − 1]. This is true because of the pigeonhole principle: i objects from {μ(k), k ≤ i}
are allocated in SDMT-2 to i − 1 agents in [i − 1].

For⇐ direction, now suppose a is unallocated or there is a path from i to a labelled
agent in TG(i, a, [i − 1]) in SDMT-2. Suppose a is allocated and there is a path from
i to a labelled agent in TG(i, a, [i − 1]). Then by Trading(i, a, [i − 1]), we can make
all the agents k ≤ i allocated at least one object and i is allocated a. This defines
an allocation of (sets of) objects to agents k ≤ i in SDMT-2. Let us now select any
matching using this allocation, e.g., M = {(k, ν(k)), k ≤ i}, where ν(i) = a (we can
also select such a matching if a is unallocated in SDMT-2). For instance, matching ν

can assign the hightest order object to each agent k ≤ i − 1 from the current set of
objects allocated to k, and assign object a to agent i . Suppose the matching generated
after step i − 1 in SDMT-1 is M ′ = {(k, μ(k)), k ≤ i − 1}. By property 1 of inductive
hypothesis, we know μ(k) and ν(k) are in the same indifference class of agent k,
for any k ∈ [i − 1]. Now consider M ⊕ M ′, which consists of alternating paths and
cycles. Then a connected component of M ⊕ M ′ that contains (i, ν(i)) must be an
odd length alternating path in M⊕M ′ w.r.t. M ′, implying an augmenting path starting
from (i, a) in SDMT-1. The argument showing that the connected component that
contains (i, ν(i)) must be an odd length alternating path is as follows. If ν(i) = a is
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Algorithm 3: Random SDMT-2 for Weighted Agents with Ties
Input: Agents N ; Objects O; Preference list profile L; Weights W
Output: Matching
for each agent i ∈ N do

Pick Yi ∈ [0, 1] uniformly at random;
end
Sort agents in decreasing order of wi (1 − eYi−1) (break ties in favour of smaller index);
Run SDMT-2 according to above order;
Return the matching;

unallocated in SDMT-1, then (i, ν(i)) is an odd length alternating path. Otherwise,
suppose i1 = μ−1(ν(i)), then consider whether ν(i1) is allocated or not in SDMT-1.
If not we get an odd path (i, ν(i), i1, ν(i1)). Otherwise continue the search, and let
i2 = μ−1(ν(i1)), then consider whether ν(i2) is allocated or not in SDMT-1. If not we
get an odd length path (i, ν(i), i1, ν(i1), i2, ν(i2)), and so on. Finally, we will get an
odd length alternating path starting from (i, ν(i)) = (i, a) w.r.t. M ′, which is indeed
an augmenting path starting from (i, a) in SDMT-1. This concludes the proof of the
induction step. ��

It is easy to see that both SDMT-1 and SDMT-2 reduce to SDM if all agents have
strict preference over objects.

Theorem 4.4 SDMT-2 is truthful, Pareto optimal, and terminates in O(n21γ + m)

running time.

Proof The first two properties follow from the equivalence between SDMT-1 and
SDMT-2 (Theorem 4.3) and the Pareto optimality (Corollary 3.3) and truthfulness
(Theorem 3.4) of SDMT-1. It remains to establish the running time of SDMT-2.

By the previous analysis given in the proof of Theorem 3.5, in each loop iteration
i , the running time is O(|L(i)| + (i − 1)γ ). Summing i over [n1], we obtain that the
running time of SDMT-2 is O(m + n21γ ). ��

4.2 RandomisedMechanism

We now present a universally truthful and Pareto optimal mechanism with approxima-
tion ratio of e

e−1 , where agents may have weights and their preferences may involve
ties (see Algorithm 3, where eYi−1 = g(Yi )). Note that in the absence of agents’
weights, sorting agents in the decreasing order of wi (1 − g(Yi ) simply means to sort
them in the increasing order of the Yi values, so the exponentiation is only used for
the correct handling of the weights.

When preferences are strict, Algorithm 3 reduces to a variant of RSDM that has
been used in weighted online bipartite matching with approximation ratio e

e−1 (see
[3] and [16]). Our analysis of Algorithm 3 is a non-trivial extension of the primal-dual
analysis from [16] to the case where agents’ preferences may involve ties. Before
analysing the approximation ratio, we will argue about the universal truthfulness of
Algorithm 3 when agents’ preferences are private and they in addition have weights.
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If the weights are public, Algorithm 3 is universally truthful and Pareto optimal.
This is because it chooses a random order of the agents, given the weights, and then
runs SDMT-2 according to this order. It follows by inspection of SDMT-2 that, if the
order of the other agents is given, an agent can get a better object if he appears earlier
in this order. Then it is not difficult to see that if the weights are private, and under the
assumption that no agent is allowed to bid over his private weight (the so-called no-
overbidding assumption – see the beginning of Sect. 6), Algorithm 3 is still universally
truthful in the sense that no agent will lie about his preferences or weight.

Theorem 4.5 Algorithm 3 is universally truthful, even if the weights and preference
lists of the agents are their private knowledge, assuming that no agent can over-bid
his weight.

Proof Algorithm 3 is a distribution over deterministic mechanisms due to the selection
of random variables Yi . For each deterministic mechanism (i.e., SDMT-2 when Yi ,
i ∈ N is fixed), we prove that it is truthful with respect to weights and preference
lists. Let us denote by φ the mechanism of SDMT-2 when Yi , i ∈ N is fixed. If
is not difficult to see that for any (W , L), w′

i ≤ wi and L ′(−i), i ∈ N , we have
φi (W , L) �i φi ((w

′
i , w−i ), L) �i φi ((w

′
i , w−i ), (L ′(i), L(−i))). The first preferred

order in this chain follows from the fact that the order of i when i bids wi is better
than or equal to his order when he bids w′

i . The second preferred order in this chain
follows by the truthfulness of SDMT-2 when weights are public. ��

5 Analysis of the Approximation Ratio

To gain some high-level intuition behind our extension from strict preferences to
preferences with ties, we highlight here the similarities and differences between our
problem and that of online bipartite matching. Our problemwith strict preferences and
without weights is closely related to online bipartite matching.7 If each agent in our
problem ranks his desired objects in the order that precisely follows the arrival order of
objects in the online bipartite matching, the two problems are equivalent. Therefore,
we extend the analysis of this particular setting, where each agent’s preference list is
a sublist of a global preference list, to the general case where agents preferences are
not constrained and may involve ties, and furthermore agents may have weights.

To analyze the approximation ratio ofAlgorithm3,we first write the LP formulation
of the (relaxed) problem and its dual LP formulation. Given random variables Yi , we
will define a primal solution and a dual solution obtained by Algorithm 3, which are
both random variables, such that the objective value of the primal solution is always at
least a fraction F of the objective value of the dual solution, and that the expectation
of duals is feasible. Hence, the expectation of the primal solution is at least F times
the expectation of duals, which by weak LP duality, is at least the optimal value of the

7 In the online bipartite matching problem [8], vertices of one partition (think of them as agents) are given
and fixed, while vertices of the other partition (think of them as objects) arrive in an adversarial order. When
an item arrives, we get to see the incident edges on agents. These edges indicate the set of agents that desire
this object. The algorithm must immediately match this object to one of the unmatched agents desiring it
(or choose to throw it away). In the end, the size of the obtained matching is compared with the optimum
matching in the realised graph.
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primal LP. We now give the standard LP and its dual of our problem. In what follows,
G = (V , E), where V = N ∪ O and E = {(i, a), i ∈ N , a ∈ O}.

max
∑

(i,a)∈E wi xia such that min
∑

i∈N αi + ∑
a∈O βa such that

∀i ∈ N : ∑
a:(i,a)∈E xia ≤ 1 ∀(i, a) ∈ E : αi + βa ≥ wi

∀a ∈ O : ∑
i :(i,a)∈E xia ≤ 1 ∀i ∈ N : αi ≥ 0

∀(i, a) ∈ E : xia ≥ 0 ∀a ∈ O : βa ≥ 0

By the next result, proved in [16], the inverse of approximation ratio is F ∈ [0, 1].
Lemma 5.1 ([16]) Suppose that a randomised primal-dual algorithm has a primal
feasible solution with value P (which is a random variable) and a dual solution which
is not necessarily feasible, with value D (which is also a random variable) such that

1. for some universal constant F, P ≥ F · D, always, and
2. the expectation of the randomised dual variables forms a feasible dual solution,

that is, E(αi ) and E(βa) are dual feasible.

The expectation of P is then at least F · OPT where OPT is the value of the optimum
solution.

Proof Since P ≥ F · D, taking expectations, E(P) ≥ F · E(D). The cost of the dual
solution obtained by taking expectations of the dual random variables is E(D) and
they form a feasible dual solution, therefore E(D) ≥ OPT. Hence, E(P) ≥ F ·OPT. ��

Note that in Lemma 5.1, OPT is the weight of maximumweight matching, which is
equal to the weight of a maximumweight Pareto optimal matching by Proposition 2.2.
Hence, if the condition of Lemma 5.1 holds, the approximation ratio of the mechanism
is 1

F . The construction of the duals depends on function g. Let F = (1 − 1
e ). For any

random selection of Yi , i ∈ N , let �Y = (Y1,Y2, . . . ,Yn1) = (Yi ,Y−i ). Following the
procedure of Algorithm 3, whenever agent i is matched to object a, let

xia( �Y ) = 1, αi ( �Y ) = wi g(Yi )/F, βa( �Y ) = wi (1 − g(Yi ))/F .

For all unmatched i and a, set xia( �Y ) = αi ( �Y ) = βa( �Y ) = 0. By this definition, it
follows that for any Yi , i ∈ N , the random value P of the primal solution {xia( �Y ), i ∈
N , a ∈ A} is always identical to F · D, where D is the random value of the dual
solution {αi ( �Y ), i ∈ N , βa( �Y ), a ∈ O}.

Hence, to satisfy the conditions of Lemma 5.1, we need to show that the expectation
of the dual solution {αi ( �Y ), i ∈ N , βa( �Y ), a ∈ O} is feasible for the dual LP, implying
that the approximation ratio of Algorithm 3 is at most 1

F = e
e−1 . The main technical

difficulty lies in proving the dominance lemma and the monotonicity lemma (see
Lemma 5.4 and 5.6). To prove these two lemmas, for any fixed agent i , and any fixed
object a ∈ O , we define a threshold, denoted by θ = θ ia , of the random variable for Yi ,
which specifies whether agent i will get matched—see Lemma 5.4. This threshold will
depend on the other agents Yi−. For an agent with strict preferences, such a threshold
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is the same as that defined in the online bipartite matching problem. However, in the
presence of ties, the same defined threshold does not work. We show how to define
such a threshold for our algorithm.

Let us fix an agent i ∈ [n1] and object a ∈ O , such that (i, a) ∈ E . Also,
we fix Y−i , that is, the random variables Yi ′ for all other agents i ′ �= i . We use
σ to denote the order of agents under Y−i , i.e., σ(1) is the first agent, and so on,
and σ([i]) = {σ(1), σ (2), . . . , σ (i)}. Consider Algorithm 3 running on the instance
without agent i and let us denote this procedure by ALG−i , where σ is the order of
agents under ALG−i . Given agent i and object a, the threshold θ = θ ia is then defined
as follows:

1. If a is unmatched in ALG−i , let θ = 1.
2. Otherwise, suppose that a is matched in ALG−i to some agent i ′. Then consider

the allocations just after the “for loop” in SDMT-2 within ALG−i terminated.
If i ′ is labelled, set θ = 1.

3. Otherwise, suppose a ∈ Ci ′
j and construct the trading graph TG(i ′,Ci ′

j \{a}, [n1]
\{i}) from all the objects in Ci ′

j other than a (note that σ([n1 − 1]) = [n1]\{i}).
Recall that graph TG(i ′,Ci ′

j \{a}, [n1]\{i}) contains directed paths to all agents
who can potentially provide an object for i ′ to trade without affecting any other
agent.
If there is a path in TG(i ′,Ci ′

j \{a}, [n1]\{i}) from i ′ to a labelled agent, set θ = 1.
4. Otherwise, define

i ′′ = argmin�{w�(1 − g(Y�))| there is a path from i ′ to � in TG(i ′,Ci ′
j \{a},

[n1]\{i})} Note: If index � with minimum value of w�(1 − g(Y�)) is not unique,
we take for i ′′ the largest such index. Also, observe that either i ′ = i ′′ or agent i ′
is before i ′′ with respect to order σ .
If wi (1 − g(y)) = wi ′′(1 − g(Yi ′′)) has a solution y ∈ [0, 1] define θ to be this
solution.
(g(y) is strictly increasing so if there is a solution, it is unique)

5. Otherwise define θ to be 0.

Now consider Algorithm 3 running on the original instance (denote such procedure as
ALG), with (Yi ,Y−i ) fixed. Suppose that τ is the order of agents under this execution
of ALG. The intuition behind the definition of θ is the following. Having Y−i fixed,
we want to define θ such that if we run ALG with (Yi ,Y−i )where Yi < θ , then agent i
gets matched. If 1. holds, then Yi < 1 and i will be matched because at least object a is
his available candidate. If 2. happens, then Yi < 1 and i will also be matched because
object a can be re-allocated from the labelled agent i ′ to i . Case 3. is analogous to
2. with the only difference that we now have a trading path from i ′ to a labelled agent.
Finally, case 4. will be discussed just after Observation 5.3.

In our further analysis, wewill need the following notion of a frozen agent or object.

Definition 5.2 We say an agent (respectively, an object) is frozen if the allocation of
this agent (respectively, object) remains the same until the termination of SDMT-2.
We also say a trading graph is frozen if all of its agents are frozen.
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Observation 5.3 Assume that agent i is unmatched in his turn in the “for loop” of
ALG. Suppose τ(u) = i , which means i selects his object in u-th iteration of the “for
loop”. Then at the end of the k-th iteration of the “for loop”, for every k ≥ u, there
is no path from i to a labelled agent in TG(i, L(i), τ ([k])), meaning this graph is
frozen.

Proof BySDMT-2,we know that Ou∩L(τ (u)) = Ou∩L(i) = ∅, whichmeans that all
the objects in L(i) have been allocated to agents τ([u− 1]). Since τ(u) is unmatched,
there is no path from τ(u) to any labelled agent in TG(τ (u), L(τ (u)), τ ([u−1])). Let
S ⊆ τ([u−1]) be the set that is reachable from τ(u) in TG(τ (u), L(τ (u)), τ ([u−1])).
Clearly, each agent in S is unlabelled. Actually, notice that any agent in S is frozen.
Therefore, any path through i after u-th iteration will reach an unlabelled agent. ��

The following two properties (dominance and monotonicity) are well known for
agents with strict preference orderings. We generalise them to agents with indiffer-
ences. The difficulty of proving both dominance and monotonicity lemmas (Lemma
5.4 and 5.6) lies in case 4. (in the definition of threshold θ ). This is our main technical
contribution as compared to the analysis in [16].

Recall that τ (σ , resp.) is the order of agents under the execution of ALG
(ALG−i , resp.). We first discuss intuitions behind case 4. in the context of the Dom-
inance Lemma (Lemma 5.4). Note that in this case there is a path from i ′ to i ′′ in
TG(i ′,Ci ′

j \{a}, [n1]\{i}) and agent i ′′ is unlabelled. We will prove the Dominance
Lemma by contradiction, using the following two main steps. Indeed, let us assume
towards a contradiction, see the text of Lemma 5.4, that Yi < θ and i is not matched
in ALG. Then the outcome of ALG is the same as that of ALG−i for all the other
agents (except agent i). Suppose σ(u) = i ′′ in ALG−i , then τ(u + 1) = i ′′ in ALG
under case 4. Based on the fact that outcomes of ALG and ALG−i are the same (for
all agents except agent i), first, we prove that either i ′ is labelled or there is a path, let
us call it P1, from i ′ to a labelled agent in TG(i ′,Ci ′

j , τ ([u])) at the end of the u-th
iteration of the “for loop” in ALG. Secondly, due to the above property, we argue
that there is a path, let us call it P2, from i to a labelled agent in TG(i, a, τ ([u])) at
the end of the u-th iteration of the “for loop” in ALG, contradicting Observation 5.3;
thus i will be matched. Path P2 is constructed by the concatenation of arc (i, i ′) and
path P1, or the concatenation of arc (i, i ′′′), for some i ′′′ on path P1, and the rest of
path P1. The existence of P1 is proved by a careful analysis of the structure of frozen
subgraphs of the trading graph as the algorithm proceeds; the details can be found in
the proof of Lemma 5.4.

Lemma 5.4 (DominanceLemma)GivenY−i , i getsmatched (to someobject) if Yi < θ .

Proof Let us assume towards a contradiction that Yi < θ and i is not matched in ALG.
We will consider the following cases below.

Case 1 (Corresponding to case 1 in the definition of threshold θ .) If a is unmatched
in ALG−i , then θ = 1. Suppose agent i is unmatched in ALG, then procedure
ALG is the same as ALG−i for all the other agents except i . But then a is always
available to agent i , meaning a will be matched to agent i by process of SDMT-2,
contradiction.
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Case 2 If a is matched to i ′ in ALG−i :
Case 2-(i) (Corresponding to cases 2 and 3 in the definition of threshold θ .) If i ′ is

labelled or if there is a path from i ′ to a labelled agent in TG(i ′,Ci ′
j \{a}, [n1]\{i}),

and i is unmatched, then there is a path from i to a labelled agent in TG(i, a, [n1]).
In this case, by Trading(i, a, [n1]), we obtain a Pareto improvement, contradicting
that SDMT-2 is Pareto optimal.

Case 2-(ii) (Corresponding to cases 5 and 4 in the definition of threshold θ .) The
case θ = 0 is trivial, so we consider that wi (1 − g(y)) = wi ′′(1 − g(Yi ′′)) has
a solution. Suppose that σ(u) = i ′′ in ALG−i , then if Yi < θ , we know that
wi (1−g(Yi )) > wi ′′(1−g(Yi ′′)), meaning the agent i is prior to agent i ′′ in ALG.
Then τ(u + 1) = i ′′ in ALG. If i is unmatched in ALG, then procedure ALG is
the same as ALG−i for all the other agents except i .
Suppose i ′′ is allocated an object b in ALG. If i ′′ = i ′, then b = a, and if in
addition a ∈ Ou+1, this means a is always available to all the agents prior to
τ(u + 1) = i ′′ = i ′. Therefore, a will be available to i when i initially selects
objects, implying that i must be allocated to some object in his turn, leading to a
contradiction.
The case a /∈ Ou+1 is analyzed similarly to the case i ′′ �= i ′, so we consider that
i ′′ �= i ′. Since there is a path from i ′ to i ′′ after the “for loop” in ALG terminates,
i is still unmatched because of our assumption towards a contradiction. Suppose
that in this path τ(k) points to τ(u + 1) = i ′′, for some k ≤ u, then b is available
to τ(k) or b has been allocated before the k-th iteration of the “for loop” in ALG.
Since finally τ(k) gets an object in the same indifference class as b by Observation
4.1, before the (u + 1)-st iteration of the “for loop” in ALG, b has been allocated
by Observation 4.2. Hence, in the (u + 1)-st iteration of the “for loop” in ALG,
τ(u + 1) gets object b through the trading graph.

Observation 5.5 The trading graph TG(i ′,Ci ′
j \{a}, [n1]) after the “for loop” in

ALG terminates, is exactly the same as TG(i ′,Ci ′
j \{a}, τ ([u + 1])) at the end of

the (u + 1)-st iteration.

This observation follows from the fact that otherwise, some agent τ(�) may be
reachable from i ′, where � > u + 1, by process of SDMT-2, contradicting the
definition of i ′′; note that we used here the largest index tie breaking rule.
Therefore, at the end of the u-th iteration of the “for loop” of ALG, suppose that
B is the set of objects allocated to i ′. Then we have the following three cases (note
that ALG is the same as ALG−i for all the other agents except i):

Case 2-(ii)-1 i ′ is labelled, then a ∈ B. Otherwise, if a /∈ B, then in the (u+1)-st “for
loop” iteration of ALG, a will not be allocated to i ′ at the end of this (u + 1)-st
iteration by the process of SDMT-2. Thus a ∈ B, and since the trading graph
TG(i ′,Ci ′

j \{a}, [n1]) after the “for loop” in ALG terminates is exactly the same

as TG(i ′,Ci ′
j \{a}, τ ([u + 1])) at the end of the (u + 1)-st iteration, it follows that

i ′ will not be matched to a at the end of the “for loop” of ALG, contradiction.
Case 2-(ii)-2 i ′ is unlabelled and B = {a}. Then there is a path from i ′ to a

labelled agent in TG(i ′,Ci ′
j \{a}, τ ([u])). Otherwise, all the agents reachable from

i ′ are frozen after the u-th iteration of the “for loop”. This means that the alloca-
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tions of those agents are fixed, because all the objects in their indifference class
have been allocated by Observation 4.2. Thus, TG(i ′,Ci ′

j \{a}, τ ([u])) should

be the same as TG(i ′,Ci ′
j \{a}, τ ([u + 1])). However, since τ(u + 1) is reach-

able from i ′ in TG(i ′,Ci ′
j \{a}, τ ([u + 1])), while τ(u + 1) does not appear in

TG(i ′,Ci ′
j \{a}, τ ([u])), we reach a contradiction.

Case 2-(ii)-3 i ′ is unlabelled and B = {c}, where c �= a. Then there is a path from i ′
to a labelled agent in TG(i ′, {a}, τ ([u])). Otherwise, a and the agent matched to
a is frozen at the end of the u-th “for loop” iteration in ALG. This means that a
will not be matched to i ′ at the end of the “for loop” of ALG, contradiction.
As a result, in either of the above three cases, there is a path from i to a labelled agent
in TG(i, a, τ ([u])) at the end of the u-th “for loop” iteration in ALG. Namely, for
case 2-(ii)-1, i points to i ′, which is labelled in TG(i, a, τ ([u])); for case 2-(ii)-2,
i points to i ′ in TG(i, a, τ ([u])) and there is a path from i ′ to a labelled agent in
TG(i ′,Ci ′

j \{a}, τ ([u])) ⊆ TG(i, a, τ ([u])). Finally, for case 2-(ii)-3, suppose a
is assigned to i ′′′ at the end of the u-th “for loop” iteration, then there is a path from
i ′′′ to a labelled agent in TG(i, a, τ ([u])) and i points to i ′′′ in TG(i, a, τ ([u])).
This contradicts Observation 5.3. Hence, i must be matched to some object. ��

Let βs
a = βa((s, Y−i )), when ALG denotes the execution of Algorithm 3 on the

original instance and Y−i is fixed and Yi = s. Note that βθ
a = wi (1 − g(θ))/F . This

last equality is easy to check in cases 1, 2, 3 and 5 of the definition of threshold θ .
In case 4, we note that wi (1 − g(θ)) = wi ′′(1 − g(Yi ′′)) for some agent i ′′ �= i .
And because βθ

a is the value of the dual variable for object a when ALG is run with
Yi = θ , case 4 means that βθ

a = wi (1 − g(θ))/F , despite the fact that object a might
not necessarily be assigned to agent i (however, agent i will be assigned some object).

We will now turn our attention to proving the monotonicity lemma.

Lemma 5.6 (Monotonicity Lemma) Given Y−i , for all choices of Yi , β
Yi
a ≥ βθ

a .

Before presenting the full formal proof, we will first sketch the main ideas behind
the proof. The difficulty of the proof of themonotonicity lemma still lies in case 4 from
the definition of threshold θ .We prove it in three steps. Recall that τ (σ , respectively) is
the order of agents under the execution of ALG (ALG−i , respectively). Let σ(u) = i ′′
in ALG−i . Observe that the monotonicity lemma means that a is allocated to an agent
prior to i ′′ or to i ′′. The proof of this is easy in the case where Yi > θ . To see this,
note that ALG and ALG−i result in the same tentative allocation at the end of their
u-th loop, since i is inserted back after i ′′. Hence, we only need to consider the case
where Yi < θ , which implies that i is inserted back prior to i ′′.
• Firstly, we prove in Claim 5.7 below, that no agent, except i , is allocated a better
object in ALG compared to ALG−i . The argument is by contradiction: suppose
there exists an agent i ′′′ who receives a better object in ALG than in ALG−i , then
i must be inserted before i ′′′. Consequently, there exists an agent s prior to i ′′′ who
will get a worse object in ALG than in ALG−i . Based on this fact, and using an
alternating path argument, it is proved that there exists a path from s to i ′′′ in s’s
trading graph constructed from a higher indifference class of s (than s’s allocated
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indifference class in ALG) after i ′′′ is allocated in ALG. This contradicts the fact
that this path should not exist since the graph from that higher indifference class
is frozen.

• Secondly, we prove in Claim 5.8 below, that if i ′ gets a worse object in ALG
compared to ALG−i , we prove that a must be allocated to an agent prior to i ′,
which is in turn prior to i ′′. The reason is as follows: by Observation 4.2, a must be
allocated and frozen before i ′ is considered in ALG. Then, if i ′ gets an object in
ALG in the same indifference class as a, then we prove that there exists an agent
s∗ prior to i ′′, and suppose τ(u∗) = s∗, such that there is a path from s∗ to i ′ in
TG(s∗,Cs∗

j∗ , τ ([u∗])) at the end of the u∗-th “for loop” iteration of ALG. Here,

Cs∗
j∗ is the indifference class in which s∗ is allocated an object in ALG−i . As a

consequence, by Observation 4.2, a is allocated to an agent prior to s∗ and all the
agents reachable from s∗ in TG(s∗,Cs∗

j∗ , τ ([u∗])) are frozen, then a will finally
be allocated to an agent prior to s∗ in ALG. This means that a is allocated to an
agent prior to i ′′.

This reasoning gives the monotonicity lemma, which together with dominance lemma
is used to prove Lemma 5.9.

Proof (Full proof of the Monotonicity Lemma, Lemma 5.6)

Case 1 (Corresponding to case 1 in the definition of threshold θ .) If a is unmatched in
ALG−i , or if a is matched to i ′ in ALG−i and i ′ is labelled, or a is matched to i ′
in ALG−i and there is a path from i ′ to a labelled agent in TG(i ′,Ci ′

j \{a}, [n1]),
then θ = 1 and βθ

a = wi (1 − g(θ))/F = 0, so β
Yi
a ≥ βθ

a = 0.
Case 2 (Corresponding to cases 2 and 3 in the definition of threshold θ .) If a

is matched to i ′ in ALG−i , there is no path from i ′ to a labelled agent in
TG(i ′,Ci ′

j \{a}, [n1]\{i}). Supposeσ(u) = i ′′ in ALG−i . Notice that τ([u+1]) =
σ([u]). Then by Observation 5.5, the trading graph TG(i ′,Ci ′

j \{a}, σ ([u])) at the
end of the u-th “for loop” iteration is the same as TG(i ′,Ci ′

j \{a}, [n1]\{i}) at the
termination of the “for loop” in ALG−i . Otherwise, the TG(i ′,Ci ′

j \{a}, σ ([u]))
is not frozen after the u-th “for loop” iteration of ALG−i , meaning that there is
a path from i ′ to a labelled agent in TG(i ′,Ci ′

j \{a}, σ ([u])). Therefore, either i ′
will reach an agent inferior to i ′′ or a labelled agent in TG(i ′,Ci ′

j \{a}, [n1]\{i})
by SDMT-2. This contradicts the definition of i ′′.

Case 3 (Corresponding to case 5 in the definition of threshold θ .) Suppose that equation
wi (1−g(y)) = wi ′′(1−g(Yi ′′)) does not have a solution, which means that θ = 0
and wi (1 − g(Yi ))/F < wi ′′(1 − g(Yi ′′))/F , for any Yi ∈ [0, 1]. This shows that
the process is the same for agents prior to agent i ′′ until the end of the u-th “for
loop” iteration in ALG and ALG−i . Since there is no path from i ′ to a labelled
agent in TG(i ′,Ci ′

j \{a}, σ ([u])), the agents reachable from i ′ are frozen. Hence,
a will be finally still allocated to i ′ in ALG, implying β

Yi
a = wi ′(1− g(Yi ′))/F ≥

wi ′′(1 − g(Yi ′′))/F > βθ
a = wi (1 − g(0))/F .

Case 4 (Corresponding to case 4 in the definition of threshold θ .) Now consider
the last case that equation wi (1 − g(y)) = wi ′′(1 − g(Yi ′′)) has a solution, then
βθ
a = wi (1− g(θ))/F = wi ′′(1− g(Yi ′′))/F . Consider the following three cases:
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Case (4-i) If Yi > θ , this means wi (1 − g(Yi ))/F < wi ′′(1 − g(Yi ′′))/F , and the
analysis of this case is the same as above (the case that equation wi (1 − g(y)) =
wi ′′(1−g(Yi ′′)) does not have a solution), since i will select objects after i ′′. Thus,
we have β

Yi
a = wi ′(1 − g(Yi ′))/F ≥ βθ

a .
Case (4-ii) If Yi < θ , then wi (1− g(Yi ))/F > wi ′′(1− g(Yi ′′))/F , which means that

i is prior to i ′′ in ALG. We have the following claim:

Claim 5.7 No agent can get a better object in ALG than in ALG−i after inserting i
into some position from 1 to u.

Proof Suppose, towards a contradiction, that there exists an agent getting a better
object, and let k be the smallest position where such agents are placed in ALG. Then
i must be inserted in a position before k (otherwise, the process is the same for the
first k agents in ALG−i and ALG, so agent τ(k) can not get a better object). Let
i ′′′ = τ(k) and suppose that i ′′′ gets an object b in ALG and object c in ALG−i ,
where b �i ′′′ c. Observe that σ(k − 1) = i ′′′ in ALG−i . Suppose that b ∈ Ci ′′′

j and

consider the trading graph TG(i ′′′,Ci ′′′
j , σ ([k − 1])) at the end of the (k − 1)-st “for

loop” iteration of ALG−i .
Let S be the set of agents reachable from i ′′′ in TG(i ′′′,Ci ′′′

j , σ ([k − 1])) at the end
of the (k − 1)-st “for loop” iteration of ALG−i . Note that any agent in S is prior to
i ′′′. Any agent in S is allocated only one object and frozen in ALG−i . Since in ALG,
b is allocated to i ′′′, then in the k-th “for loop” iteration of ALG, i ′′′ will be allocated
some objects in Ci ′′′

j . This means that some agent in S will get worse object compared
to the allocation in ALG−i .

The reason is as follows: no agent can get a better object by the definition of k. If
all the agents in S can remain the same in ALG compared with ALG−i (i.e., get the
objects in the same indifference class in ALG and in ALG−i ), then the only possible
allocation of S in ALG is reallocating all the objects matched to S in ALG−i to S
again such that each agent gets exactly one object. If there is some extra object e in
ALG allocated to an agent from S in ALG, then e must be allocated to some agent
j in ALG−i . Since e in ALG is allocated to some agent in S, thus, j can be reached
by some agent in S in ALG−i . Thus, j ∈ S, which leads to a contradiction. All the
objects in Ci ′′′

j have been allocated to some agents in S. In ALG, we will need to
allocate |S| objects to S ∪ {i ′′′} agents because some objects owned by S in ALG−i

will be allocated to agent i ′′′. This is not possible, which gives a contradiction.
Let s be an agent in S who gets a worse object and there is a path from s to i ′′′ in the

trading graph TG(s, d, τ [k]) at the end of the k-th “for loop” iteration in ALG, where
d is the allocated object of s in ALG−i . (Such an agent must exist: it can be found
by the following procedure. Suppose d1 �s1 b owned by s1 in ALG−i is allocated
to i ′′′ in ALG at the end of the k-th “for loop” iteration in ALG. If s1 gets worse in
ALG compared to ALG−i , then s1 is the agent we are looking for. Otherwise, s1 will
be allocated object d2 owned by s2 ∈ S in ALG−i at the end of the k-th “for loop”
iteration of ALG. If s2 gets a worse object, then s2 is the agent we are looking for.
Otherwise, we continue with this procedure. By finiteness of the set S and by the fact
that the agents in S own |S| objects in ALG−i , these objects will be allocated to agents
in S∪{i ′′′} in ALG, and one of these objects will be allocated to i ′′′. Thus, we can find
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such an agent. The path from s to i ′′′ in the trading graph TG(s, d, τ [k]) at the end of
the k-th “for loop” iteration in ALG is just the reverse path by the above procedure).
Suppose τ(�) = s in ALG and d ∈ Cs

h . Consider the �-th “for loop” iteration in ALG:
all the agents reachable from s in TG(s,Cs

h, σ ([�])) are frozen and prior to agent s
since s does not obtain any object in the indifference class Cs

h .
This contradicts the fact that there is a path from s to i ′′′ (which is inferior to s) in

the trading graph TG(s, d, τ [k]) at the end of the k-th “for loop” iteration in ALG. ��

Claim 5.8 Object a must be allocated to an agent prior to i ′′ or to i ′′, that is, we must
have β

Yi
a ≥ wi ′′(1 − g(Yi ′′)) = βθ

a .

Proof Suppose σ(u1) = i ′ and σ(u) = i ′′ in ALG−i . The following cases are con-
sidered:

Case (1) If i ′ gets worse, meaning he gets a worse object in ALG than a in ALG−i ,
then τ(u1 + 1) = i ′ in ALG (i is inserted back prior to i ′). Thus, all the agents
reachable from i ′ in TG(i ′, a, τ ([u1 + 1])) are frozen and the agent who owns a
will finally get a. This agent is prior to i ′, giving that β

Yi
a ≥ wi ′(1 − g(Yi ′)) ≥

wi ′′(1 − g(Yi ′′)) = βθ
a .

Case (2) If i ′ gets a in ALG, then we are done. Otherwise, suppose i ′ gets an object
a′ �i ′ a, a′, a ∈ Ci ′

j in ALG. Denote by S∗ the set of agents reachable from i ′

in TG(i ′,Ci ′
j \{a}, σ ([n1 − 1])) at the end of the “for loop” of ALG−i (note that

σ([n1 − 1]) = [n1]\{i}). If no one in S∗ gets worse in ALG than in ALG−i ,
then a must be allocated to some agent in S∗. The reason is similar to the above
argument. All agents in S∗ get exactly one object. If a is not allocated in S∗,
no one gets worse in S∗, and there must be an extra object b allocated to some
agent j in S∗. No matter whom b is allocated to in ALG−i , there is a path from
j to this agent. Hence, this agent belongs to S∗, a contradiction. Note that, by the
definition of i ′′, for any s ∈ S∗, σ−1(s) > σ−1(i ′′) (σ−1(s) denotes the order of
s in σ or in ALG−i ) implies that ws(1 − g(Ys)) ≥ wi ′′(1 − g(Yi ′′)). Therefore
β
Yi
a ≥ wi ′′(1 − g(Yi ′′)) = βθ

a .

Otherwise, by the previous argument, there exists s∗ ∈ S∗ who gets worse in ALG
compared to ALG−i , and there is a path from s∗ ∈ S∗ to i ′ in TG(s∗, d∗, [n1]) at
the end of ALG, where d∗ is the allocation of s∗ in ALG−i . If s∗ is prior to i ′, then
by similar argument as above, there should be no path from s∗ to an agent inferior
to s∗ (constructed from the objects in L(s∗) no worse than d∗) at the end of ALG, a
contradiction. Hence, s∗ can only be inferior to i ′. Suppose τ(u∗) = s∗ and d∗ ∈ Cs∗

j∗ ,

then we know that there is a path from s∗ to i ′ in TG(s∗,Cs∗
j∗ , [n1]) at the end of the

“for loop” of ALG. Next we will prove the following statement (which we denote
as (∗)):

There is a path from s∗ to i ′ in TG(s∗,Cs∗
j∗ , τ ([u∗]))

at the end of u∗-th “for loop” of ALG.
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If (∗) is true, then all the agents reachable from s∗ in TG(s∗,Cs∗
j∗ , τ ([u∗])) are frozen,

and a is allocated to an agent prior to s∗ due to Observation 4.2. Then, we have that
β
Yi
a ≥ ws∗(1 − g(Ys∗)) ≥ wi ′′(1 − g(Yi ′′)) = βθ

a since s∗ ∈ S∗.
Suppose finally that (∗) is not true, then all the agentsU∗ that are reachable from s∗ in
TG(s∗, d∗, τ ([u∗])) have been frozen.U∗ will remain the same until the end of ALG
and i ′ /∈ U∗. However, by the definition of S∗ and by s∗ ∈ S∗, there is a path from s∗
to i ′ in TG(s∗, d∗, [n1]) at the end of ALG, meaning i ′ ∈ U∗, a contradiction. ��
By Claim 5.8, we know that if Yi < θ then β

Yi
a ≥ wi ′′(1 − g(Yi ′′))/F = βθ

a .

Case (4-iii) If Yi = θ , this means that wi (1 − g(Yi ))/F = wi ′′(1 − g(Yi ′′))/F . If
i ′′ < i , the case is same as if Yi > θ . Otherwise, it falls into the case
Yi < θ .

To summarise, for all choices of Yi , β
Yi
a ≥ βθ

a . ��

Let us recall that F = (1− 1
e ) and g(y) = ey−1. Observe that

∫
g(y)dy = g(y)+C ,

where C is any fixed constant. Then it is not difficult to see that

for each t ∈ [0, 1] :
∫ t

0
g(y)dy + 1 − g(t) = F (1)

Lemma 5.9 ([16]) ∀(i, a) ∈ E, E �Y (αi ( �Y ) + βa( �Y )) ≥ wi .

Proof For fixed choices of Y−i , by the Dominance Lemma (Lemma 5.4), i is matched
whenever Yi < θ . Hence,

EYi (αi ( �Y )) ≥ wi

∫ θ

0
g(y)dy/F .

By the Monotonicity Lemma (Lemma 5.6), βa( �Y ) = β
Yi
a ≥ βθ

a = wi (1 − g(θ))/F ,
for any Yi ∈ [0, 1], then

EYi (βa( �Y )) ≥ wi (1 − g(θ))/F .

Therefore, note that by formula (1), we have

EYi (αi ( �Y ) + βa( �Y )) ≥ wi

∫ θ

0
g(y)dy/F + wi (1 − g(θ))/F = wi .

As a result, E �Y (αi ( �Y ) + βa( �Y )) ≥ wi . ��
From Lemmas 5.1 and 5.9, we have the following theorem.

Theorem 5.10 Algorithm 3 achieves an approximation ratio of e
e−1 for weighted

agents with indifferences.
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6 Online Interpretation and Lower Bounds

We will first provide here an “online” flavour interpretation of the weighted version
of our problem. We interpret it in the following way. An administrator holds all the
objects, and all agents with unknown preference lists are applicants for these objects.
We assume that weights are private information of each agent, but that they cannot
overstate their weights, a so-called no-overbidding assumption. Applicants are inter-
viewed one-by-one in a random order. A decision about each particular applicant is to
be made immediately after the interview. During the interview, the applicant selects
his favourite object among the available remaining objects if there exists one in his
preference list and must be allocated (matched to) that object because we consider
only truthful mechanisms.8 This applicant will not be interviewed again. The admin-
istrator can know the number of matched applicants interviewed so far, but is unaware
whether yet unseen applicants will be matched or not. Our goal is to find the optimal
strategy, that is a (random) arrival order of agents that maximises the ratio between
the total weight of matched agents and the maximum weight of a matching if all the
agents preference lists are known in advance.

We will now describe the required preliminaries that will be used in the remainder
of this section to prove the lower bounds.

Preliminaries We will use Yao’s minmax principle, see [25, Proposition 2.5 (page
35)] and [37], to obtain a non-trivial lower bound for universally truthful and Pareto
optimal mechanisms and another lower bound for an “online” version of our problem.
We first need some preliminaries.

Let us fix the number of agents n1 and the number of objects n2. The number of
distinct instances and the number of deterministic truthful and Pareto optimal mech-
anisms are finite. Denote by T the set of deterministic truthful and Pareto optimal
mechanisms with input size n1 and n2, and I the set of instances with input size n1
and n2. Let P and Q denote the set of probability distributions on T and I, respec-
tively. Denote Ep,q(r(Tp, Iq)) as the inverse of approximation ratio when the input Iq
is sampled according to the distribution q ∈ Q and a universally truthful and Pareto
optimal mechanism Tp is sampled according to the distribution p ∈ P. Then the
minmax theorem [37] states the following:

min
q∈Q max

p∈P Ep,q(r(Tp, Iq)) = max
p∈P min

q∈Q Ep,q(r(Tp, Iq))

and

min
q∈Q max

T∈T
Eq(r(T , Iq)) = max

p∈P min
I∈I

Ep(r(Tp, I )).

8 We can extend this setting to the case where the administrator can decide whether to let the applicant
select his favourite object or to reject this applicant, meaning that the applicant gets nothing. In this more
general problem, it is not difficult to prove that for any fixed order of the applicants, the decision that the
administrator does not reject any applicant will maximise the number of matched applicants. Therefore,
this more general problem is reduced to the setting where the administrator lets each applicant select his
favourite object, and hence our lower bound from Sect. 6 also applies to this setting.
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As a consequence, for any q ∈ Q and p ∈ P, we have

max
T∈T

Eq(r(T , Iq)) ≥ min
I∈I

Ep(r(Tp, I )).

This inequality states that an upper bound on the inverse of the approximation ratio of
the best universally truthful and Pareto optimal mechanism Tp on the worst instance
is upper bounded by the inverse of the approximation ratio of the best deterministic
truthful and Pareto optimal mechanism on a randomly chosen instance. Hence, in
order to boundminI∈I Ep(r(Tp, I )), we only need to construct an appropriate random
instance and compute the upper bound of the best deterministic truthful and Pareto
optimal mechanism on this random instance. Consider the triangle instance where
N = {1, 2, . . . , n1} and O = {o1, o2, . . . , on1}, and an agent i’s preference ordering
is o1 �i o2 �i · · · �i oi , for any i ∈ N .

Let S denote the set of all the permutations of agents’ preference lists of the trian-
gle instance. Consider now a random instance Suni as the uniform distribution of S.
It is obvious that the output of any serial dictatorship mechanism (which is a deter-
ministic, truthful and Pareto optimal mechanism, defined by a specific fixed order
of the agents) running on S is the same. Hence, for any serial dictatorship mecha-
nism (SDM), Euni (r(SDM, Suni )) is equal to the inverse of the approximation ratio
of RSDM, which is just SDM with the order of agents chosen uniformly at random,
when running on the triangle instance.

Online Lower Bound We now apply these preliminaries to the online version of
our problem. Recall that applicants in this online problem are truthful due to the
truthfulness of serial dictatorship mechanism. The strategy of the administrator is a
random order in which the applicants are interviewed.More precisely, let� denote the
set of all the permutations of applicants and P(�) be the set of probability distributions
on �. Let �p be a random order of applicants, where the order is selected according
to the distribution p ∈ P(�) on �, and then the strategy set of the administrator is
{�p : p ∈ P(�)}. We will show that the best strategy for the administrator is to select
applicants’ order uniformly at random.

Theorem 6.1 The best strategy for the administrator in the online problem is to select
the applicants’ order uniformly at random. Thus, any other randomised strategy, than
the one used in Algorithm 3, would lead to an approximation guarantee worse than
e

e−1 .

Proof This proof is similar to the classical proof from [22]. In particular it uses the
same class of instances. Let Ep,q(r(�p, Iq)) be the inverse of the approximation ratio
when the random order is �p and the random instance is Iq , and let �uni denote the
uniform order. By the approximation ratio of RSDM, for any I , Euni (r(�uni , I )) ≥
e−1
e . Now for upper bound of Ep,q(r(�p, Iq)), by Yao’s principle [25, Proposition

2.5], maxT∈� Eq(r(T , Iq)) ≥ minI∈I Ep(r(Tp, I )). Recall that Suni is the uniform
distribution over S. Then we need to upper bound maxT∈� Eq(r(T , Suni )), which in
fact is equal to the inverse of the approximation ratio obtained by running RSDM on
the triangle instance, which is e−1

e . The argument is as follows. Suppose object ok is
allocated by RSDM with probability pk ≤ 1 on the triangle instance. Then, because
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there are n1 − k+1 agents with ok in their preference lists, each such agent obtains ok
with equal probability pk

n1−k+1 . Therefore, agent i is allocated an objectwith probability∑i
j=1

p j
n1− j+1 , which is at most min{1,∑i

j=1
1

n1− j+1 }. Now, summing over all the
agents, by a simple calculation we get that the expected cardinality of the number of
allocated agents is at most n1(1− 1

e ), for large enough n1. Hence, the approximation
ratio is tight. ��

Lower Bound for Randomised Mechanisms If we can prove that the output of any
deterministic truthful and Pareto optimal mechanism running on S is the same as that
of SDM then maxT∈T Eq(r(T , I )) = 1 − 1

e . To show our lower bound it suffices
to show that the sum of the sizes of all the matchings returned by any deterministic
truthful and Pareto optimal mechanism executed on S is smaller than that of returned
by any SDM executed on S. Then maxT∈T Eq(r(T , I )) = 1 − 1

e . We use #φ(S)

to denote the sum of the sizes of all the matchings returned by mechanism φ when
executed on S. We want to to prove that #φ(S) ≤ #SDM (S), for any n1 and n2 and for
any universally truthful and Pareto optimal mechanism φ. We can prove this inequality
assuming n1 = n2 = 3, which gives us the lower bound of 18

13 for any universally
truthful and Pareto optimal mechanism.

Theorem 6.2 For any deterministic truthful and Pareto optimal mechanism φ,
#φ(S) ≤ 13, when n1 = 3. Thus, any universally truthful and Pareto optimal mecha-
nism for this problem has an approximation ratio of at least 18

13 .

Proof Suppose the agents are 1, 2, 3 and objects are a, b, c. We use the notation⎛

⎝
a b c
a b
a b c

⎞

⎠ to denote assignments that allocate a to agent 1, b to agent 2 and c to agent

3,where row i denotes agent i’s preference list andpreference ordering is the increasing
order of column indices, i = 1, 2, 3. If there are no underlines of the objects, then this

notation denotes the input of mechanism. Note that in this setting, S =
⎧
⎨

⎩

⎛

⎝
a
a b
a b c

⎞

⎠ ,

⎛

⎝
a
a b c
a b

⎞

⎠,

⎛

⎝
a b
a
a b c

⎞

⎠,

⎛

⎝
a b
a b c
a

⎞

⎠,

⎛

⎝
a b c
a
a b

⎞

⎠,

⎛

⎝
a b c
a b
a

⎞

⎠

⎫
⎬

⎭
. We would like to show that

for any deterministic truthful and Pareto optimal mechanism φ, #φ(S) ≤ 13. Without

loss of generality, suppose

⎛

⎝
a b c
a b c
a b c

⎞

⎠, and we will consider the following two cases:

Case (i) If

⎛

⎝
a b c
a b
a b c

⎞

⎠, then we will show that

⎛

⎝
a b
a b c
a b c

⎞

⎠. (Observe that the first agent

must get a because otherwise we have contradiction with truthfulness by

⎛

⎝
a b c
a b c
a b c

⎞

⎠.)
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Now, if

⎛

⎝
a b
a b c
a b c

⎞

⎠ would not hold then

⎛

⎝
a b
a b c
a b c

⎞

⎠. Then we obtain

⎛

⎝
a b
a b
a b c

⎞

⎠. The

reason is as follows:

⎛

⎝
a b c
a b
a b c

⎞

⎠ implies that the first agent in the input

⎛

⎝
a b
a b
a b c

⎞

⎠

cannot get any object by truthfulness. Similarly, from

⎛

⎝
a b
a b c
a b c

⎞

⎠, the second agent in

⎛

⎝
a b
a b
a b c

⎞

⎠ cannot get any object by truthfulness. Thus we have that

⎛

⎝
a b
a b
a b c

⎞

⎠, which

is a contradiction to Pareto optimality.

By a similar argument, we have

⎛

⎝
a b
a b
a b c

⎞

⎠,

⎛

⎝
a
a b c
a b c

⎞

⎠ and

⎛

⎝
a
a b
a b c

⎞

⎠. From

⎛

⎝
a b
a b
a b c

⎞

⎠, we know the size of the matching output from

⎛

⎝
a b
a
a b c

⎞

⎠ is 2. From

⎛

⎝
a b c
a b
a b c

⎞

⎠, we know the size of the matching output from

⎛

⎝
a b c
a
a b

⎞

⎠ is 2. From

⎛

⎝
a b
a b c
a b c

⎞

⎠, we know the size of the matching output from

⎛

⎝
a b
a b c
a

⎞

⎠ is 2. From

⎛

⎝
a
a b c
a b c

⎞

⎠, we know the size of the matching output from

⎛

⎝
a
a b c
a b

⎞

⎠ is at most 2.

Thus, if the current mechanism is φ1 then #φ1
(S) ≤ 13.

Case (ii) If

⎛

⎝
a b c
a b
a b c

⎞

⎠, we consider the following two cases:

Case (ii-a) If

⎛

⎝
a b
a b c
a b c

⎞

⎠, then

⎛

⎝
a b
a b
a b c

⎞

⎠, and we conclude that

⎛

⎝
a b c
a b c
a b

⎞

⎠, other-

wise suppose

⎛

⎝
a b c
a b c
a b

⎞

⎠ (since

⎛

⎝
a b c
a b c
a b c

⎞

⎠), then b is allocated to agent

1 in

⎛

⎝
a b
a b c
a b

⎞

⎠. From

⎛

⎝
a b
a b c
a b c

⎞

⎠, we know b is allocated to agent 3 in

⎛

⎝
a b
a b c
a b

⎞

⎠, a contradiction. Hence,

⎛

⎝
a b c
a b c
a b

⎞

⎠, then we know

⎛

⎝
a b c
a b
a b

⎞

⎠
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(from

⎛

⎝
a b c
a b c
a b

⎞

⎠ and

⎛

⎝
a b c
a b
a b c

⎞

⎠ ), and

⎛

⎝
a b
a b c
a b

⎞

⎠ (From

⎛

⎝
a b c
a b c
a b

⎞

⎠ and

⎛

⎝
a b
a b c
a b c

⎞

⎠). Now the matching size of assignment of

⎛

⎝
a b c
a
a b

⎞

⎠ and

⎛

⎝
a b c
a b
a

⎞

⎠ is both 2 (from

⎛

⎝
a b c
a b
a b

⎞

⎠). The matching size of assignment

of

⎛

⎝
a b
a b c
a

⎞

⎠ is 2 since

⎛

⎝
a b
a b c
a b

⎞

⎠. The matching size of assignment

of

⎛

⎝
a b
a
a b c

⎞

⎠ is 2 following from

⎛

⎝
a b
a b
a b c

⎞

⎠. Consider the assignment of

⎛

⎝
a
a b c
a b c

⎞

⎠, no matter what the assignment is, at most one matching size

of assignment of

⎛

⎝
a
a b
a b c

⎞

⎠ and

⎛

⎝
a
a b c
a b

⎞

⎠ is 3. Denote the mechanism

in this case by φ2, then #φ2(S) ≤ 13.

Case (ii-b) If

⎛

⎝
a b
a b c
a b c

⎞

⎠, recall that

⎛

⎝
a b c
a b
a b c

⎞

⎠ and

⎛

⎝
a b c
a b c
a b c

⎞

⎠, consider the following

two cases:

Case (ii-b-1) If

⎛

⎝
a b c
a b c
a b

⎞

⎠, then

⎛

⎝
a b c
a b
a b

⎞

⎠ since

⎛

⎝
a b c
a b
a b c

⎞

⎠. We know the match-

ing sizes of assignment of

⎛

⎝
a b c
a b
a

⎞

⎠ and

⎛

⎝
a b c
a
a b

⎞

⎠ are both 2. Since

⎛

⎝
a b
a b
a b c

⎞

⎠ due to

⎛

⎝
a b c
a b
a b c

⎞

⎠ and

⎛

⎝
a b c
a b c
a b

⎞

⎠, the matching size of assign-

ment of

⎛

⎝
a b
a
a b c

⎞

⎠ is 2. Since

⎛

⎝
a b
a b c
a b

⎞

⎠ due to

⎛

⎝
a b c
a b c
a b

⎞

⎠ and

⎛

⎝
a b
a b c
a b c

⎞

⎠,

then the matching size of assignment of

⎛

⎝
a b
a b c
a

⎞

⎠ is 2. Similar as the

above argument, consider the assignment of

⎛

⎝
a
a b c
a b c

⎞

⎠, no matter what

123



3456 Algorithmica (2019) 81:3422–3463

the assignment is, at most onematching size of assignment of

⎛

⎝
a
a b
a b c

⎞

⎠

and

⎛

⎝
a
a b c
a b

⎞

⎠ is 3. Denote the mechanism in this case by φ3, then

#φ3(S) ≤ 13.

Case (ii-b-2) If

⎛

⎝
a b c
a b c
a b

⎞

⎠, recall that we have

⎛

⎝
a b
a b c
a b c

⎞

⎠,

⎛

⎝
a b c
a b
a b c

⎞

⎠ and

⎛

⎝
a b c
a b c
a b c

⎞

⎠.

From

⎛

⎝
a b c
a b c
a b

⎞

⎠ and

⎛

⎝
a b
a b c
a b c

⎞

⎠, we get

⎛

⎝
a b
a b c
a b

⎞

⎠, then the match-

ing sizes of assignment of

⎛

⎝
a
a b c
a b

⎞

⎠ and

⎛

⎝
a b
a b c
a

⎞

⎠ are both 2. From

⎛

⎝
a b c
a b
a b c

⎞

⎠ and

⎛

⎝
a b
a b c
a b c

⎞

⎠, we get

⎛

⎝
a b
a b
a b c

⎞

⎠, then the matching size

of assignment of

⎛

⎝
a b
a
a b c

⎞

⎠ is 2. From

⎛

⎝
a b c
a b
a b c

⎞

⎠ and

⎛

⎝
a b c
a b c
a b

⎞

⎠, we

get

⎛

⎝
a b c
a b
a b

⎞

⎠, then the matching size of assignment of

⎛

⎝
a b c
a b
a

⎞

⎠ is 2.

From

⎛

⎝
a b c
a b
a b

⎞

⎠ and

⎛

⎝
a b
a b
a b c

⎞

⎠, it follows that

⎛

⎝
a b
a b
a b

⎞

⎠, we conclude

⎛

⎝
a
a b
a b c

⎞

⎠ is not true.Otherwise from

⎛

⎝
a
a b
a b c

⎞

⎠ and

⎛

⎝
a b
a b
a b

⎞

⎠, it follows

that

⎛

⎝
a
a b
a b

⎞

⎠, which contradicts to the Pareto optimality of the mech-

anism. Hence, the matching size of assignment of

⎛

⎝
a
a b
a b c

⎞

⎠ is 2. It is

obvious to see that the matching size of assignment of

⎛

⎝
a b c
a
a b

⎞

⎠ is at

most 3.Denote the currentmechanismasφ4,weknow that #φ4
(S) ≤ 13.

��
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Note that Theorem6.2 shows thatminI∈I Ep(r(Tp, I )) ≤ maxT∈T Eq(r(T , Suni ))
≤ 13

18 , for any p ∈ P, and when Suni is the uniform distribution over S. Hence, the
approximation ratio is at least 18

13 .

Lower Bound for Non-bossy Mechanisms In this subsection we only consider the
unweighted HA problem and with strict preferences. Thus an instance of HA is just
I = (N , O, L), where L = (L(1), . . . , L(n1)) is the joint list of (strict) preferences
of the agents.

We first define the concept of non-bossiness for a deterministic mechanism (see,
e.g., [26]). A deterministic mechanism φ is non-bossy if for any agent i ∈ N , any joint
preference list profile L , and any preference list L ′(i) of agent i , if φi (L(i), L(−i)) =
φi (L ′(i), L(−i)) then φ(L(i), L(−i)) = φ(L ′(i), L(−i)). Roughly speaking, non-
bossiness ensures that no agent can change the allocation of other agents, by reporting
a different preference list, without changing his own allocation.

Bade [7] showed that (Theorem 1 in [7]) any mechanism that is truthful, Pareto
optimal and non-bossy is s-equivalent to SDM, in the sense that if the order of agents
is generated uniformly at random, the matching returned by SDM is the same as the
one returned by any truthful, Pareto optimal and non-bossy mechanism.

We will now briefly introduce the required notions from [7] to be able to formally
use the result of Bade [7]. Let φ : I → M be any deterministic mechanism for HA
and σ be any order (permutation) of the agents. We define a permuted mechanism
σ � φ : I → M via (σ � φ)i (L) = φσ−1(i)(L(σ (1)), . . . , L(σ (n1))) for any agent
i ∈ N . Intuitively, permutation σ assigns each agent in N to a role in the mechanism,
such that the agent σ(i) under σ � φ assumes the role that agent i plays under φ.

The symmetrisation of a deterministic mechanism φ : I → M is a randomised
mechanism Rand(φ) : I → Rand(M) that calculates the probability of matching μ

at the joint preferences list L as the probability of a permutationσ withμ = (σ�φ)(L)

under the uniform distribution on �(N ), i.e., where σ ∈ �(N ) is a uniform random
permutation of the agents, and �(N ) is the set of all permutations of the agents. So
we have:

Pr [Rand(φ)(L) = μ] = |{σ : (σ � φ)(L) = μ}|
n1! .

For instance a symmetrisation of SDM is simply RSDM.
We say that two deterministic mechanisms φ and φ′ are s-equivalent if Rand(φ) =

Rand(φ′). The main result of Bade [7] can now be stated as.

Theorem 6.3 (Theorem 1 in [7]) Any (deterministic) truthful, Pareto optimal and non-
bossy mechanism for HA is s-equivalent to serial dictatorship mechanism (SDM).

Using this theorem we can now prove the following tight lower bound.

Theorem 6.4 No randomised mechanism that is a symmetrisation of any truthful, non-
bossy and Pareto optimal mechanism can achieve an approximation ratio better than
e

e−1 .
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Proof Letφ be anydeterministic truthful, non-bossy andPareto optimalmechanism for
the HA problem with strict preferences. By Theorem 6.3 the randomised mechanism
Rand(φ) is equivalent to RSDM. In the proof of Theorem 6.1, we have shown that
the expected aproximation ratio of RSDM cannot be better than e

e−1 on the triangle
instances of HA for large enough n1. This concludes the argument. ��

Note that ourmechanismRandomSDMT-2 (seeAlgorithm 3)with strict preference
lists and weights is a symmetrisation of a truthful, non-bossy and Pareto optimal
mechanism SDMT-2.

7 Conclusion

Whilst this paper has focused on Pareto optimality in the HA context, stronger forms
of optimality are possible. For example, minimum cost (or maximum utility), rank-
maximal and popular matchings can also be studied in the HA context, and amatching
of each of these types is Pareto optimal (see, e.g., [24, Sect. 1.5] for definitions). As
Pareto optimality is a unifying feature of all of these other forms of optimality,we chose
to concentrate on this concept in our search for randomised truthful mechanisms that
can provide good approximations to maximum matchings with desirable properties.
Note that the lower bound on the performance of deterministic truthful mechanisms
that produce Pareto optimal matchigns extends to those producing matchings that
satisfy these stronger optimality criteria. It will thus be the focus of future work to
consider the performance of randomised truthful mechanisms for these problems.

As far as lower bounds for randomised Pareto optimal mechanisms are concerned,
we proved a lower bound of 18

13 for any universally truthful Pareto optimal mechanism.
Moreover, we obtained a tight lower bound for the class of symmetrisation of truthful,
Pareto optimal and non-bossy mechanisms using a characterisation due to Bade [7].
We believe that the existence of a lower bound of e

e−1 for any universally truthful

Pareto optimal mechanism is an interesting open question, and our lower bound of 18
13

is a useful step towards resolving this.
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Appendix

In this sectionwe proveTheorem3.7 and also provide a systematicway of enumerating
all Pareto optimal matchings. The following result is an important first step towards
the former goal.
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Theorem 3.8 Any Pareto optimal matching is a strong priority matching for some
ordering σ of the agents.

Proof This proof makes use of the characterisation of Pareto optimal matchings in
instances of HA (potentially with ties) given by Proposition 2.1. Let a Pareto optimal
matching μ be given.

Let G = (V , E) be the envy graph for μ, defined as follows. In the graph, V = N
and there is a directed edge from agent i to agent k if and only if i weakly prefers
μ(k) to μ(i). Every edge is colored. An edge (i, k) is colored green if μ(k) �i μ(i),
and is colored red otherwise—i.e., if μ(k) �i μ(i). We claim that all the edges in
every strongly connected component (SCC) of G are green (we denote this claim by
C1). To see this, note that by the definition of strongly connected components, there
is a path from every node in a given component to every other node in the component.
Hence, if there is a red edge (i, k) in a SCC, then there must be a cycle with a red edge
in the SCC (as there must be a path from k to i). A cycle with at least one red edge
corresponds to a cyclic coalition and hence μ could have not been a Pareto optimal
matching, a contradiction.

Create graph G ′ = (V ′, E ′) as follows. There is a vertex in V ′ for each SCC of
G, and there is a directed edge in G ′ from vr to vs , vr , vs ∈ V ′ and vr �= vs , if and
only if there is an edge in G from i to k for some i and k that belong to the SCCs
of vr and vs . It follows from the definition of strongly connected components that G ′
is a DAG. Hence G ′ admits a topological ordering. Let X be a reversed topological
ordering of G ′. Let σ = i1, . . . , in1 be an ordering of all the agents that is consistent
with X . That is, for every two agents i j and ir , 1 ≤ j < r ≤ n1, the corresponding
SCC of i j appears in X no later than the corresponding SCC of ir . (The order of the
agents belonging to the same SCC can be determined arbitrarily.) We prove that μ is
an SPM w.r.t. σ .

Assume, for a contradiction, that our claim does not hold. That is, μ is not an SPM
w.r.t. σ . Hence there must exist another matching μ′ which has a lexicographically
smaller signature than μ; i.e., ρ(μ′) < ρ(μ) (we denote this fact by A1). Let i j be
the highest priority agent, w.r.t σ , such that i j strictly prefers his partner under μ′ to
his partner under μ; i.e., μ′(i j ) �i j μ(i j ) (we denote this assumption by A2). Note
that μ′(i j ) must be matched in μ or else μ admits an alternating coalition, namely
P = 〈

i j , μ′(i j )
〉
—as i j strictly prefers unmatched object μ′(i j ) to his partner μ(i j )—

and hence not Pareto optimal. So μ′(i j ) is matched under μ to, say, ik . Following A2,
there must be a red edge from i j to ik in the envy graph G. Therefore, ik must have a
higher priority than i j according to σ (note that, by C1, i j and ik cannot belong to the
same SCC). It then follows from A1 and A2 that ik is matched under μ′ and ranks his
partners under μ and μ′ the same; i.e. μ(ik) �ik μ′(ik). Now, μ′(ik) must be matched
in μ or else there is an alternating path coalition in μ, namely P = 〈

i j , ik, μ′(ik)
〉
,

and hence μ is not Pareto optimal. Also, ik cannot be matched to μ(i j ) or else there
is a cyclic coalition in μ, namely P = 〈

i j , ik
〉
, and hence μ is not Pareto optimal. So

μ′(ik) is matched under μ to, say, ir , ir �= i j . Also, there is a green edge from ik to
ir in G, since μ′(ik) = μ(ir ) and μ(ik) �ik μ′(ik) . We claim that ir must have a
higher priority than i j (we denote this claim by C2). To see this, first of all note that
there cannot exist a path between ir and i j in G or else G admits a cycle with at least
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one red edge, namely (i j , ik), and hence μ admits a cyclic coalition and is not Pareto
optimal. Now, to complete the proof of C2, we consider two cases regarding whether
there is a path from ir to ik or not.

• Case 1 There is a path from ir to ik in G. Since there is an path from ik to ir , then
ir and ik must belong to the same strongly connected component. Therefore since
ik has a higher priority than i j under σ , so must ir .

• Case 2 There is no path from ir to ik in G. Therefore ir and ik belong to two
different SCCs. Since there is an path from ik to ir in G, there is an edge in G ′
from the SCC corresponding to ik to the SCC corresponding to ir . Therefore ir
must have a higher priority than ik under X and thus under σ as well. Hence, by
transitivity, ir has a higher priority than i j under σ .

So far we have established that ir has a higher priority than i j . Now, using a similar
argument as for ik , we can show that ir must be matched under μ′ and must rank his
partners underμ andμ′ the same. Also, again using a similar argument as for ik ,μ′(ir )
is not the same object as μ(i j ) and μ′(ir ) must be matched in μ or else there is an
alternating path coalition in μ contradicting the Pareto optimality of μ. So μ′(ir ) is
matched under μ, to say iq . Using exactly the same argument as we used for ir we can
show that iq also has a higher priority than i j . We can keep repeating this argument
and every time we have to reach a new agent with a higher priority than i j . However,
there are a bounded number of agents and hence a bounded number of agents with
higher priority than i j , a contradiction. ��

Using Theorem 3.8, we show that SDMT-1 is capable of producing any given Pareto
optimal matching.

Theorem 3.7 Any Pareto optimal matching can be generated by some execution of
SDMT-1.

Proof Letμ be a Pareto optimal matching for an instance I of HA. By Theorem 3.8,μ
is an SPM for some ordering σ of the agents. Execute SDMT-1 given σ as follows. At
each phase i , choose (i, μ(i)) as the augmenting path.Notice that sinceμ is amatching,
both i andμ(i)must be unmatched at the beginning of phase i . Futhermore, sinceμ is
an SPM w.r.t σ , there cannot be an augmenting path from i to an object that i strictly
prefers to μ(i). ��

The above theorem implies that any Pareto optimal matching has a nonzero chance
ofmaterialising ifwe execute the following procedure: (1) randomly generate a priority
ordering over the agents σ , (2) run SDMT-1 given σ , and (3)whenever facedwithmore
than one choice, pick an augmenting path at random. Enumerating all Pareto optimal
matchings in a more systematic way is however possible with the aid of Theorem 3.8
and the two forthcoming propositions, Proposition 3.9 and Proposition 3.10.

Following Theorem 3.8, enumerating all Pareto optimal matchings is equivalent
to enumerating all matchings μ such that μ is a strong priority matching w.r.t. some
ordering of the agents. Recall that all SPMs w.r.t. σ have the same signature. It hence
follows that:

Proposition 3.9 Let μ∗ be a matching returned by SDMT-1 for a given priority order-
ing of the agents σ = i1, . . . , in1 . Then, a given matching μ is a strong priority
matching w.r.t. σ if and only if
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• the same set of agents are matched under both μ and μ∗, and
• each matched agent i is matched under μ to an object that he ranks the same as

μ∗(i); i.e., rank(i, μ(i)) = rank(i, μ∗(i)).

Let G(σ ) = (V , E) be a graph where V = N∗ ∪ O where N∗ is the set of agents
that are matched under μ∗. There is an edge between an agent i ∈ N∗ and an object
o ∈ O if and only if i ranks o the same as μ∗(i). It is then easy to see that:

Proposition 3.10 A matching μ is a strong priority matching w.r.t. σ if and only if it
is a maximum cardinality matching in G(σ ).

Theorem 3.11 Given and instance I of HA, all Pareto optimal matchigns of I can be
enumerated in time O(n1!).
Proof It follows Theorem 3.8 that to enumerate all Pareto optimal matchings it is
enough to execute the following procedure on all possible σ : (1) run SDMT-1 given
σ , and (2) enumerate all SPMs w.r.t. σ . It follows Proposition 3.10 that to enumerate
all SPMs w.r.t. σ we need only to enumerate all maximum cardinality matchings w.r.t.
G(σ ). The latter can be achieved in O(|V |) time per matching [36]. ��
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