
Algorithmica (2019) 81:3865–3889
https://doi.org/10.1007/s00453-019-00578-5

Optimal Data Reduction for Graph Coloring Using
Low-Degree Polynomials

Bart M. P. Jansen1 · Astrid Pieterse1

Received: 23 December 2017 / Accepted: 17 April 2019 / Published online: 3 May 2019
© The Author(s) 2019

Abstract
The theory of kernelization can be used to rigorously analyze data reduction for graph
coloring problems. Here, the aim is to reduce a q-Coloring input to an equivalent but
smaller input whose size is provably bounded in terms of structural properties, such as
the size of a minimum vertex cover. In this paper we settle two open problems about
data reduction for q-Coloring. First, we obtain a kernel of bitsize O(kq−1 log k)
for q-Coloring parameterized by Vertex Cover for any q ≥ 3. This size
bound is optimal up to ko(1) factors assuming NP � coNP/poly, and improves on
the previous-best kernel of size O(kq). We generalize this result for deciding q-
colorability of a graph G, to deciding the existence of a homomorphism from G to an
arbitrary fixed graph H . Furthermore, we can replace the parameter vertex cover by the
less restrictive parameter twin-cover. We prove that H -Coloring parameterized

by Twin- Cover has a kernel of size O(kΔ(H) log k). Our second result shows that
3-Coloring does not admit non-trivial sparsification: assuming NP � coNP/poly,
the parameterization by the number of vertices n admits no (generalized) kernel of
size O(n2−ε) for any ε > 0. Previously, such a lower bound was only known for
coloring with q ≥ 4 colors.

Keywords Graph coloring · Graph homomorphism · Kernelization

Mathematics Subject Classification 05C15 · 05C85

This work was supported by NWO Veni grant “Frontiers in Parameterized Preprocessing” and NWO
Gravitation grant “Networks”. An extended abstract appeared in the Proceedings of the 12th International
Symposium on Parameterized and Exact Computation, IPEC 2017.

B Bart M. P. Jansen
b.m.p.jansen@tue.nl

Astrid Pieterse
astridpieterse@outlook.com

1 Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00578-5&domain=pdf
http://orcid.org/0000-0001-8204-1268
http://orcid.org/0000-0003-3721-6721

3866 Algorithmica (2019) 81:3865–3889

1 Introduction

The q-Coloring problem asks whether the vertices of a graph can be properly colored
using q colors. It is one of many colorability problems on graphs that have been
widely studied. Since these are often NP-hard, they are good candidates to study from
a parameterized perspective [4,7]. Here we use additional parameters, other than the
size of the input, to describe the complexity of the problem. In this paper we study
preprocessing algorithms (called kernelizations or kernels) that aim to reduce the size
of an input graph in polynomial time, without changing its colorability status.

The natural choice for a parameter for q-Coloring is the number of colors q.
However, since even 3-Coloring is NP-hard, this parameter does not give interesting
results. Therefore the problem is studied using different parameters, that often try to
capture the complexity of the input graph. For example, Fiala et al. [8] compared the
parameterized complexity of several coloring problems when parameterized by vertex
cover, to the complexity when parameterized by treewidth. Jansen and Kratsch [13]
studied graph coloring when parameterized by a hierarchy of different parameters.

In this earlier work [13], Jansen and Kratsch provided a kernel for q-Coloring
parameterized by Vertex Cover with O(kq) vertices that can be encoded
inO(kq) bits. Furthermore they showed that for q ≥ 4, a kernel of bitsizeO(kq−1−ε)

is unlikely to exist. Unfortunately, these bounds left a gap of a factor k and it remained
unclear whether the upper or the lower bound had to be strengthened. As our first main
result, we close this gap by improving the kernel.

To obtain this improvement, we can use a recent result by the current authors [14]
about the kernelization of constraint satisfaction problems when parameterized by the
number of variables. A non-trivial data reduction can be achieved when the constraints
are given by equalities of low-degree polynomials on boolean variables. The size of
the resulting instance then depends on the maximum degree of the given polynomials.
Amongst other results, it was shown that constraints of the q-Not-All-Equal SAT
problem, which consist of at most q literals that should not all evaluate to the same
truth value, can be written as equalities of polynomials of degree q − 1. This allows
the number of clauses in an n-variable instance of q-Not-All-Equal SAT to be effi-
ciently reduced toO(nq−1) [14, Corollary 6]. In earlier work [13, Theorem 3], it was
shown that kernelization lower bounds for q-Not-All-Equal SAT parameterized by
the number of variables imply lower bounds for q-Coloring parameterized by

Vertex Cover. In this paper, we effectively show that the relation between these
problems also goes in the other way, and use ideas from the new upper-bound technol-
ogy for q-Not-All-Equal SAT to derive improved kernelizations for q-Coloring.

To see how graph coloring relates to constraint satisfaction, suppose we are given a
3-Coloring instanceG with vertex cover S and let I = V (G)\S be the corresponding
independent set. One can think of each vertex v ∈ I as a constraint of the form “my
neighbors use at most 2 different colors”, such that a remaining color can be used to
color v. We write these constraints as polynomial equalities and apply our previous
result to find out which ones are redundant. Since vertices of the independent set
can be colored independently, a vertex that corresponds to a redundant constraint can
be removed from G, without changing the 3-colorability of G. We can apply this
idea to obtain a kernel for q-Coloring parameterized by Vertex Cover. The

123

Algorithmica (2019) 81:3865–3889 3867

key technical step is to build a polynomial of degree q − 1 that captures the desired
constraints.

In this paper, we further generalize the problem by studying the H -Coloring prob-
lem. The problem asks for a given graph G and fixed graph H , whether there exists
a homomorphism f : V (G) → V (H) such that {u, v} ∈ E(G) ⇒ { f (u), f (v)} ∈
E(H). Instead of using the size of a vertex cover as the parameter, we use a smaller
parameter called twin-cover [9]. We show in Theorem 2 that H -Coloring parame-
terized by the size of a twin-cover has a kernel with O(kΔ(H)) vertices and bitsize
O(kΔ(H) log k), where Δ(H) is the maximum degree of graph H . Since q-Coloring
is equivalent to Kq -Coloringwhere Kq is the clique on q vertices, this result immedi-
ately gives a kernel of bitsizeO(kq−1 log k) for q-Coloring parameterized by vertex
cover. This closes the gap with the lower bound for q-Coloring up to ko(1) factors.

Often, when describing a kernel for a problem parameterized by a structural param-
eter like vertex cover, it is assumed that (an approximation of) the minimum vertex
cover is given with the input [2,11]. However, an interesting feature of our kernel for
H -Coloring is that it can be computed without knowing an (approximation of the)
optimal twin-cover of the input graph. The fact that the graph has a size-k twin-cover
is only used to analyze the size of the resulting kernel.

Our second main result concerns the parameterization by the number of vertices n.
The current authors showed in earlier work [15] that for a number of graph problems
it is impossible to give a kernel of size O(n2−ε), unless NP ⊆ coNP/poly. This
implies that the number of edges cannot efficiently be reduced to a subquadratic
amount without changing the answer, a task that is also known as sparsification. For
example, q-Coloring was shown to have no non-trivial sparsification for any q ≥ 4,
unless NP ⊆ coNP/poly. The case for q = 3 remained open. One might think that
3-Coloring is so restrictive, that a 3-colorable instance is likely to either be sparse,
or have a very specific structure. Exploiting this structure could then allow for a non-
trivial sparsification. In Theorem 3 we show that this is not the case: 3-Coloring
allows no kernel of size O(n2−ε), unless NP ⊆ coNP/poly.

Related work Hell and Nešetřil showed that H -Coloring is NP-hard for any non-
bipartite graph H that has no self-loops [10]. For a bipartite graph, the problem is
equivalent to testing whether the input graph is bipartite, and thus polynomial-time
solvable. Chitnis et al. show that the problem of finding a smallest set W ⊆ V (G)

such that G − W is H -list-colorable is FPT when H is (C6, P6)-free and bipartite,
when parameterized by the size of H together with the solution size [3].

Ganian introduced Twin- Cover as a new parameter [9] and gave relations to
existing parameters. For example, a minimum twin-cover is not larger than aminimum
vertex cover, but twin-cover is incomparable to treewidth. The paper also gives an FPT
algorithm for Precoloring Extension parameterized by the size of a twin-cover,
and studies a number of other problems using this parameter.

Dell and Van Melkebeek showed that for any d ≥ 3, d-CNF-Satisfiability with
n variables has no kernel of size O(nd−ε), unless NP ⊆ coNP/poly [6]. Continuing
this line of research, precise kernel lower bounds were shown for a variety of prob-
lems. For example, it was shown that Vertex Cover is unlikely to have a kernel

123

3868 Algorithmica (2019) 81:3865–3889

of bitsize O(k2−ε) [6], while a kernel with O(k2) edges and O(k) vertices is known.
Furthermore, the Point-Line cover problem, which asks to cover a set of n points
in the plane with at most k lines, was proven to have a tight kernel lower bound of
sizeO(k2−ε) [16], assuming NP � coNP/poly. Dell and Marx [5] proved polynomial
kernelization lower bounds for several packing problems. They showed how a table
structure can help realize the reduction that is needed for such a lower bound. We will
also use this table structure in our lower bound.

2 Preliminaries

To denote the set of numbers 1 to n, we use the following notation: [n] := {i ∈ N |
1 ≤ i ≤ n}. For x, y ∈ Z we write x ≡2 y to denote that x and y are congruent
modulo 2. For a finite set X and non-negative integer k, let

(X
k

)
be the collection of all

subsets of X of size exactly k and let
(X
≤k

)
be the collection of all subsets of X of size

at most k.

2.1 Graphs

All graphs considered in this paper are finite, simple, and undirected. In particular, this
means that graphs do not have self-loops. A graph G has vertex set V (G) and edge
set E(G). For disjoint sets X ,Y ⊆ V (G), let EG(X ,Y) := {{x, y} ∈ E(G) | x ∈
X , y ∈ Y } denote the edges with one endpoint in X and one endpoint in Y . Let G[S]
for S ⊆ V (G) denote the subgraph of G induced by S. For vertex set X ⊆ V (G) we
use G − X := G[V (G)\X] to denote the result of removing the vertices in X from
G. For F ⊆ E(G), let G\F denote the result of removing all edges in F from G. Let
Δ(G) denote the maximum degree of any vertex in G and let ω(G) denote the size of
a largest clique in G.

For a vertex u ∈ V (G), let NG(u) := {v ∈ V (G) | {u, v} ∈ E(G)} denote its open
neighborhood and let NG [u] := NG(u) ∪ {u} denote its closed neighborhood. For a
vertex set S ⊆ V (G), let NG(S) := {v ∈ V (G)\S | {u, v} ∈ E(G)} denote its open
neighborhood.

A vertex cover of a graph G is a set S ⊆ V (G) such that each edge has at least
one endpoint in S (equivalently, G − S is an independent set). We say vertices u
and v ∈ V (G) are (true) twins whenever NG [u] = NG [v]. Note that this relation is
transitive.We say X ⊆ V (G) is a twin-cover [9] ofG, if for every edge {u, v} ∈ E(G),
vertex u ∈ X , or v ∈ X , or u and v are twins.

A q-coloring of G is a function f : V (G) → [q] such that for all {u, v} ∈ E(G)

we have f (u)
= f (v). Let G and H be graphs. We say that G is H -colorable if
there exists a function f : V (G) → V (H) such that for all {u, v} ∈ E(G) it holds
that { f (u), f (v)} ∈ E(H). Such a function is also called a homomorphism from G
to H . Note that G has a homomorphism to Kq (a clique on k vertices) if and only if
G is q-colorable. We will regularly refer to the image of a vertex v ∈ V (G) under a
homomorphism from G to H as the color of this vertex. In this paper, we will only
consider H -Coloringwhere H has no self-loops and is not bipartite, as otherwise the

123

Algorithmica (2019) 81:3865–3889 3869

problem is polynomial-time solvable. We will frequently use the following properties
of H -colorings in the remainder of the paper.

Observation 1 Let S ⊆ V (G) such that G[S] is a clique and let f be an H-coloring
of G. Define X := { f (v) | v ∈ S}. Then H [X] is a clique in H and all vertices in S
receive a different color, so that |S| = |X |.

Observation 2 Let v ∈ V (G) and let f be an H-coloring of G. Then the number of
colors used to color NG(v) is bounded by Δ(H).

2.2 Parameterized Complexity

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet. Let
Q,Q′ ⊆ Σ∗ × N be parameterized problems and let h : N → N be a computable
function. A generalized kernel for Q intoQ’ of size h(k) is an algorithm that, on input
(x, k) ∈ Σ∗ × N, takes time polynomial in |x | + k and outputs an instance (x ′, k′)
such that:

1. |x ′| and k′ are bounded by h(k), and
2. (x ′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel
if h(k) is a polynomial. Since a polynomial-time reduction to an equivalent sparse
instance yields a generalized kernel, a lower bound for the size of a generalized kernel
can be used to prove the non-existence of sparsification algorithms.

We use the framework of cross-composition [1] to establish kernelization lower
bounds, requiring the definitions of polynomial equivalence relations and or-cross-
compositions. We repeat them here for completeness:

Definition 1 (Polynomial equivalence relation [1, Def. 3.1]) An equivalence rela-
tion R on Σ∗ is called a polynomial equivalence relation if the following conditions
hold.

– There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x and y
belong to the same equivalence class in time polynomial in |x | + |y|.

– For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S
into a number of classes that is polynomially bounded in the size of the largest
element of S.

Definition 2 (Cross-composition [1, Def. 3.3]) Let L ⊆ Σ∗ be a language, letR be a
polynomial equivalence relation onΣ∗, letQ ⊆ Σ∗ ×N be a parameterized problem,
and let f : N → N be a function. An or-cross-composition of L intoQ (with respect
to R) of cost f (t) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L
belonging to the same equivalence class ofR, takes time polynomial in

∑t
i=1 |xi | and

outputs an instance (y, k) ∈ Σ∗ × N such that:

123

3870 Algorithmica (2019) 81:3865–3889

– The parameter k is bounded by O(f (t) · (maxi |xi |)c), where c is some constant
independent of t , and

– instance (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L .

Theorem 1 [1, Theorem 6] Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N be a
parameterized problem, and let d, ε be positive reals. If L is NP-hard under Karp
reductions, has an or-cross-composition into Q with cost f (t) = t1/d+o(1), where t
denotes the number of instances, andQ has a polynomial (generalized) kernelization
with size bound O(kd−ε), then NP ⊆ coNP/poly.

We will refer to an or-cross-composition of cost f (t) = √
t log(t) as a degree-2

cross-composition. By Theorem 1, a degree-2 cross-composition can be used to rule
out generalized kernels of size O(k2−ε).

3 Kernel for H-Coloring Parameterized by Twin-Cover

In this section, we give a kernel for H -Coloring parameterized by the size of a twin-
cover. We start by showing how to partition the graph into vertex sets that are twins
in Sect. 3.1. We introduce some of the polynomial equalities that we use and their
properties in Sect. 3.2, and use them in Sect. 3.3 to define the set of equalities that is
constructed for a given input graph. In Sect. 3.4 we define the three reduction rules our
kernel will use and prove that they are safe. Finally, in Sect. 3.5 we give the kernel.

3.1 Twin Decomposition

Computing a minimum Twin-Cover is NP-hard, since Vertex Cover is NP-hard
on graphs where no two vertices are twins. We will therefore construct the kernel for
H -Coloring without knowing a twin-cover of the input graph. In order to do this,
we decompose the graph into vertex sets consisting of twins. Recall that throughout
the paper, twins are vertices with the same closed neighborhood.

Definition 3 ((Partial) twin decomposition) A partial twin decomposition of a graphG
is a partitionΠ = {P1, . . . , Pm} of V (G), such that any two vertices in the same partite
set are twins. Partition Π is a twin decomposition if furthermore any two vertices in
different partite sets are not twins.

To be able to use the twin decomposition for the kernelization procedure, we recall
the folklore fact that it can be computed efficiently.

Lemma 1 A twin decomposition of a graphG can be computed inO(|V (G)|+|E(G)|)
time.

Proof (sketch) This is for example stated in [17, Exercise 2.17] for the case of finding
false twins, which are vertices such that NG(u) = NG(v). Finding (true) twins is
similar. An example solution uses the adjacency-list representation, and adds each
vertex to its own adjacency list. Then we efficiently sort the adjacency lists by bucket

123

Algorithmica (2019) 81:3865–3889 3871

sort.We partition these sorted lists into sets of duplicates by a recursive process, which
splits the sets into groups based on the first element of each adjacency list, which is
removed from the recursively partitioned lists. The running time is linear since the
sum of the lengths of all adjacency lists is O(|E(G)|), while the work done in each
iteration is proportional to the decrease in total volume of the lists. ��
The next lemma shows how the twin decomposition and a minimal twin-cover may
intersect.

Lemma 2 Let G be a graph with twin decomposition Π and a minimal twin-cover S.
Then for any partite set P ∈ Π it holds that either P ⊆ S or P ∩ S = ∅.
Proof Let P ∈ Π . Suppose P ∩ S
= ∅ and P\S
= ∅. Let u ∈ S ∩ P and v ∈ P\S.
We show that S\{u} is a twin-cover of G, which contradicts the assumption that S is
minimal.

Let {u, w} be any edge in G. If w = v, then since u, v ∈ P , this is an edge between
twins. If w
= v, then since u and v are twins, it follows that {v,w} ∈ E(G). Thereby,
either w ∈ S and thus edge {u, w} is covered by w, or w and v are twins. In this case,
by transitivity of being twins, u and w are also twins. This proves that S\{u} is indeed
a twin-cover of G, which is a contradiction. ��

3.2 Modeling Constraints as Polynomial Equalities

As explained in the introduction, the kernelization is based on a connection to con-
straint satisfaction problems. To find the kernel, we represent the constraints that a
vertex set puts on the coloring of its neighborhood, as polynomial equalities. We then
use this representation to find redundant vertices and edges in the graph. To use this
idea, we need some additional lemmas and definitions. Recall that a monomial of
degree d is the product of d variables, with the unique monomial of degree zero being
the constant 1. For example, x1 · x3 · x3 is a monomial of degree three. A monomial is
multilinear if each variable occurs at most once. We start by proving a bound on the
number of multilinear monomials of degree at most d over a set of n variables.

Lemma 3 (cf. [14, Claim 4]) There are at most nd + 1 multilinear monomials of
degree at most d over a set of n variables.

Proof The number of multilinear monomials over n variables of degree at most d is
equal to

∑d
i=0

(n
i

)
. We will show that

∑d
i=1

(n
i

) ≤ nd . The left side counts all non-
empty subsets of [n] of size at most d. Each of these can be mapped to a distinct
d-tuple containing numbers from [n], by repeating an arbitrary element. Since there
are nd possible d-tuples, the claim follows. ��

To find redundant vertices and edges, we will model the constraints that a vertex
puts on the coloring of its neighborhood by equalities of low-degree polynomials. It
then remains to find redundant equalities. To be able to do this, we need the following
additional definitions.

123

3872 Algorithmica (2019) 81:3865–3889

Definition 4 (Span) Let X be a set of vectors in {0, 1}d for some d ∈ N. Define
span2(X) as the set of all vectors y ∈ {0, 1}d for which there exist x1, . . . , x� ∈ X
such that y ≡2

∑�
i=1 xi, i.e., y is a linear combination of x1, . . . , x� when vectors are

added component-wise, over the integers modulo 2.
Let p(x1, . . . , xn) be a multivariate polynomial in (a subset of) the variables

x1, . . . , xn , evaluated over the integers modulo 2, of degree at most d for some fixed d.
Hence p is a weighted sum of monomials of degree at most d over x1, . . . , xn . For
some fixed ordering of the monomials of degree d over x1, . . . , xn , let vect(p) denote
the vector containing the coefficients of the corresponding monomials in p. We may
use this notation as well for polynomial equalities where the right-hand side is zero;
for a polynomial equality p(x1, . . . , xn) ≡2 0 over the integers modulo 2, such that p
has degree at most d, we let vect(p(x1, . . . , xn) ≡2 0) be defined as vect(p).

If P is a set of multivariate polynomials in variables x1, . . . , xn , we use vect(P)

to denote {vect(p) | p ∈ P}. Similarly, if L is a set of polynomial equalities in
variables x1, . . . , xn for which the right-hand sides are zero, we let vect(L) be defined
as {vect(p) | (p(x1, . . . , xn) ≡2 0) ∈ L}.
The following lemma follows from the definition above.

Lemma 4 Let P be a set of polynomials of degree at most d over a tuple of variables
y, and let q be a polynomial of degree at most d over y. If vect(q) ∈ span2(vect(P)),
then any assignment to y that satisfies p(y) ≡2 0 for all p ∈ P, satisfies q(y) ≡2 0.

Proof Choose αp ∈ {0, 1} for all p ∈ P such that vect(q) ≡2
∑

p∈P αp vect(p).
Consider an assignment to the variables y with p(y) ≡2 0 for all p ∈ P . Let y′ be the
vector containing the evaluation of the monomials of degree at most d over y, for the
values assigned to y. List them in the same order in which the coefficients for these
monomials are listed in vect(·). Since a polynomial is a weighted sum of monomials,
the value of a polynomial p of degree most d in y for the assigned values, equals the
inner product of vect(p) and y′. So:

q(y) = vect(q) · y′ ≡2

∑

p∈P

αp vect(p) · y′ ≡2

∑

p∈P

αp · p(y) ≡2 0. ��

To utilize polynomials over boolean variables to represent solutions of graph H -
coloring problems, we represent the color of a vertex v in a graphG by |V (H)| boolean
variables, indicating whether v has the corresponding color. We now define a partial
choice assignment, which reflects that any vertex receives at most one color.

Definition 5 (Partial choice assignment) Let yi,k ∈ {0, 1} for i ∈ [n], k ∈ [q] be a set
of boolean variables and let y be the vector containing all these variables. We say y is
given a partial choice assignment if for all i ∈ [n]:

q∑

k=1

yi,k ≤ 1.

123

Algorithmica (2019) 81:3865–3889 3873

Note that a partial choice assignment sets at most n variables to true. By this
definition, a partial choice assignment can be seen as a partial coloring in the following
way: yi,k = 1 means vertex i has color k. Note that the coloring of some vertices may
remain undefined.

The following lemma gives a polynomial that can be used to express the constraint
that out of exactly q neighbors of a given vertex u, there are at least two that have the
same color. By combining multiple such constraints, we can ensure that at most q − 1
different colors are used in the neighborhood of vertex u, leaving one color free for u
itself in the q-coloring problem. When evaluating the polynomial for y that is given a
partial choice assignment, the polynomial has the following two essential properties.
(1) It equals 1 modulo 2 when the q vertices all receive a distinct color, and (2) it
equals 0 modulo 2 whenever two vertices have the same color, or when two vertices
have no color defined.

Lemma 5 Let q > 0 be an integer and let yi,k for i ∈ [q], k ∈ [q] be boolean
variables. Then there exists a polynomial p of degree q − 1 over the integers modulo
2, such that whenever the variables in y are given a partial choice assignment, it holds
that p(y) ≡2 1 if and only if

– there exist no i, j, k ∈ [q] with i
= j such that yi,k = y j,k = 1, and
– for all k ∈ [q − 1] there exists i ∈ [q] such that yi,k = 1.

Before proving Lemma 5, we give the polynomial p corresponding to q = 3 as an
example.

p(y) :=
∑

i1
=i2∈[3]

2∏

k=1

yik ,k

= y1,1 · y2,2 + y1,1 · y3,2 + y2,1 · y1,2 + y2,1 · y3,2 + y3,1 · y1,2 + y3,1 · y2,2.

One may verify for this example that letting y1,1 = y2,2 = y3,3 = 1 and all other
variables be zero, gives p(y) = 1 ≡2 1, as desired. Setting y1,1 = y2,2 = y3,2 = 1
and all other variables to zero, gives p(y) = 2 ≡2 0, which explains why the modulus
is used. Letting y1,1 = y2,3 = y3,3 = 1 and all other variables zero, results in
p(y) = 0 ≡2 0. Furthermore, letting y1,1 = y2,2 = 1 and all other variables be zero,
also results in p(y) ≡2 1. We now proceed with the general construction.

Proof of Lemma 5 Define the multivariate polynomial p as

p(y) :=
∑

i1,...,iq−1∈[q]
distinct

q−1∏

k=1

yik ,k .

We prove that p has the desired properties. It is easy to see that the degree of p is
q−1. It remains to prove the claim on the values of p(y) for partial choice assignments.
So let y be given a partial choice assignment, and for each i ∈ [q] let xi := k exactly
when yi,k = 1. Let xi := 0 when there is no such yi,k .

123

3874 Algorithmica (2019) 81:3865–3889

We now show that p(y) ≡2 1 if there exist no i, j, k ∈ [q] with i
= j such that
yi,k = y j,k = 1, and for all k ∈ [q−1] there exists i ∈ [q] such that yi,k = 1. In terms
of the values for xi , this implies that they are all distinct, and that [q−1] ⊆ {x1, . . . , xq}.
Thereby, we have {x1, . . . , xq} = [q] or {x1, . . . , xq} = [q − 1] ∪ {0}.

For k ∈ [q−1], let jk be the unique index such that x jk = k, implying that y jk ,k = 1.
Note that this is well defined, since all values from [q − 1] are used exactly once.
Then,

∏q−1
k=1 y jk ,k = 1. For any other choice of distinct indices i1, . . . , iq−1 ∈ [q],

there exists m ∈ [q − 1] such that im
= jm . This implies that yim ,m = 0 and thereby
∏q−1

k=1 yik ,k = 0. Thus, p(y) = 1 ≡2 1.
Now suppose there exist i, j ∈ [q], such that xi = x j
= 0, or there exists k ∈ [q−1]

such that yi,k = 0 for all i ∈ [q]. We show that p(y) ≡2 0 by a case distinction.

– Suppose there exists k ∈ [q − 1] such that
∑q

i=1 yi,k = 0, or equivalently there
is no i ∈ [q] such that xi = k. Thereby, for any choice of i1, . . . , iq−1 ∈ [q], we
have that

∏q−1
�=1 yi�,� = 0, since yik ,k = 0. Thus, p(y) ≡2 0.

– Suppose there exists no k ∈ [q − 1] such that
∑q

i=1 yi,k = 0. Thereby, for each
k ∈ [q − 1] there exists i ∈ [q] such that xi = k. It follows from our earlier
assumption that there must exist i, j, k ∈ [q] with i
= j such that xi = x j = k,
which implies k < q. For all c ∈ [q − 1] with c
= k, let ic be the unique index
such that xic = c and thus yic,c = 1. Then

yi,k ·
q−1∏

c=1
c
=k

yic,c = y j,k ·
q−1∏

c=1
c
=k

yic,c = 1.

However,
∏q−1

c=1 yic,c = 0 for any other choice of i1, . . . , iq−1. Thereby, p(y) =
2 ≡2 0. ��
There is another way to look at the proof of Lemma 5, which may give some

intuition. Consider the q×q matrix A given by ai, j = yi, j for all i ∈ [q], j ∈ [q−1],
and ai,q = 1 for all i ∈ [q]. Then p(y) is equal to the determinant of the matrix A
over the integers modulo 2. It follows from this that p(y) ≡2 1 if and only if the
columns of A are linearly independent. One may verify that if y is given a partial
choice assignment, the columns of A are linearly independent if and only if the two
conditions of the lemma statement hold for y.

3.3 Construction of Polynomial Equalities

We continue to define the polynomial equalities that will be constructed for a subset P
of the vertices of G. These are necessary constraints on the coloring of NG(P), such
this coloring can be extended to H -color P . In this construction, P will be a partite
set of the twin decomposition of G, and hence a clique.

Let G be a graph with P ⊆ V (G). We create variables cv,i for each v ∈ V (G)

and i ∈ V (H), denoting whether vertex v has color i . Let C be the set containing
all constructed variables. Let L(P,G) be the set of polynomial equalities produced

123

Algorithmica (2019) 81:3865–3889 3875

by the following procedure, which results in two types of constraints. The first type
will ensure that the neighborhood of P uses at most Δ(H) colors. The second type
of constraints will ensure that the coloring of the neighborhood of P can indeed be
extended to color P: we ensure that there is a clique in H of size at least |P|, such that
the colors used for NG(P) are in the neighborhood of this clique in H . The reason for
having these two types of constraints is to obtain a good bound on the degree of the
relevant polynomials.

Consider each set S ⊆ NG(P) with |S| = Δ(H) + 1 and each set X ⊆ V (H)

with |X | = |S|. Pick an arbitrary ordering on X such that X = {x1, . . . , x|S|} and use
Lemma 5 to find a polynomial pP,S,X such that pP,S,X (C) ≡2 1 if and only if the
following two statements hold:

1. there exist no u
= v ∈ S, k ∈ X such that cu,k = cv,k = 1, and
2. for all k ∈ [|S| − 1] there exists u ∈ S such that cu,xk = 1.

When considering a partial choice assignment that corresponds to a mapping from
V (G) to V (H), the above two statements together imply that S is colored with |S| =
Δ(H) + 1 distinct colors (which is what we want to avoid). More precisely, when
pP,S,X (C) ≡2 1, the coloring of S would use colors x1, . . . , x|S|−1 and one other
color. Add the following constraint to L(P,G):

pP,S,X (C) ≡2 0.

For the second type of constraints, consider each set S ⊆ NG(P) of � ∈ [Δ(H)]
elements. Pick an arbitrary ordering of S, such that S = {s1, . . . , s�}. Consider each
sequence x = (x1, . . . , x�) ∈ V (H)� (of not necessarily distinct elements). Let Y :=⋂�

i=1 NH (xi) be the common neighborhood of all vertices from x in H . If H [Y] does
not contain a clique of size at least |P| (i.e. if ω(H [Y]) < |P|), add the following
polynomial equality to L(P,G):

qP,S,x(C) :=
�∏

i=1

csi ,xi ≡2 0.

The computation of ω(H [Y]) for some Y ⊆ V (H) can be done in constant time,
since H is considered constant. This concludes the construction of L(P,G). Note
that the constraints L(P,G) are defined solely in terms of the variables that describe
the coloring of the open neighborhood of P .

Next, we define a complete list of equations for G.

Definition 6 (LΠ(G)) Let G be a graph and let Π be a partition of its vertex set. Let
LΠ(G) be defined as follows.

LΠ(G) :=
⋃

P∈Π

L(P,G).

Since the polynomials for the first type of constraints have degree at most |S| − 1 =
Δ(H) by Lemma 5, while the polynomials for the second type of constraints are the
product of � ≤ Δ(H) variables, we observe the following.

123

3876 Algorithmica (2019) 81:3865–3889

Observation 3 Let G be a graph with Π a partition of its vertex set. The polynomials
in LΠ(G) have degree at most Δ(H).

We now prove two useful properties for this choice of constraints.

Lemma 6 Let G be a graph with some partial twin decompositionΠ . Let f : V (G) →
V (H) be a mapping. If f is an H-coloring of G, then the boolean assignment to
C := {cv,i | v ∈ V (G), i ∈ V (H)} given by cv,i = 1 ⇔ f (v) = i satisfies all
constraints in LΠ(G).

Proof Let f be given and the value of any cv,i ∈ C be defined by cv,i = 1 ⇔ f (v) = i .
We show that this assignment satisfies all constraints in LΠ(G), by showing that it
satisfies both types of constraints in L(P,G) for all P ∈ Π . Consider some P ∈ Π .
Since it consists of twins, it is a clique in G. As H has no self-loops, the vertices
in P all receive distinct colors by Observation 1, and the colors used on P form a
clique in H . The fact that P consists of twins also implies that {u, v} ∈ E(G) for
all u ∈ P, v ∈ NG(P). Thereby, any color used in P is not used in the coloring of
NG(P).

Consider a constraint pP,S,X (C) ≡2 0 ∈ L(P,G) for S ⊆ NG(P) of size |Δ(H)|+
1 and X ⊆ V (H) of the same size. By Observation 2, the vertices in S use at most
Δ(H) = |S| − 1 colors. Hence at least one color d ∈ V (H) appears twice on a vertex
of S. If d ∈ X then some color of X is used twice on S, violating the first condition of
Lemma 5. If d /∈ X then at least two vertices u, v ∈ S do not receive a color from X
and hence

∑
i∈X cu,i = ∑

i∈X cv,i = 0. Since |S| = |X | = q, there are at most q − 2
verticesw ∈ S for which there exists i ∈ X with cw,i = 1. As such, there exist distinct
colors d1, d2 ∈ X such that

∑
s∈S cs,d1 = ∑

s∈S cs,d2 = 0, so that the lowest-indexed
of d1 and d2 violates the second condition of Lemma 5. It then follows from Lemma 5
that pP,S,X (C) ≡2 0 as required.

Consider a constraint qP,S,x(C) ≡2 0 ∈ L(P,G) for S ⊆ N (P) and x =
(x1, . . . , x|S|) ∈ V (H)|S|. Suppose this constraint is not satisfied. Then the color-

ing of S is given by x and furthermore, H [Y] where Y := ⋂|S|
i=1 NH (xi) does not

contain a clique on |P| vertices. But any H -coloring (for H without self-loops) colors
any clique in G with an equally-sized clique in H , and the colors used on the clique P
must be adjacent in H to all the colors used on the neighbors S of P in G. Since H [Y]
contains no clique on |P| vertices, f cannot be an H -coloring of G. It follows that for
any H -coloring, all constraints are satisfied. ��

Let S ⊆ V (G) and let f : S → V (H) be an H -coloring of G[S]. We say that
f can be extended to color G, if there exists f ′ : V (G) → V (H) such that f ′ is an
H -coloring of G and furthermore f ′(v) = f (v) for all v ∈ S. The next lemma shows
that an H -coloring of a part of the graph can be extended to color the entire graph, if
it satisfies certain constraints.

Lemma 7 Let G be a graph with P ′ ⊆ V (G). Let f : V (G)\P ′ → V (H) be an H-
coloring of G − P ′, such that the boolean assignment to C := {cv,i | v ∈ V (G), i ∈
V (H)} given by cv,i = 1 ⇔ (v /∈ P ′ ∧ f (v) = i) satisfies all constraints in L(P ′,G).
Then f can be extended to H-color G.

123

Algorithmica (2019) 81:3865–3889 3877

Proof Let f be given and C be defined by cv,i = 1 ⇔ (v /∈ P ′ ∧ f (v) = i). We
start by showing that NG(P ′) uses at most Δ(H) different colors. Suppose not, then
there is a set S ⊆ NG(P ′) of size Δ(H) + 1 using Δ(H) + 1 distinct colors. Let
X be the set of colors used in S. It follows from Lemma 5, that regardless of which
ordering of X was chosen when constructing pP ′,S,X (C), we have pP ′,S,X (C) ≡2 1.
By definition, L(P ′,G) contains the equation pP ′,S,X (C) ≡2 0. This contradicts the
assumption that all constraints in L(P ′,G) are satisfied.

Let X be the set of colors used by NG(P ′), suppose |X | = �. We have shown above
that � ≤ Δ(H). Let S be a size-� subset of NG(P ′) such that for every color x ∈ X ,
there exists exactly one s ∈ S such that f (s) = x . Let Y := ⋂

x∈X NH (x). Suppose
towards a contradiction that H [Y] contains no clique of size |P ′|. As such, for some
ordering of S as S = {s1, . . . , s�} and for x = (x1, . . . , x�) such that f (si) = xi for
all i , the constraint qP ′,S,x(C) ≡2 0 was added to L(P ′,G). However, by definition,
qP ′,S,x(C) ≡2 1, contradicting the fact that all constraints in L(P ′,G) are satisfied.

Thereby, H [Y] contains a clique K of size |P ′|, where Y := ⋂|X |
i=1 NH (xi). To extend

f to color P ′, assign each vertex in P ′ a distinct color from K .
It remains to verify that f is indeed a valid H -coloring ofG. Any edge between two

vertices in V (G)\P ′ remains properly colored. Any edge in P ′ is properly colored,
because its endpoints have a different color and K is a clique in H . Any edge between
P ′ and V (G)\P ′ is properly colored, because all vertices in K are common neighbors
of the vertices in X , and K ∩ X = ∅. ��

3.4 Reduction Rules

We now present the three reduction rules that will be used to obtain the kernel, and
prove that they are safe. The first checks whether the graph is trivially not H -colorable,
the second removes sets of edges from the graph, and the third removes sets of vertices
from the graph.

Reduction rule 1 Let G be a graph with twin decomposition Π . If there exists P ∈ Π

with |P| > ω(H), return a trivial no-instance.

It is easy to see that Reduction rule 1 preserves the answer to the problem, since in
this case G cannot have an H -coloring by Observation 1.

Reduction rule 2 Let G be a graph with twin decomposition Π . Let P ′
= P ′′ ∈ Π

such that EG(P ′, P ′′)
= ∅. If

vect
(
L(P ′,G)

) ⊆ span2
(
vect

(
LΠ(G\EG(P ′, P ′′))

))
,

remove all edges in EG(P ′, P ′′) from graph G.

Reduction rule 2 is the key rule for our kernelization. It simplifies the graph
by removing all edges between two distinct sets of twins P ′ and P ′′, if the
constraints L(P ′,G) are implied by the constraints generated by the remaining
graph G\EG(P ′, P ′′). Observe that it is essential for the effectiveness of Reduc-
tion rule 2 that Π is a twin decomposition, since applying the rule to partial twin

123

3878 Algorithmica (2019) 81:3865–3889

decompositions that are not twin decompositions may increase the size of an optimal
twin-cover in the considered graph. The following lemma proves that the reduction
rule is safe.

Lemma 8 If G ′ is obtained fromG byapplyingReduction rule2, thenG is H-colorable
if and only if G ′ is H-colorable.

Proof Let G ′ be G\EG(P ′, P ′′). Clearly, if G is H -colorable, then G ′ is also H -
colorable, since G ′ is a subgraph of G.

In the other direction, let f ′ be an H -coloring of G ′. It follows from Lemma 6
and the fact that Π is a partial twin decomposition of G\EG(P ′, P ′′) that the derived
setting of the boolean variables C satisfies the constraints in LΠ(G\EG(P ′, P ′′)).
Since vect(L(P ′,G)) ⊆ span2(vect(LΠ(G\EG(P ′, P ′′)))) it follows from Lemma 4
that this setting of C also satisfies all constraints in L(P ′,G). Let f be defined as f ′
restricted to the vertices in G ′ − P ′. Note that G ′ − P ′ equals G − P ′ by definition. It
is easy to see that f is indeed an H -coloring of G − P ′ since G − P ′ is a subgraph of
G ′ and f ′ is an H -coloring of G ′. Furthermore, f satisfies the constraints in L(P ′,G)

since it colors the relevant vertices the same as f ′. It now follows from Lemma 7 that
we can extend f to color all vertices in G. Thereby, G is H -colorable. ��

The final rule effectively removes isolated cliques from the graph, when H has a
sufficiently large clique to allow them to be colored properly.

Reduction rule 3 Let G be a graph with twin decompositionΠ . If there exists P ′ ∈ Π

with NG(P ′) = ∅ and |P ′| ≤ ω(H), then remove P ′ from G.

Lemma 9 If G ′ is obtained fromG byapplyingReduction rule 3, thenG is H-colorable
if and only if G ′ is H-colorable.

Proof Let P ′ be such that G ′ = G − P ′. Clearly, if G is H -colorable, G ′ remains H -
colorable. In the other direction, suppose G ′ is H -colorable. We show how to extend
this coloring to G. Since we assumed that |P ′| ≤ ω(H), graph H has a clique X of
size |P ′|. Use the colors of X to assign a different color to each vertex in P ′. Since
NG(P ′) = ∅, this gives an H -coloring of G. ��
Lemma 10 Let G ′ be the graph resulting from applying Reduction rule 2 or 3 to a
graph G. Then the size of a minimum twin-cover in G ′ is at most the size of a minimum
twin-cover in G.

Proof Let P ⊆ V (G). It is easy to see that if S is a twin-cover of G, then it is also a
twin-cover of G ′ = G − P . Thereby, the statement holds for Reduction rule 3.

LetΠ be the twin decomposition ofG and let P ′
= P ′′ ∈ Π . Let F := EG(P ′, P ′′)
be the set of edges between P ′ and P ′′. Let S be a twin-cover of G. We show that S
is a twin-cover of G ′ = G\F . Clearly, any edges that were previously covered, are
still covered. We show that all vertices that were twins in G, are also twins in G\F
to conclude the proof. Let u, v be twins in G, and let P ∈ Π such that u, v ∈ P . If
P
= P ′ and P
= P ′′, it is obvious that u and v remain twins in G\F . Suppose u, v

lie in P ′ or in P ′′; without loss of generality, suppose u, v ∈ P ′. Note that the edge
{u, v} belongs to E(G)\F . Then NG\F [u] = NG[u]\P ′′. Since u and v are twins in
G, we have NG [u]\P ′′ = NG [v]\P ′′ = NG\F [v]. Thereby, u and v are twins inG\F .
It follows that the lemma statement also holds for Reduction rule 2. ��

123

Algorithmica (2019) 81:3865–3889 3879

3.5 Analysis of the Kernelization

Theorem 2 For any fixed non-bipartite graph H (without self-loops), H-Coloring
parameterized by the size k of a twin-cover has a kernel with O(kΔ(H)) vertices and
edges, which can be encoded in O(kΔ(H) log k) bits. Furthermore, the kernelized
instance is a subgraph of the original input graph.

Proof Let G be a graph. Apply Reduction rules 1, 2, and 3 exhaustively. Let the
resulting graph be G ′. We show that this is a correct kernelization. ��
Claim 1 Reduction rules 1–3 can exhaustively be applied in time |V (G)|O(Δ(H)).

Proof We can compute a twin decomposition of G in linear time by Lemma 1. Com-
puting ω(H) can be done in O(1) time for fixed H . Hence Reduction rule 1 can be
applied in polynomial time.

The set LΠ(G) contains at most m := 2|V (G)| · |V (G)|Δ(H)+1 · |V (H)|Δ(H)+1

polynomial equalities (the number of ways to pick S, X , and P as for the definition
of pP,S,X and qP,S,X), over |V (G)| · |V (H)| variables. All polynomials we employ
are multilinear. This can be verified directly from their construction, and explained
by noting that squaring a number does not change it, when working modulo 2. By
Lemma 3, we therefore only have to consider (|V (G)| · |V (H)|)Δ(H) + 1 coefficients
for the polynomials. Constructing the required polynomial equalities can be done in
time |V (G)|O(Δ(H)) for fixed H . We can test if one vector lies in the span of a set of
other vectors by comparing the ranks of matrices of dimensions at mostm×((|V (G)| ·
|V (H)|)Δ(H) +1). Thereby, Reduction rule 2 can be applied in polynomial time. Note
that the twin decomposition has to be recomputed after each application of Rule 2.
Reduction rule 3 can trivially be applied in polynomial time. Since |Π | ≤ |V (G)|,
checking for all P ∈ Π whether any of the reduction rules can be applied takes
polynomial time.

Each rule can be applied at most |V (G)|2 times, as it always removes at least one
edge or vertex. The claim follows. ��

Let G ′ be the result of applying Reduction rules 1, 2, and 3 exhaustively. We use
the following claim to prove a bound on the size of G ′.
Claim 2 The resulting graph G ′ has O (|V (H)|Δ(H) · Δ(H)2 · kΔ(H)

)
vertices and

O (|V (H)|Δ(H) · Δ(H)3 · kΔ(H)
)
edges.

Proof When Reduction rule 1 has been applied at any point, G ′ trivially has constant
size. Otherwise, since G has a twin-cover of size k, it follows from Lemma 10 that G ′
has a twin-cover of size at most k. Let Y be a minimum twin-cover of G ′, such that
|Y | ≤ k. Let Π be the twin decomposition of G ′. By Lemma 2, every P in Π is either
fully contained in Y , or disjoint from Y . Let Π ′ := {P ∈ Π | P ∩ Y = ∅}. Define
Ltc := ⋃

P∈Π ′ L(P,G ′), and note that NG ′(P) ⊆ Y for all P ∈ Π ′. This implies the
polynomial equalities in Ltc only involve the variables controlling the coloring of Y .
By Observation 3, the polynomials in Ltc have degree at most Δ(H) and they use at
most |V (H)| variables for each of the k vertices in Y . Define

α := (k · |V (H)|)Δ(H) + 1.

123

3880 Algorithmica (2019) 81:3865–3889

Let Vtc := vect(Ltc) be the vectors of coefficients corresponding to the polynomials
in Ltc. Compute a basis V ′

tc ⊆ Vtc of Vtc over the integers modulo 2. Let L ′
tc ⊆ Ltc

contain all polynomial equalities whose corresponding vector is contained in V ′
tc.

Since all employed polynomials are multilinear, it follows that the vectors in Vtc
only have nonzero entries in positions corresponding to multilinear monomials over
|Y | · |V (H)| distinct variables, of which there are at most α by Lemma 3. As the size
of the basis V ′

tc equals the rank of the matrix containing the (row)vectors Vtc, which
is upper-bounded by the number of columns that contain a nonzero entry, it follows
that |L ′

tc| = |V ′
tc| ≤ α.

We define a set of meta-edges F ⊆ (Π ′ × (Π\Π ′)) based on the constraints in
L ′
tc. For each constraint Z in L ′

tc, do the following.

– Suppose Z = (pP ′,S,X (C) ≡2 0) for some P ′ ∈ Π ′, S ⊆ NG(P ′), and X ⊆
V (H). Since P ′ is a partite set of twins that is disjoint from Y , we have NG(P ′) ⊆
Y since Y is a twin-cover. So each v ∈ S belongs to a partite set Pv of twins
with Pv ∈ Π\Π ′. For each v ∈ S, add (P ′, Pv) to F .

– Otherwise, Z = (qP ′,S,x(C) ≡2 0) for some P ′ ∈ Π ′, S ⊆ NG(P ′), and sequence
x = (x1, . . . , x|S|) ∈ V (H)|S|. Similarly as above, for each v ∈ S take Pv ∈ Π\Π ′
such that v ∈ Pv and add (P ′, Pv) to F .

The above procedure adds at most Δ(H) + 1 meta-edges for each constraint in L ′
tc.

Thereby,

|F | ≤ α(Δ(H) + 1). (1)

We now argue that for any (P ′, P ′′) /∈ F with P ′ ∈ Π ′ and P ′′ ∈ Π\Π ′, the following
holds:

L ′
tc ⊆ LΠ(G ′\EG ′(P ′, P ′′)). (2)

To see this, consider a constraint in L ′
tc. It is of one of two possible types, and it was

added to Ltc = ⋃
P∈Π ′ L(P,G ′) ⊇ L ′

tc because it satisfied the criteria described in
Sect. 3.3. Effectively, the constraint was created because some set P ∈ Π ′ contains a
certain vertex set S of size at mostΔ(H)+1 in its open neighborhood inG ′. But by our
choice of meta-edges F , the set P still has S in its neighborhood in G ′\EG ′(P ′, P ′′),
so that all constraints of L ′

tc are also contained in LΠ(G ′\EG ′(P ′, P ′′)).
Using this, we show that for all P ′ ∈ Π ′ and P ′′ ∈ Π\Π ′:

EG ′(P ′, P ′′)
= ∅ ⇒ (P ′, P ′′) ∈ F . (3)

Suppose there exist P ′ ∈ Π ′, P ′′ ∈ Π\Π ′ such that EG ′(P ′, P ′′)
= ∅ but (P ′, P ′′) /∈
F . It follows from Eq. 2 that L ′

tc ⊆ LΠ(G ′\EG ′(P ′, P ′′)). Thereby,

span2(vect(LΠ(G ′\EG ′(P ′, P ′′)))) ⊇ span2(vect(L
′
tc))

= span2(V
′
tc) ⊇ Vtc = vect(Ltc) ⊇ vect(L(P ′,G ′)).

123

Algorithmica (2019) 81:3865–3889 3881

Thereby, Reduction rule 2 could be applied to G ′, which is a contradiction. It follows
that P ′ ∈ Π ′ and P ′′ ∈ Π\Π ′ can only be connected in G ′ if there is a corresponding
meta-edge in F . We can now use Eqs. 1 and 3 to bound the number of vertices and
edges in G ′.

First of all, for all P ′ ∈ Π ′ there must exist some P ′′ ∈ Π\Π ′ such that (P ′, P ′′) ∈
F , otherwise it follows from Eq. 3 that NG ′(P ′) = ∅ and P ′ would have been removed
by Reduction rule 3. Thereby |Π ′| ≤ |F |. Since |P| ≤ ω(H) ≤ Δ(H) + 1 for all
P ∈ Π by Reduction rule 1, the number of vertices of G ′ can be bounded as follows.

|V (G ′)| ≤ |F | · (Δ(H) + 1) + |Y | ≤
(
(k|V (H)|)Δ(H) + 1

)
· (Δ(H) + 1)2 + k

= O
(
|V (H)|Δ(H) · Δ(H)2 · kΔ(H)

)
.

If edge {u, v} ∈ G ′ with u ∈ Y and v /∈ Y , then there exist (P ′, P ′′) ∈ F
such that u ∈ P ′, v ∈ P ′′. Since |P| ≤ Δ(H) + 1 for any P ∈ Π , there are at
most |F | · (Δ(H) + 1)2 such edges. Furthermore, there are at most

(|Y |
2

) ≤ k2 edges
between vertices in Y , and at most |F | · (Δ(H) + 1)2 edges between vertices in
V (G)\Y . Thereby, the total number of edges can be bounded by:

|E(G ′)| ≤ |F | · (Δ(H) + 1)2 + |Y |2 + |F | · (Δ(H) + 1)2

≤ 2α(Δ(H) + 1)3 + k2

= 2
(
(k · |V (H)|)Δ(H) + 1

)
· (Δ(H) + 1)3 + k2

(note that Δ(H) ≥ 2 for non-bipartite H)

= O
(
|V (H)|Δ(H) · Δ(H)3 · kΔ(H)

)
.

This concludes the proof of Claim 2. ��
It follows from the correctness of Reduction rules 1, 2, and 3 that G ′ is H -colorable
if and only if G is H -colorable. It follows from Claims 1 and 2 that we have given a
kernel for H -coloring with O(kΔ(H)) vertices and edges for constant-size H that can
be computed in polynomial time. By encoding the graph using adjacency lists, it can
be encoded in O(kΔ(H) · log k) bits. ��

The following corollary shows that Theorem 2 generalizes the result obtained for
q-Coloring parameterized by vertex cover in the extended abstract of this work.

Corollary 1 For any constant q ≥ 3, q-Coloring parameterized by the size of a twin-
cover has a kernel with O(kq−1) vertices, which can be encoded in O(kq−1 log k)
bits. Furthermore, the resulting instance is a subgraph of the original input graph.

Proof Since q-Coloring is equivalent to Kq -Coloring, and Δ(Kq) = q − 1 and
Kq has q vertices, the result now follows directly from Theorem 2. ��

123

3882 Algorithmica (2019) 81:3865–3889

4 Sparsification Lower Bound for 3-Coloring

In this section we provide a sparsification lower bound for 3-Coloring. We show that
3-Coloring parameterized by the number of vertices n does not have a (generalized)
kernel of sizeO(n2−ε), unless NP ⊆ coNP/poly. This will also provide a kernel lower
bound for 3-Coloring parameterized by the size of a twin-cover, that matches the
upper bound given in the previous section up to ko(1) factors.

For ease of presentation, we will prove the lower bound by giving a degree-2 cross-
composition from a tailor-made problem to 3-List Coloring, and then show how
to modify the resulting 3-List Coloring instance to a 3-Coloring instance. The
input to 3-List Coloring is a graphG together with a function L that assigns to each
vertex v a list L(v) ⊆ {1, 2, 3}. The problem is to decide whether there exists a 3-
coloring of G, such that each vertex is assigned a color from its list. Before presenting
the cross-composition, we introduce an important gadget that will be used. It was con-
structed by Jaffke and Jansen [12]. The gadget, which we will call a blocking-gadget,
will be used to forbid one specific coloring of a given vertex set. The following lemma
is a rephrased version of Lemma 14 in [12].1

Lemma 11 There is a polynomial-time algorithm that, given c = (c1, . . . , cm) ∈ [3]m,
outputs a 3-List-Coloring instance with O(m) vertices called blocking-gadget(c)
that contains distinguished vertices (π1, . . . , πm). A coloring f : {πi | i ∈ [m]} → [3]
can be extended to a list coloring of blocking-gadget(c) if and only if f (πi) = ci for
some i ∈ [m].
The blocking-gadget can be used to forbid one specific coloring given by the tuple c
of a set of vertices v1, . . . , vm , by adding a blocking-gadget(c) and connecting πi to vi
for all i ∈ [m]. If the color of vi is ci for all i , then the inserted edges prevent all πi to
receive the corresponding color ci , and by Lemma 11 the coloring cannot be extended
to the gadget. If however the color of vi differs from ci for some i , the gadget can be
properly colored.

Having presented the gadget we use in our construction, we define the source
problem for the cross-composition. This problemwas also used as the starting problem
for a cross-composition in our earlier sparsification lower bound for 4-Coloring [15].

2-3-Coloring with Triangle Split Decomposition[15]
Input: A graph G with a partition of its vertex set into U ∪ V such that G[U] is
an edgeless graph and G[V] is a disjoint union of triangles.

Question: Is there a 3-coloring c : V (G) → {1, 2, 3} ofG, such that c(u) ∈ {1, 2}
for all u ∈ U?

We will refer to such a coloring as a 2-3-coloring of the graph G, since two colors are
used to color U , and three to color V .

Lemma 12 ([15, Lemma 3]) 2-3-Coloring with Triangle Split Decomposi-

tion is NP-complete.

1 For a proof of the lemma, refer to Lemma 15 in the full version of the cited paper: https://arxiv.org/abs/
1701.06985.

123

https://arxiv.org/abs/1701.06985
https://arxiv.org/abs/1701.06985

Algorithmica (2019) 81:3865–3889 3883

To establish a quadratic lower bound on the size of generalized kernels, it suf-
fices to give a degree-2 cross-composition from this special coloring problem into
3-Coloring. Effectively, we have to show that for any t , one can efficiently embed a
series of t size-n instances indexed as Xi, j for i, j ∈ [√t], into a single 3-Coloring
instance withO(

√
t ·nO(1)) vertices that acts as the logical or of the inputs. To achieve

this composition, a common strategy is to construct vertex sets Si and Ti of size nO(1)

for i ∈ [√t], such that the graph induced by Si ∪ Tj encodes input Xi, j . The fact
that the inputs can be partitioned into an independent set and a collection of triangles
facilitates this embedding; we represent the independent set within sets Si and the
triangles in sets Ti . The triangles will be represented by an independent set connected
to a number of gadgets, not triangles, to ensure that the sets Ti can be uni-colored,
unless index i is “selected”.

To embed t inputs into a graph on O(
√
t · nO(1)) vertices, each vertex will have

incident edges corresponding to many different input instances. The main issue when
trying to find a cross-composition into 3-Coloring, is to ensure that when there is
one 2-3-colorable input graph, the entire graph becomes 3-colorable. This is difficult,
since the neighbors that a vertex in Si has among the many different sets Tj should
not invalidate the coloring. For vertices in some set Tj , we have a similar issue. Our
choice of starting problem ensures that if some combination Si∗ , Tj∗ corresponding
to input Xi∗, j∗ has a 2-3-coloring, then the remaining sets Tj can be safely colored 3,
since vertices in Si∗ will use only two of the available colors. The key insight to ensure
that vertices in the remaining Si can also be colored, is to split them into multiple
copies that each have at most one neighbor in any Tj . There will be at most one vertex
in the neighborhood of a copy that is colored using color 1 or 2, thereby we can always
color it using the other available color. Finally, additional gadgets will ensure that in
some Si all these copies get equal colors, and in some Tj the vertices that correspond
to a triangle in the inputs are properly colored as such. With this intuition, we give the
construction.

Theorem 3 3-Coloring parameterized by the number of vertices n does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof To prove this statement, we give a degree-2 cross-composition from 2-3-
Coloring with triangle split decomposition to 3-List Coloring and then
show how to change this instance into a 3-Coloring instance. We start by defining a
polynomial equivalence relation R on instances of 2-3-Coloring with triangle

split decomposition. Let two instances be equivalent under R, when the sets U
have the same size and sets V consist of the same number of triangles. It is easy to
verify that R is a polynomial equivalence relation.

By duplicating one of the inputs several times if needed, we ensure that the number
of inputs to the cross-composition is a square. This increases the number of inputs
by at most a factor four and does not change the value of the or. Therefore, assume
we are given t instances of 2-3-Coloring with Triangle Split Decomposition

such that t ′ := √
t is integer. Enumerate these instances as Xi, j for i, j ∈ [t ′] and let

instance Xi, j have graphGi, j . For input instance Xi, j , letU and V be such thatU is an
independent set with |U | = m and V consists of n vertex-disjoint triangles. Enumerate
the vertices in U as u1, . . . , um and in V as v1, . . . , v3n such that v3k−2, v3k−1, v3k

123

3884 Algorithmica (2019) 81:3865–3889

S

T

s12,1 s13,1

s15,3

t16t14t13t11

(a) Constructed graphG′

v1 v3 v4 v6

v5v2

u1 u2 u3

(b) InstanceX1,1

Fig. 1 Construction of graph G′ for t ′ = 4, m = 3, and n = 2. Edges between vertices in S and T are
shown for instance X1,1. All blocking-gadgets and the vertex sets A and B are left out

form a triangle for k ∈ [n]. We now create an instance of the 3-List Coloring

problem, consisting of a graph G ′ together with a list function L that assigns a subset
of the color palette {1, 2, 3} to each vertex.

Refer to Fig. 1 for a sketch of G ′.

1. Initialize G ′ as the graph containing t ′ sets of m · 3n vertices each, called Si for
i ∈ [t ′]. Label the vertices in each of these sets as sik,� for i ∈ [t ′], k ∈ [3n]
and � ∈ [m]. Define L(sik,�) := {1, 2}. The vertices si1,�, si2,�, . . . , si3n,� together
represent a single vertex of the independent set of an input instance, which is split
into copies to ensure that every copy has at most one neighbor in each cell of T
(the bottom row in Fig. 1a).

2. Add t ′ sets of 3n vertices each, labeled Tj for j ∈ [t ′]. Label the vertices in Tj as

t jk for k ∈ [3n] and let L(t jk) := {1, 2, 3}. Vertices t j3k−2, t
j
3k−1, t

j
3k correspond to

a triangle in an input graph. They are not connected, so that we can safely color
all vertices that do not correspond to a 3-colorable input with color 3.

3. Connect vertex sik,� to vertex t jk if in graph Gi, j vertex u� is connected to vk ,
for k ∈ [3n] and � ∈ [m]. By this construction, the graph Gi, j is isomorphic to

the graph obtained from G ′[Si ∪ Tj] by turning each triple t j3k−2, t
j
3k−1, t

j
3k into a

triangle for k ∈ [n], and for each � ∈ [m] merging all 3n vertices si1,�, . . . , s
i
3n,�

into a single vertex u�.
4. Add vertex sets A = {a1, . . . , at ′ } and B := {b1, . . . , bt ′ }. These are used to

choose indices i and j such that Gi, j is 3-colorable. Let L(ai) := L(bi) := {1, 2}
for all i ∈ [t ′].

5. Let c be defined by ci := 2 for all i ∈ [t ′]. Add a blocking-gadget(c) to G ′.
Connect vertex ai to the distinguished vertex πi of this blocking-gadget for all
i ∈ [t ′].

6. Let c again be defined by ci := 2 for all i ∈ [t ′]. Add a blocking-gadget(c) to
G ′. Connect vertex b j to π j for all j ∈ [t ′]. Together with the previous step, this
ensures that in any list coloring at least one vertex in A and at least one vertex in B
has color 1.

123

Algorithmica (2019) 81:3865–3889 3885

7. For every i ∈ [t ′], � ∈ [m], and k ∈ [3n − 1], for every c1, c2 ∈ [2] with c1
= c2,
add a blocking-gadget((c1, c2, 1)) to G ′. Connect sik,� to π1, sik+1,� to π2, and ai
to π3. This ensures that when ai has color 1, vertices sik,� and sik′,� have the same
color for all k, k′ ∈ [3n].

8. For every j ∈ [t ′], k ∈ [n], for every c1, c2, c3 ∈ [3] that are not all pairwise
distinct, add a blocking-gadget((c1, c2, c3, 1)) to G ′. Connect t j3k−2 to π1, t

j
3k−1

to π2, t
j
3k to π3, and b j to π4. This construction ensures that if b j is colored 1, all

“triangles” in Tj are colored with three distinct colors. If b j is colored 2 however,
the gadgets add no additional restrictions to the coloring of vertices in Tj .

This concludes the construction of G ′; we proceed with the analysis.

Claim 3 Let c be a 3-list coloring of G ′. Then there exists i ∈ [t ′] such that for all
� ∈ [m] and for all k, k′ ∈ [3n] we have c(sik,�) = c(sik′,�).

Proof By the blocking-gadget added in Step 5, there exists i ∈ [t ′] such that c(ai)
= 2.
Since L(ai) = {1, 2}, this implies that c(ai) = 1. We show that i has the required
property.

Suppose there exist k, k′ ∈ [3n] and � ∈ [m] such that c(sik,�)
= c(sik′,�). Then

there must also exist k ∈ [3n− 1] such that c(sik,�)
= c(sik+1,�), or else they would all

be equal. Let (c1, c2, c3) correspond to the coloring of sik,�,s
i
k+1,�, and ai as given by

c, recall that by this definition c3 = 1. Then blocking-gadget((c1, c2, c3)) was added
in Step 7 and connected to these three vertices. But by Lemma 11, it follows that any
list-coloring of this blocking-gadget must assign color ci to some πi for i ∈ [3]. By
the way they are connected to sik,�,s

i
k+1,� and ai , one edge has two endpoints of equal

color, which is a contradiction. ��
We will say a triple of vertices v1, v2, v3 is colorful (under coloring c), if they

receive distinct colors, meaning c(v1)
= c(v2)
= c(v3)
= c(v1).

Claim 4 Let c be a 3-list coloring of G ′. Then there exists j ∈ [t ′] such that for all
k ∈ [n] the triple t j3k , t j3k−1, t

j
3k−2 is colorful.

Proof By the blocking-gadget added inStep 6, there exists j ∈ [t ′] such that c(b j)
= 2.
Since L(b j) = {1, 2}, this implies that c(b j) = 1. We show that j has the desired
property.

Suppose there exists k ∈ [n], such that t j3k , t j3k−1, and t
j
3k−2 are not a colorful triple.

Let (c1, c2, c3, c4) ∈ [3]4 correspond to the coloring given to t j3k , t j3k−1, t
j
3k−1, and b j .

In Step 8, blocking-gadget((c1, c2, c3, c4)) was added, together with connections to
these four vertices. But by Lemma 11, any list-coloring of this blocking-gadget must
assign color ci to some πi for i ∈ [4]. By the way they are connected to t j3k , t

j
3k−1,

t j3k−2, and b j , one edge has two endpoints of equal color, which is a contradiction. ��
Claim 5 The graph G ′ is 3-list colorable if and only if some input instance Xi∗ j∗ is
2-3-colorable.

123

3886 Algorithmica (2019) 81:3865–3889

Proof (⇒) Suppose we are given a 3-list coloring c of G ′. By Claims 3 and 4 there
exist integers i∗ and j∗ ∈ [t ′] such that for all � ∈ [m] and for all k, k′ ∈ [3n] we have
c(si

∗
k,�) = c(si

∗
k′,�) and furthermore for all k ∈ [n] the triple t j∗3k , t j

∗
3k−1, t

j∗
3k−2 is colorful.

We show that this implies that Gi∗, j∗ has a valid 2-3-coloring c′, which we define as

follows. Let c′(u�) := c(si
∗
1,�) for � ∈ [m] and let c′(vk) := c(t j

∗
k) for k ∈ [3n]. It

remains to verify that c′ is a valid coloring ofGi∗, j∗ . For any edge {u�, vk} ∈ E(Gi∗, j∗)
with � ∈ [m], k ∈ [3n], the endpoints receive different colors since

c′(vk) = c(t j
∗

k)
= c(si
∗
k,�) = c(si

∗
1,�) = c′(u�).

For an edge {vk, v′
k} ∈ Gi∗, j∗ , its coloring corresponds to the coloring of t j

∗
k and t j

∗
k′ ,

which are colored differently by choice of j∗ and Claim 4. Furthermore, u� is always
colored with color 1 or 2 as L(si

∗
1,�) = {1, 2}. Thereby, c′ is indeed a 2-3-coloring of

Gi∗, j∗ .
(⇐) Suppose c is a 2-3-coloring of Gi∗, j∗ , such that the partite set U of Gi∗, j∗

is colored using only the colors 1 and 2. We will construct a 3-list coloring c′ for
graph G ′. For each � ∈ [m], for each k ∈ [3n], let c′(si∗k,�) := c(u�). For k ∈ [3n] let
c′(t j

∗
k) := c(vk). For j
= j∗ and k ∈ [3n] let c′(t jk) := 3. For i
= i∗ ∈ [t ′], k ∈ [3n]

and � ∈ [m], pick c′(sik,�) ∈ {1, 2}\{c′(t j
∗

k)}. Let c′(ai∗) := 1 and let c′(b j∗) := 1.
For i
= i∗ let c′(ai) := 2, similarly for j
= j∗ let c′(b j) := 2. Before coloring
the vertices in blocking-gadgets, we will show that c′ is a 3-coloring on G ′[S ∪ T].
This will imply that the coloring defined so far is correct, as vertices in A and B only
connect to blocking-gadgets.

Note that all edges in G ′[S ∪ T] go from S to T . Consider an edge {s, t} for
s ∈ S, t ∈ T . Since c′(s)
= 3, if t ∈ Tj for j
= j∗ ∈ [t ′], it follows immediately
that c′(s)
= c′(t). Furthermore, if s ∈ Si for i
= i∗ ∈ [t ′], c′(s)
= c′(t) by the
definition of c′(s). Otherwise, s ∈ Si∗ and t ∈ Tj∗ and there exist {u, v} ∈ E(Gi∗, j∗)
such that c′(s) = c(u) and c′(t) = c(v). Since c is a correct 3-coloring, it follows that
c′(s)
= c′(t).

To complete the proof, extend c′ to also color all blocking-gadgets. This is possible
for the blocking-gadgets added in Steps 5 and 6, since c′(ai∗) = 1 and c′(b j∗) = 1.
Furthermore, we show this is possible for all blocking-gadgets introduced in Step 7.
A blocking-gadget((c1, c2, c3)) introduced in Step 7 either has π3 connected to ai
for i
= i∗ with c′(ai) = 2
= c3, or it is connected to ai∗ . In this second case the
vertices si

∗
k,� and si

∗
k+1,� are assigned equal colors and thus at least one of them has a

coloring different from the coloring given by c1 and c2 as these colors are distinct.
Thus, the colors that are forbidden on vertices πi by the connections to the rest of
the graph, do not correspond to (c1, c2, c3) and c′ can be extended to color the entire
blocking-gadget by Lemma 11.

Similarly, coloring c′ can be extended to blocking-gadgets(c) added in Step 8, as
either π4 in the gadget is connected to b j for j
= j∗ and c(b j) = 2
= c4, or the three
vertices from T connected to this gadget are colored with three different colors. ��

The claim above shows that the constructed 3-List Coloring instance G ′ acts as
a logical or of the given input instances. To obtain an instance of 3-Coloring, we

123

Algorithmica (2019) 81:3865–3889 3887

add a triangle consisting of vertices {C1,C2,C3} to the graph. We connect a vertex
v in G ′ to Ci if i /∈ L(v) for i ∈ [3]. This graph now has a 3-coloring if and only if
the original graph had a 3-list coloring. Thus, by Claim 5, the resulting 3-Coloring
instance acts as the logical or of the inputs.

It remains to bound the number of vertices of G ′. In Step 1 we add |S| = m · 3n · t ′
vertices and in Step 2 we add another |T | = 3n · t ′ vertices. Then in Step 4 we add
|A| + |B| = 2t ′ additional vertices. The two blocking-gadgets added in Steps 5 and
6 each have size O(t ′). The blocking-gadgets added in Step 7 have constant size, and
we add two of them for each i ∈ [t ′], � ∈ [m], k ∈ [3n − 1], thus adding O(t ′ ·m · n)

vertices. Similarly, the blocking-gadgets added in Step 8 have constant size, and we
add a constant number of them for each j ∈ [t ′], � ∈ [n], thus addingO(t ′ ·n) vertices.
This gives a total of O(t ′ · n · m) = O(

√
t · (maxi, j |Xi, j |)O(1)) vertices. Theorem 3

now follows from Theorem 1 and Lemma 12. ��
The set of all vertices of a graph is always a valid vertex cover for that graph.

Thereby, it follows from Theorem 3 that the lower bound also holds when parameter-
ized by vertex cover. In [13, Theorem 3], it was shown that for any q ≥ 4, q-Coloring
parameterized by vertex cover does not have a generalized kernel of size O(kq−1−ε),
unlessNP ⊆ coNP/poly. Combining these results gives a lower bound forq-Coloring
parameterized by vertex cover size.

Corollary 2 For any q ≥ 3, q-Coloring parameterized by vertex cover does not have
a generalized kernel of bitsize O(kq−1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

The above lower bound carries over to q-Coloring parameterized by the size of
a twin-cover, since any vertex cover of a graph is also a valid twin-cover. Recall that
q-Coloring is equivalent to Kq -Coloring and Δ(Kq) = q − 1. Thereby, the above
lower bound matches the kernel size given in Theorem 2 up to ko(1) factors.

5 Conclusion

We have given a kernel for H -Coloring parameterized by Twin- Cover with
O(kΔ(H)) vertices and bitsize O(kΔ(H) log k). This kernel can be obtained without
using information about (an approximation of) the minimum twin-cover of the input
graph. It follows from this result that q-Coloring parameterized by Vertex

Cover has a kernel of bitsize O(kq−1 log k), improving on the previously known
kernel by almost a factor k. Furthermore, 3-Coloring when parameterized by the
number of vertices has no kernel of size O(n2−ε), unless NP ⊆ coNP/poly. It was
already known that for q ≥ 4, q-Coloring parameterized by Vertex Cover

was unlikely to have a kernel of size O(kq−1−ε). Combining these results allows us
to give the same lower bound for q = 3, under the assumption that NP � coNP/poly.
Thereby we have provided an upper and lower bound on the kernel size of q-
Coloring parameterized by Vertex Cover for any q ≥ 3, that match up to
ko(1) factors.

It is easy to see that the kernel lower bounds also hold for q-List Coloring, where
every vertex v in the graph has a list L(v) ⊆ [q] of allowed colors. Furthermore, we
can also apply our kernel, by first reducing an instance of q-List Coloring to an

123

3888 Algorithmica (2019) 81:3865–3889

instance of q-Coloring using q additional vertices, and adding these q vertices to the
twin-cover of the graph. This only changes the size of the obtained kernel by a constant
factor. The kernel does not extend to the general List H -Coloring problem, since
the gadget to simulate the list constraints only works correctly when H is a clique.

In this paper we gave a first example where finding redundant vertices and edges
is done using appropriate polynomial equalities. It would be interesting to see if this
technique can be applied to obtain smaller kernels for other graph problems as well.
To apply this idea, one needs to first identify which constraints should be modeled.
When the constraints are found, they need to be written as equalities of low-degree
polynomials over a suitably chosen field. This requires the clever construction of
polynomials that have a sufficiently low degree, in order to obtain a good bound on
the kernel size.

Acknowledgements We thank Tim Hartmann for suggesting the use of twin-cover as a parameter. We are
grateful to an anonymous referee of Algorithmica for suggesting the interpretation of the polynomial of
Lemma 5 as a determinant.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition.
SIAM J. Discrete Math. 28(1), 277–305 (2014). https://doi.org/10.1137/120880240

2. Bougeret, M., Sau, I.: Howmuch does a treedepth modulator help to obtain polynomial kernels beyond
sparse graphs? In: Proceedings of 12th IPEC, pp. 10:1–10:13 (2017). https://doi.org/10.4230/LIPIcs.
IPEC.2017.10

3. Chitnis, R., Egri, L., Marx, D.: List H-coloring a graph by removing few vertices. Algorithmica 78(1),
110–146 (2017). https://doi.org/10.1007/s00453-016-0139-6

4. Cygan,M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21275-3

5. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of 23th SODA, SODA ’12,
pp. 68–81 (2012)

6. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-
time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014). https://doi.org/10.1145/2629620

7. Downey,R.G., Fellows,M.R.: Fundamentals of ParameterizedComplexity. Texts inComputer Science.
Springer, Berlin (2013). https://doi.org/10.1007/978-1-4471-5559-1

8. Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring problems: treewidth
versus vertex cover. Theor. Comput. Sci. 412(23), 2513–2523 (2011). https://doi.org/10.1016/j.tcs.
2010.10.043

9. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17(2),
77–100 (2015)

10. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory Ser. B 48(1), 92–110 (1990).
https://doi.org/10.1016/0095-8956(90)90132-J

11. Hols, E.M.C., Kratsch, S.: Smaller parameters for vertex cover kernelization. In: Proceedings of 12th
IPEC, pp. 20:1–20:12 (2017). https://doi.org/10.4230/LIPIcs.IPEC.2017.20

12. Jaffke, L., Jansen, B.M.P.: Fine-grained parameterized complexity analysis of graph coloring problems.
In: Proceedings of 10th CIAC, pp. 345–356 (2017). https://doi.org/10.1007/978-3-319-57586-5_29

13. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. Inf. Comput. 231, 70–88
(2013). https://doi.org/10.1016/j.ic.2013.08.005

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/120880240
https://doi.org/10.4230/LIPIcs.IPEC.2017.10
https://doi.org/10.4230/LIPIcs.IPEC.2017.10
https://doi.org/10.1007/s00453-016-0139-6
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2629620
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.tcs.2010.10.043
https://doi.org/10.1016/j.tcs.2010.10.043
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.4230/LIPIcs.IPEC.2017.20
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.1016/j.ic.2013.08.005

Algorithmica (2019) 81:3865–3889 3889

14. Jansen, B.M.P., Pieterse, A.: Optimal sparsification for some binary CSPs using low-degree polyno-
mials. In: Proceedings of 41st MFCS, pp. 71:1–71:14 (2016). https://doi.org/10.4230/LIPIcs.MFCS.
2016.71

15. Jansen, B.M.P., Pieterse, A.: Sparsification upper and lower bounds for graph problems and not-all-
equal SAT. Algorithmica 79(1), 3–28 (2017). https://doi.org/10.1007/s00453-016-0189-9

16. Kratsch, S., Philip, G., Ray, S.: Point line cover: the easy kernel is essentially tight. ACM Trans.
Algorithms 12(3), 40:1–40:16 (2016). https://doi.org/10.1145/2832912

17. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society, Providence (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.4230/LIPIcs.MFCS.2016.71
https://doi.org/10.4230/LIPIcs.MFCS.2016.71
https://doi.org/10.1007/s00453-016-0189-9
https://doi.org/10.1145/2832912

	Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Parameterized Complexity

	3 Kernel for H-Coloring Parameterized by Twin-Cover
	3.1 Twin Decomposition
	3.2 Modeling Constraints as Polynomial Equalities
	3.3 Construction of Polynomial Equalities
	3.4 Reduction Rules
	3.5 Analysis of the Kernelization

	4 Sparsification Lower Bound for 3-Coloring
	5 Conclusion
	Acknowledgements
	References

