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Abstract
Let P be a set of nodes in a wireless network, where each node is modeled as a point in
the plane, and let s ∈ P be a given source node. Each node p can transmit information
to all other nodes within unit distance, provided p is activated. The (homogeneous)
broadcast problem is to activate a minimum number of nodes such that in the resulting
directed communication graph, the source s can reach any other node. We study the
complexity of the regular and the hop-bounded version of the problem—in the latter
s must be able to reach every node within a specified number of hops—where we
also consider how the complexity depends on the width w of the strip. We prove the
following two lower bounds. First, we show that the regular version of the problem is
W[1]-complete when parameterized by the solution size k. More precisely, we show
that the problem does not admit an algorithm with running time f (k)no(

√
k), unless

ETH fails. The construction can also be used to show an f (w)nΩ(w) lower bound
when we parameterize by the strip width w. Second, we prove that the hop-bounded
version of the problem is NP-hard in strips of width 40. These results complement the
algorithmic results in a companion paper (de Berg et al. in Algorithmica, submitted).
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1 Introduction

Inspired by wireless network applications, we study two variants of the homogeneous
broadcast problem. Let P be a set of n points in R

d and let s ∈ P be a source node.
Each point can either be active, in which case its transmission range is 1, or it can be
inactive. Thus a point p can transmit to point q if and only if p is active, and |pq| � 1.
We can assign a directed graph to a set of active points Δ ⊆ P: Let GΔ = (P, EΔ)

be the directed graph where (p, q) ∈ EΔ iff p ∈ Δ and |pq| � 1. We say that Δ

is a homogeneous broadcast set (or simply a broadcast set) if every point p ∈ P
is reachable from s in GΔ. If every p ∈ P is reachable within h hops, for a given
parameter h, then Δ is an h-hop broadcast set. The (h-hop) broadcast problem is to
find an (h-hop) broadcast set of minimum size. Observe that if p ∈ Δ then (p, q) is an
edge in Gρ if and only if the disks of radius 1/2 centered at p and q intersect. Hence,
if all points are active then GΔ is the intersection graph of a set of congruent disks or,
in other words, a unit disk graph. Because of their relation to wireless networks, unit
disk graphs have been studied extensively [2,3].

For more information on the broadcast problem’s relation to wireless networks,
please see the introduction of the companion paper [1].

Let D be a set of congruent disks in the plane, and let GD be the unit disk graph
induced by D. A broadcast tree on GD is a rooted spanning tree of GD. To send a
message from the root to all other nodes, each internal node of the tree has to send
the message to its children. Hence, the cost of broadcasting is related to the internal
nodes in the broadcast tree. A cheapest broadcast tree corresponds to a minimum-size
connected dominating set on GD, that is, a minimum-size subset Δ ⊂ D such that the
subgraph induced by Δ is connected and each node in GD is either in Δ or a neighbor
of a node inΔ. The broadcast problem is thus equivalent to the following: given a unit
disk graph GD with a designated source node s, compute a minimum-size connected
dominating setΔ ⊂ D such that s ∈ Δ. The Connected Dominating Set problem
is recognized as a fundamental problem for wireless network design, see the survey
[4].

Given an algorithm for the broadcast problem, one can solve Connected Dom-

inating Set in Unit Disk Graphs by running the algorithm n times, once for each
possible source point. (In fact, we only need to run the algorithm dmin+1 times, where
dmin is the minimum degree of any vertex in the graph, since it suffices to try v and
each of its neighbors as the source.) Consequently, hardness results for Connected
Dominating Set in Unit Disk Graphs can be transferred to the broadcast problem,
and algorithms for the broadcast problem can be transferred to Connected Domi-

nating Set in Unit Disk Graphs at the cost of an extra linear factor in the running
time. It is well known that Dominating Set and Connected Dominating Set are
NP-hard, even for planar graphs [5], and they remainNP-hard in unit disk graphs [6,7].
For any fixed d, both problems can be solved in 2O(n1−1/d ) time in unit balls graphs of
R
d , and even in more general intersection graphs [8]; this running time is tight under

ETH. The parameterized complexity of Dominating Set in Unit Disk Graphs has
also been investigated: Marx [9] proved that it is W[1]-hard when parameterized by
the size of the dominating set, and De Berg et al.[10] showed that for most natural
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geometric intersection graphs (including unit disk graphs), Dominating Set is con-
tained in W[1]. (The definition of W[1] and other parameterized complexity classes
can be found in the book by Flum and Grohe [11].)

1.1 Our Contributions

We give lower bounds for the broadcast problem inside a strip of width w. Together
with the companion paper [1], we get an almost complete dichotomy for the width
parameter, both for the general and for the hop-bounded version of the problem.

Our first lower bound result investigates the parameterized complexity of Con-
nected Dominating Set in unit disk graphs, where the parameter k is the size of
the solution set. We show that the problem isW[1]-complete. The proof is discussed in
Sect. 2. It is a reduction from Grid Tiling based on ideas by Marx [9]. The running
time lower bound is based on the Exponential Time Hypothesis (ETH) [12].

Theorem 1 The broadcast problem and Connected Dominating Set in Unit Disk
Graphs are W[1]-complete when parameterized by the solution size. Moreover, there
is no f (k)no(

√
k) algorithm for these problems, where n is the number of input disks

and k is the size of the solution, unless ETH fails.

As seen in Remark 2 of [1], this lower bound is tight: there is a Connected Domi-

nating Set algorithm for unit disk graphs with running time nO(
√
k).

If we consider the same construction inside a strip, we immediately get that the
nO(w) dynamic-programming algorithm for broadcasting in strips of width w (given
in Part I of this paper) is likely best possible. The obtained lower bound is f (w)nΩ(w),
conditional on ETH.

Interestingly, the h-hop broadcast problem has no such algorithm (unless P = NP)
by our second main theorem.

Theorem 2 The h-hop broadcast problem is NP-complete in strips of width 40.

Some of the gadgets in this intricate construction are simple variations of the gadget
we needed for the W[1]-hardness proof in Theorem 1.

Our reduction is a polynomial reduction from 3-SAT. Given a formula with n vari-
ables and m clauses, it generates an instance with O(n3m) disks, where the minimum
distance between neighboring disk centers isΩ(1/n), but the centers need to be defined
up to a precision of Θ(n−2). The running time of the reduction is proportional to the
number of generated disks, O(n3m), and the size of the minimum broadcast set is also
k = Θ(n3m). The value of h in our construction is O(n2m).

1.2 RelatedWork

TheGrid Tiling problem has been a useful basis for geometric reductions in the past
decade. It was used forW[1]-hardness results of Independent Set and Dominating
Set in unit disk graphs [9,13]. A variant has been useful in getting lower bounds
for approximation schemes [14], but mostly it has been used to get lower bounds on
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Fig. 1 Grid Tiling example
with k = 3; a solution is
highlighted. The goal is to find a
ua,b ∈ Ua,b for each
(a, b) ∈ [k] × [k] so that
horizontal/(vertical) neighbors
share their first/(second)
coordinate

(1, 4)
(2, 1)
(3, 4)

U1,1 =
(1, 4)

(2, 5)

(3, 1)

(1, 1)

(3, 5)

(1, 4)

(3, 1)
U2,1 =

(1, 1)

(2, 4)

(1, 4)

(2, 5)

(5, 4)

U3,1 =
(1, 4)

(5, 1)

(5, 2)

(1, 4)

(2, 5)

(5, 5)

U1,2 =

U2,2 =

U3,2 =

U1,3 =

U2,3 =

U3,3 =

(3, 5)

(1, 4)
(2, 1)
(1, 5)
(3, 5)

exact computation. Grid Tiling has also been extended to higher dimensions [15],
and successfully used to establish lower bounds for coloring unit disk and unit ball
graphs [16]. Most recently, it has been used to study the parameterized complexity of
Steiner Tree in planar graphs [17,18]. The problem is also starting to be applied
outside the strictly geometric setting: in computational topology [19] and for studying
H -free graphs [20].

Our Theorem 2 is using gadgetry similar to other reductions in geometric intersec-
tion graphs, but it is ultimately a more standard reduction from the 3-SAT problem. It
can be regarded as a strengthening of [21], where the authors show NP-hardness for
a version of h-hop broadcast where there is no restriction to a strip, and instead of a
single source vertex s there can be a set S of sources given with the input.

2 A Parameterized Look at CONNECTED DOMINATING SET in Unit
Disk Graphs

In this section we prove that Connected Dominating Set in Unit Disk Graphs is
W[1]-hard parameterized by the solution size; our proof heavily relies on the proof of
theW[1]-hardness of Dominating Set in Unit Disk Graphs by Marx [9].

2.1 Sketch of the Construction byMarx forDOMINATING SET in Unit Disk Graphs

Marx uses a reduction from Grid Tiling, see the book [13] (note that in [9] the Grid
Tiling problem is not stated explicitly). In a Grid Tiling instance we are given an
integer k, an integer n, and a collection S of k2 non-empty sets Ua,b ⊆ [n] × [n] for
1 � a, b � k. The goal is to select an element ua,b ∈ Ua,b for each 1 � a, b � k such
that
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Fig. 2 a The construction by Marx. b The idea behind our construction

– If ua,b = (x, y) and ua+1,b = (x ′, y′), then x = x ′.
– If ua,b = (x, y) and ua,b+1 = (x ′, x ′), then y = y′.

One can picture these sets in a k × k matrix: in each cell (a, b), we need to select a
representative from the set Ua,b so that the representatives selected from horizontally
neighboring cells agree in the first coordinate, and representatives from vertically
neighboring sets agree in the second coordinate (see Fig. 1).

Marx’s reduction places k2 gadgets, one for each Ua,b. A gadget contains
16 blocks of disks, labeled X1,Y1, X2,Y2, . . . , X8,Y8, that are arranged along
the edges of a square—see Fig. 2a. Initially, each block X� contains n2 disks,
denoted by X�(1), . . . , X�(n2) and each block Y� contains n2 + 1 disks denoted by
Y�(0), . . . ,Y�(n2). The argument j of X�( j) can be thought of as a pair (x, y) with
1 � x, y � n for which f (x, y) := (x −1)n+ y = j . Let f −1( j) = (ι1( j), ι2( j)) =
(1 + � j/n�, 1 + ( j mod n)). For the final construction, in each gadget at position
(a, b), delete all disks X�( j) for each � = 1, . . . , 8 and (ι1( j), ι2( j)) /∈ Ua,b. This
deletion ensures that the gadgets represent the corresponding set Ua,b. The construc-
tion is such that a minimum dominating set uses only disks in the X -blocks, and that
for each gadget (a, b) the same disk X�( j) is chosen for each 1 � � � 8. This choice
signifies a specific choice ua,b = (x, y). To ensure that the choice for ua,b in the
same row and column agrees on their first and second coordinate, respectively, there
are special connector blocks between neighboring gadgets. The connector blocks are
denoted by A, B,C and D in Fig. 2a, and they each contain n+1 disks—see Sect. 2.3
for further details.

2.2 Overview of Our Construction forCONNECTED DOMINATING SET in Unit
Disk Graphs

To extend the construction to Connected Dominating Set in Unit Disk Graphs,
we have to make sure there is a minimum-size dominating set that is connected.
This requires two things. First, we must add new disks inside the gadgets—that
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is, in the empty space surrounded by the X - and Y -blocks—to guarantee a con-
nection between all chosen X�( j) disks without interfering with the disks in the
Y -blocks. Second, we need to connect all the different gadgets. This time, in addi-
tion to avoiding the Y -blocks, we also need to avoid interfering with the connector
blocks.

The idea is as follows. Inside each gadget we add several pairs of disks, consist-
ing of a parent disk and a leaf disk. The parent disks are placed such that, for any
choice of one disk from each of the X -blocks, the parent disks together with the
eight chosen disks from the X -blocks form a connected set. Moreover, the parent
disks do not intersect any disk in a Y -block. See Fig. 2b for an illustration; the parent
disks are blue in the figure. For each parent disk we add a leaf disk—the red disks
in the figure—that only intersects its parent disk. The following is a key observa-
tion.

Observation 3 There is a minimum dominating set which contains all parent disks.

Proof Since the leaf needs to be dominated, either it or its parent needs to be in any
given dominating set D. Note that if the leaf is in D but its parent is not, then they can
be exchanged; the resulting set is not larger than D and it is dominating. 	


This observation can be used to show that any canonical minimum dominating set
in our construction is connected.

In Fig. 2b we used disks of different sizes. Unfortunately this is not allowed, which
makes the construction significantly more tricky. To be able to place the pairs in a
suitable way, we need to create more space inside the gadget. To this end we use a
gadget consisting of 16 (instead of eight) X - and Y -blocks. This will also give us
sufficient space to put parent–leaf pairs in between the gadgets, so the dominating
sets from adjacent gadgets are connected through the parent disks. Thus the size of
a minimum connected dominating set in the new construction is equal to the size
of a minimum dominating set in the old construction plus the number of parent
disks. Hence, we can decide if the Grid Tiling instance has a solution by check-
ing the size of the minimum connected dominating set in our construction. Thus
Connected Dominating Set in Unit Disk Graphs is W[1]-hard, and the reduction
together with the the Exponential Time Hypothesis (ETH) yields the desired lower
bound.

To review our construction, we need to delve into some of the details of the con-
struction in [9].

2.3 Some Details of the Construction in [9]

In every block, the place of each disk center is defined with regard to the midpoint of
the block, (x(z), y(z)). The center of each circle is of the form (x(z)+αε, y(z)+βε)

where x(z), y(z), α and β are integers, and ε > 0 a small constant. We say that the
offset of the disk centered at (x(z)+αε, y(z)+βε) is (α, β). Note that |α|, |β| � n2+1,
and ε < n−3, so the disks in a block all intersect each other. The offsets of X and
Y -blocks are defined as follows.

123



Algorithmica (2019) 81:2963–2990 2969

offset(X1( j)) = ( j,−ι2( j)) offset(Y1( j)) = ( j + 0.5, j + 0.5)
offset(X2( j)) = ( j, ι2( j)) offset(Y2( j)) = ( j + 0.5,−n)

offset(X3( j)) = (−ι1( j),− j) offset(Y3( j)) = ( j + 0.5,− j − 0.5)
offset(X4( j)) = (ι1( j),− j) offset(Y4( j)) = (−n,− j − 0.5)
offset(X5( j)) = (− j, ι2( j)) offset(Y5( j)) = (− j − 0.5,− j − 0.5)
offset(X6( j)) = (− j,−ι2( j)) offset(Y6( j)) = (− j − 0.5, n)

offset(X7( j)) = (ι1( j), j) offset(Y7( j)) = (− j − 0.5, j + 0.5)
offset(X8( j)) = (−ι1( j), j) offset(Y8( j)) = (n, j + 0.5)

We remark some important properties. First, two disks can intersect only if they are
in the same or in neighboring blocks. Consequently, one needs at least eight disks to
dominate a gadget. The second important property is that disk X�( j) dominates exactly
Y�( j), . . . ,Y�(n2) from the “previous” block Y�, and Y�+1(0), . . . ,Y�+1( j − 1) from
the “next” block Y�+1. This property can be used to prove the following key lemma.

Lemma 4 (Lemma 1 of [9]) Assume that a gadget is part of an instance such that none
of the blocks Yi are intersected by disks outside the gadget. If there is a dominating set
Δ of the instance that contains exactly 8k2 disks, then there is a canonical dominating
set Δ′ with |Δ′| = |Δ|, such that for each gadget G, there is an integer 1 � jG � n
such that Δ′ contains exactly the disks X1( jG), . . . , X8( jG) from G.

In the gadget Ga,b, the value j defined in the above lemma represents the choice
of sa,b = (ι1( j), ι2( j)) in the grid tiling problem. Our deletion of certain disks in X -
blocks ensures that (ι1( j), ι2( j)) ∈ Ua,b. Finally, in order to get a feasible grid tiling,
gadgets in the same row must agree on the first coordinate, and gadgets in the same
column must agree on the second coordinate. These blocks have n + 1 disks each,
with indices 0, 1, . . . , n. We define the offsets in the connector gadgets the following
way.

offset(A j ) = (− j − 0.5,−n2 − 1) offset(Bj ) = ( j + 0.5, n2 + 1)
offset(C j ) = (n2 + 1,−ι2( j)) offset(Dj ) = (−n2 − 1, ι2( j))

Using this definition, it is easy to prove the following lemma.

Lemma 5 Let Δ be a canonical dominating set. For horizontally neighboring gadgets
G and H representing jG and jH , the disks of the connector block A are dominated
if and only if ι1( jG) � ι1( jH ); the disks of B are dominated if and only if ι1( jG) �
ι1( jH ). Similarly, for vertically neighboring blocks G ′ and H ′, the disks of block C
are dominated if and only if ι2( jG ′) � ι2( jH ′); the disks of D are dominated if and
only if ι2( jG ′) � ι2( jH ′).

With the above lemmas, the correctness of the reduction follows. A feasible grid
tiling defines a dominating set of size 8k2: in gadget Ga,b, the dominating disks are
X�

(
f (ua,b)

)
, � = 1, . . . , 8. On the other hand, if there is a dominating set of size

8k2, then there is a canonical dominating set of the same size that defines a feasible
grid tiling.

123



2970 Algorithmica (2019) 81:2963–2990

Y6 Y6 Y5 Y5

Y4

Y4

Y3

Y3Y2Y2Y1Y1

Y8

Y8

Y7

Y7 Y6 Y6 Y5 Y5

Y4

Y4

Y3

Y3Y2Y2Y1Y1

Y8

Y8

Y7

Y7

Y6 Y6 Y5 Y5

Y4

Y4

Y3

Y3Y2Y2Y1Y1

Y8

Y8

Y7

Y7Y6 Y6 Y5 Y5

Y4

Y4

Y3

Y3Y2Y2Y1Y1

Y8

Y8

Y7

Y7

X6

X7

X1

X4

X6

X7

X1

X4

X6

X7

X1

X4

X6

X7

X1

X4

X5

X8

X2

X3

X5

X8

X2

X3

X5

X8

X2

X3

X5

X8

X2

X3

X6

X7

X1

X4

X6

X7

X1

X4

X6

X7

X1

X4

X6

X7

X1

X4

X5

X8

X2

X3

X5

X8

X2

X3

X5

X8

X2

X3

X5

X8

X2

X3

B

A

B

A

C D C D

Fig. 3 Connecting neighboring gadgets

2.4 Gadgetry of OurCONNECTED DOMINATING SET Construction

To extend the construction to Connected Dominating Set in Unit Disk Graphs,
we want to make sure that minimum-size dominating set is connected. This requires
two things. First, we must add new disks “inside” the gadgets—that is, in the empty
space surrounded by the X and Y -blocks—such that a canonical minimum dominating
set includes some new disks that connect the chosen X�( j) disks without interfering
with disks in the Y -blocks. Second, we need to connect all the different gadgets. This
time in addition to avoiding the Y -blocks, we also need to avoid interfering with the
connector blocks.

In order to have enough space, our gadgets contain 16 X -blocks and 16 Y -blocks
instead of eight. The offsets of disks inside the blocks are not modified: we use the
same building blocks. Figure 3 shows how we arrange these blocks, and depicts the
connector block placement.

The analogue of Lemmas 4 and 5 are true here; we have a construction that could
be used to prove the W[1]-hardness of Dominating Set in Unit Disk Graphs, with
canonical sets of size 16k2, that contain one disk from each X -block and X ′-block.We
extend this construction with parent–leaf pairs so that we have canonical dominating
sets that span a connected subgraph.

We are going to add 72 extra disks to every gadget, and 4 “connector” disks between
every pair of horizontally or vertically neighboring gadgets, resulting in canonical
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Fig. 4 Circles in a block. The
squares intersect every disk in
the block

Fig. 5 Connecting horizontally
neighboring gadgets

Y ′
4

X ′
3

Y ′
3 Y8

X ′
8

Y ′
8

A

T1

U1

T2

U2

dominating sets of size 16k2 + 36k2 + 4k(k − 1) = 56k2 − 4k (Note that only the
parent disks are included in the canonical set). In other words, the new construction
has a connected dominating set of size 56k2 − 4k if and only if there is a feasible grid
tiling.

An important property of the blocks that we use is that for a small enough value
ε, the boundaries of the disks in a block all lie inside a small width annulus - for this
reason, the blocks in our pictures are depicted with thick boundary disks. In order for
a parent disk p to intersect every disk in a block it is sufficient if the boundary of p
crosses this annulus.

Inside any of the blocks, all offsets are in the rectangle with bottom left (−n2 −
1,−n2 − 1) and top right (n2 + 1, n2 + 1). Consequently, every disk in the block with
center offset (α, β) where |α|, |β| ∈ {0, . . . , n2 +1} intersects the square with bottom
left

(
(−n2 − 1)ε, 1 − (n2 + 1)ε

)
and top right

(
(n2 + 1)ε, 1 + (n2 + 1)ε

)
. There are

three similar squares that also have this property, which we can get by rotating the
square around the midpoint of the block by 90, 180 and 270 degrees. Consequently, a
unit disk that contains such a square intersects all the disks in the given block. For an
example with n = 3 and ε = 0.02 for the block X2, see Fig. 4.
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Fig. 6 Left: The circles in the center of every gadget; right: placement inside a gadget

(2 − δ, 2 − δ)

p1

(2 − δ, 3 − δ)

�1

(4 − δ − ξ, 2 + δ)

p2

(4 − δ − ξ, 2 + 2δ)
�2

(6 − δ − 2ξ, 2 − δ)

p3

(6 − δ − 2ξ, 2 + 5δ)

�3

(8 − δ − 3ξ, 2 + δ)

p4

(8 − δ − 3ξ, 2 + 2δ)
�4

Fig. 7 The zig-zag arrangement: the first four parent–leaf pairs that connect a side to the center of the gadget

2.4.1 Connecting Neighboring Gadgets

For a pair of horizontally neighboring gadgets, we add two pairs of disks that connect
X ′
3 from the left gadget to X ′

8 in the right gadget. This arrangement is depicted in
Fig. 5. The parent disk with center T1 intersects every disk in the block X ′

3 of the left
gadget, and the other parent intersects every disk in the block X ′

8. The two leaf disks
(red disks in the figure) only intersect their parent. Let the origin be the center of the
block X ′

3 in the left gadget. The coordinates for the disk centers are:

T1 = (1.3, 0.4) U1 = (2, 1.55)

T2 = (2.7,− 0.4) U2 = (2,− 1.55)

We use a rotated version of these four disks for vertical connections, where the
parents connect X ′

5 from the upper gadget and X ′
2 from the lower gadget.
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Fig. 8 Connecting one side to the middle

2.4.2 Disks Inside Gadgets

We begin by adding eight disk pairs to the center. The parents are arranged in the
vertices and edge midpoints of a square, touching the neighbors. There are four parent
disks whose leaf is placed towards the center of the gadget, leaving the portion of their
boundary that faces the X - and Y -blocks available for connecting to further parent
disks. See Fig. 6 for a picture: the corresponding leaf disks are displayed using a fill
pattern of parallel lines.

Let δ > 0 be a small constant to be specified later. From now on, we fix the origin
in the center of the bottom left block, Y7. The disks that are placed in the middle of
the gadget have their centers defined below; in each pair we specify the coordinates
of a parent and its leaf.

(6, 6), (6 − δ, 6) (8, 6), (8, 6 + 4δ) (10, 6), (10, 6 − δ) (10, 8), (10 − 4δ, 8)
(10, 10), (10, 10 + δ) (8, 10), (8, 10 − 4δ) (6, 10), (6, 10 + δ) (6, 8), (6 + 4δ, 8)

In order to connect the X -blocks, we add parent disks that together connect
X7, X6, X ′

6, X
′
5 to the center; rotated versions of these parent disks will allow us

to connect all X -blocks to the center. For this purpose, we are going to use a zigzag
pattern of disks. The first parent disk intersects all disks in X6 and X7 (i.e., it contains
the small squares of X6 and X7 that are facing the inside of the gadget). The second
parent is above the block Y6, but it is disjoint from it. The next with center p3 intersects
all disks in X ′

6, and the disk around p4 is disjoint from the disks in Y ′
6. Finally, the

disk around p5 intersects all disks in X ′
5. See Fig. 7 for an example. The leafs follow a

more complicated pattern. In our zigzag pattern, two neighboring parents touch each
other. We need the centers to have distance 2δ along the y-axis, so the distance along
the x-axis is

√
4 − 4δ2. Let ξ = 2 − √

4 − 4δ2. Note that

2 − δ2 − δ4 <
√
4 − 4δ2 < 2 − δ2,
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so δ2 < ξ < δ2+δ4.Weadd twomoredisk pairs to this pattern, and somemodifications
to the leafs. These seven disk pairs are depicted in Fig. 8. Each pair consists of a parent
centered at pi and a leaf centered at �i ; their coordinates are defined as follows.

p1 = (2 − δ, 2 − δ) �1 = (2 − δ, 3 − δ)

p2 = (4 − δ − ξ, 2 + δ) �2 = (4 − δ − ξ, 2 + 2δ)

p3 = (6 − δ − 2ξ, 2 − δ) �3 = (6 − δ − 2ξ, 2 + 5δ)

p4 = (8 − δ − 3ξ, 2 + δ) �4 = (8 − δ − 3ξ, 2 + 2δ)

p5 = (10 − δ − 4ξ, 2 − δ) �5 = (11, 2 − δ)

p6 = (10 − δ − 4ξ, 4 − δ) �6 = (11, 4)

p7 = (8, 4 + 3δ) �7 = (7, 4 + 3δ)

By analyzing the coordinates carefully, it can be verified that only the intended
intersections arise among these seven disk pairs and the central eight disk pairs. Also
not that the seven disk pairs are disjoint from the segment (12+ δ/2, 1)(12+ δ/2, 5)
and also from the segment on egets by rotating this by 90 degrees around (8, 8), namely
(1, 4 − δ/2)(5, 4 − δ/2).

Our final gadget can be attained by rotating the above seven disk pairs around the
center (8, 8) by 90, 180 and 270 degrees: see Fig. 9. We added the spanned edges of
a canonical dominating set to this picture.

We can now finish the proof of Theorem 1.
A feasible grid tiling defines k2 values ua,b for (a, b) ∈ [k]×[k]. We can use this to

define 16k2 disks in our blocks. Recall that f is the function assigning pairs of integers
to a single index: for 1 � x, y � n, f (x, y) = (x − 1)n + y. In the gadget with index
(a, b), we include the disks X�

(
f (ua,b)

)
and X ′

�

(
f (ua,b)

)
for all � = 1, . . . , 8. We

add all parent disks of the construction, this results in a connected dominating set of
size 56k2 − 4k. In the other direction, if there is a connected dominating set of size
56k2 − 4k, then there is a canonical dominating set of the same size, whose disks
inside X -blocks and X ′-blocks define a feasible grid tiling. Thus, it is sufficient to
prove that the intersection patterns are as described.

It can be verified using the coordinates that our final leaf disks only intersect their
parent disk, and also that the parent disks form a connected subgraph both inside
gadgets and at every connection. We need to show that the parents inside the gadget
connect all the X -blocks of the gadget, and that the horizontal and vertical connectors
intersect the two X -blocks that they need to connect. In all of these cases, it is sufficient
to show that the parent disk contains one of the four squares that we associated with
each block. For connector disks, it is easy to see that the center of one of the four
squares is covered by the interior of the corresponding parent disk (i.e., the square
around (1, 0) is contained in the interior of disk(T1)). By choosing a small enough
value for ε, the square is contained in the parent disk.

For the inner connections of gadgets, it is sufficient to show that the inner squares
of X7, X6, X ′

6 and X ′
5 are contained in disk(p1), disk(p1), disk(p3) and disk(p5)

respectively: the other sides have the same containments since the rotation around
(8, 8) by 90, 180 and 270 degrees are automorphisms on the small squares.
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Fig. 9 A gadget in the final construction. The dashed lines are spanned edges of a canonical dominating set

Concentrating on disk(p1) now, notice that p1 = (2 − δ, 2 − δ) contains the right
hand side square of X7 if and only if it contains the top square of X6 by the symmetry
on the line x = y. Furthermore, observe that p1 and the center of the top square of X6
are closer to each other than p3 and the center of the top square of X ′

6, which are in
turn closer than p5 and the center of the top square of X ′

5. (This follows from the fact
that the differences in y-coordinates are the same but are increasing in x-coordinates.)
Therefore, if we can show that disk(p5) contains the top square of X ′

5, than all the
other desired intersection must also be present. The farthest corner of this square from
p5 is

(
10 + (n2 + 1)ε, 1 − (n2 + 1)ε

)
. Let ε < 1

2n3
and δ < 1. The distance squared

from p5 has to be at most 1:

(
10 − δ − 4ξ − (10 + (n2 + 1)ε)

)2 +
(
2 − δ − (1 − (n2 + 1)ε)

)2

<

(
δ + 4δ2 + δ4 + 1

n

)2

+
(
1 − δ + 1

n

)2
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= 1 − 2δ + 4

n
+ O

(
δ

n

)
+ O(δ2)

Let δ = 1√
n
. For n large enough,

1 − 2δ + 4

n
+ O

(
δ

n

)
+ O(δ2) = 1 − 2√

n
+ 4

n
+ O

(
1

n
√
n

)
+ O

(
1

n

)
< 1.

Since δ > 1/n > (n2 + 1)ε, we can also observe that p2 and p4 are disjoint from
the y-blocks, since their projection on the y-axis is disjoint from the projection of the
top squares of these blocks.

Note that the coordinates of each point can be represented with O(log n) bits,
since a precision of c/n4 is sufficient for the construction. Since Grid Tiling has no
no(k) algorithm under ETH and the above is a parameterized reduction leading to a
parameter 16k2, there can be no no(

√
k) algorithm for Connected Dominating Set

in Unit Disk Graphs unless ETH fails. Finally, the containment in W[1] is a simple
consequence of the proof for Dominating Set in Unit Disk Graphs in [10]. The key
point of that proof is that a dominating set can be verified with a tail-deterministic
machine; in our case, we only need to add a connectivity check on the solution set
to the end of the Dominating Set verifier program. This concludes the proof for
Connected Dominating Set. To prove W[1]-hardness and the same lower bound
for the broadcast problem, we can let one of the blue parent disks be the source disk:
in this way, the minimum broadcast sets equal the minimum connected dominating
sets. Finally, the containment in W[1] needs an extra check that the source s is in the
set. This concludes the proof of Theorem 1. 	


Since the whole construction fits in a strip of width w = O(k), we also get the
following corollary.

Corollary 6 The broadcast problem in strips is W[1]-hard parameterized by the strip
width w. Moreover, there is no f (w)no(w) algorithm for it, unless the Exponential
Time Hypothesis fails.

3 The Hardness of h-Hop Broadcast inWide Strips

The goal of this section is to prove Theorem 2.
Our reduction is from 3-SAT. Let x1, x2, . . . xn be the variables and let C1, . . . ,Cm

be the clauses of a 3-CNF formula. Note that in the construction we are using two
types of wires to transport information called tapes and strings, as we will define later
formally.

3.1 Proof Overview

Figure 10 shows the structural idea for representing the variables, which we call the
base bundle. It consists of (2h−1)n+1 points, arranged as shown in the figure, where
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Fig. 10 The gadget representing the variables. The red paths form the x3-string (Color figure online)

Fig. 11 Disk pairs of a string

h is an appropriate value. The distances between the points are chosen such that the
graph G, which connects two points if they are within distance 1, consists of the edges
in the figure plus all edges between points in the same level. (The level of a point
is its distance from the source in the unit disk graph corresponding to the complete
construction.) Thus (except for the intra-level edges, which we can ignore) G consists
of n pairs of paths, one path pair for each variable xi . The i-th pair of paths represents
the variable xi , and we call it the xi -string (see Fig. 11). By setting the target size, K ,
of the problem appropriately, we can ensure the following for each xi : any feasible
solution must use either the top path of the xi -string or the bottom path, but it cannot
use points from both paths. Thus we can use the top path of the xi -path to represent
a true setting of the variable xi , and the bottom path to represent a false setting. A
group of consecutive strings is called a bundle.

The clause gadgets all start and end in the base bundle, as shown in Fig. 12. The
gadget to check a clause involving variables xi , x j , xk , with i < j < k, roughly works
as follows; see also the lower part of Fig. 12, where the strings for xi , x j , and xk are
drawn in red, blue, and green respectively.

First we split off the top i − 1 strings from the base bundle, by letting the top i − 1
strings of the base bundle turn left (in Fig. 12 this bundle consists of two strings).
We then separate the xi -string from the base bundle, and route the xi -string into a
branching gadget. The branching gadget creates a branch consisting of two tapes—
this branch will eventually be routed to the clause-checking gadget—and a branch
that returns to the base bundle. Before the tapes can be routed to the clause-checking
gadget, they have to cross each of the first i − 1 strings. For each string that must be
crossedwe introduce a crossing gadget. A crossing gadget lets the tapes continue to the
right, while the string being crossed can return to the base bundle. The final crossing
gadget turns the tapes into a side string that can now be routed to the clause-checking
gadget. The construction guarantees that the side string for xi still carries the truth
value that was selected for the xi -string in the base bundle. Moreover, if the true path
(resp. false path) of the xi -string was selected to be part of the broadcast set initially,
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Fig. 12 The overall construction, and the way a single clause is checked. Note that in this figure each string
(which actually consists of two paths) is shown as a single curve. The figure corresponds to a clause with
i = 2 (red), j = 3 (blue) and k = 5 (green) (Color figure online)

then the true path (resp. false path) of the rest of the xi -string that return to the base
bundle must be in the minimum broadcast set as well.

After we have created a side string for xi , we create side strings for x j and xk in a
similar way (See Fig. 12). The three side strings are then fed into the clause-checking
gadget. The clause-checking gadget is a simple construction of four points. Intuitively,
if at least one side string carries the correct truth value—true if the clause contains
the positive variable, false if it contains the negated variable—, then we activate a
single disk in the clause check gadget that corresponds to a true literal. Otherwise we
need to change truth value in at least one of the side strings, which requires an extra
disk.

The final construction contains Θ(n3m) points that all fit into a strip of width 40.
In order to simplify our discussion and figures, we scale the input such that a can

broadcast to b if their unit disks intersect (or equivalently, if their distance is at most 2).

3.2 Handling Strings and Bundles

We start the initial bundle directly from the source, and end each string with a disk that
intersects the last true and false disk of the given variable, as already seen in Fig. 10.
(A true disk is a disk on a true path, a false disk is a disk on a false path.) A
minimum-size solution of this bundle contains the source disk and true or false disks
from each of the true–false disk pairs in all the strings. In the final construction, once
all the clause checks are done and the strings have returned to the bottom bundle,
we are going to add some extra levels so that the h-hop restriction does not interfere
with the last side strings. (This can be done by for example doubling the maximum
distance of a side string ending from s.) The disks of a given level in a bundle lie on
the same vertical line, at distance 1

2n from each other, so for a bundle containing all
the variables, the disk centers on a given level fit on a vertical segment of length 1,
and the whole bundle fits within width 3.
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Fig. 13 A turn of 90 deg in a side
string or string outside a bundle
using constant horizontal space

Fig. 14 Splitting the top 2 strings off a bundle of 4 strings: we peel the top layers one by one

Bundled strings are in lockstep, i.e., a pair of intersecting disks in the bundle that
are not in the same string and truth value are on the same level.We call this the lockstep
condition.

Next, we describe some important aspects of handling strings, bundles and side
strings. First, we show that we can do turns with strings in constant horizontal space,
and do turns in bundles in polynomial horizontal space. An example of a string turn
can be seen in Fig. 13.

This turning operation can be used on the top string of a bundle to “peel” off strings
one by one and unify them later in a new bundle, see Fig. 14. This is how we can split
and turn a bundle: we peel and turn the strings one by one. Notice that the lockstep
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condition is upheld both in the bottom and top bundle. It requires O(n) extra horizontal
space and O(n2) disks to split a bundle with this method.

If we were to return the strings one by one to the bottom bundle without correction
as depicted in Fig. 12, the returning strings would be at a larger hop distance from the
source compared to the strings of the bottombundlewith the same x-coordinates, so the
new unified bundle would violate the lockstep condition. To avoid this issue, we use a
correction mechanism.We have some room to squeeze bundle levels horizontally. The
largest horizontal distance between neighboring levels is 2; for the smallest distance,
we need to make sure that a disk does not intersect other disks from neighboring levels
other than the disks in the same string with the same truth value. So the horizontal

distance has to be at least 2
√
1 − ( 1

4n

)2
< 2− 1

15n2
. Thus, if we have 15n2 compressed

levels in a bundle, then they take up the same horizontal space as 15n2 − 1 maximum
distance levels.

Note that for each extracted side string, it is sufficient to apply the correction
mechanism O(1) times (i.e., to gain O(1) steps) since the strings returning to the
bundle are shifted by the same number of levels. Therefore the correction mechanism
addsΘ(n2) levels to the construction for each side string. There areΘ(m) side strings,
so we getΘ(n2m) levels from this source. Also note that for the correctionmechanism
to function, we require that the coordinates are specified up to an error of O(n−2).

A detour of a string (peeling off, going through a gadget, returning to the bottom
bundle) requires a constant number of extra levels to achieve, we can compensate for
this with the addition of a polynomial number of extra disks. Before a string peels off
from the top bundle downward to rejoin the bottom bundle, we add 15n2k compressed
levels to the top bundle and (15n2−1)kmaximumdistance levels to the bottombundle,
if the total number of extra levels added by turning up, going through the gadget and
turning down is k. This ensures that the lockstep condition is upheld in the bottom
bundle after the return of this string. For each string that leaves the bottom bundle and
later returns, we use this correction mechanism. Overall, this correction mechanism
is invoked a polynomial number of times, so requires a polynomial number of disks.

3.3 Tapes

Our tapes consist of switches: a tape switch is a collection of three disks, the centers
of which lie on a line at distance ε apart—so it is isometric to the old connector blocks
A, B,C and D for the case “n”= 2 (see Sect. 2). Denote the three disks inside a tape
switch T k by δk1, δ

k
2 and δk3. We can place multiple such switches next to each other to

form a tape. An example is depicted in Fig. 15.
The tapes always connect blocks in which disks have truth values assigned, e.g.,

the end of a string or disks of a gadget block. Denote the starting true and false disks
by F and the ending true and false disks by G. We say that a set of tape switches
T 1, T 2, . . . , T p forms a tape from F to G if it satisfies the following conditions.

– In the first switch, δ11 intersects both the true and false disk(s) of F , δ12 intersects
the true disk(s) of F , and δ13 is disjoint from both the true and false disk(s).

– δki intersects the disk δk+1
j if and only if j � i (k = 1, . . . , p − 1).
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Fig. 15 Tape switches connecting two true–false disk pairs and the corresponding subgraph

– In the last switch, δ p1 is disjoint from G, δ p2 intersects the false disk(s) of G, and
δ
p
3 intersects both the true and false disk(s).

– Non-neighboring tape switches are disjoint, F is disjoint from all switches except
the first, and G is disjoint from all switches except the last.

We would like to examine the active disks of a tape within a minimum broadcast
set. We say that a switch is empty if it has no active disks.

Lemma 7 Let T be a tape from F to G that has p tape switches. Every h-hop broadcast
set contains at least p−1 disks from the tape. If a broadcast set contains exactly p−1
disks, then it cannot happen that the active disk in F is a false disk and the active disk
in G is a true disk.

Proof Let the tape switches be T 1, T 2, . . . , T p. If there are at most p−2 active disks,
then there are at least two empty switches. These switches have to be neighboring,
otherwise a disk in between the two switches is impossible to reach from the source.
Let these switches be T k and T k+1. All disks in Tk must be reached through the block
F and the switches T 1, . . . , T k−1. Specifically, δk3 has to be reached. The shortest path
to this point from any F-disk requires at least k tape disks. Similarly, the shortest path
from any G-disk to δk+1

1 requires at least p − k disks. Overall, at least p active disks
of the tape are required to reach these disks—this is a contradiction.

If the tape contains p − 1 active disks, then both F and G must contain an active
disk, otherwise there would be a component inside the tape that is not connected to
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the source. Suppose for the purpose of contradiction that the active disks of F are
false and the active disks of G are true. There is at least one tape switch that has no
active disk; let T k be such a switch, where k is as small as possible. Since δk2 has to
be covered, it has to be reached either from F or G.

Suppose that δk2 is reached through F ; this requires k active disks from the tape
switches. We have only p − 1 − k active disks for the rest of the p − k switches
T k+1, . . . , T p, so there has to be another empty tape switch, T � (� > k). As previously
mentioned,we cannot havenon-neighboring empty switches, so the other empty switch
is T k+1. This means that δk3 also has to be dominated from the left side, the shortest
path to which requires k + 1 active tape disks from any false disk of F . This leads to
an additional empty switch among T k+1, . . . , T p. But as shown above, there can be
at most one such switch (T k+1)—we arrived at a contradiction. A similar argument
(actually, it is even slightly easier) works for the case when δk2 is reached from G. 	


3.4 Gadgets and their Connection to Tapes and Strings

3.4.1 Crossing and Branching Gadgets

Our crossing gadget and our branching gadget are almost identical to the one used in
the W[1]-hardness proof of Connected Dominating Set in Unit Disk Graphs.
This gadget can be used to transmit information both horizontally and vertically
simultaneously—this is exactly what we need. Since we only need to transmit truth
values, we take the gadget for “n”= 2, resulting in X blocks with 2 · 2 and Y -blocks
with 2 · 2+ 1 disks. The only change we make in the crossing gadget is that we swap
the X1 and X2 blocks. That is, the new X1 has the same center as X1 had but the
offsets are defined as in X2, and the new X2 has the same center as X2 had but the
offsets are defined as in X1. The modification is necessary for proper connection with
vertical strings.

For the branching gadget, we modify some offsets so that we can transmit the
vertical truth value on the right side of our gadget. For this purpose, we change the
offsets in X3 and X4 the following way.

offset(X3( j)) = (−ι2( j),− j) offset(X4( j)) = (ι2( j),− j)

In case of these horizontal connections, we say that a disk Xk( j) from the block
Xk is a true disk if ι1( j) = 2 and a false disk if ι1( j) = 1. Similarly, for vertical
connections, a disk X�( j) is a true disk if ι2( j) = 2 and a false disk if ι2( j) = 1.

3.4.2 Connecting Gadgets with Tapes and Strings

When connecting branching and crossing gadgets or two crossing gadgets with tapes
horizontally, we are going to add a tape that goes from the X4 (or X4) block of the
left gadget to the X7 block of the right gadget, and a tape that goes from the X8 block
of the right gadget to the X3 (or X3) block of the left gadget. Note that in the W[1]-
hardness proofs, we used the same strategy with tapes consisting of only one switch.
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In this case, we place the first and last switch of each tape at the same location as the
connector block in the proof of Theorem 1, and use some tape switches in between
these, the number of which will be specified later. Note that this placement gives us a
tape that is consistent with the definition of true and false disks in the X -blocks.

In order to connect strings and side strings to the gadgets, we use both tapes and
parent–leaf pairs. Figure 16 depicts a connection to a crossing gadget from the top and
bottom.

We need to connect both “sides” of the string: on the top, we use a tape from X2
to the last string block, and a tape from the last string block to X1. Moreover, in order
to make sure that all the disk pairs of the strings are in use, and the connection is not
maintained through the tapes, we create a short path to the gadget with some disks
that are guaranteed to be in the solution. This path consists of parent and leaf disk
pairs, where all the parents will be inside a canonical solution—we used this technique
before inside the gadgets to ensure gadget connectivity. The string exits the gadget
similarly. Note that the shortest path through the gadget from the string end on the top
to the string end on the bottom has length 18, and its internal vertices are all parent
disks, a disk from X ′

1 and a disk from X ′
5; the paths using any of these tapes are longer.

We use the same type of connection to connect side strings to the right side of the
last crossing gadget (or to the branching gadget, if the current clause contains the first
variable). The complete gadget together with the connections and string turns fits in
50 units of vertical space. (Recall that all distances have been scaled by a factor of
two, so that we have unit radius disks.)

We briefly return to the tape pairs that connect neighboring gadgets. We need to
make sure that the tapes do not provide a shortcut—we want the shortest path from
source to the last level h to be through string blocks, and to go through gadgets as
discussed above. When choosing a tape length, we also need to bridge the distance
between neighboring gadgets. Note that this amount can be polynomial in n because
of the correction mechanism for strings. We add a small detour to make sure that the
shortest path to a gadget that uses a tape is longer than the shortest path that uses
only the string that enters the gadget. It is easy to see that there is enough place for
such a detour: taking twice the amount of switches that would be necessary to cover
the distance is enough. A tape connection between neighboring gadgets is depicted in
Fig. 17. (Note that these tapes need no additional vertical space: they fit easily in the
18 units of vertical space between the gadgets.)

Lemma 8 In a canonical solution, the crossing gadget has the following properties.
The last pair of the vertical string on the top carries the same truth value as the first
pair of the vertical string on the bottom, and there is a path of 18 hops between them
consisting of parent disks, a disk from X ′

1 and a disk from X ′
5. Moreover, the pair of

tapes on the left hand side carry the same value as the pair of tapes on the right hand
side. If the right hand side connects to a side string instead of a pair of tapes, then the
truth value selected in the first pair of the side string is the same as the truth value
carried by the pair of tapes on the left side.

Proof (sketch) A canonical solution contains exactly one active disk from each X -
block, it contains all the parent disks, and has exactly one active disk from each
true–false disk pair of a string. The path of 18 hops can indeed be found through
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Fig. 16 Connecting to a crossing gadget from the top and bottom
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Fig. 17 Connecting neighboring gadgets with tapes

these disks. Regarding the truth values, in a canonical broadcast, we have the disks
X1( j), X2( j), X5( j), X6( j) selected for some j ∈ [n2]. If the last true–false disk
pair on the top is true, then the disk in X1 cannot be false by the properties of tapes,
so ι2( j) = 2. Consequently, X5 is “true”, and therefore the first true–false pair on the
bottom has to be set to true. The pairs of tapes on the right and left hand side carry the
truth value encoded by ι1 just as the connector blocks A and B did in the Connected
Dominating Set construction. If the right hand side connects to a side string, then
notice that in order to get canonical tapes, at least one of the disks in the first pair of
the side string has to be active (as otherwise both of the tapes on the right hand side
would need an extra disk). The truth value carried in this first pair has to equal true if
and only if ι1 = 2 in the gadget. 	


A similar argument yields the following lemma.

Lemma 9 In a canonical solution, the branching gadget has the following properties.
The last pair of the vertical string on the top carries the same truth value as the first
pair of the vertical string on the bottom, and the same as the value carried by the pair
of tapes on the right. If the right hand side connects to a side string instead of a pair
of tapes, then the truth value selected in the first pair of the side string is the same as
the truth value carried by the vertical string. There is a path of 18 hops between the
last pair of the top and the first pair of the bottom string consisting of parent disks, a
disk from X ′

1 and a disk from X ′
5.

3.4.3 The Clause Check Gadget

The clause check gadget is very simple, it contains four well-placed disks: one at the
end of each of the three side strings, and one disk that only intersects the three other
clause check disks. We turn the three side strings towards their corresponding disks
so that the side strings do not interfere with each other. Among the six last disks at the
end of the three side strings only the ones corresponding to the literals of this clause
intersect the gadget. The rest of the side string disks are disjoint from the gadget. See
Figs. 18 and 19 for an example of checking (x2 ∨ x3 ∨ x̄5). The vertical space required
is less than 20 units.

Our complete construction can fit in 80 units of vertical space. Ten units can accom-
modate the lower bundle and turning strings up and down from it; 50 units of vertical
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Fig. 18 Clause check gadget for the clause (x2 ∨ x3 ∨ x̄5)

Fig. 19 The subgraph spanned by the disks of a clause check gadget and its surroundings

space can accommodate the branching and crossing gadgets, along with their con-
nections and tapes. We need ten units for the bundle that goes above the gadgets
(along with the string turns), and finally 20 more for the side strings and the clause
check gadget. Recall that we did a scaling by two to switch to the intersection model
of broadcasting. In the original model of broadcasting, the construction occupies 40
units of vertical space.

In case of a satisfiable formula, we can choose the disks in each side string that
correspond to the value of the variable, and choose a disk from the clause check gadget
that intersects a true literal (at least one of the literals is true in the clause).

This lemma describes the usage of the clause check gadgets and the side strings.
We say that a true–false disk pair is an empty pair if none of its disks are active.

Lemma 10 Let 
 be the number of true–false disk pairs in the three side strings that
correspond to a particular clause checking gadget. An h-hop broadcast set contains
at least 
 + 1 disks from the three side strings and the clause check gadget. Moreover,

123



Algorithmica (2019) 81:2963–2990 2987

if an h-hop broadcast set has exactly 
 + 1 actives among these disks, then the truth
values chosen at the beginning of the side strings satisfy the clause.

Proof We prove the following claim first.

Claim There is an optimal h-hop broadcast set where each side string contains at most
one empty pair.

Proof of Claim Suppose that Uk and U� are two empty pairs in a side string. If they
are not neighboring, then a disk between them is unreachable from the source. So
� = k + 1. Consequently, both disks of Uk are dominated from the start of the side
string, and both disks of Uk+1 are dominated from the end. Since the side string has
length more than four, either k > 2 or k < p − 1. Suppose k > 2, the other case is
similar. The only way to reach both disks in Uk is to have both of the disks in Uk−1
active. Since Uk−1 is also reached from the left, there is an active disk in Uk−2; let its
truth value be v. So we can deactivate the disk in Uk−1 of value ¬v and activate the
disk inUk of value v. This way every disk that has been dominated remains dominated,
and the number of active disks does not increase. (Note that we do not need to worry
about exceeding h hops since h will be chosen large enough to not interfere with side
strings.) 	


Now we show that every h-hop broadcast set includes at least 
 + 1 disks from
these side strings and the clause check gadget. Suppose there is a side string of p pairs
that contains an empty pair Uk , and let v be the truth value of the disk in the last pair
Up. Suppose 2 � k � p − 1; a small variation of the argument applies to the cases
k = 1 and k = p. InUk−1, the disk of value ¬v has to be reached from the beginning
of the string—the shortest path requires at least k − 2 active disks in U1, . . . ,Uk−2.
In Uk+1, the disk of value ¬v has to be reached through the clause check gadget;
this requires that the clause check disk corresponding to this side string is active, and
there are at least p − k side string actives from Uk+1, . . . ,Up, since we also need to
change truth value along the way. Additionally, the disk of value ¬v in Uk has to be
reached from one of the neighboring pairs, requiring Uk−1(¬v) or Uk+1(¬v) to be
active. Overall, either a side string does not contain an empty pair (so it has at least p
disks), or we needed k−2+ (p− k)+1+1 = p active disks from the side string and
the corresponding clause check disk. Moreover, at least one of the three side strings
needs to connect the middle point of the clause check gadget to the source: the shortest
path through a side string of p pairs has p + 1 inner vertices, since it has to include
one disk from each pair of the side string and the clause check disk corresponding to
this side string. Consequently, we need at least 
 + 1 active disks.

Finally, we need to show that if the assignment at the beginning of the side strings
does not satisfy the clause (all literals are false), then we need at least 
 + 2 active
disks. A similar argument shows that the side string reaching the middle disk of the
clause check gadget must have one extra active disk. 	
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3.5 Reduction from 3-SAT

We examine the disks that are necessarily part of a minimum broadcast set if the
formula is satisfiable. It will be apparent that a solution of the same size cannot exist
if the formula is not satisfiable.

We include all the disks from the strings and side strings that correspond to the value
given to the variable. Add the disks from the gadgets: the blue parent disks inside and
one disk from each X -block. The branching and crossing gadget connections require
four blue parent disks outside the gadget at the top and bottom connection, and two
more disks on the last gadget (where the side string begins). In each tape we include
one disk from all of its switches except one. Finally, we use one disk to cover each
clause check gadget, and we include the source disk. Let k be the number of disks
listed here.

Lemma 11 There is a minimum h-hop broadcast set containing k disks if and only if
the original 3-CNF formula is satisfiable.

Proof As we demonstrated previously, if the formula is satisfiable, then there is an h-
hop broadcast set of the given size. We need to show that if there is an h-hop broadcast
set of this size, then the formula is satisfiable. Take a minimum h-hop broadcast set.
First, we know that the shortest path to the string ending disks requires exactly h hops,
and the only path of this length includes all pairs of the string in question, plus the
shortest way through the gadgets in which this string is involved. By Lemmas 8 and 9,
the shortest way through a gadget from the string end on the top to the string end on
the bottom uses only blue disks, and one disk from X ′

1 and X ′
5 each. Without loss of

generality we can suppose that the h-hop broadcast set restricted to each gadget is
canonical by the analogue of Lemma 4. A minimum h-hop broadcast set must include
an active disk for all switches except one per tape, and for each clause i , at least 
i +1
active disks as shown by Lemmas 7 and 10, where 
i is the number of true–false
disk pairs in the three side strings that correspond to a clause. So a minimum h-hop
broadcast set does indeed require at least k disks. An h-hop broadcast set of this size
that is canonical when restricted to each gadget also means that the truth value carried
by a string before entering a gadget is the same as the truth value carried after exiting
the gadget by Lemmas 8 and 9. Similarly, the truth values are correctly transferred
between neighboring gadgets connected by a tape pair: this can be seen by applying
Lemma 7 for both tapes. And finally, all clausesmust have a true literal at the beginning
of at least one of the corresponding side strings by Lemma 10. Since the disk choice
at the beginning of a side string is forced to comply with the corresponding string, it
follows that the truth values defined by the strings satisfy the formula. 	


Our construction can be built in polynomial time—note that the coordinates of each
point can be represented with O(log n) bits, since a precision of c/n2 is sufficient for
some small constant c. It is easy to see that the eventual hop bound h is dominated by
the correction mechanism that we have introduced to preserve the lockstep condition
of the bundles, therefore h = O(n2m). Since neighboring disks have distanceΩ(1/n)

and the strip has constant width, it follows that the number of disks used is Θ(nh) =
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Θ(n3m), and this is also asymptotically equal to the number k of disks in a minimum
broadcast set. Finally, note that the reduction takes O(n3m) time.

We have successfully reduced 3-SAT to the h-hop broadcast problem in a strip of
width 40. Since the problem is trivially in NP, this concludes the proof of Theorem 2.

4 Conclusion

Westudied the complexity of the broadcast problem in narrowandwider strips. For nar-
row strips we obtained efficient polynomial algorithms, both for the non-hop-bounded
and for the h-hop version, thanks to the special structure of the problem inside such
strips. On wider strips, the broadcast problem has an nO(w) algorithm, while the h-hop
broadcast becomesNP-complete on strips ofwidth 40.With the exception of a constant
width range (between

√
3/2 and 40) we have a dichotomy for the complexity when

parameterized by strip width. We have also proved that the problem (and, similarly,
Connected Dominating Set in Unit Disk Graphs) isW[1]-complete when param-
eterized by the solution size. The problem of finding an h-hop broadcast set seems
even harder: we can solve it in polynomial time for h = 2 (see Part I) but already
for h = 3 we know no better algorithm than brute force. Interesting open problems
include:

– What is the complexity of 3-hop broadcast? In particular, is there a constant value
t such that t-hop broadcast is NP-complete?

– What is the complexity of h-hop broadcast in planar graphs?
– Is the broadcast problem NP-complete already in a strip of width

√
3/2 + ε?

– Is there an efficient approximation or perhaps approximation scheme for h-hop
broadcast?

– What is the computational complexity of the weighted version of the problem,
where each disk has some nonnegative cost associated with it, and we are looking
for the cheapest (h-hop) broadcast? Are the problems still solvable in polynomial
time if we stay in a strip of width at most

√
3/2?
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