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Abstract
Let p and q be two imprecise points, given as probability density functions on R

2,
and let O be a set of disjoint polygonal obstacles in R

2. We study the problem of
approximating the probability that p and q can see each other; i.e., that the segment
connecting p and q does not cross any obstacle in O. To solve this problem, we first
approximate each density function by a weighted set of polygons. Then we focus on
computing the visibility between two points inside two of such polygons, where we
can assume that the points are drawn uniformly at random.We show how this problem
can be solved exactly in O((n + m)2) time, where n and m are the total complexities
of the two polygons and the set of obstacles, respectively. Using this as a subroutine,
we show that the probability that p and q can see each other amidst a set of obstacles
of total complexity m can be approximated within error ε in O(1/ε3 + m2/ε2) time.
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distribution
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1 Introduction

Imprecision appears naturally in many applications. Imprecise points play an impor-
tant role in databases [1,2,7–10,22], machine learning [4], and sensor networks [26],
where a limited number of probes from a certain data set is gathered, each poten-
tially representing the true location of a data point. Alternatively, imprecise points
may be obtained from inaccurate measurements or may be the result of earlier inexact
computations.

Data imprecision is an important obstacle to the application of geometric algorithms
to real-world problems, since geometric algorithms typically assume exact input. In
the computational geometry literature, various models to deal with data imprecision
have been suggested. The most studied one is based on using regions to represent
imprecise points. For instance, a set of imprecise points may be represented by a set
of disks, where the (unknown) true location of a point is assumed to be somewhere
within its corresponding disk. In such models the goal is usually to obtain worst-case
bounds on the values of geometric measures [25].

In this paper we take a more general approach, we describe the location of each
point by a probability distribution μi (for instance by a Gaussian distribution). This
model has been rarely worked with directly because of the computational difficulties
arising from its generality.

The standard technique to handle these difficulties is to approximate the distribu-
tions by point sets. For instance, for tracking uncertain objects a particle filter uses
a discrete set of locations to model uncertainty [23]. Löffler and Phillips [17] and
Jørgenson et al. [15] discuss several geometric problems on points with probability
distributions, and show how to solve them using discrete point sets (or indecisive
points) that have guaranteed error bounds. More specifically, they show in [17] how
to compute for an xy-monotone function F (such as a cumulative probability density
function) an ε-quantization: a 2-dimensional point set P such that for every point q
in the plane the fraction of points in P that are Pareto-dominated1 by q differs from
F(q) by at most ε.

Even though a point set may be a provably good approximation of a probability
distribution, this is not good enough in all applications. Consider, for example, a
situationwherewewish tomodel visibility between imprecise points among obstacles.
When both points are given by a probability distribution, naturally there is a probability
that the two points see each other. However, when we discretize the distributions,
the choice of points may greatly influence the resulting probability, as illustrated in
Fig. 1. Therefore, approximating the distributions with point sets does not provide an
approximation of the actual probability that the points see each other.

Instead, we may approximate distributions by regions. The concept of describing
an imprecise point by a region or shape was first introduced by Guibas et al. [12],
motivated by finite coordinate precision, and later studied extensively in a variety of
settings [3,13,16,18,19].

In this paper we approximate each density function by a weighted set of polygonal
regions, and apply this to approximate the probability that two imprecise points can

1 That is, having larger x- and y- coordinates.
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Fig. 1 Two pairs of point sets on opposite sides of a collection of obstacles. The green points can all see
each other, whereas none of the red points can (Color figure online)

see each other. As part of our results, we introduce a novel technique to represent
the placement space of pairs of points that can see each other amidst a set of disjoint
obstacles. We believe this technique is interesting in its own right. For example, we
show that it can be applied to compute the probability that two points inside a polygon
see each other. Rote [20] suggested to use this probability as a measure of degree of
convexity of a polygon and showed how to compute it in O(n9) time. Later it was
observed that the running time of Rote’s algorithm can be reduced to O(n7) [21].
Applying our technique we can compute the degree of convexity in O(n2) time.

1.1 Results and Paper Outline

We are given two imprecise points p and q, modeled as probability density functions
over R2, and a set of disjoint polygonal obstacles O, also in R2.

Our goal is to compute the probability that p and q can see each other, or equiva-
lently, that the segment connecting p and q does not cross any obstacle in O.

The main result presented in this paper is that, if the probability density functions
are Gaussian distributions, then this probability can be approximated efficiently. More
precisely, our main result is the following.

Theorem 1 Given two imprecise points p and q, modeled as Gaussian distributions
μ1 and μ2, and a set of obstacles of total complexity m, we can approximate the
probability that p and q see each other with an error at most ε in O(1/ε3 + m2/ε2)

time.

Our approach is based on ε-approximating a Gaussian distribution using a set of
O(1/ε) convex weighted polygons, with O(1/

√
ε) complexity each. More precisely,

the set of weighted polygons defines a step function that approximates the Gaussian
probability density function in terms of the volumetric error: the volume of the sym-
metric difference between the step function and the probability density function.2 The
derivation of a set of weighted polygons of appropriate complexity that guarantees the
approximation factor is the main goal of Sect. 2. In that section we also briefly discuss
other error measures that could be considered instead of the volumetric error.

2 Volumetric error can also be viewed as an L1 distance between the two functions, and is twice the total
variation distance used.

123



Algorithmica (2019) 81:2682–2715 2685

Once the probability density function of each imprecise point is approximated by a
set ofweighted polygons,we can focus on visibility between two of such polygons, one
for each imprecise point. The key difference is that nowwe can use uniform probability
for each polygon, simplifying the computations considerably. Therefore the problem
becomes that of computing the probability that two points drawn uniformly at random
from each polygon can see each other. At this stage we assume that the obstacles in
O are disjoint polygons, and that they are convex (this can always be achieved after
pre-processing).

The main result in Sect. 3 is how to compute the probability that two points chosen
uniformly at random inside two convex polygons (with obstacles in between) can
see each other. We show how to do this in O((n + m)2) time, for n and m the total
complexities of the two polygons and the set of obstacles, respectively. This result is
technically involved, and requires computing an integral, which we defer to Sect. 4,
and partially to the Appendix.

Note that the approximation factor in our main theorem only comes from approx-
imating a Gaussian distribution with a set of weighted regions. For two points p and
q, uniformly distributed in two polygons, the method presented in Sect. 3 allows to
calculate the probability of them seeing each other exactly. We obtain a closed form
expression for the probability making use of arithmetic operations and the logarithm
function. Throughout the text we assume that the model of computation is the real
RAM, standard in computational geometry,with the addition of the logarithm function.

Finally, once that the results in Sects. 2, 3 and 4 are in place, we show in Sect. 5
that it is straightforward to combine them to obtain our main result, Theorem 1.

2 Region-Based Approximation

Let P be a set of weighted regions in the plane, and let w(P) ≥ 0 denote the weight
of a region P ∈ P . Let P(p) = {P ∈ P | p ∈ P} be the regions of P containing
point p ∈ R

2. Set P defines a step function

fP (p) =
∑

P∈P(p)

w(P),

that sums the weights of all regions containing p. We will use the step function fP to
approximate a given density function, however, wewill not require that fP (p) ∈ [0, 1]
or that

∫

p∈R2

fP (p) = 1.

To measure the quality of an approximation we will use the volumetric error
between the approximation function and the distribution, i.e., the total volume of the
symmetric difference between fP and μ (refer to Fig. 2). More precisely, we say that

Definition 1 Astep function fP defined by a set ofweighted regionsP ε-approximates
a probability distribution with density function μ if

∫

p∈R2

|μ(p) − fP (p)| ≤ ε.
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Fig. 2 A probability density
function μ (yellow) can be
approximated by a set of
weighted regions P ,
representing a step function fP
(purple) (Color figure online)

Additive orMultiplicative?There are other, possiblymore straightforward, approaches
to approximating a given density function. Why did we opt for using the volumetric
error instead of, for example, choosing a local multiplicative or additive approxima-
tion function? Next, we will formally introduce and discuss both approaches, and
demonstrate why in our case a third approach was needed.

Consider a domain D ⊆ R
2. We say that fP , for a given set of weighted regionsP ,

is a local multiplicative δ-approximation of μ on domain D if, for all points p ∈ D,

(1 − δ)μ(p) ≤ fP (p) ≤ (1 + δ)μ(p).

It is easy to verify that a local multiplicative approximation function is also a global
approximation function, i.e., the total error between fP and μ is bounded. However,
observe, that in this case, no finite set P can be a local multiplicative approximation
of many natural distributions (like Gaussians, for instance). This is because no step
function fP with finite number of steps can be inscribed between functions (1−δ)μ(p)
and (1 + δ)μ(p), where μ(p) is a Gaussian distribution.

We say that fP , for a given set of weighted regions P , is a local additive δ-
approximation of μ on domain D if, for all points p ∈ D,

|μ(p) − fP (p)| ≤ δ.

Finding set of such regions P that locally additive δ-approximate a given distribution
function is straightforward. However, bounding the absolute distance between fP
and μ at every point p in the plane implies no guarantee on the total error of the
approximation.3 Figure 3 illustrates the difference between the locally additive and
locally multiplicative approximation approaches.

As local approximations do not lead to a good global approximation, it is necessary
to use a global method of bounding the total error. The total error between an approx-
imation function and the distribution function is exactly the volume of the symmetric
difference between the two. Thus, the total error of approximation of a distribution
function μ by any function fP , that is an ε-approximation of μ by Definition 1, is
bounded by ε. Any probability distribution μ can be approximated in this way, but
the total complexity of P , i.e., the sum of the complexities of each of its regions,
depends on various factors: the shape of μ, the shape of the allowed regions in P , and
the error parameter ε. To focus the discussion, in this work we limit our attention to

3 An earlier version of this document [5] mistakenly claimed that local additive approximations imply
global approximations.
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Fig. 3 Illustration of the difference between additive (red) and multiplicative (blue) approximations of
the same (1-dimensional) Gaussian function (green). While similar at the center, at the tails the additive
approximation drops to zero while the multiplicative one continues to add steps (Color figure online)

Gaussian distributions, since they are natural and have been shown to be appropriate
for modeling the uncertainty in commonly-used types of location data, like location
information obtained by a GPS (Global Positioning System) receiver [14,24].

In the following two sections we show how to find a set of polygons that ε-
approximates a given 2-dimensional radially symmetric Gaussian distribution μ with

covariancematrix� =
(

σ 0
0 σ

)
. First, we approximateμwith a set of concentric disks,

and then, building up on this result, with a set of polygons. Note, that this method can
also be applied to a general multivariate Gaussian distribution by first rescaling it to a
radially symmetric one.

2.1 Approximating Gaussian Distributions with Disks

A natural way to approximate a Gaussian distribution with a set of regions is by
using a set of concentric disks. Given a Gaussian distribution with probability density
function μ, and a maximum allowed error ε, we would like to compute a set P of k
disks that ε-approximate μ. We may assume μ is centered at the origin, leaving only
one parameter, the standard deviation σ , to govern the shape of μ,

μ(x, y) = 1

2πσ 2 e
− x2+y2

2σ2 ,

or in polar coordinates,

μ(r , θ) = 1

2πσ 2 e
− r2

2σ2 .

The function μ does not depend on θ , therefore, in the following, we will omit it and
write μ(r) for brevity.

We are looking for a set of radii r1, . . . , rk and corresponding weights w1, . . . , wk

such that the set of disks centered at the origin with radii ri and weights wi ε-
approximatesμ.We use these disks to define a cylindrical step function fd (r). Figure 4
shows a 2-dimensional cross-section of the situation. Minimizing the volume between
the step function and μ, we obtain the following lemma:
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Fig. 4 Partial cross-section of a 2-dimensional Gaussian function (green) and the approximation function
(red), illustrating the choice of radii (ri ) and weights (wi ) for the k regions in P . We use ρi to indicate the
i th radius where the approximation intersects with the Gaussian (Color figure online)

Lemma 1 Given a Gaussian probability density functionμwith standard deviation σ ,
and an integer k, a minimum-error approximation of μ by a cylindrical step function
fd , consisting of k disks with radii r1, . . . , rk centered at the origin with weights
w1, . . . , wk respectively, is given by

ri = 2σ

√
log

k + 1

k + 1 − i
, (1)

wi = 1

πσ 2

(k + 1 − i)

(k + 1)2
, (2)

for all 1 ≤ i ≤ k.

Proof Let Wi = ∑k
j=i w j . We introduce an additional set of parameters ρ1, . . . , ρk ,

where ρi is such that μ(ρi ) = Wi , i.e., ρ1, . . . , ρk are the radii of intersections of μ

and the approximation function fd (refer to Fig. 4). We will minimize the volume of
the symmetric difference between the two functions over the 2k variables ri and ρi ,
and derive the corresponding weights. Let D(R) be the complement of the open disk
of radius R centered at the origin, and let VD(R) be the volume under the probability
density function μ on D(R):

VD(R) =
∫∫

D(R)

μ(x, y) dx dy =
2π∫

0

∞∫

R

μ(r , θ)r dr dθ =
∞∫

R

r

σ 2 e
− r2

2σ2 dr = e− R2

2σ2 .

Then the volume of the symmetric difference between the functions μ and fd can be
found by the following formula:

V = (1 − VD(ρ1)) − W1πρ2
1

+ W1π
(
r21 − ρ2

1

)
− (VD(ρ1) − VD(r1))
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+ (VD(r1) − VD(ρ2)) − W2π
(
ρ2
2 − r21

)

+ W2π
(
r22 − ρ2

2

)
− (VD(ρ2) − VD(r2))

+ · · ·
+ (VD(rk−1) − VD(ρk)) − Wkπ

(
ρ2
k − r2k−1

)

+ Wkπ
(
r2k − ρ2

k

)
− (VD(ρk) − VD(rk))

+ VD(rk)

= 1 + π

k−1∑

i=1

r2i (μ(ρi ) + μ(ρi+1)) + πr2kμ(ρk) − 2π
k∑

i=1

ρ2
i μ(ρi )

+ 2
k∑

i=1

VD(ri ) − 2
k∑

i=1

VD(ρi )

= 1 + 1

2σ 2

k−1∑

i=1

r2i

(
e− ρ2i

2σ2 + e− ρ2i+1
2σ2

)
+ 1

2σ 2 r
2
k e

− ρ2k
2σ2 − 1

σ 2

k∑

i=1

ρ2
i e

− ρ2i
2σ2

+ 2
k∑

i=1

e− r2i
2σ2 − 2

k∑

i=1

e− ρ2i
2σ2 . (3)

To minimize V , we compute the derivatives with respect to ρi and ri :

dV

dρi
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρi

σ 4 e
− ρ2i

2σ2

(
ρ2
i − 1

2
r2i

)
, for i = 1

ρi

σ 4 e
− ρ2i

2σ2

(
ρ2
i − 1

2
(r2i−1 + r2i )

)
, for 1 < i ≤ k

dV

dri
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ri
σ 2

(
e− ρ2i

2σ2 + e− ρ2i+1
2σ2 − 2e− r2i

2σ2

)
, for 1 ≤ i < k

ri
σ 2

(
e− ρ2i

2σ2 − 2e− r2i
2σ2

)
, for i = k.

Setting the derivatives to 0 results in the following identities:

2ρ2
i =

{
r2i , for i = 1

r2i−1 + r2i , for 1 < i ≤ k
(4)

2e− r2i
2σ2 =

⎧
⎪⎨

⎪⎩
e− ρ2i

2σ2 + e− ρ2i+1
2σ2 , for 1 ≤ i < k

e− ρ2i
2σ2 , for i = k.

(5)
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To find the closed-form expressions for ri and ρi , we do the following. First, if we
substitute Eq. (4) into Eq. (5) we get:

e− r2i
4σ2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
1 + e− r2i+1

4σ2

)
, for i = 1

1

2

(
e− r2i−1

4σ2 + e− r2i+1
4σ2

)
, for 1 < i < k

1

2
e− r2i−1

4σ2 , for i = k.

Define a function g[i] = e− r2i
4σ2 , and define g[0] = 1, then the expression above can

be rewritten as:

g[i] = g[i − 1] + g[i + 1]
2

for 1 ≤ i < k, (6)

with the boundary cases g[0] = 1 and g[k] = 1
2g[k − 1]. Notice that, because the

domain of the function g is discrete, this relation holds only for linear functions, i.e.,

g[i] ≡ ai + b,

for some coefficients a and b. From the boundary cases we find that a = − 1
k+1 and

b = 1. Therefore,

g[i] = 1 − i

k + 1
.

Finally, from this expression and Eq. (4) we can derive Eq. (1) and the expressions
for ρi :

ri = 2σ

√
log

k + 1

k + 1 − i
,

ρi =
√

2σ 2 log
(k + 1)2

(k + 1 − i)(k + 2 − i)
.

Substituting the expressions for ρi into wi = Wi − Wi+1 = μ(ρi ) − μ(ρi+1), we
attain Eq. (2), thus proving the lemma. 	


Since the error ε is given, we can use the expressions derived in the proof of
the previous lemma [in particular, Eq. (3)] to find the value of k such that the volume
between the step function fd with k disks andμ is at most ε. This leads to the following
result.
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Theorem 2 Given a Gaussian distributionμ and ε > 0, we can ε-approximateμ with
a cylindrical step function fd that is defined by a set of k weighted disks, where

k =
⌈
1

ε
− 1

⌉
= O(1/ε).

Proof Using Eqs. (4) and (5) and Lemma 1, the minimum symmetric difference
between the functions μ and fd found from Eq. (3) can be simplified to

Vmin = 1

k + 1
.

The volume Vmin gives the error of approximating the distribution density function μ

by the set of disks:

ε = Vmin = 1

k + 1
,

and thus,

k =
⌈
1

ε
− 1

⌉
= O

(
1

ε

)
.

It follows that we can ε-approximate a Gaussian distribution by using O(1/ε)
disks. 	


Notice that the result of the theorem does not depend on the shape of the Gaussian
distribution, i.e., on σ . It only depends on the required error ε.

2.2 Approximating Gaussian Distributions with Polygons

The curved boundaries of the disks of fd make geometric computations rather compli-
cated. Therefore, next we consider approximating μ by a set of polygons. Computing
a set of polygons of minimum total complexity is a challenging mathematical problem
that we leave to future investigation. However, we can easily obtain a set of at most
twice as many polygons as the minimum, by first computing a set of k disks with
guaranteed error ε, then defining 2k annuli (two for each disk), and finally choosing
2k regular polygons that stay within these annuli. Figure 5a illustrates this idea; since
the relative widths of the annuli change, polygons of different complexity are used
for different annuli. For each disk with radius ri we define two radii r ′

i and r
′′
i by the

following formulas:

μ(r ′
i ) = 1

2
(μ(ρi ) + μ(ri )),

μ(r ′′
i ) = 1

2
(μ(ri ) + μ(ρi+1)).

(7)

Knowing the widths of the annuli we can calculate the total complexity of the approx-
imation.
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(a) (b)

Fig. 5 a A Gaussian distribution, given by isolines at k levels (green), 2k annuli around each disk (red),
and a set of polygons that can be used to obtain an approximation (blue). bWe choose 2k regular polygons
(blue) inscribed in annuli {r ′

i , ri } and {ri , r ′′
i }with cumulative weightsWi and (Wi +Wi+1)/2, respectively.

For points within annuli {r ′
i , ri } and {ri , r ′′

i } the error of approximation of the Gaussian function (green) by
the weighted polygons is not greater than the error of approximation by k-level step function (red) (Color
figure online)

Theorem 3 Given ε > 0, anyGaussian distribution can be ε-approximated by O(1/ε)
polygons of complexity O(1/

√
ε) each.

Proof First, we compute a set of k =
⌈

1

eε − 1

⌉
concentric disks by Eqs. (1) and (2)

that approximate the distribution function μ with guaranteed error ε. For each disk
with radius ri we find radii r ′

i and r
′′
i fromEq. (7). Then we choose 2k regular polygons

that stay within the annuli defined by pairs of radii {r ′
i , ri } and {ri , r ′′

i } with weights
wi/2 each. These 2k polygons ε-approximate the probability distribution function μ.
To prove this, we will show that this set of 2k weighted regular polygons approximates
μ better than the cylindrical step function fd with k disks. Consider all r such that
ρi ≤ r ≤ ρi+1. The step function fd(r) = Wi for r ≤ ri , and fd(r) = Wi+1 for r > ri .
The error of approximation of μ by fd at point r , therefore, is Wi − μ(r) for r ≤ ri ,
and μ(r)−Wi+1 for r > ri . Now consider the approximation of μ with the polygons.
For all points within two annuli {ρi , r ′

i } and {r ′′
i , ρi+1}, the error of approximation of

μ by the weighted polygons is exactly the same as by the disks (for these points, the
weight of the corresponding polygon is equal to the weight of the disks). For all points
within two annuli {r ′

i , ri } and {ri , r ′′
i }, the error of approximation ofμ by the weighted

polygons is not greater than the error of approximation by the disks (refer to Fig. 5b).
For these points, the cumulative weight (i.e., the value of the approximation) of the
corresponding polygons equals the cumulative weight of the disks (Wi for annulus
{r ′
i , ri }, or Wi+1 for annulus {ri , r ′′

i }), or is equal to (Wi + Wi+1)/2. In the first case,
again, the error of approximation of μ by the polygons in point r is the same as the
error of approximating it by disks. In the second case, using Eq. (7), we conclude that
the value of the approximation of μ by the polygons is closer to the true value of μ(r)
than the one given by fd(r) (refer to Fig. 5b). Therefore, the error of approximating
μ by 2k weighted regular polygons is less than ε.
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It remains to show that the complexity of each polygon is O( 1√
ε
). The complexity

of a regular polygon inscribed in an annulus depends only on the ratio of the radii. That
is, given an annuluswith an inner radius rin, and an outer radius rout , we can fit a regular
�π/ arccos rin

rout
-gon in it. Consider an annulus given by {r ′

i , ri } (the calculations for
the second type of annuli are alike). First, derive from Eq. (7) the formula for r ′

i :

r ′
i =

√

2σ 2 log
2k(k + 1)

(k + 1 − i)(2k + 3 − 2i)
,

then the number of vertices n′
i of the polygon inscribed in the annulus {r ′

i , ri } is

n′
i =

⎡

⎢⎢⎢
π

arccos
r ′
i
ri

⎤

⎥⎥⎥
=

⎡

⎢⎢⎢⎢⎢⎢⎢

π

arccos

√
log 2k(k+1)

(k+1−i)(2k+3−2i)

log k(k+1)
(k+1−i)2

⎤

⎥⎥⎥⎥⎥⎥⎥

.

Value n′
i reaches its maximum when r ′

i/ri is maximized. Consider

T (i) =
(
r ′
i

ri

)2

= log 2k(k+1)
(2k+3−2i)(k+1−i)

log k(k+1)
(k+1−i)2

as a continuous function of i , where i is defined on interval [1, k], differentiate it and
solve the following equation:

0 = dT

di
= (4k + 6 − 4i) log

2k(k + 1)

(2k + 3 − 2i)(k + 1 − i)
− (4k + 5 − 4i) log

k(k + 1)

(k + 1 − i)2
.

After dividing both sides of the equation by (4k + 6 − 4i) log k(k+1)
(k+1−i)2

(notice that it
is a non-zero value on the interval [1, k]) we get

log 2k(k+1)
(2k+3−2i)(k+1−i)

log k(k+1)
(k+1−i)2

= 4k + 5 − 4i

4k + 6 − 4i
= 1 − 1

4k + 6 − 4i
.

The left-hand side of this equation is T (i) by definition. Therefore T (i) passes through
its critical point(s) where it intersects the function (1 − 1

4k+6−4i ) (refer to Fig. 6). By
computing the second derivative of T (i), and again using the fact that at the critical
points,

log 2k(k+1)
(2k+3−2i)(k+1−i)

log k(k+1)
(k+1−i)2

= 4k + 5 − 4i

4k + 6 − 4i
,

we find that the second derivative is strictly negative. Testing the boundary cases i = 1
and i = k we can conclude that for sufficiently large k (k ≥ 3), the two functions
will intersect on the interval [1, k]. Therefore, taking all the above considerations in
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Fig. 6 Graphs of T (i) and
1 − 1

4k+6−4i intersect where
T (i) reaches its maximum

i

T (i)

1− 1
4k + 6− 4i

account, we conclude that there is a single critical point of T (i) on the interval [1, k],
and it is a maximum. Then,

max
1≤i≤k

T (i) ≤ max
1≤i≤k

(
1 − 1

4k + 6 − 4i

)
= 1 − 1

4k + 2
,

and, using the Taylor series expansion,

n′
i ≤

⎡

⎢⎢⎢
π

arccos
√
1 − 1

4k+2

⎤

⎥⎥⎥
= 2π

√
k + O

(
1√
k

)
= O

(
1√
ε

)
. 	


Remark 1 A crude estimate on the volume under the 2k weighted polygons is |VAPX −
1| = O(ε).

3 Visibility Between Two Regions

Consider a set of obstacles O in the plane. Throughout the paper, we assume that the
obstacles are disjoint simple polygonswithm vertices in total.4 Let the obstacles be also
convex. Otherwise we can partition the non-convex obstacles without increasing the
total asymptotic complexity. Given two imprecise points with probability distributions
μ1 and μ2, we can approximate them with two sets P1 and P2 of weighted regions,
each consisting of convex polygons. For every pair of polygons P1 ∈ P1 and P2 ∈ P2,
we compute the probability that a point p1 chosen uniformly at random from P1 can see
a point p2 chosen uniformly at random from P2. We say that two points can see each
other if and only if the straight line segment connecting them does not intersect any
obstacle. The probability of two points p1 = (x1, y1) ∈ P1 and p2 = (x2, y2) ∈ P2
seeing each other can be computed by the following formula:

4 We could also start from non-disjoint polygons and decompose them into simple disjoint polygons, but
this could possibly lead to higher complexity.
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Prob{ p1 sees p2 } =

∫∫

P1

∫∫

P2

ν(x1, y1, x2, y2) dx2 dy2 dx1 dy1
∫∫

P1

∫∫

P2

dx2 dy2 dx1 dy1
, (8)

where ν(x1, y1, x2, y2) is a visibility indicator function: it is 1 if the points see each
other, and 0 otherwise. The denominator of the expression on the right-hand side is
simply the product of the areas of the polygons P1 and P2. Then, the probability that
two points p1 sampled from P1 and p2 sampled from P2 see each other

Prob{p1 ∼ fP1 sees p2 ∼ fP2}
=
∑

P1∈P1

w(P1)area(P1)

VAPX(P1)

∑

P2∈P2

w(P2)area(P2)

VAPX(P2)
Prob{p1 ∈ P1 sees p2 ∈ P2}

≈
∑

P1∈P1,
P2∈P2

w(P1)w(P2)
∫∫

P1

∫∫

P2

ν(x1, y1, x2, y2) dx2 dy2 dx1 dy1,

where w(P1) and w(P2) are the weights of polygons P1 and P2, and VAPX(P1) and
VAPX(P2) are the volumes under the weighted disks of P1 and P2 respectively. Recall
from Remark 1 that these volumes are within 1± O(ε). This expression also approx-
imates the total probability that two points sampled from μ1 and μ2 see each other
with an error at most ε.

Prob{p1 ∼ μ1 sees p2 ∼ μ2}
≈

∑

P1∈P1,
P2∈P2

w(P1)w(P2)
∫∫

P1

∫∫

P2

ν(x1, y1, x2, y2) dx2 dy2 dx1 dy1.

To compute this integral we will apply the point-line duality transformation (refer to
Chapter 8 of [11]). Consider the dual space where a point with coordinates (α, β)

corresponds to a line y = αx − β in the primal space. Let L(P1, P2) be the set of all
lines that intersect both P1 and P2, and let L∗(P1, P2) be a set of points in the dual
space corresponding to L(P1, P2). We shall omit the arguments and write L and L∗
when it is clear from the context which polygons are under consideration.

Let us rewrite the numerator of Eq. (8) in terms of integration over L∗. This will
correspond to integrating over all lines � ∈ L. Consider some line � ∈ L such that the
visibility along � is unobstructed by obstacles. Then, intuitively, the contribution to
the integral of this line � is the product of lengths of the segments � ∩ P1 and � ∩ P2.
However, if there are obstacles obstructing the visibility along �, the contribution to the
integral will depend on the relative positions of the polygons and the obstacles (refer
to Fig. 7). First, we will show the change of variables that will lead to integration in
the dual space, and then we will show how to account for obstacles and to compute
the numerator of Eq. (8).
Change of variables Consider some line � ∈ L with equation y = αx − β that passes
through two points p1 = (x1, y1) ∈ P1 and p2 = (x2, y2) ∈ P2. Then,
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Fig. 7 The visibility along the line �1 is unobstructed by obstacles, the contribution to the integral is
|a1b1| × |c1d1| (where |s| denotes the length of segment s); due to two obstacles blocking the visibility
along the line �2, its contribution to the integral is |a2e2| × |c2e2| + | f2b2| × | f2g2|

y1 = αx1 − β,

y2 = αx2 − β.

In the dual space, point �∗, corresponding to the line �, has coordinates (α, β). Using
the following change of variables,

(x1, y1, x2, y2) ← (x1, α, x2, β),

we obtain the numerator of Eq. (8) in the following form

∫∫

L∗

X2(α,β)∫

X1(α,β)

X4(α,β)∫

X3(α,β)

ν(x1, α, x2, β)|J | dx2 dx1 dα dβ, (9)

where X1(α, β) and X2(α, β) are the x-coordinates of the intersection points of the
line y = αx − β with polygon P1, X3(α, β) and X4(α, β) are the x-coordinates of
the intersection points of the line y = αx − β with polygon P2, and

J = det

⎡

⎢⎢⎣

dy1
dα

dy1
dβ

dy2
dα

dy2
dβ

⎤

⎥⎥⎦ = det

[
x1 −1
x2 −1

]
= x2 − x1.

In Sect. 4 we will show the details of how to compute this integral for a fixed
combinatorial configuration, i.e., for α and β such that the functions X1(α, β),
X2(α, β), X3(α, β), and X4(α, β) are given by the same expressions, and the function
ν(x1, α, x2, β) stays constant. For now, we assume this is possible and argue how
to partition the domain of the integral into such fixed combinatorial configuration
regions.
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Fig. 8 Left: Two polygons P1 and P2 in the primal space. The shaded region represents the set of lines
L which intersect segments s1 and s2 of polygon P1, and segments s3 and s4 of polygon P2. Right: The
partition of region L∗ in the dual space. The shaded cell corresponds to a set of lines L in the primal space
intersecting segments s1, s2, s3, and s4

3.1 Computing Expression (9)

Partition regionL∗ in the dual space into cells each corresponding to a set of lines inL
that cross the same four segments of P1 and P2 (refer to Fig. 8). Then within each cell
of this partition the functions X1(α, β), X2(α, β), X3(α, β), and X4(α, β) are given
by the same four expressions.

The following observation follows from the fact that each vertex of the partition of
L∗ corresponds to a line in the primal space through two vertices of P1 and P2.

Observation 4 Given two convex polygons P1 and P2 of total size n, the complexity of
the partition ofL∗(P1, P2) into cells, each corresponding to a set of lines inL(P1, P2)
that cross the same four segments of P1 and P2, is O(n2).

Next, we will introduce a more refined subdivision of the dual space. In each cell
the visibility indicator function ν(x1, α, x2, β) will stay constant (in addition to the
functions X1(α, β), X2(α, β), X3(α, β), and X4(α, β) being described by the same
expressions). We first assume that the polygons P1, P2, and the obstacles O are all
disjoint. Later we will remove this assumption.

3.1.1 Disjoint Polygons

For each obstacle H ∈ O we construct a region H∗ in the dual space, corresponding
to the set of lines in the primal space that intersect H . Region H∗ has an “hour-glass”
shape (refer to Fig. 9). Let S∗(P1, P2,O) be a subdivision of the dual plane resulting
from overlaying the partition of the region L∗(P1, P2) into cells and the regions H∗
for all H ∈ O. We shall simply write S∗ when it is clear from the context which
polygons and obstacles are considered.

Since the objects involved have in total O(m + n) vertices in the primal space, we
observe:

Observation 5 If the polygons P1 and P2, and the obstaclesO are disjoint, subdivision
S∗(P1, P2,O) of the dual space has complexity O((m + n)2), where n is the total
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Fig. 9 Left: Primal space. Polygons P1 and P2, and an obstacle between them. Right: Dual space. The
“hourglass” shape H∗ (shown gray) in the dual space that corresponds to a set of all lines in the primal
space that intersect the obstacle

Fig. 10 A set of lines corresponding to one cellC of the subdivisionS∗ is highlighted in orange. These lines
intersect the same four segments of the polygons P1 and P2, and the same subset of obstacles OC ⊂ O.
Left: Visibility function ν(C) = 1. Right: Visibility function ν(C) = 0 (Color figure online)

complexity of the polygons P1 and P2, and m is the total complexity of the obstacles
in O.

Consider a set of lines L in the primal space that intersect the same four bound-
ary segments of P1 and P2, that intersect the same set of obstacles OL ⊆ O, and
that split the rest of the obstacles into the same two subsets. A set L∗ in the dual
space, corresponding to L , may consist of one or more cells of the subdivision
S∗. As the polygons and the obstacles are disjoint (by assumption), the value of
the visibility indicator function ν(x1, y1, x2, y2) is constant for any pair of points
(x1, y1) ∈ P1 and (x2, y2) ∈ P2 that lie on the lines in L: it is 1 if the set of obsta-
cles OL is empty or if none of the obstacles in OL obstructs the visibility between
the polygons (Fig. 10 left); and it is 0 if there is at least one obstacle in OL block-
ing the visibility between the polygons (Fig. 10 right). In this case we will write
that ν(L∗) = 1 or ν(L∗) = 0. Thus, each cell of the subdivision S∗ is comprised
of the points corresponding to the same fixed combinatorial configuration. Then, for
each cell we can calculate the integral of Eq. (9). It can be written as a sum of inte-
grals over all cells C of S∗ for which the value of the visibility indicator function ν

is 1:
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Fig. 11 Trapezoidal
decomposition of the
configuration in the primal space

∑

C⊂S∗
ν(C)=1

∫∫

C

⎛

⎜⎝
X2(α,β)∫

X1(α,β)

X4(α,β)∫

X3(α,β)

|x2 − x1| dx2 dx1

⎞

⎟⎠ dα dβ. (10)

In Sect. 4 we will show how to compute this integral for each cell C in time linear in
the complexity of C . The following lemma assumes this result.

Lemma 2 If the polygons P1 and P2, and the obstaclesO are disjoint, Expression (10)
can be evaluated in O((m + n)2) time.

Proof From Observation 5, the total complexity of the cells of S∗ is O((m + n)2).
We explicitly compute the overlay of the partition of L∗ with regionsH∗ [11]. While
building the overlay, we can update the value of the visibility indicator function ν(C)

in O(1) time per event. Assuming that the integral can be computed in time linear in
the size of each cell of S∗, Expression (10) can be evaluated in O((m+n)2) time. 	


3.1.2 Intersecting Polygons

In the case when the polygons P1, P2, and the obstacles are not disjoint (the obstacles
are still disjoint among themselves), we partition regions P1\(P2 ∪O), P2\(P1 ∪O),
and (P1 ∩ P2)\O into convex sub-regions (refer to Fig. 11). Note that any linear-size
decomposition into convex sub-regions, for example a triangulation, could be used.
However, here we settle on trapezoidal decomposition for simplicity of implementa-
tion, as the closed form solution of the probability integral will be much more concise
for the pieces containing vertical segments in comparison to the general case (refer to
Sect. 4 and Appendix A).

If the total complexity of the polygons P1 and P2 is n, and the total complexity of
the obstacles inO is m, then the total size of the convex decomposition is O(m + n).
For two convex sub-regions T1 ⊂ P1 and T2 ⊂ P2 we note the following: (a) T1
and T2 are either equal or disjoint, and (b) the size of the corresponding subdivision
S∗(T1, T2,O) is O((m + n)2), as the sizes of T1 and T2 may be linear. If T1 = T2,
then the corresponding contribution to the integral is (area(T1))2; and if T1 and T2 are
disjoint, then we can evaluate the integral as in the previous case. Thus, for all pairs of
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Fig. 12 Lines in ε-neighborhood of � can be of a constant number of combinatorial types

convex sub-regions, we can evaluate Expression (10) in O((m + n)4) time. However,
we are greatly overestimating the complexity of S∗(P1, P2,O) when counting in this
manner, as we show next.

Lemma 3 Given two convex polygons P1 and P2 of total complexity n, a set of obstacles
O of total complexity m, and a linear-size convex decomposition of P1\(P2 ∪ O),
P2\(P1 ∪ O), and (P1 ∩ P2)\O, the total size of all the subdivisions S∗(T1, T2,O),
for all pairs of disjoint convex sub-regions T1 ⊂ P1 and T2 ⊂ P2 in the convex
decomposition, is O((m + n)2).

Proof Consider the following construction. Draw the subdivisions S∗(T1, T2,O) for
all pairs of disjoint convex sub-regions T1 and T2 in layers, one layer for each pair. Glue
the layers along the coinciding boundary segments of the subdivisions S∗(T1, T2,O).
Let us call this construction S. Each vertex of S corresponds to a line in the pri-
mal space passing through two vertices of the polygons P1, P2, or the obstacles O.
Therefore, there are O((m + n)2) vertices in S.

Consider an ε-neighborhood of some vertex �∗ ofS in the dual space. Let line � in
the primal space, corresponding to �∗, pass through two vertices p and q of the convex
decomposition. For small enough ε, the lines in the primal space, dual to the points
in the ε-neighborhood, intersect the same set of segments of the convex subdivision,
except maybe for the segments adjacent to p and q. The number of cells inS adjacent
to the vertex �∗ is equal to the number of different combinatorial types5 of the lines
dual to the points in the ε-neighborhood of �∗. These combinatorial types are defined
by the two sets of segments adjacent to p and q that can be intersected by a line from
the ε-neighborhood (refer to Fig. 12). Notice that there can be only a constant number
of such combinatorial types (four, if there is no boundary segment of the subdivision
collinear to �, and six at most, if there are boundary segments collinear to �). Then,
each vertex of S is adjacent to only a constant number of cells. Thus, the number of
edges and faces ofS is O((m+n)2) as well. Therefore, the total complexity of all the

5 Two lines have the same combinatorial type if they intersect the same set of segments in the same order.
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subdivisions S∗(T1, T2,O) for all pairs of convex sub-regions T1 ⊂ P1 and T2 ⊂ P2
is O((m + n)2). 	


Recall that we assume that, for each cell of S∗, the integral in Expression (10) can
be evaluated in time linear in the size of the cell. Then, as a corollary to the previous
lemma, we obtain the following lemma.

Lemma 4 Expression (10) can be evaluated in O((m + n)2) time.

We sum up our results in this section with the following theorem.

Theorem 6 Given two convex polygons P1 and P2 of total size n and a set of disjoint
polygonal obstacles of total complexity m, we can compute the probability that a point
p1 chosen uniformly at random in P1 sees a point p2 chosen uniformly at random in
P2 in O((m + n)2) time.

Observe that we do not necessarily need to require that the polygons P1 and P2
are convex for Theorem 6 to hold. It would be enough for the polygons to have a
linear-size intersection, so that the convex decomposition of their overlay (together
with the obstacles) would also be of linear size.

As an easy corollary toTheorem6,we improve on a result byRote [20] of computing
the degree of convexity of a polygon, i.e., the probability that two points inside the
polygon, chosen uniformly at random, can see each other, from O(n9) down to O(n2).

Corollary 1 Let P be a polygon (possibly with holes) of total complexity n. We can
compute the probability that two points chosen uniformly at random in P see each
other in O(n2) time.

4 Computing the Probability for a Fixed Combinatorial Configuration

This section contains technical details of computing the integral in Expression (10)
for a fixed combinatorial configuration. The reader may safely skip it, and move to
the next section that concludes the paper with a general summary of the results.

Next, we will show how to evaluate Expression (10) for a set L∗ in the dual space
corresponding to a set of lines L of some fixed combinatorial structure in the primal
space. That is, all lines in L intersect the same four segments of P1 and P2, intersect
the same subset of obstacles, and split the rest of obstacles into the same two subsets.
For all points (α, β) in L∗, functions X1(α, β), X2(α, β), X3(α, β), and X4(α, β)

are given by the same four expressions, and ν(L∗) = 1. Denote the term that the
integration over L∗ contributes to the Expression (10) as IL∗ :

IL∗ =
∫∫

L∗

⎛

⎜⎝
X2(α,β)∫

X1(α,β)

X4(α,β)∫

X3(α,β)

|x2 − x1| dx2 dx1

⎞

⎟⎠ dα dβ.

Suppose the lines in L intersect segments s1 and s2 of the polygon P1, and s3 and s4
of the polygon P2 (Fig. 8). Let segment si , for 1 ≤ i ≤ 4, lie on the line with equation
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ai x+bi y+ci = 0. Then, the limits of integration in the general case can be expressed
as:

X1(α, β) = b1β − c1
b1α + a1

, X2(α, β) = b2β − c2
b2α + a2

,

X3(α, β) = b3β − c3
b3α + a3

, X4(α, β) = b4β − c4
b4α + a4

.

Now, given a specific set of lines L with a fixed combinatorial structure, we can express
the limits of integration as functions of α and β and evaluate the integral. Later we
will also consider special cases, including when some of the terms and denominators
can be zero.

Before we present the integration in detail, we will need to take a closer look at the
shape of the set L∗. First, consider the case when L does not contain vertical lines.
Let, as before, OL be the set of obstacles that the lines of L intersect, let Oa be the
set of obstacles lying above the lines of L , and let Ob be the set of obstacles lying
below the lines of L . Then L∗ is an intersection of (1) the four wedges corresponding
to the four segments, (2) the hour-glass shapes corresponding to the obstacles of OL ,
(3) the unbounded convex shapes above the hour-glass shapes corresponding to the
obstacles of Oa , and (4) the unbounded convex shapes below the hour-glass shapes
corresponding to the obstacles of Ob. As a result, the set L∗ can consist of multiple
cells of S∗, with each such cell being bounded and x-monotone.

If L contains vertical lines, the above-below relation between the lines and the
obstacles Oa and Ob depends on the lines’ slopes. The non-vertical lines of L can be
split into two sets L1 and L2 such that the obstacles of Oa lie above the lines of L1
and below the lines of L2, and the obstacles of Ob lie below the lines of L1 and above
the lines of L2. Thus, to obtain the set L∗ we need to take the union of two sets defined
above for L1 and L2. The set L∗ may consist then of multiple cells of S∗. Each such
cell is x-monotone, but is not necessarily bounded. However, for each unbounded cell
C+ with α going to +∞, there is a corresponding cell C− with α going to −∞, and
the four infinite rays on the boundaries of C+ and C− lie on the same pair of lines.

When computing the integral we will consider each bounded cell C separately, and
each pair of unbounded cells C+ and C− together. As all cells are x-monotone, we
can partition them into vertical strips and get a closed form integral for each such strip.

4.1 Bounded C

First consider the simpler case of a bounded cell C . Recall that by construction the
polygons P1 and P2 in the primal space are disjoint. We can assume without loss of
generality that X1 < X2 ≤ X3 < X4, and therefore |x2 − x1| = x2 − x1. Then,

IC =
∫∫

C

⎛

⎜⎝
X2(α,β)∫

X1(α,β)

X4(α,β)∫

X3(α,β)

(x2 − x1) dx2 dx1

⎞

⎟⎠ dα dβ.
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After solving the inner two integrals we get:

IC =
∫∫

C

(X2−X1)(X4−X3)(X3+X4−X1−X2)

2
dα dβ

= 1

2

∫∫

C

(− X2
1X3 + X2

2X3 + X1X
2
3 − X2X

2
3

+ X2
1X4 − X2

2X4 − X1X
2
4 + X2X

2
4

)
dα dβ.

For some i and j ,

Xi X
2
j = (biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
.

Define Ii j in the following way:

Ii j =
∫∫

C

Xi X
2
j dα dβ

=
∫∫

C

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dα dβ

=
∑

Cv⊂C

α2∫

α1

⎛

⎜⎝
A2α+B2∫

A1α+B1

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dβ

⎞

⎟⎠ dα,

where C is split into vertical strips Cv , with each Cv bounded from left and right by
vertical segments with α-coordinates equal to α1 and α2, and bottom and top segments
defined by formulas β = A1α + B1 and β = A2α + B2 (Fig. 13). Then,

IC = 1

2
(I13 − I31 − I23 + I32 − I14 + I41 + I24 − I42) . (11)

Denote with FCv,i j (α) the indefinite integral corresponding to the vertical strip Cv

with the constant of integration equal to 0:

FCv,i j (α) =
∫
⎛

⎜⎝
A2α+B2∫

A1α+B1

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dβ

⎞

⎟⎠ dα. (12)

Then the terms of the integral can be evaluated by the following formula:

Ii j =
∑

Cv⊂C

(
FCv,i j (α2) − FCv,i j (α1)

)
.
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Fig. 13 Left: A bounded cell C , divided into vertical strips. The darker strip is bounded by vertical lines
α = α1 and α = α2 from the sides, and by the lines β = A1α + B1 and β = A2α + B2 from below and
above respectively. Right: A pair of unbounded cells C+

v and C−
v , divided into vertical strips. The darker

strips C+
v and C−

v are bounded by the lines β = A1α + B1 and β = A2α + B2, C+
v is bounded by α = α1

from the left, and C−
v is bounded by α = α2 from the right

The complete case analysis for the closed form of FCv,i j after the integration is pre-
sented in Appendix A.

4.2 Unbounded C

In the casewhenC = C+∪C− is unbounded,we can assumewithout loss of generality
that X1 < X2 ≤ X3 < X4 and |x2 − x1| = x2 − x1 in the right component of C ,
and X1 > X2 ≥ X3 > X4 and |x2 − x1| = −(x2 − x1) in the left component of C .
Therefore, the integral IC can be expressed in the following way:

IC =
∫∫

C+

⎛

⎜⎝
X2(α,β)∫

X1(α,β)

X4(α,β)∫

X3(α,β)

(x2 − x1) dx2 dx1

⎞

⎟⎠ dα dβ

−
∫∫

C−

⎛

⎜⎝
X1(α,β)∫

X2(α,β)

X3(α,β)∫

X4(α,β)

(x2 − x1) dx2 dx1

⎞

⎟⎠ dα dβ,

and one term of the integral for given i and j as:

Ii j =
∫∫

C+
Xi X

2
j dα dβ −

∫∫

C−
Xi X

2
j dα dβ

=
∫∫

C+

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dα dβ −

∫∫

C−

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dα dβ.

The evaluation is equivalent to the bounded cell case except for the two unbounded
vertical strips C+

v and C−
v . In this case we will have to evaluate the integral IC as it

tends to +∞ and −∞, and show how to join the two terms of the unbounded strips
into one term that depends only on two bounded values of α1 and α2.
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Ii j (C
+
v ) + Ii j (C

−
v ) =

+∞∫

α1

⎛

⎜⎝
A2α+B2∫

A1α+B1

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dβ

⎞

⎟⎠ dα

−
α2∫

−∞

⎛

⎜⎝
A1α+B1∫

A2α+B2

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dβ

⎞

⎟⎠ dα

=
+∞∫

α1

⎛

⎜⎝
A2α+B2∫

A1α+B1

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dβ

⎞

⎟⎠ dα

+
α2∫

−∞

⎛

⎜⎝
A2α+B2∫

A1α+B1

(biβ − ci )(b jβ − c j )2

(biα + ai )(b jα + a j )2
dβ

⎞

⎟⎠ dα

= lim
α→∞

(
FC+

v ,i j (α) − FC+
v ,i j (−α)

)
− FC+

v ,i j (α1) + FC+
v ,i j (α2).

Hence,

Ii j =
∑

Cv⊂C\{C+
v ∪C−

v }

(
FCv,i j (α2) − FCv,i j (α1)

)

+FC+
v ,i j (α2) − FC+

v ,i j (α1) + lim
α→∞

(
FC+

v ,i j (α) − FC+
v ,i j (−α)

)
.

In Appendix B we will show that, after plugging in the formula for Ii j into Eq. (11),
the indefinite integrals FC+

v ,i j (·) cancel outwhen their argument tends to−∞ and+∞.
Intuitively, this could be explained by the fact that the slopes A1 and A2 are equal for
the strips C−

v and C+
v . Recall that the complete case analysis for the closed form of

FCv,i j after the integration is presented in Appendix A.
Therefore, using the closed form expressions for the indefinite integral FC+

v ,i j we
can evaluate the value of the integral IC in time proportional to the complexity of the
cell, and thus calculate the total probability that two points sampled from twoweighted
sets P1 and P2 see each other in O((m + n)2) time.

5 Main Result

Combining Theorems 3 and 6, our main result follows:

Theorem 1 Given two imprecise points p and q, modeled as Gaussian distributions
μ1 and μ2, and a set of obstacles of total complexity m, we can approximate the
probability that p and q see each other with an error at most ε in O(1/ε3 + m2/ε2)

time.

Proof We apply Theorem 3 to ε-approximate μ1 and μ2 with two sets of weighted
regions M1 and M2, each consisting of O(1/ε) convex polygons of complexity
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O(1/
√

ε). For every pair of polygons P1 ⊂ M1 and P2 ⊂ M2, we use Theorem 6
to compute the probability that a point chosen uniformly at random from P1 can see
a point chosen uniformly at random from P2. We need to solve a total of O(1/ε2)
such problems. For each of them, we have n = O(1/

√
ε), so applying Theorem 6

leads to an O((1/
√

ε +m)2) running time. Overall, we obtain a total running time of
O((1/ε2)(1/

√
ε + m)2) = O(1/ε3 + m2(1/ε2)). 	


6 Conclusions

Motivated by approximating the probability that two imprecise points given by prob-
ability distributions can see each other, we presented a technique to approximate each
probability density function by a weighted set of polygons. This constitutes a novel
approach for dealing with probability density functions in computational geometry.
We also showed how to apply this technique to solve our original visibility problem
efficiently, improving a recent result along the way.

Regarding future work, it would be interesting to study how our technique can be
improved in at least two aspects. Firstly, by finding a minimum complexity approxi-
mation of μ by weighted polygons, instead of resorting to a 2-approximation, as we
currently do. Secondly, we used approximation to go from a continuous distribution
to a set of polygons, but then used exact computations for the visibility between such
polygons. Another interesting question is if one could speed up the computation con-
siderably and/or use simpler data structures by using approximation also in this second
step. Other related topics worth studying would be imprecise points that move, and
the application of this general imprecision model to other problems on points beyond
visibility, e.g., geodesic shortest paths.
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A Evaluation of FCv,ij

The closed form of FCv,i j after the integration depends on the relative position of the
segments si and s j . There are the following cases to consider:
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1. In the general case, when bi �= 0, b j �= 0 (segments si and s j are not vertical), and
ai/bi �= a j/b j (segments si and s j are not parallel), after the integration we obtain
that

FCv,i j (α) = log (|ai + αbi |)
12b2i

(
a jbi − aib j

)2
[
3a4i b

2
j

(
A4
2 − A4

1

)
+ 3b4i b

2
j

(
B4
2 − B4

1

)

− 12a3i bi b
2
j

(
A3
2B2 − A3

1B1

)
− 12aib

3
i b

2
j

(
A2B

3
2 − A1B

3
1

)

+ 18a2i b
2
i b

2
j

(
A2
2B

2
2 − A2

1B
2
1

)

+ 4
(
b j ci + 2bi c j

) (
a3i b j

(
A3
2 − A3

1

)
− b3i b j

(
B3
2 − B3

1

)

− 3a2i bi b j

(
A2
2B2 − A2

1B1

)
+ 3aib

2
i b j

(
A2B

2
2 − A1B

2
1

))

+ 6
(
2b j ci + bi c j

) (
a2i bi c j

(
A2
2 − A2

1

)
+ b3i c j

(
B2
2 − B2

1

)

− 2aib
2
i c j (A2B2 − A1B1)

)

+ 12aib
2
i ci c

2
j (A2 − A1) − 12b3i ci c

2
j (B2 − B1)

]

+ log
(|a j + αb j |

)

12b2j
(
a jbi − aib j

)2
[
3a3j bi

(
3a jbi − 4aib j

) (
A4
2 − A4

1

)

− 3b2i b
4
j

(
B4
2 − B4

1

)

+ 12a2j bi b j
(
3aib j − 2a jbi

) (
A3
2B2 − A3

1B1

)

+ 12aibi b
4
j

(
A2B

3
2 − A1B

3
1

)

+ 18a jbi b
2
j

(
a jbi − 2aib j

) (
A2
2B

2
2 − A2

1B
2
1

)

+ 4
(
b j ci + 2bi c j

) (
a2j
(
2a jbi − 3aib j

) (
A3
2 − A3

1

)
+ bib

3
j

(
B3
2 − B3

1

)

− 3a jb j
(
a jbi − 2aib j

) (
A2
2B2 − A2

1B1

)
− 3aib

3
j

(
A2B

2
2 − A1B

2
1

))

+ 6(2b j ci +bi c j )
(
a j c j

(
a jbi −2aib j

) (
A2
2−A2

1

)
−bib

2
j c j
(
B2
2 −B2

1

)

+ 2aib
2
j c j (A2B2 − A1B1)

)

− 12aib
2
j ci c

2
j (A2 − A1) − 12bib

2
j ci c

2
j (B2 − B1)

]

+ 1

24bib2j
(
a jbi − aib j

) (
a j + αb j

)
[
3α3bib

3
j

(
a jbi − aib j

) (
A4
2 − A4

1

)

+α2 (aib j − a jbi
) (

3b2j
(
3a jbi + 2aib j

) (
A4
2 − A4

1

)

− 24bib
3
j

(
A3
2B2 − A3

1B1

)
+8b2j

(
b j ci + 2bi c j

) (
A3
2−A3

1

))
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−α
(
a jbi − aib j

) (
6a jb j

(
2a jbi + aib j

) (
A4
2 − A4

1

)

− 24a jbi b
2
j

(
A3
2B2 − A3

1B1

)
+ 8a jb j

(
b j ci + 2bi c j

) (
A3
2 − A3

1

))

+ 6a4j b
2
i

(
A4
2 − A4

1

)
+6b2i b

4
j

(
B4
2 − B4

1

)
+36a2j b

2
i b

2
j

(
A2
2B

2
2 − A2

1B
2
1

)

− 24a3j b
2
i b j

(
A3
2B2 − A3

1B1

)
− 24a jb

2
i b

3
j

(
A2B

3
2 − A1B

3
1

)

+ 8
(
b j ci + 2bi c j

) (
a3j bi

(
A3
2 − A3

1

)
− bib

3
j

(
B3
2 − B3

1

)

− 3a2j bi b j

(
A2
2B2 − A2

1B1

)
+ 3a jbi b

2
j

(
A2B

2
2 − A1B

2
1

))

+ 12
(
2b j ci + bi c j

) (
a2j bi c j

(
A2
2 − A2

1

)
+ bib

2
j c j
(
B2
2 − B2

1

)

− 2a jbi b j c j (A2B2 − A1B1)
)

+ 24a jbi b j ci c
2
j (A2 − A1) − 24bib

2
j ci c

2
j (B2 − B1)

]
.

1.a. If still bi �= 0, b j �= 0 and ai/bi �= a j/b j , but the segment si is pointing towards
the segment s j (the supporting line of si intersects s j ), and one of the corners of
the integration strip Cv corresponds to this line going through si , then the following
equalities hold:

ai + α′bi = 0,

A1ai − B1bi + ci = 0,

A2ai − B2bi + ci = 0,

where α′ is the x-coordinate of the corner of the strip Cv in the dual space. We obtain
these equalities from considering the intersection point of the lines β = A1α + B1
and β = A2α + B2 in the dual space, and the corresponding line ai x + bi y + ci = 0
in the primary space, to which si belongs. Then, the argument of the log function of
the first term of the general formula becomes 0 at α = α′, and we need to treat this
as a special case. Plugging in these equalities into the Eq. (12) before the integration,
and evaluating the integrals, we obtain the following closed form for the FCv,i j (α):

FCv ,i j (α) = log
(|a j + αb j |

)

12b2i b
2
j

[
9
(
a j bi − ai b j

)2 (
A4
2 − A4

1

)

+16
(
a j bi − ai b j

) (
bi c j − b j ci

) (
A3
2 − A3

1

)
+ 6

(
b j ci − bi c j

)2 (
A2
2 − A2

1

) ]

+ 1

24b3i b
2
j

(
a j + αb j

)
[
3α4b3i b

3
j

(
A4
2 − A4

1

)

−α2b2i b
2
j

(
9
(
a j bi − 2ai b j

) (
A4
2 − A4

1

)
+ 16

(
bi c j − b j ci

) (
A3
2 − A3

1

))

+2a j b
2
i b jα

(
3
(
3ai b j − 2a j bi

) (
A4
2 − A4

1

)
− 8

(
bi c j − b j ci

) (
A3
2 − A3

1

))
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+
(
6a2j b

2
i − 9a2i b

2
j

) (
A4
2 − A4

1

)
+ 16a j bi

(
bi c j − b j ci

) (
A3
2 − A3

1

)

+12
(
b j ci − bi c j

)2 (
A2
2 − A2

1

) ]
.

1.b. In the symmetrical case, when bi �= 0, b j �= 0 and ai/bi �= a j/b j , but the segment
s j is pointing towards segment si (the supporting line of s j intersects si ), and one of
the corners of the integration strip corresponds to the supporting line of s j , then the
following equalities hold

a j + α′b j = 0,

A1a j − B1b j + c j = 0,

A2a j − B2b j + c j = 0,

where α′ corresponds to the corner of the strip. In that case,

FCv,i j (α) = log (|ai + αbi |)
12b2i b

2
j

[
4
(
a jbi − aib j

) (
bi c j − b j ci

) (
A3
2 − A3

1

)

+ 3
(
a jbi − aib j

)2 (
A4
2 − A4

1

) ]
+ 1

24b2i b
2
j

[
3α2bib j

(
A4
2 − A4

1

)

+ α
((
12a jbi − 6aib j

) (
A4
2 − A4

1

)
− 8

(
b j ci − bi c j

) (
A3
2 − A3

1

)) ]
.

2. In case when bi �= 0, b j �= 0, but the segments si and s j are parallel, the following
equality holds:

ai
bi

= a j

b j
.

Then after integrating Eq. (12) we get:

FCv,i j (α) = log (|ai + αbi |)
2b2i b

2
j

[
3a2i b

2
j

(
A42 − A41

)
+ 3b2i b

2
j

(
A22B

2
2 − A21B

2
1

)

− 6ai bi b
2
j

(
A32B2 − A31B1

)
+ 2b j

(
b j ci + 2bi c j

) (
ai
(
A32 − A31

)

−bi
(
A22B2 − A21B1

))
+ (

2b j ci + bi c j
)
bi c j

(
A22 − A21

) ]

+ 1

24b2i b
2
j (ai + αbi )

2

[
3α4

(
A41 − A42

)
b4i b

2
j

+ α3
(
12ai b

3
i b

2
j (A

4
2 − A41) − 24b4i b

2
j (A

3
2B2 − A31B1)

+ 8b3i b j
(
b j ci + 2bi c j

)
(A32 − A31)

)

+α2
(
33a2i b

2
i b

2
j (A

4
2 − A41) − 48ai b

3
i b

2
j (A

3
2B2 − A31B1)

+ 16ai b
2
i b j

(
b j ci + 2bi c j

)
(A32 − A31)

)
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− α
(
6a3i bi b

2
j (A

4
2 − A41) + 72ai b

3
i b

2
j (A

2
2B

2
2 − A21B

2
1 )

− 48a2i b
2
i b

2
j (A

3
2B2 − A31B1) − 24b4i b

2
j (A2B

3
2 − A1B

3
1 )

+ 8bi b j
(
b j ci + 2bi c j

) (
2a2i

(
A32 − A31

)

− 6ai bi
(
A22B2 − A21B1

)
+ 3b2i

(
A2B

2
2 − A1B

2
1

))

+ 24b2i c j
(
2b j ci + bi c j

) (
ai
(
A22 − A21

)
− bi (A2B2 − A1B1)

)

+ 24b3i ci c
2
j (A2 − A1)

)

− 21a4i b
2
j

(
A42 − A41

)
+ 3b4i b

2
j

(
B4
2 − B4

1

)
− 54a2i b

2
i b

2
j

(
A22B

2
2 − A21B

2
1

)

+ 60a3i bi b
2
j

(
A32B2 − A31B1

)
+ 12ai b

3
i b

2
j

(
A2B

3
2 − A1B

3
1

)

− 4b j
(
b j ci + 2bi c j

) (
5a3i

(
A32 − A31

)
− 9a2i bi

(
A22B2 − A21B1

)

+ 3ai b
2
i

(
A2B

2
2 − A1B

2
1

)
+ b3i

(
B3
2 − B3

1

))

− 6bi c j
(
2b j ci + bi c j

) (
3a2i

(
A22 − A21

)
− 2ai bi (A2B2 − A1B1)

− b2i

(
B2
2 − B2

1

))

− 12ai b
2
i ci c

2
j (A2 − A1) − 12b3i ci c

2
j (B2 − B1)

]
.

3. If bi = 0 (segment si is vertical), and b j �= 0, then

FCv,i j (α) = log
(|a j + αb j |

)

ai b
2
j

[
− a2j ci

(
A32 − A31

)

+ 2a j b j ci
(
A22B2 − A21B1

)
− b2j ci

(
A2B

2
2 − A1B

2
1

)

− 2a j ci c j
(
A22 − A21

)
+ 2b j ci c j (A2B2 − A1B1) − ci c

2
j (A2 − A1)

]

+ 1

6ai b
2
j

(
a j + αb j

)
[

− α3b3j ci
(
A32 − A31

)

+ 3αb2j ci
(
a j
(
A32 − A31

)
+ 2b j

(
A21B1 − A22B2

)
+ 2c j

(
A22 − A21

))

+ 2αa j b j ci
(
2a j

(
A32 − A31

)
+ 3b j

(
A21B1 − A22B2

)
+ 3c j

(
A22 − A21

))

− 2a3j ci
(
A32 − A31

)
+ 2b3j ci

(
B3
2 − B3

1

)

+ 6a2j b j ci
(
A22B2 − A21B1

)
− 6a j b

2
j ci
(
A2B

2
2 − A1B

2
1

)

− 6a2j ci c j
(
A22 − A21

)
− 6b2j ci c j

(
B2
2 − B2

1

)

+ 12a j b j ci c j (A2B2 − A1B1) − 6a j ci c
2
j (A2 − A1) + 6b j ci c

2
j (B2 − B1)

]
.

3.a. If bi = 0, b j �= 0, and segment si is pointing towards s j then A1 = A2 = −ci/ai .
Note that the value of α corresponding to the line passing through si is at ∞, thus
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there is no extra consideration to be made of evaluating the integral at the corner of
the strip in this case.

FCv,i j (α) = log
(|a j + αb j |

)

a3i b j

[
c2i (B2 − B1)(aib j (B1 + B2) − 2ai c j + 2a j ci )

]

+ ci (B2 − B1)

3aib j (a j + αb j )

[
− 3α2b2j c

2
i − 3αa jb j c

2
i

+ a2i b
2
j (B

2
1 + B1B2 + B2

2 ) + 3aib j (a j ci − ai c j )(B1 + B2)

+ 3(ai c j − a j ci )
2
]
.

3.b. If bi = 0, and segment s j is pointing towards segment si :

a j + α′b j = 0,

A1a j − B1b j + c j = 0,

A2a j − B2b j + c j = 0,

where α′ corresponds to the corner of the strip. Then,

FCv,i j (α) = αci
(
2a j + αb j

) (
A3
1 − A3

2

)

6aib j
.

4. If bi �= 0, and b j = 0 (the segment s j is vertical), then

FCv,i j (α) = log (|ai + αbi |)
2a2j b

2
i

c2j

[
(A22 − A21)a

2
i + (B2

2 − B2
1 )b2i − 2(A2B2 − A1B1)ai bi

+ 2(A2 − A1)ai ci − 2(B2 − B1)bi ci
]

+
c2jα

4a2j bi

[
α
(
A22 − A21

)
bi − 2ai

(
A22 − A21

)

+ 4bi (A2B2 − A1B1) − 4ci (A2 − A1)
]
.

4.a. If bi �= 0, b j = 0, and segment si is pointing towards s j then

ai + α′bi = 0,

A1ai − B1bi + ci = 0,

A2ai − B2bi + ci = 0,
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We get:

FCv,i j (α) = αc2j (A
2
2 − A2

2)(2ai + αbi )

4a2j bi
.

4.b. If bi �= 0, b j = 0, and segment s j is pointing towards si then A1 = A2 = −c j/a j ,
and

FCv,i j (α) = log(|ai + biα|)(B2 − B1)c2j
2a3j bi

[
(B1 + B2)a jbi + 2ai c j − 2a j ci

]

−α
c3j
a3j

(B2 − B1).

5. If bi = 0 and b j = 0 (both segments are vertical), then

FCv,i j (α) = −ci c2j
(
α2(A2 − A1) + 2α(B2 − B1)

)

2aia2j
.

B Evaluation of FCv,ij at+∞ and−∞
In this appendix we show that the indefinite integrals FCv,i j (·) cancel out when their
argument tends to −∞ and +∞.

Consider the case 1 from Appendix A. The rest of the cases are similar. For ease
of reference, we will split the terms summed up in the expression of FCv,i j into five
parts F1, . . . , F5. Let F1 be the first term of the expression, i.e., the one which is
multiplied by log (|ai + αbi |). Similarly, let F2 be the second term, which is mul-
tiplied by log

(|a j + αb j |
)
. The remaining terms F3, F4, F5 will be defined later,

such that F(α) = F1(α) + F2(α) + F3(α) + F4(α) + F5(α). We will argue that
lim

α→∞ (Fi (α) − Fi (−α)) = 0, for each i = 1, . . . , 5.

B.1 Case of F1 and F2

Denote the coefficient of log(|ai +αbi |) in F1 as Z , and consider the limit of this term
for FC+

v ,i j (α), when α tends to infinity.

lim
α→∞ (F1(α) − F1(−α)) = lim

α→∞ (Z log |ai + αbi | − Z log |ai − αbi |) ,

Then,

lim
α→∞ (Fi (α) − Fi (−α))

= lim
α→∞

((
Z log

∣∣∣
ai
α

+ bi
∣∣∣+ Z log |α|

)
−
(
Z log

∣∣∣
ai
α

− bi
∣∣∣+ Z log |α|

))
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= Z log |bi | − Z log | − bi | + lim
α→∞ (Z log |α| − Z log |α|) = 0.

Similarly,

lim
α→∞ (F2(α) − F2(−α)) = 0.

B.2 Case of F3, F4 and F5

The remaining terms of FCv,i j will not cancel out as easily as in the case of F1 and F2,
therefore we will split them into three groups F3, F4 and F5. We will need to evaluate
these terms for all the FCv,i j for all i and j . Denote FCv to be

FCv = FCv,13 − FCv,31 − FCv,23 + FCv,32 − FCv,14 + FCv,41 + FCv,24 − FCv,42,

analogously to Eq. (11).
Consider the terms with the variable expression of the form α3/(a j + αb j ). After

we collect all such terms for all i and j they will cancel out. Indeed, let

f3(i, j) = α3

a j + αb j
· 3
(
A4
2 − A4

1

)
bib3j (a jbi − aib j )

24bib2j (a jbi − aib j )
.

Note that f3(i, j) is a function of α; however, we will omit α in this and subsequent
definitions for ease of presentation. We can now define F3 as

F3 = f3(1, 3) − f3(3, 1) − f3(2, 3) + f3(3, 2)

− f3(1, 4) + f3(4, 1) + f3(2, 4) − f3(4, 2).

After simplifying the expression above, we obtain F3(α) = 0, and therefore

lim
α→∞ (F3(α) − F3(−α)) = 0.

Now, let

f4(i, j) = α2

a j + αb j
· aib j − a jbi
24bib2j (a jbi − aib j )

(
3
(
A4
2 − A4

1

)
b2j (3a jbi + 2aib j )

− 24
(
A3
2B2 − A3

1B1

)
bib

3
j + 8

(
A3
2 − A3

1

)
b2j (b j ci + 2bi c j )

)
,

and let

F4 = f4(1, 3) − f4(3, 1) − f4(2, 3) + f4(3, 2) − f4(1, 4)

+ f4(4, 1) + f4(2, 4) − f4(4, 2).
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Then, after calculating the limits of F4 we get:

lim
α→+∞ F4(α) =

(
A31 − A32

)
((a3b4 − a4b3)(b1c2 − b2c1) − (a2b1 − a1b2)(b4c3 − b3c4))

3b1b2b3b4

lim
α→−∞ F4(α) =

(
A31 − A32

)
((a3b4 − a4b3)(b1c2 − b2c1) − (a2b1 − a1b2)(b4c3 − b3c4))

3b1b2b3b4
.

Hence

lim
α→∞ (F4(α) − F4(−α)) = 0.

Finally, let

f5(i, j) = − α

a j + αb j
· (a j bi − ai b j )

24bi b
2
j (a j bi − ai b j )

(
−24a j

(
A32B2 − A31B1

)
bi b

2
j

+ 8
(
A32 − A31

)
a j b j (b j ci + 2bi c j ) + 6

(
A42 − A41

)
a j b j (2a j bi + ai b j )

)
,

and let

F5 = f5(1, 3) − f5(3, 1) − f5(2, 3) + f5(3, 2) − f5(1, 4)

+ f5(4, 1) + f5(2, 4) − f5(4, 2).

After calculating the limits of F5 we get:

lim
α→+∞ F5(α) =

(
A31 − A32

)
((a4b3 − a3b4)(b1c2 − b2c1) + (a2b1 − a1b2)(b4c3 − b3c4))

3b1b2b3b4
,

lim
α→−∞ F5(α) =

(
A31 − A32

)
((a4b3 − a3b4)(b1c2 − b2c1) + (a2b1 − a1b2)(b4c3 − b3c4))

3b1b2b3b4
,

and

lim
α→∞ (F5(α) − F5(−α)) = 0.

The last term of FCv,i j , with 1/(a j +αb j )will tend to 0 when α tends to plus or minus
infinity. Thus, collecting all the terms together, we get that

lim
α→∞ (Fi (α) − Fi (−α)) = 0.
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