
Algorithmica (2019) 81:4010–4028
https://doi.org/10.1007/s00453-018-0513-7

Generalized Kakeya sets for polynomial evaluation and
faster computation of fermionants

Andreas Björklund1 · Petteri Kaski2 · Ryan Williams3

Received: 31 December 2017 / Accepted: 30 August 2018 / Published online: 18 September 2018
© The Author(s) 2018

Abstract
We present two new data structures for computing values of an n-variate polynomial
P of degree at most d over a finite field of q elements. Assuming that d divides q − 1,
our first data structure relies on (d + 1)n+2 tabulated values of P to produce the value
of P at any of the qn points using O(nqd2) arithmetic operations in the finite field.
Assuming that s divides d and d/s divides q − 1, our second data structure assumes
that P satisfies a degree-separability condition and relies on (d/s + 1)n+s tabulated
values to produce the value of P at any point using O(nqssq) arithmetic opera-
tions. Our data structures are based on generalizing upper-bound constructions due
to Mockenhaupt and Tao (Duke Math J 121(1):35–74, 2004), Saraf and Sudan (Anal
PDE 1(3):375–379, 2008) and Dvir (Incidence theorems and their applications, 2012.
arXiv:1208.5073) for Kakeya sets in finite vector spaces from linear to higher-degree
polynomial curves. As an application we show that the new data structures enable a
faster algorithm for computing integer-valued fermionants, a family of self-reducible
polynomial functions introduced by Chandrasekharan and Wiese (Partition functions
of strongly correlated electron systems as fermionants, 2011. arXiv:1108.2461v1)
that captures numerous fundamental algebraic and combinatorial functions such as
the determinant, the permanent, the number of Hamiltonian cycles in a directed multi-
graph, as well as certain partition functions of strongly correlated electron systems
in statistical physics. In particular, a corollary of our main theorem for fermionants
is that the permanent of an m × m integer matrix with entries bounded in absolute
value by a constant can be computed in time 2m−�(

√
m/ log logm), improving an earlier

algorithm of Björklund (in: Proceedings of the 15th SWAT, vol 17, pp 1–11, 2016)
that runs in time 2m−�(

√
m/ logm).

B Petteri Kaski
petteri.kaski@aalto.fi

1 Department of Computer Science, Lund University, Lund, Sweden

2 Department of Computer Science, Aalto University, Helsinki, Finland

3 Department of Electrical Engineering and Computer Science, CSAIL, MIT, Cambridge, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0513-7&domain=pdf
http://arxiv.org/abs/1208.5073
http://arxiv.org/abs/1108.2461v1

Algorithmica (2019) 81:4010–4028 4011

Keywords Besicovitch set · Fermionant · Finite field · Finite vector space ·
Hamiltonian cycle · Homogeneous polynomial · Kakeya set · Permanent ·
Polynomial evaluation · Tabulation

1 Introduction

The protagonist of this paper is the following task. We want an efficient representation
of an n-variate degree-d polynomial P over a finite field Fq of order q, that permits
us to evaluate P on arbitrary points a ∈ F

n
q . What kind of resource trade-offs can be

achieved between space (for representing P) and query time (for computing P(a) at
a given a)?

The study of data structures that enable fast “polynomial evaluation” queries for
multivariate polynomials was initiated by Kedlaya and Umans [12] for polynomials
with bounded individual variable degrees,motivated by applications to fast polynomial
factorization. Here we focus on the case when P has (total) degree d, in particular,
when d is less than n.1

We seekdata structures consistingof a set K ⊆ F
n
q and an associated list ((a, P(a)) :

a ∈ K) of evaluations. There are two extremes for such designs. At one extreme, we
can set K = F

n
q , put all evaluations in a sorted array, and assuming constant-time

random access, we achieve O(n) query time. At the other extreme, to uniquely identify

P we must tabulate �

(
n + d
d

)
points, as this is the dimension of the monomial

basis. However, when K is this small, we are only aware of brute-force (nO(d)-time)
algorithms to evaluate the polynomial in any other point. Between these two extremes,
we seek constructions for sets K that suffice for evaluating P at any point outside K in
time that scales sub-exponentially in d. Our motivation is to accelerate the best known
algorithms for canonical #P-hard problems (cf. Sect. 1.2).

1.1 Polynomial Evaluation Based on Generalized Kakeya Sets

Let Fq [x] be the ring of polynomials over indeterminates x = (x1, x2, . . . , xn) with
coefficients in the finite field Fq . For fundamentals of finite fields, we refer to Lidl
and Niederreiter [17]. Let us write M(q) for the time complexity of multiplication and
division in Fq . For example, M(q) = O

(
(log q)1+ε

)
holds for any constant ε > 0;

we refer to e.g. von zur Gathen and Gerhard [26] for sharper bounds. For fields of
order q = pd for a prime p and an integer d ≥ 2 we tacitly assume here and in what
follows that an irreducible polynomial of degree d in Fp[x] is available to support
the computations in Fq (cf. [26, §14.9] for construction algorithms for irreducible
polynomials over Fp).

Our first main theorem constructs an explicit set K ⊆ F
n
q of cardinality at most

(d+1)n+2 which allows for relatively quick evaluation of any degree-d P at all points
in Fn

q .

1 In contrast, Kedlaya and Umans [12] focus on the case n ≤ do(1); cf. [12, Corollaries 4.3, 4.5, and 6.4].
Notational caveat: Kedlaya and Umans use “m” for the number of variables.

123

4012 Algorithmica (2019) 81:4010–4028

Theorem 1 Let d divide q − 1. There is a set K ⊆ F
n
q of size |K | ≤ (d + 1)n+2

along with functions g1, g2, . . . , g(q−1)(d+1)2 : F
n
q → K and scalars γ1, γ2, . . . ,

γ(q−1)(d+1)2 ∈ Fq such that for every polynomial P ∈ Fq [x] of degree at most d and
every vector a ∈ F

n
q ,

P(a) =
(q−1)(d+1)2∑

j=1

γ j P(g j (a)) .

Moreover, there is an algorithm that in time O(|K |nqM(q)) lists the elements of K ,
and there is an algorithm that in time O

(
nqd2M(q)

)
computes the values g j (a) ∈ F

n
q

and γ j ∈ Fq for all j = 1, 2, . . . , (q − 1)(d + 1)2 when given a ∈ F
n
q as input.

The size of K can be further reduced for polynomials P satisfying a certain (natural)
restriction which holds for several well-studied polynomials. Suppose we partition the
variable set X = {x1, x2, . . . , xn} into

X = X1 ∪ X2 ∪ · · · ∪ Xd

such that

|X1| = |X2| = · · · = |Xd | = n

d
.

Let us say that a degree-d polynomial P ∈ Fq [x] is degree-separable relative to
X1, X2, . . . , Xd if every monomial of P contains one variable from each Xi . Note a
degree-separable P is in particular both multilinear and homogeneous of degree d.
Degree-separability enables a trade-off between the size of K and the query time for
evaluation:

Theorem 2 Let s divide d and d/s divide q − 1. There is a set K ⊆ F
n
q of size |K | ≤

(d/s + 1)n+s along with g1, g2, . . . , g(q−1)s : Fn
q → K and γ1, γ2, . . . , γ(q−1)s ∈ Fq

such that for every degree-separable degree-d P ∈ Fq [x] relative to a fixed partition
X1, X2, . . . , Xd and every vector a ∈ F

n
q ,

P(a) =
(q−1)s∑
j=1

γ j P(g j (a)) .

Moreover, there is an algorithm that in time O(|K |nqM(q)) lists the elements of
K , and there is an algorithm that in time O(n(q − 1)ssqM(q)) computes the values
g j (a) ∈ F

n
q and γ j ∈ Fq for all j = 1, 2, . . . , (q − 1)s when given a ∈ F

n
q as input.

We need K to contain enough points that “interpolation” at all the other points is
possible. One intuition for designing a small K ⊆ F

n
q for polynomial evaluation is that

such a set must enable “localization” of any target polynomial inside the set. At one
extreme, we may think of the simplest non-constant family of polynomials, namely
lines. In Euclidean spaces, this line of thought leads to the study of dimensionality of

123

Algorithmica (2019) 81:4010–4028 4013

sets that contain a unit line segment in every direction, or the Kakeya problem, which
has been extensively studied since the 1920s and the seminal work of Besicovitch [2].
We refer to Wolff [28], Mockenhaupt and Tao [20], and Dvir [9,10] for surveys both
in the continuous and finite settings. In what follows we focus on finite vector spaces.

Definition 1 A Kakeya set (or Besicovitch set) in a vector space of dimension n over
Fq is a subset K ⊆ F

n
q together with a function f : Fn

q → F
n
q such that for every

vector a ∈ F
n
q and every scalar τ ∈ Fq it holds that

f (a) + τa ∈ K . (1)

That is, a Kakeya set K has the property that for any possible direction of a line inFn
q

(that is, any nonzero vector a ∈ F
n
q), the set K contains an entire line (through f (a))

with this direction. To support our objective of polynomial evaluations for higher-order
curves than lines, an intuition is now to generalize (1) to polynomials of higher degree
in the indeterminate τ . This is the methodological gist of our main contribution in this
paper, which will be described further in Sect. 2.

As an illustrative application of our new data structures, we use Theorem 2 to derive
a faster algorithm for computing fermionants, which are a family of self-reducible
and degree-separable polynomials introduced by Chandrasekharan and Wiese [7] to
generalize various fundamental polynomials. We start with a brief introduction to
fermionants to motivate their study from a computational perspective.

1.2 Fermionants

We continue to work over Fq . As usual, Sm is the symmetric group over [m] =
{1, 2, . . . ,m}. We write c(σ) for the number of cycles in a permutation σ ∈ Sm , where
each fixed point of σ is counted as a cycle of length 1. Let A = (ai j : i, j ∈ [m]) be an
m ×m matrix of indeterminates. The fermionant of A with (indeterminate) parameter
t is the (m2 + 1)-variable polynomial

fert A = (−1)m
∑
σ∈Sm

(−t)c(σ)
m∏
i=1

ai,σ (i) . (2)

The fermionant is multilinear and homogeneous of degree m with respect to the
variables {ai, j }, and of degreem with respect to t . Furthermore, note that with respect
to {ai, j } the fermionant is degree-separable under the partition {{ai j : j ∈ [m]} : i ∈
[m]}.

The fermionant captures several extensively studied algebraic and combinatorial
functions, such as the determinant of a matrix

det A = (−1)m
∑
σ∈Sm

(−1)c(σ)
m∏
i=1

ai,σ (i) ,

123

4014 Algorithmica (2019) 81:4010–4028

the permanent of a matrix

per A =
∑
σ∈Sm

m∏
i=1

ai,σ (i) ,

the generating function for directed Hamiltonian cycles

hc A =
∑
σ∈Sm
c(σ)=1

m∏
i=1

ai,σ (i) ,

as well as certain partition functions of strongly correlated electron systems in
statistical physics (see Chandrasekharan andWiese [7]). It is immediate that the afore-
mentioned functions can be obtained as special cases of the fermionant via

det A = fer1 A ,

per A = (−1)m fer−1 A ,

hc A = (−1)m−1 {t} fert A ,

where in the last equality we write {tk}P for the coefficient of tk in the polynomial P .
The functions captured by the fermionant have received such substantial attention

that is not possible to discuss the literature exhaustively here. For example, the perma-
nent and the determinant are central to arithmetic circuit complexity [24] andgeometric
complexity theory [16]. Similarly, the numerous symmetries and self-reducibility
properties of fermionants enable their use in e.g. interactive proof systems [5,18,27].
We restrict our present discussion of earlier work mostly to algorithms for the perma-
nent.

Computing the permanent of a given m × m matrix appears to be an extremely
hard problem. The restriction to 0/1-matrices is equivalent to the problem of counting
perfect matchings in a bipartite graph with the matrix equal to the graph’s biadjacency
matrix. The best known general algorithm is over 50 years old, given by Ryser [21] in
1963, and it usesO(2mm) arithmetic operations.Valiant [25] proved that the permanent
for {0, 1}-matrix inputs is #P-hard, even if the number of ones per row is at most three.
In the more general setting of fermionants, Mertens and Moore [19] showed that the
fermionant fert is #P-hard for any t > 2 and⊕P-hard for t = 2, even for the adjacency
matrices of planar graphs. For the permanent, no less-than-2m-sized arithmetic circuit
is known despite substantial efforts (for example, it is a prominent open problem in
the Art of Computer Programming [13]).

However, there are fasterways to compute the permanent ifwe allow random-access
tabulation along with arithmetic operations. Most notably, there are modest speed-ups
for {0, 1}-matrices over the integers. Bax and Franklin [1] gave an 2m−�(m1/3/ logm)

expected time algorithm. Björklund [3] presented a deterministic 2m−�(
√
m/ log q)

time algorithm over any finite field of order q ≥ m2 + 1, by exploiting the self-
reducibility of the permanent. Applying the Chinese Remainder Theorem, he also

123

Algorithmica (2019) 81:4010–4028 4015

obtains a 2m−�(
√
m/ logm)-time algorithm for integermatriceswith entries whose abso-

lute value is bounded from above by a constant. There are also faster algorithms for
sparse matrices. Cygan and Pilipczuk [8] gave a 2m−�(m/r) time algorithm for matri-
ces with at most r non-zero entries per row. Very recently, Björklund, Husfeldt, and
Lyckberg [4] and Björklund, Kaski, and Koutis [6] show that if the result is bounded
in absolute value by cm for a constant c > 1, then there are 2m

(
1−1/c�(1)

)
mO(1)-time

algorithms for the permanent and the number of directed Hamiltonian cycles, respec-
tively. Both algorithms work by computing the permanent and the number of directed
Hamiltonian cycles modulo small primes. In particular, the algorithms over Fp run in

time 2m
(
1−1/c�(1)

)
mO(1), faster than the algorithms of this paper for small p.

Our main technical result for fermionants is that, given mild technical conditions
on the order of the field, we can obtain a faster algorithm over finite fields:

Theorem 3 There is an algorithm that computes the coefficients of the fermio-
nant as a polynomial in t , fert A ∈ Fq [t] of a given matrix A ∈ F

m×m
q in

time 2m−�(
√
m/ log log q)O (M(q)), provided that q − 1 has a divisor in the interval

(1.1 log q, 10 log q), q ≥ m2 + 1, and m = ω
(
log2 q log log q

)
.

The Chinese Remainder Theorem and a uniform variant of the Prime Number
Theorem for arithmetic progressions yield the following corollary for integer-valued
fermionants.

Corollary 1 Let t be an integerwith |t | in O(m)and let M bea constant. The fermionant
fert A can be computed in time 2m−�(

√
m/ log logm), for all m × m matrices A with

integer values in [−M, M].

As far as we know, our result gives the currently fastest algorithms to compute
a bounded integer entry permanent and counting the number of Hamiltonian cycles
in a directed graph. The idea behind Theorem 3 is to apply our polynomial evalu-
ation results to a self-reduction for fermionants. Following Björklund’s results for
the permanent [3], we show how to compute a fermionant on an m × m matrix via
2m−kmO(1) calls to the fermionant on k × k matrices. Applying Theorem 2, we set
k so that it is possible to evaluate the k × k fermionant polynomial over all points
of K in 20.999m time. Once we know the polynomial on all points in K , we can then
evaluate the fermionant on any m × m matrix in time about 2m−�(k)mO(1). We show
k ≈ √

m/ log log q suffices.

1.3 Organisation of the Paper

In Sect. 2, we present our generalization of Kakeya sets in finite vector spaces, together
with explicit constructions. Next in Sect. 3 we prove our main evaluation theorems,
Theorem 1 and Theorem 2. In Sect. 4 we use the self-reducibility of the fermionant to
prove Theorem 3 and Corollary 1, showing how to compute fermionants faster.

123

4016 Algorithmica (2019) 81:4010–4028

2 Generalized Kakeya Sets in Finite Vector Spaces

We study the following generalization of Kakeya sets for lines (Definition 1) to higher-
degree polynomial curves:

Definition 2 AKakeya set of degree r in a vector space of dimension n overFq consists
of a set K ⊆ F

n
q together with functions f0, f1, . . . , fr−1 : Fn

q → F
n
q such that for

every vector a ∈ F
n
q and every scalar τ ∈ Fq it holds that

F(a, τ) = f0(a) + f1(a)τ + f2(a)τ 2 + . . . + fr−1(a)τ r−1 + aτ r ∈ K . (3)

We say that a construction for Kakeya sets is explicit if

1. there is an algorithm that outputs K (given q, r , and n) in O
(|K |nrM(q)

)
time,

and
2. there is an algorithm that given a ∈ F

n
q outputs the values

f0(a), f1(a), . . . , fr−1(a) ∈ F
n
q

in O
(
nrM(q)

)
time.

The following construction of sparse Kakeya sets of degree r generalizes the design
of the best known Kakeya sets (cf. Mockenhaupt and Tao [20], Saraf and Sudan [22],
Dvir [9, §2.4], Kopparty, Lev, Saraf, and Sudan [14], and Kyureghyan, Müller, and
Wang [15]).

Lemma 1 For every r + 1 that divides q − 1 there is an explicit Kakeya set K ⊆ F
n
q

of degree r and size |K | ≤
(
q−1
r+1 + 1

)n+1
.

Proof We begin with three simple observations. First, since r + 1 divides q − 1, we
have that r + 1 has a multiplicative inverse in Fq . Indeed, q = pa for a prime p and
positive integer a. Notice that r + 1 has a multiplicative inverse if and only if p does
not divide r + 1. By assumption we have (r + 1)Q = pa − 1 for an integer Q and
thus r + 1 = pb for an integer b would lead to a contradiction p(bQ − pa−1) = 1.
Second, for all α, τ ∈ Fq from the Binomial Theorem we have

(
α

r + 1
+ τ

)r+1

− τ r+1 =
r−1∑
i=0

(
r + 1

i

)(
α

r + 1

)r+1−i

τ i + ατ r . (4)

Third, since the multiplicative subgroup F
×
q is cyclic of order q − 1, the subgroup

consisting of (r + 1)th powers of elements of F×
q has size exactly q−1

r+1 . Including the

zero element, we observe that |{βr+1 : β ∈ Fq}| = q−1
r+1 + 1.

Let us now define K ⊆ F
n
q to consist of all vectors of the form

((
α1

r + 1
+τ

)r+1

−τ r+1,

(
α2

r + 1
+τ

)r+1

−τ r+1, . . . ,

(
αn

r + 1
+τ

)r+1

−τ r+1
)

(5)

123

Algorithmica (2019) 81:4010–4028 4017

withα1, α2, . . . , αn, τ ∈ Fq . It follows immediately from (5) and our third observation
that

|K | ≤
(
q − 1

r + 1
+ 1

)n+1

.

Furthermore, (4) and (5) imply that the generalized Kakeya property (3) holds
when we define the functions fi : F

n
q → F

n
q for all i = 0, 1, . . . , r − 1 and

a = (α1, α2, . . . , αn) ∈ F
n
q by

fi (a) =
((

r + 1

i

)(
α1

r + 1

)r+1−i

, . . . ,

(
r + 1

i

)(
αn

r + 1

)r+1−i)
. (6)

It is immediate from the definitions (5) and (6) that the construction is explicit. ��

3 Polynomial Evaluation

This section proves our two main theorems for polynomial evaluation. The key idea is
Mellin-transform-like sieving (8) enabled by an elementary observation about sums
over finite fields (7) below, which we then extend to an s-fold product form in (13).

Let us start with a homogeneous version of Theorem 1.

Lemma 2 Let d divide q −1. There is a set K ⊆ F
n
q of size |K | ≤ (d +1)n+1 together

with functions g1, g2, . . . , gq−1 : Fn
q → K and scalars γ1, γ2, . . . , γq−1 ∈ Fq such

that for every homogeneous polynomial P ∈ Fq [x] of degree h ≤ d and every vector
a ∈ F

n
q ,

P(a) =
q−1∑
j=1

γ j P(g j (a)) .

Moreover, there is an algorithm that in time O(|K |nqM(q)) lists the elements of K ,
and there is an algorithm that in time O(nqM(q)) computes the values g j (a) ∈ F

n
q

and γ j ∈ Fq for all j = 1, 2, . . . , (q − 1) when given a ∈ F
n
q as input.

Proof Set r = (q − 1)/d − 1, and note that r + 1 divides q − 1. Apply Lemma 1
to obtain K and the functions f0, f1, . . . , fr−1. Let P ∈ Fq [x] be a homogeneous
polynomial of degree h ≤ d over the indeterminates x = (x1, x2, . . . , xn), and let
a = (α1, α2, . . . , αn) ∈ F

n
q be an assignment of values to the indeterminates. Our

goal is to compute the value P(a) ∈ Fq using evaluations of P at K . Recalling the
function F(a, τ) from (3), we will rely on values of the composition P(F(a, τ)) for
τ ∈ Fq to obtain P(a). Towards this end, we first observe that

∑
τ∈F×

q

τ e =
{

− 1 if q − 1 divides e,

0 otherwise.
(7)

123

4018 Algorithmica (2019) 81:4010–4028

To see this, let g be a generator of the multiplicative subgroup F
×
q . If q − 1 divides e

then τ e = 1 for all τ , and thus the sum is |F×
q | = q − 1 (modulo the characteristic).

Otherwise, ge = 1, and we have

∑
τ∈F×

q

τ e =
∑
τ∈F×

q

(gτ)e = ge
∑
τ∈F×

q

τ e ,

so the sum must be 0.
Let t = q − 1 − rh and observe that t ≥ 1. We now claim that

P(a) = −
∑
τ∈F×

q

τ t P(F(a, τ)) . (8)

By linearity, it suffices to consider the case when P is a single monomial P =
xh11 xh22 · · · xhnn of degree h = h1 + h2 + . . . + hn ≤ d. Recalling (3) and (7), we
observe that the right-hand side of (8) expands to

−
∑
τ∈F×

q

τ t P(F(a, τ))

= −
∑
τ∈F×

q

τ q−1−rh
(
τ rhα

h1
1 α

h2
2 · · · αhn

n + τ rh−1(· · ·) + . . . + τ 0
(· · ·))

= −
∑
τ∈F×

q

(
τ q−1α

h1
1 α

h2
2 · · ·αhn

n + τ q−2(· · ·) + . . . + τ q−1−rh(· · ·))

= α
h1
1 α

h2
2 · · ·αhn

n

= P(a) .

That is, by multiplying each term by τ t , we ensure that all other terms appearing
inside of P(F(a, τ)) cancel, except for the desired term α

h1
1 α

h2
2 · · · αhn

n which is the
coefficient of τ rh .

Now let β1, β2, . . . , βq−1 be an enumeration of the elements of F×
q . For all j =

1, 2, . . . , q − 1, set g j (a) = F(a, β j) and γ j = −β t
j . The first part of the lemma now

follows from (8).
The running time bounds follow from the fact that the construction in Lemma 1 is

explicit and d < q. ��

3.1 Proof of Theorem 1

We are now ready to prove Theorem 1. Our strategy is to interpolate the homogeneous
components of our given polynomial, then apply Lemma 2. Towards this end, let
P ∈ Fq [x] have degree at most d and let P = ∑d

h=0 Ph where Ph ∈ Fq [x] is either
zero or homogeneous of degree h, for all h = 0, 1, . . . , d. Let ν0, ν1, . . . , νd be any

123

Algorithmica (2019) 81:4010–4028 4019

d + 1 distinct elements of Fq . Recalling the definition of K in (5), let K̂ ⊆ F
n
q be the

set of all vectors of the form

ν

((
α1

r + 1
+ τ

)r+1

− τ r+1, . . . ,

(
αn

r + 1
+ τ

)r+1

− τ r+1
)

(9)

where α1, α2, . . . , αn, τ ∈ Fq , and ν ∈ {ν0, ν1, . . . , νd}.
In particular, from (9) and (5) we have that |K̂ | ≤ (d + 1)|K |.
Assuming we have constant-time access to P(a) for all a ∈ K̂ , we can access each

Ph at k ∈ K by univariate interpolation over the d + 1 distinct values of ν, via the
identity

P(νk) =
d∑

h=0

Ph(k)ν
h . (10)

That is, for h, j = 0, 1, . . . , d, let λh j ∈ Fq be the Lagrange interpolation coefficients
that satisfy

Ph(k) =
d∑
j=0

λh j P(ν j k)

for all k ∈ K . Observe in particular that the coefficients λh j depend only on
ν0, ν1, . . . , νd , and can be computed once in O(d3M(q)) time, for instance by using
Gaussian elimination to solve the linear equation system consisting of (10) for all
ν ∈ {ν0, ν1, . . . , νd}.

With access to values of Ph at K , given a query a ∈ F
n
q we can use Lemma 2 to

sieve for Ph(a) for each h = 0, 1, . . . , d. That is, we have

P(a) =
d∑

h=0

Ph(a) = −
d∑

h=0

∑
τ∈F×

q

d∑
j=0

τ q−1−rhλh j P
(
ν j F(a, τ)

)
.

The running time bounds follow frommultiplying the running time bounds inLemma2
by d2, as we use it that many times, after noting that the bound dominates the con-
struction time of the λh j coefficients.

This completes the proof of Theorem 1. ��

3.2 Proof of Theorem 2

Recall that s divides d and d/s divides q − 1. Let X1, X2, . . . , Xd be the partition of
variables for degree-separability. For i = 1, 2, . . . , s, take

Yi = X(i−1)d/s+1 ∪ X(i−1)d/s+2 ∪ · · · ∪ Xid/s

123

4020 Algorithmica (2019) 81:4010–4028

and observe that |Yi | = n/s for all i . Furthermore, observe that every monomial of a
polynomial P ∈ Fq [x] that is degree-separable relative to X1, X2, . . . , Xd for every
i = 1, 2, . . . , s has degree exactly d/s when restricted to the variables of Yi .

Let us extend the construction in Lemma 1 into an s-fold product form over the
partition Y1,Y2, . . . ,Ys . Accordingly, we work with a multivariate polynomial over
s indeterminates τ1, τ2, . . . , τs instead of a univariate polynomial (3) over τ . Let
a = (α1, α2, . . . , αn) ∈ F

n
q and let us write aYi ∈ F

n/s
q for the restriction of a to

coordinates in Yi . Set r = (q − 1)s/d − 1. Let us write FYi (aYi , τi) ∈ F
n
q for the

vector obtained by applying the construction given by (3) and (6) to the vector aYi and
τi , thereby obtaining a vector of length n/s indexed by Yi , followed by padding with
0-entries outside the indices Yi to obtain a vector of length n. Let us now define the
(vector-valued) multivariate polynomial

F(a, τ1, τ2, . . . , τs) = FY1(aY1 , τ1) + FY2(aY2 , τ2) + · · · + FYs (aYs , τs) . (11)

We observe by (3), (6), and (4) that F(a, τ1, τ2, . . . , τs) ranges over all vectors of the
form ((

α1

r + 1
+ τ1

)r+1

− τ r+1
1 , . . . ,

(
αn/s

r + 1
+ τ1

)r+1

− τ r+1
1 ,

(
αn/s+1

r + 1
+ τ2

)r+1

− τ r+1
2 , . . . ,

(
α2n/s

r + 1
+ τ2

)r+1

− τ r+1
2 ,

. . . ,(
αn−n/s+1

r + 1
+ τs

)r+1

− τ r+1
s , . . . ,

(
αn

r + 1
+ τs

)r+1

− τ r+1
s

)
(12)

with α1, α2, . . . , αn, τ1, τ2, . . . , τs ∈ Fq . We define K to be the set of all such vectors.
By similar reasoning as in the proof of Lemma 1, note that

|K | ≤
(
q − 1

r + 1
+ 1

)n+s

=
(
d

s
+ 1

)n+s

.

Let t = q−1−rd/s and observe that t ≥ 1. From (7) and proceeding analogously
as with the reasoning for (8) in the proof of Theorem 1, we thus have

P(a) = (−1)s
∑

τ1,τ2,...,τs∈F×
q

τ t1τ
t
2 · · · τ ts P(F(a, τ1, τ2, . . . , τs)) . (13)

Let β1, β2, . . . , βq−1 be an enumeration of the elements of F
×
q . For all j =

(j1, j2, . . . , js) ∈ {1, 2, . . . , q − 1}s take

g j (a) = F(a, β j1 , β j2 , . . . , β js) and γ j = (−1)sβ t
j1β

t
j2 · · · β t

js .

Theorem 2 now follows from (13). ��

123

Algorithmica (2019) 81:4010–4028 4021

4 Fermionants

This section proves our two main theorems for evaluating fermionants. We start by
noting that the fermionant is self-reducible, a result that easily follows from earlier
work by Björklund [3], followed by the proofs of our present main theorems.

4.1 Self-Reducibility of the Fermionant

This subsection reviews how Björklund’s [3] self-reducibility for permanents can be
extended to fermionants. In essence, his methodology can be used to reduce the task of
computing one fermionant of sizem×m to the task of computing 2m−kmO(1) fermio-
nants of size k × k. We stress that this subsection is provided for ease of exposition
only and no claim of originality is made.

The key idea is to view a fermionant as a sum over cycle covers, which enables
the reduction from size m × m to size k × k by contracting cycles. That is, the actual
reduction proceeds in the reverse direction from cycle covers of [k] to cycle covers of
[m] by inserting walks and closed walks on [m] \ [k] that are sieved with the principle
of inclusion and exclusion so that only cycle covers remain.

Let us begin with basic terminology. For a set S ⊆ [m] and an integer � =
0, 1, 2, . . ., a walk of length � on S is an (�+1)-tuple (v0, v1, . . . , v�) ∈ S�+1. We say
that the walk starts at v0 and ends at v�. The walk is closed if v0 = v� and � ≥ 1; in this
case we say that v0 is the root of the walk. Awalk is a path if v0, v1, . . . , v� are distinct.
A closed walk is a cycle if v0, v1, . . . , v�−1 are distinct and v0 < v1, v2, . . . , v�−1 in
the natural ordering of [m]. We say that a set of cycles {C1,C2, . . . ,Cc} on S is a
cycle cover of S if for all u ∈ S it holds that u occurs in exactly one of the cycles
C1,C2, . . . ,Cc. Let us write CS for the set of all cycle covers of S.

Next we develop the fermionant as a sum over cycle covers. Let r , t , and ai j for
i, j ∈ [m] be polynomial indeterminates and let F be the coefficient field. Associate
with each walk W = (v0, v1, . . . , v�) ∈ S�+1 the monomial

a(W) =
{
1 if � = 0;
av0v1av1v2 · · · av�−1v�

if � ≥ 1.
(14)

The fermionant of A = (ai j : i, j ∈ [m]) is now

fert A = (−1)m
∑

{C1,C2,...,Cc}∈C[m]
(−t)ca(C1)a(C2) · · · a(Cc) . (15)

Let us now proceed with the reduction from size m × m to size k × k for k =
0, 1, 2, . . . ,m. Let us start with a high-level intuition. Consider an arbitrary cycle
cover of [m] with c cycles. The cycles in the cycle cover can be partitioned into two
types:

1. cycles that contain at least one element of [k], and
2. cycles that consist only of elements in [m] \ [k].

123

4022 Algorithmica (2019) 81:4010–4028

We can now construct a cycle cover of [k] as follows. First, transform each cycleW of
Type 1 into a cycle W ′ on [k] by deleting all the elements in [m] \ [k] from W . Next,
delete all cycles of Type 2. This results in a cycle cover of [k]. Observe that we can
also proceed in the reverse direction; that is, we start from a cycle cover of [k], insert
vertex-disjoint paths on [m] \ [k] in between the vertices on each cycle (that is, we
transform W ′ to W in reverse), and finally insert vertex-disjoint cycles on [m] \ [k] to
complete a cycle cover of [m]. The reduction carries out this extension from a cycle
cover of [k] to a cycle cover of [m] using walks and closed walks in [m] \ [k]. By
applying the principle of inclusion and excusion over all S ⊆ [m] \ [k], among the
walks and closed walks all but paths and cycles will cancel in the sieve, and exactly
cycle covers of [m] remain.

Let us nowproceedwith the technical details of the reduction. First,weneed a family
of generating polynomials for walks. For S ⊆ [m]\[k], i, j ∈ S, and � = 0, 1, . . . ,m,
consider the inductively-defined family of polynomials:

GS
�,i, j (r) =

⎧⎪⎨
⎪⎩
1 if � = 0 and i = j;
0 if � = 0 and i = j;∑

u∈S aiurGS
�−1,u, j (r) if � ≥ 1.

(16)

Let us write W S
�,i, j ⊆ S�+1 for the set of all walks of length � on S that start at i and

end at j . The following lemma shows that the polynomials (16) indeed are a generating
function for (edge-multisets of) walks.

Lemma 3 We have the polynomial identity GS
�,i, j (r) = r�

∑
W∈W S

�,i, j
a(W).

Proof Induction on � = 0, 1, . . . using (14) and (16). ��
Second, let us develop a generating matrix for walks that will realize the Type-1

cycles. For i, j ∈ [k] and S ⊆ [m] \ [k], introduce the generating polynomial

ãSi, j (r) = ai j +
m−1∑
�=0

∑
u,v∈S

aiuG
S
�,u,v(r)av j r . (17)

Let us write Ŵ S
i, j for the set of walks that consists of (i) the walk (i, j) and (ii)

all walks of the form (i, v0, v1, . . . , v�, j) where (v0, v1, . . . , v�) is a walk of length
0 ≤ � ≤ m − 1 on S. For a walk W = (u0, u1, . . . , u�) ∈ [m]�+1 and a set T ⊆ [m],
let us write |W ∩ T | = |{i ∈ {0, 1, . . . , � − 1} : ui ∈ T }| for the number of positions
of W (not including the end position) that are in T .

Analogously to Lemma 3, the monomials of (17) track the edge-multisets of walks
in Ŵi, j . Furtheremore, the r -degree of eachmonomial records the number of positions
on the walk in S.

Lemma 4 We have the polynomial identity ãSi, j (r) = ∑
W∈Ŵ S

i, j
r |W∩S|a(W).

Proof Use (17), Lemma 3, and the definition of Ŵ S
i, j to conclude identity. ��

123

Algorithmica (2019) 81:4010–4028 4023

Let us arrange the coefficients ãSi, j (r) in (17) into a k × k matrix ÃS(r).
Third, let us develop a generating polynomial for closed walks that will realize

Type-2 cycles. For S ⊆ [m] \ [k] and i ∈ S, let us write

S≥i = {u ∈ S : u ≥ i} .

For S ⊆ [m] \ [k], i ∈ S, introduce the polynomial

HS
i (r , t) = 1 − t

m∑
�=1

G
S≥i
�,i,i (r) . (18)

Themonomials of (18) track the edge-multisets of closed walks on S≥i and rooted at i ,
including the possibility of no walk at all. The r -degree of each monomial records the
length of the walk; by construction, the entire walk is on S. The t-degree determines
whether awalkwasmade (degree 1) or not (degree 0). Also observe that themonomials
that encode a walk occur with negative sign.

Fourth, introduce the polynomial

HS(r , t) =
∏
i∈S

H S
i (r , t) . (19)

Let us writeHS for the set of sets of closed walks on S such that (i) each closed walk
has length � with 1 ≤ � ≤ m, (ii) the root of each closed walk is the minimum vertex
on the closed walk, and (iii) no two walks in a set have the same root.

Lemma 5 We have the polynomial identity

H S(r , t) =
∑

{D1,D2,...,Dd }∈HS

r
∑d

j=1 |Dj∩S|
(−t)da(D1)a(D2) · · · a(Dd) .

Proof Use (19), (18), Lemma 3, and the definition of HS to yield identity. ��
We are now ready to state and prove the main polynomial identity underlying the

reduction. For a polynomial P in the indeterminate r , let us write
{
r j

}
P for the

coefficient (polynomial) of the monomial r j .

Theorem 4 We have the polynomial identity

fert A =
{
rm−k

} ∑
S⊆[m]\[k]

(−1)|S|HS(r , t) fert Ã
S(r) . (20)

Proof Recall the cycle-cover form (15) of the fermionant. We show that the right-
hand side of (20) reduces to the cycle-cover form. First, let us expand the inner k × k
fermionant using (15) and (14) to obtain

123

4024 Algorithmica (2019) 81:4010–4028

fert Ã
S(r) = (−1)k

∑
{C̃1,C̃2,...,C̃c̃}∈C[k]

(−t)c̃
c̃∏

j=1

ãS(C̃ j)

= (−1)k
∑

{C̃1,C̃2,...,C̃c̃}∈C[k]
(−t)c̃

c̃∏
j=1

�∏
i=1

C̃ j=(u0,u1,...,u�)

ãSui−1ui (r) .

(21)

Let us write Ĉ[k],S for the set that consists of all sets {C1,C2, . . . ,Cc̃} of closed walks
in [k] ∪ S such that (i) when all the vertices in S are deleted from all the closed walks
in a set, a cycle cover of [k] results, and (ii) in each closed walk, there are at most m
consecutive vertices in S. Now apply Lemma 4 to each ãSui−1ui (r) in (21) to conlude
that

fert Ã
S(r) = (−1)k

∑
{C1,C2,...,Cc̃}∈Ĉ[k],S

(−t)c̃
c̃∏

i=1

r |Ci∩S|a(Ci) . (22)

Next multiply HS(r , t) with (22) and apply Lemma 4 to conlude that

HS(r , t) fert Ã
S(r)

= (−1)k
∑

{C1,C2,...,Cc̃}∈Ĉ[k],S
{D1,D2,...,Dd }∈HS

(−t)c̃+c
c̃∏

i=1

r |Ci∩S|a(Ci)

d∏
j=1

r |Dj∩S|a(Dj) . (23)

Taking the coefficient of rm−k in (23), we conclude that

{
rm−k

}
HS(r , t) fert Ã

S(r)

= (−1)k
∑

{C1,C2,...,Cc̃}∈Ĉ[k],S
{D1,D2,...,Dd }∈HS∑c̃

i=1 |Ci∩S|+∑d
j=1 |Dj∩S|=m−k

(−t)c̃+d
c̃∏

i=1

a(Ci)

d∏
j=1

a(Dj) . (24)

In particular, the sum in (24) is over exactly those (c̃ + d)-sets of closed walks
{C1,C2, . . . ,Cc̃, D1, D2, . . . , Dd} that (excluding their end-positions) in total have
exactly m − k positions that contain an element of S. Taking the (−1)|S|-signed sum
of (24) over all S ⊆ [m] \ [k], by the principle of inclusion and exclusion we conclude
that a set {C1,C2, . . . ,Cc̃, D1, D2, . . . , Dd} cancels unless it holds that for every ele-
ment of [m] \ [k] there is a unique position that contains the element. That is, together
with (i) we have that {C1,C2, . . . ,Cc̃, D1, D2, . . . , Dd} forms a cycle cover of [m].
Moreover, each such cycle cover appears with sign (−1)m−k . That is, from (24) and
the principle of inclusion and exclusion, we have

123

Algorithmica (2019) 81:4010–4028 4025

∑
S⊆[m]\[k]

(−1)|S| {rm−k
}
HS(r , t) fert Ã

S(r) =

= (−1)m
∑

{C1,C2,...,Cc̃,D1,D2,...,Dd }∈C[m]
(−t)c̃+d

c̃∏
i=1

a(Ci)

d∏
j=1

a(Dj) .

This agrees with the cycle-cover form (15) of the m × m fermionant fert A and thus
establishes (20). ��

Let us now develop the polynomial identity (20) into a scalar reduction from one
m × m fermionant to a sum of k × k fermionants.

Theorem 5 Suppose |F| ≥ m2 + 1 and let k = 0, 1, . . . ,m. Then, there is an algo-
rithm that given as input a matrix A ∈ F

m×m, a scalar τ ∈ F, and an integer
j = 1, 2, . . . , 2m−k(m2 + 1), runs in time mO(1), executes mO(1) arithmetic opera-
tions in F, and outputs a matrix Ã j ∈ F

k×k such that:

ferτ A =
2m−k (m2+1)∑

j=1

ferτ Ã j . (25)

In particular, the fermionant ferτ A of a given A ∈ F
m×m at τ ∈ F can be computed

in 2mmO(1) time and arithmetic operations in F.

Proof Fix k = 0, 1, . . . ,m. Observe that the polynomial on the right-hand side of (20)
has degree at mostm2 in the indeterminate r . Let S1, S2, . . . , S2m−k be an enumeration
of all the 2m−k subsets of [m] \ [k] and let ρ0, ρ1, . . . , ρm2 ∈ F be distinct.

Let λ0, λ1, . . . , λm2 ∈ F be the unique Lagrange interpolation coefficients that for

any polynomial P(r) = ∑m2

�=0 π�r� with coefficients π0, π1, . . . , πm2 ∈ F satisfy

πm−k = ∑m2

�=0 λ�P(ρ�). Observe that these coefficients can be computed in time and
arithmetic operations in F bounded by a polynomial in m. From Theorem 4 it follows
immediately that

ferτ A =
2m−k∑
i=0

m2∑
�=0

(−1)|Si |λ�H
Si (ρ�, τ) ferτ ÃSi (ρ�) . (26)

Set up an efficiently computable bijection between j = 1, 2, . . . , 2m−k(m2 + 1) and
the pairs of integers (i, �) with i = 1, 2, . . . , 2m−k and � = 0, 1, . . . ,m2.

Given the matrix A ∈ F
m×m , the scalar τ ∈ F, and the integer j =

1, 2, . . . , 2m−k(m2 + 1) as input, the algorithm first computes the corresponding
pair (i, �) together with the subset Si and the scalars λ� and ρ�. Next, with the
substitutions r ← ρ� and t ← τ , the algorithm uses dynamic programming on
the recurrences (16), (18), (19), and (17) to compute the scalar HSi (ρ�, τ) ∈ F

and the matrix ÃSi (ρ�) ∈ F
k×k . This computation takes time and arithmetic oper-

ations in F bounded by a polynomial in m. Next the algorithm sets A j ∈ F
k×k

123

4026 Algorithmica (2019) 81:4010–4028

equal to the matrix ÃSi (ρ�) ∈ F
k×k with all of the entries on its first row indi-

vidually multiplied by the scalar (−1)|Si |λ�HSi (ρ�, τ). By (2), we have ferτ A j =
(−1)|Si |λ�HSi (ρ�, τ) ferτ ÃSi (ρ�). The theorem now follows from (26) by taking the
sum over j = 1, 2, . . . , 2m−k(m2 + 1). ��

4.2 Proof of Theorem 3

Let A ∈ F
m×m
q be given together with τ ∈ Fq . We seek to compute ferτ A and will

deploy the self-reducibility enabled by Theorem 5 towards this end. By assumption
we have that q − 1 has a divisor u with 1.1 log q ≤ u ≤ 10 log q. Since m =
ω(log2 q log log q), for all large enough m we can let k be a multiple of u with

0.98
√
m/ log log q ≤ k ≤ 0.99

√
m/ log log q .

With the objective of applying Theorem 2, take n = k2, d = k, and s = k/u.
Observe that the fermionant (2) of a k × k matrix A at τ ∈ Fq is a degree-separable
polynomial P of degree d over the n variables in A. Furthermore, s divides d and d/s
divides q − 1, so the assumptions of Theorem 2 hold. By Theorem 5 we can evaluate
this P at any given point (that is, for any given k × k matrix) in time 2kkO(1) and
operations in Fq . The tabulation of P for Theorem 2 thus can be done in time

2kkO(1)
(
d

s
+ 1

)n+s

M(q) ≤ 2kkO(1) (u + 1)0.99m/ log log q+√
m M(q)

≤ 2kkO(1) (20 log q)0.999m/ log log q M(q)

≤ 20.9999mM(q) .

Once the tabulation of P is complete, we can use the algorithms in Theorem 2 to query
the 2m−kmO(1) fermionants of size k×k required by (25) in time O(n(q−1)ssM(q))

per query. Thus, the total time is at most

2m−kqsmO(1)M(q)

≤ 2m−0.98
√
m/ log log q2(log q)0.99

√
m/ log log q/(1.1 log q)mO(1)M(q)

= 2m−0.08
√
m/ log log qmO(1)M(q) .

This completes the proof of Theorem 3. ��

4.3 Proof of Corollary 1

Here we show how to extend the algorithm to integers, via the Chinese Remainder
Theorem. Let A be an integer matrix of size m × m with entries in [−M, M] for
M = O(1). Let τ be an integer with |τ | = O(m). By Bertrand’s postulate (e.g. [23,
§I.1]) for all large enoughm we can select a prime u with 5 logm ≤ u ≤ 10 logm. Let
us study the number of primes p in the interval Mm2 < p < Mm4 such that u divides

123

Algorithmica (2019) 81:4010–4028 4027

p − 1. Let us write ϕ for Euler’s totient function and recall the uniform variant of
the Prime Number Theorem for arithmetic progressions [23, Corollary 8.31]. Namely,
there is a constant γ > 0 such that, for any function h(x) tending to infinity with x ,
and uniformly for x ≥ 3 and 1 ≤ u ≤ (ln x)2/

(
h(x)2(ln ln x)6

)
, we have

∑
p≤x

p≡1 (mod u)

1 = x

ϕ(u) ln x

(
1 + O

(
1

(ln x)γ h(x)

))
. (27)

Here the left-hand side sum in (27) is over all primes p at most x congruent to 1
modulo u.

Since u is prime, we have ϕ(u) = u − 1 = �(logm). Thus from (27) we con-
clude that for all large enough m there exist at least 2m distinct primes p such that
both Mm2 < p < Mm4 and u divides p − 1. With the objective of satisfying the
assumptions of Theorem 3, we conclude that u is in the interval (1.1 log p, 10 log p)
for these 2m primes p. Indeed, since M is a constant, for all large enough m we have
1.99 logm ≤ log p ≤ 4.01 logm, which implies (5/4.01) log p ≤ 5 logm ≤ u ≤
10 logm ≤ (10/1.99) log p.

From (2) we observe that | ferτ A| ≤ m! · O(m)mMm < 1
2m

4mM2m . Apply-
ing the Chinese Remainder Theorem together with Theorem 3 on A and τ over Fp

for each of the 2m primes p in turn, we recover ferτ A over the integers, in time
2m−�(

√
m/ log logm). ��

Acknowledgements This research was funded by the Swedish Research Council Grant VR 2016-03855
“Algebraic GraphAlgorithms” (A.B.), the European Research Council under the EuropeanUnion’s Seventh
Framework Programme (FP/2007-2013) / ERCGrantAgreement 338077 “Theory and Practice ofAdvanced
Search and Enumeration” (P.K.), and the U.S. National Science Foundation under Grants CCF-1741638
and CCF-1741615 (R.W.). A preliminary conference abstract of this paper appeared in Daniel Lokshtanov
and Naomi Nishimura (Eds.), Proceedings of the 12th International Symposium on Parameterized and
Exact Computation (IPEC 2017, Vienna, Austria, September 4–8, 2017), LIPIcs: Leibniz International
Proceedings in Informatics, Volume 89, Schloss Dagstuhl, Wadern, Germany, pp. 6.1–6.13, 2018.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bax, E.T., Franklin, J.: A finite-difference sieve to count paths and cycles by length. Inf. Process. Lett.
60(4), 171–176 (1996)

2. Besicovitch, A.S.: On Kakeya’s problem and a similar one. Math. Z. 27(1), 312–320 (1928)
3. Björklund, A.: Below all subsets for some permutational counting problems. In: Proceedings of the

15th SWAT, vol. 17, pp. 1–11 (2016)
4. Björklund,A.,Husfeldt, T., Lyckberg, I.: Computing the permanentmodulo a primepower. Inf. Process.

Lett. 125, 20–25 (2017)
5. Björklund, A., Kaski, P.: How proofs are prepared at Camelot: extended abstract. Proc. PODC 2016,

391–400 (2016)
6. Björklund, A., Kaski, P., Koutis, I.: Directed Hamiltonicity and out-branchings via generalized Lapla-

cians. In: Proceedings of the 44th ICALP, vol. 91, pp. 1–14 (2017)

123

http://creativecommons.org/licenses/by/4.0/

4028 Algorithmica (2019) 81:4010–4028

7. Chandrasekharan, S., Wiese, U.: Partition functions of strongly correlated electron systems as “fermio-
nants” (2011). arXiv:1108.2461v1

8. Cygan, M., Pilipczuk, M.: Faster exponential-time algorithms in graphs of bounded average degree.
In: Proceedings of the 40th ICALP, pp. 364–375 (2013)

9. Dvir, Z.: From randomness extraction to rotating needles. Electron.Colloq.Comput.Complex.16(077),
1–19 (2009)

10. Dvir, Z.: Incidence theorems and their applications. (2012). arXiv:1208.5073
11. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: a chasm at depth 3. SIAM J.

Comput. 45(3), 1064–1079 (2016)
12. Kedlaya, K.S., Umas, C.: Fast polynomial factorization and modular composition. SIAM J. Comput.

40(6), 1767–1802 (2011)
13. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-

Wesley, Boston (1998)
14. Kopparty, S., Lev,V.F., Saraf, S., Sudan,M.:Kakyea-type sets in finite vector spaces. J.Algebr. Combin.

34(3), 337–355 (2011)
15. Kyureghyan, G., Müller, P., Wang, Q.: On the size of Kakeya sets in finite vector spaces. Electron. J.

Combin. 20(3), 36 (2013)
16. Landsberg, J.M.: An introduction to geometric complexity theory. Eur. Math. Soc. Newsl. 99, 10–18

(2016)
17. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997)
18. Lund, C., Fortnow, L., Karloff, H.J., Nisan, Noam: Algebraic methods for interactive proof systems.

J. ACM 39(4), 859–868 (1992)
19. Mertens, S., Moore, C.: The complexity of the fermionant, and immanants of constant width (2011).

arXiv:1110.1821
20. Mockenhaupt, G., Tao, T.: Restriction and Kakeya phenomena for finite fields. Duke Math. J. 121(1),

35–74 (2004)
21. Ryser, H.J.: Combinatorial Mathematics. Mathematical Association of America, Washington D.C.

(1963)
22. Saraf, S., Sudan, M.: An improved lower bound on the size of Kakeya sets over finite fields. Anal. PDE

1(3), 375–379 (2008)
23. Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory, 3rd edn. American Math-

ematical Society, Washington D.C. (2015)
24. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the 11th STOC, pp. 249–261 (1979)
25. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)
26. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press,

Cambridge (2013)
27. Williams, R.R: Strong ETH breaks with Merlin and Arthur: short non-interactive proofs of batch

evaluation. In: Proceedings of the 31st CCC, vol. 2, pp. 1–17 (2016)
28. Wolff, T.:Recentwork connectedwith theKakeyaproblem. In:Rossi,H. (ed.) Prospects inMathematics

(Princeton, NJ, 1996), American Mathematical Society, Washington D.C., pp. 129–162 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1108.2461v1
http://arxiv.org/abs/1208.5073
http://arxiv.org/abs/1110.1821

	Generalized Kakeya sets for polynomial evaluation and faster computation of fermionants
	Abstract
	1 Introduction
	1.1 Polynomial Evaluation Based on Generalized Kakeya Sets
	1.2 Fermionants
	1.3 Organisation of the Paper

	2 Generalized Kakeya Sets in Finite Vector Spaces
	3 Polynomial Evaluation
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2

	4 Fermionants
	4.1 Self-Reducibility of the Fermionant
	4.2 Proof of Theorem 3
	4.3 Proof of Corollary 1

	Acknowledgements
	References

