
Algorithmica (2019) 81:1844–1858
https://doi.org/10.1007/s00453-018-0511-9

Computing the Number of Induced Copies of a Fixed Graph
in a Bounded Degree Graph

Viresh Patel1 · Guus Regts1

Received: 21 July 2017 / Accepted: 27 August 2018 / Published online: 5 September 2018
© The Author(s) 2018

Abstract
In this paper we show that for any graph H of orderm and any graph G of order n and
maximum degree � one can compute the number of subsets S of V (G) that induces
a graph isomorphic to H in time O(cm · n) for some constant c = c(�) > 0. This
is essentially best possible (in the sense that there is no co(m) poly(n)-time algorithm
under the exponential time hypothesis).

Keywords Induced graph · Computational counting · Fixed parameter tractability

1 Introduction

For two graphs H and G we denote by ind(H ,G) the number of subsets of the
vertex set of G that induce a graph that is isomorphic to H . (We recall that two graphs
H = (VH , EH) andG = (VG , EG) are said to be isomorphic if there exists a bijection
f : VH → VG such that for any u, v ∈ VH , we have that f (u) f (v) ∈ EG if and
only if uv ∈ EH .) Throughout we take G and H to have n andm vertices respectively
unless otherwise stated.

Understanding the numbers ind(H ,G) for different choices of H gives us much
important information about G. For example, if H is the disjoint union of m isolated
vertices, ind(H ,G) equals the number of independent sets of sizem inG. Determining
these induced subgraph counts is closely related to determining subgraph counts and
homomorphism counts; these parameters play a central role in the theory of graph

Viresh Patel: Supported by the Netherlands Organisation for Scientific Research (NWO) through the
Gravitation Programme Networks (024.002.003). Guus Regts: Supported by a personal NWO Veni grant.

B Viresh Patel
vpatel@uva.nl

Guus Regts
guusregts@gmail.com

1 Korteweg de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0511-9&domain=pdf

Algorithmica (2019) 81:1844–1858 1845

limits [15], and frequently appear in statistical physics, see e.g. Sect. 2.2 in [19] and
the references therein.

When H and G are both part of the input, computing ind(H ,G) is clearly an N P-
hard problem because it includes the problem of determining the size of a maximum
clique in G. When the graph H is fixed (with m vertices), the brute-force algorithm
takes time O(nm) and a linear improvement has been made to the exponent [17].

This problem and some its variants (e.g. where we count not necessarily induced
subgraphs) have been studied fromafixed parameter tractability (FTP) perspective; see
[2,6,10,12]). In general computing ind(H ,G) when parameterizing by m = |V (H)|
is #W [1]-hard because even deciding whether G contains an independent set of size
m is #W [1]-hard [11]. Curticapean, Dell and Marx [9] prove a number of interesting
dichotomy results for #W [1]-hardness using the treewidth of H (and of a certain class
of graphs obtained from H) as an additional parameter.

However, when the graph G is of bounded degree, which is often of interest in
statistical physics, the problem is no longer #W [1]-hard. Indeed, Curticapean, Dell,
Fomin, Goldberg, and Lapinskas [8, Theorem 13] showed that for a graph H on m
vertices and a bounded degree graph G on n vertices, ind(H ,G) can be computed in
time O(mO(m)n), thus giving an FPT algorithm in terms ofm. In the present paper we
go further and give an algorithm with essentially optimal running time. We assume
the standard word-RAM machine model with logarithmic-sized words.

Theorem 1.1 There is an algorithm which, given an n-vertex graph G of maxi-
mum degree at most �, and an m-vertex graph H, computes ind(H ,G) in time
Õ((7�)2mn+210m). (Here the Õ-notationmeans that we suppress polynomial factors
in m.)

Remark 1.1 Theorem 13 in [8] in fact concerns vertex-coloured graphs H and G. Our
proof of Theorem 1.1 also easily extends to the coloured setting. We discuss this in
Sect. 4.

The running time here is essentially optimal under the exponential time hypothesis.
Indeed, if we could find an algorithm with an improved running time co(m) poly(n)

(for some constant c possibly dependent on �), we could use it to determine the size
of a maximum independent set in time nco(n) poly(n) = co(n) poly(n), which is not
possible (even in graphs ofmaximum degree 3) under the exponential time hypothesis;
see [13, Lemma 2.1]. (In fact, under the exponential time hypothesis, we may draw
the stronger conclusion that there is no c′m poly(n)-time algorithm for some c′ > 0.)

Note that our algorithm allows us to compute ind(H ,G) in polynomial time in |G|,
evenwhen |H | is logarithmic in |G| andG has bounded degree. The special case of this
when H is an independent set was a crucial ingredient in our recent paper [18], which
uses the Taylor approximation method of Barvinok [3] to give (amongst others) a fully
polynomial time approximation scheme for evaluating the independence polynomial
for bounded degree graphs. Our present paper completes the running time complexity
picture for computing ind(H ,G) on bounded degree graphs G.

We add a few remarks to give further perspective on the problem. Note that comput-
ing ind(H ,G) in time Õ(�mn) is relatively straightforward for G of bounded degree
�when H is connected (see Lemma 2.2). Thus the difficulty lies in graphs H that have

123

1846 Algorithmica (2019) 81:1844–1858

many components. Note also that Curticapean et al. [8] use the fact that induced graph
counts can be expressed in terms of homomorphism counts (see e.g. [15]) and that
homomorphism counts from H to G can be computed in time Õ(�mn) in their FPT
algorithm. However the limiting factor is the time dependence (on m) of expressing
induced graph counts in terms of homomorphism graph counts, which could be as
large as the Bell number. This is significantly larger than the time dependence in our
algorithm.

Both our approach and the approach in [8] crucially use the bounded degree assump-
tion. It would be very interesting to know if Theorem 1.1 could be extended to graphs
of average bounded degree such as for example planar graphs.

Question 1 For which class of graphs C does there exist a constant c = c(C) and an
algorithm such that given an n-vertex graph G ∈ C and an m-vertex graph H , the
algorithm computes ind(H ,G) in time O(cm poly(n))?

We note that Nederlof [16] recently showed that there exists a constant c and an algo-
rithm that computes the number of independent sets of size m in an n-vertex planar
graph in time cO(m)n.

OrganizationThe remainder of the paper is devoted to proving Theorem 1.1. Themain
idea in our proof is to define a multivariate graph polynomial where the coefficients
are certain induced graph counts; in particular ind(H ,G) will be the coefficient of a
monomial.We cannot compute these coefficients directly, but usemachinery from [18]
to compute the coefficients of univariate evaluations of this polynomial. In Sect. 3, we
use algebraic techniques to efficiently extract ind(H ,G) (i.e. the coefficient of interest)
from the coefficients of the univariate evaluations. The resulting algorithm to compute
ind(H ,G) is summarized in Sect. 3.

We however need to slightly modify the result from [18]. This will be done in the
next section.

2 Computing Coefficients of Graph Polynomials

An efficient way to compute the coefficients of a large class of (univariate) graph
polynomials for bounded degree graphs was given in [18]. We will need a small
modification of this result, for which we will provide the details here. In particular, the
running timehas been improved compared to [18] andwehave clarified the dependence
on the parameters. We start with some definitions after which we state the main result
of this section.

By G we denote the collection of all graphs and by Gk for k ∈ N we denote the
collection of graphs with at most k vertices. A graph invariant is a function f : G → S
for some set S that takes the same value on isomorphic graphs. A (univariate) graph
polynomial is a graph invariant p : G → C[z], where C[z] denotes the ring of
polynomials in the variable z over the field of complex numbers. Call a graph invariant
f multiplicative if f (∅) = 1 and f (G1 ∪ G2) = f (G1) f (G2) for all graphs G1,G2
(here G1 ∪G2 denotes the disjoint union of the graphs G1 and G2). We can now give
the key definition and tool we need from [18].

123

Algorithmica (2019) 81:1844–1858 1847

Definition 2.1 Let p be a multiplicative graph polynomial defined by

p(G)(z) :=
d(G)∑

i=0

ei (G)zi (1)

for eachG ∈ G with e0(G) = 1, where d(G) is the degree of the polynomial p(G).We
call p a bounded induced graph counting polynomial (BIGCP) if there exists α ∈ N,
an algorithm A and a non-decreasing sequence β ∈ N

N such that the following two
conditions are satisfied:

(i) for every graph G, the coefficients ei satisfy

ei (G) :=
∑

H∈Gαi

λH ,i ind(H ,G) (2)

for certain λH ,i ∈ C;
(ii) for each i and H ∈ Gαi , the algorithm A computes the coefficient λH ,i in time βi .

We note that the coefficients of BIGCPs can be seen as graph motif parameters as
introduced in [9].

We have the following result for computing coefficients of BIGCPs.

Theorem 2.1 Let n,m,� ∈ N and let p(·) be a bounded induced graph counting poly-
nomial with parameters α and β. Then there is a deterministic Õ(n(e�)αmβm4αm)-
time algorithm, which, given any n-vertex graph G of maximum degree at most �,
computes the first m coefficients e1(G), . . . , em(G) of p(G). (Here the Õ-notation
means that we suppress polynomial factors in m.)

Remark 2.1 The algorithm in the theorem above only has access to the polynomial p
via the algorithm A in the definition of BIGCP that computes the complex numbers
λH ,i .

Before we prove Theorem 2.1 we will first gather some facts from [18] about
induced subgraph counts and the number of connected induced subgraphs of fixed
size that occur in a graph. Compared to [18] we actually need to slightly sharpen the
statements.

2.1 Induced Subgraph Counts

Define ind(H , ·) : G → C by G �→ ind(H ,G). So we view ind(H , ·) as a graph
invariant. We can take linear combinations and products of these invariants. In partic-
ular, for two graphs H1, H2 we have

ind(H1, ·) · ind(H2, ·) =
∑

H∈G
cHH1,H2

ind(H , ·), (3)

123

1848 Algorithmica (2019) 81:1844–1858

where for a graph H , cHH1,H2
is the number of pairs of subsets of V (H), (U , T), such

that U ∪ T = V (H) and H [U] = H1 and H [T] = H2. In particular, given H1 and
H2, cHH1,H2

is nonzero for only a finite number of graphs H .
In what follows we will often have to maintain a list L of subsets S of [n] with

|S| ≤ k (for some k) as well as some (complex) number cS associated to S. Wewill use
the standard word-RAM machine model with logarithmic-sized words. This means
that given a set S of size k, we have access to cS in O(k) time. In particular, this also
means we can determine whether S is contained in our list in O(k) time.

The next lemma says that computing ind(H ,G) is fixed parameter tractable when
G has bounded degree and H is connected. The following lemma is a variation on
[18, Lemma 3.5].

Lemma 2.2 Let H be a connected graph on k vertices and let � ∈ N. Then

(i) there is an O(n�k−1)-time algorithm, which, given any n-vertex graph G with
maximum degree at most �, checks whether ind(H ,G) 	= 0;

(ii) there is an O(n�k−1k)-time algorithm, which, given any n-vertex graph G with
maximum degree at most �, computes the number ind(H ,G).

Note that Lemma 2.2 (i) enables us to test for graph isomorphism between connected
bounded degree graphs when |V (G)| = |V (H)|.
Proof We follow the proof from [18]. We assume that V (G) = [n]. Let us list the
vertices of V (H), v1, . . . , vk in such a way that for i ≥ 1 vertex vi has a neighbour
among v1, . . . , vi−1. Then to embed H into G we first select a target vertex for v1
and then given that we have embedded v1, . . . , vi−1 with i ≥ 2 there are at most �

choices for where to embed vi . After k iterations, we have a total of at most n�k−1

potential ways to embed H and each possibility is checked in the procedure above.
Hence we determine if ind(H ,G) is zero or not in O(n�k−1) time.

Throughout the procedure above we maintain a list L that contains all sets S such
that G[S] = H found thus far. Each time we find a set S ⊂ [n] such that G[S] = H
we check if it is contained in L . If this is not the case we add S to L and we discard
S otherwise. The length of the resulting list, which we update at each iteration, gives
the value of ind(H ,G). �

Next we consider how to enumerate all possible connected induced subgraphs of
fixed size in a bounded degree graph. We will need the following result of Borgs,
Chayes, Kahn, and Lovász [5, Lemma 2.1]:

Lemma 2.3 Let G be a graph of maximum degree �. Fix a vertex v0 of G. Then the
number of connected induced subgraphs of G with k vertices containing the vertex v0

is at most (e�)k−1

2 .

As a consequence we can efficiently enumerate all connected induced subgraphs
of logarithmic size that occur in a bounded degree graph G.

Lemma 2.4 There is a O(nk3(e�)k)-time algorithm which, given k ∈ N and an n-
vertex graph G on [n] of maximum degree �, outputs Tk , the list of all S ⊆ [n]
satisfying |S| ≤ k and G[S] connected.

123

Algorithmica (2019) 81:1844–1858 1849

Proof We assume that V (G) = [n]. By the previous result, we know that |Tk | ≤
n(e�)k−1 for all k.

We inductively construct Tk . For k = 1, Tk is clearly the set of singleton vertices
and takes time O(n) to output.

Given that we have found Tk−1 we compute Tk as follows. We iteratively compute
Tk by going over all S ∈ Tk−1 going over all v ∈ NG(S) (the collection of vertices that
are connected to an element of S) and checking whether S ∪ {v} is already contained
in Tk or not. We add it to Tk if it is not already contained in Tk .

The set NG(S) has size at most |S|� ≤ k� and takes time O(k�) to find (assuming
G is given in adjacency list form). Therefore computing Tk takes time bounded by
O(|Tk−1|k2�) = O(nk2(e�)k).

Starting from T1, we perform the above iteration k times, requiring a total running
time of O(nk3(e�)k). The proof that Tk contains all the sets we desire is straightfor-
ward and can be found in [18]. �

We call a graph invariant f : G → C additive if for each G1,G2 ∈ G we have
f (G1 ∪ G2) = f (G1) + f (G2). The following lemma is a variation of a lemma due
to Csikvári and Frenkel [7]; it is fundamental to our approach. See [18] for a proof.

Lemma 2.5 Let f : G → Cbeagraph invariant givenby f (·) := ∑
H∈G aH ind(H , ·).

Then f is additive if and only if aH = 0 for all graphs H that are disconnected.

Let p(z) = a0 + · · · + ad zd be a polynomial of degree d with nonzero constant
term a0 and with complex roots ζ1, . . . , ζd . Define for j ∈ N, the inverse power sum
p j by

p j := ζ
− j
1 + · · · + ζ

− j
d .

The next proposition is a variant of the Newton identities that relate the inverse power
sums and the coefficients of a polynomial. We refer to [18] for a proof.

Proposition 2.6 Let p(z) = a0 + · · · + ad zd be a polynomial of degree d with a0 	= 0
and inverse power sums p j , j ∈ N. Then for each k = 1, 2, . . ., we have

kak = −
k−1∑

i=0

ai pk−i .

(Here we take ai = 0 if i > d.)

2.2 Proof of Theorem 2.1

We follow the proof as given in [18], which we modify slightly at certain points.
Recall that p(·) is a bounded induced graph counting polynomial (BIGCP). Given

an n-vertex graph G with maximum degree at most �, we must show how to compute
the first m coefficients of p. We will use Õ-notation throughout to mean that we
suppress polynomial factors in m (and k). To reduce notation, let us write p = p(G),

123

1850 Algorithmica (2019) 81:1844–1858

d = d(G) for the degree of p, and ei = ei (G) for i = 0, . . . , d for the coefficients
of p (from (1)). We also write pk := ζ−k

1 + · · · + ζ−k
d , where ζ1, . . . , ζd ∈ C are the

roots of the polynomial p(G).
Noting e0 = 1, Proposition 2.6 gives

pk = −kek −
k−1∑

i=1

ei pk−i , (4)

for each k = 1, . . . , d.
By (2), for i ≥ 1, the ei can be expressed as linear combinations of induced subgraph

counts of graphs with at most αi vertices. Since p1 = −e1, this implies that the same
holds for p1. By induction, (3), and (4) we have that for each k

pk =
∑

H∈Gαk

aH ,k ind(H ,G), (5)

for certain, yet unknown, coefficients aH ,k .
Since p is multiplicative, the inverse power sums are additive (since the multiset

of roots of p(G1 ∪ G2) is exactly the union of the multisets of the roots of p(G1)

and p(G2)). Thus Lemma 2.5 implies that aH ,k = 0 if H is not connected. Denote by
Ci (G) the set of connected graphs of order at most i that occur as induced subgraphs
in G. Let us assume that G has vertex set [n]. Denote by T≤αk(G) the list consisting
of those sets S ⊆ [n] of size at most αk that induce a connected graph in G. This way
we can rewrite (5) as follows:

pk =
∑

H∈Cαk (G)

aH ,k ind(H ,G) =
∑

S∈T≤αk (G)

aG[S],k . (6)

The next lemma says that we can compute the coefficients aS,k := aG[S],k efficiently
for k = 1, . . . ,m.

Lemma 2.7 There is an Õ(n(e�)αmβm4αm)-time algorithm, which given a BIGCP p
(with parameters α and β) and an n-vertex graph G of maximum degree �, computes
and lists the coefficients aS,k in (6) for all S ∈ T≤αk(G) and all k = 1, . . . ,m.

Proof We assume that the vertex set of G is equal to [n]. Using the algorithm of
Lemma 2.4, we first compute the list T≤αk consisting of all subsets S of V (G) such
that |S| ≤ αk and G[S] is connected. This takes time bounded by

O
(
n(αm)3(e�)αm

)
= Õ(n(e�)αm). (7)

(Note that the algorithm in Lemma 2.4 actually computes T≤αk when it computes
Tαm .)

To prove the lemma, let us fix k ≤ m and show how to compute the coefficients
aS,k , assuming that we have already computed and listed the coefficients aS′,k′ for all

123

Algorithmica (2019) 81:1844–1858 1851

k′ < k and S′ ∈ T≤αk′ . Let us fix S ∈ T≤αk . Let H = G[S]. By (4), it suffices to
compute the coefficient of ind(H , ·) in pk−i ei for i = 1, . . . , k (where we set p0 = 1).
By (2) and (5) we know that

pk−i ei =
∑

H1∈Gα(k−i)

∑

H2∈Gαi

aH1,(k−i)λH2,i ind(H1,G) · ind(H2,G).

So by (3) we know that the coefficient of ind(H , ·) in pk−i ei is given by

∑

H1,H2

cHH1,H2
aH1,(k−i)λH2,i =

∑

(T ,U):T∪U=V (H)

aH [T],(k−i)λH [U],i . (8)

As |V (H)| ≤ αk, the second sum in (8) is over at most 4αk = O(4αm) pairs (T ,U).
For each such pair, we need to compute λH [U],i and aH [T],(k−i). We can compute
λH [U],i in time bounded by O(βi) = O(βm) since p is a BIGCP. As H [T] = G[T],
to compute aH [T],(k−i) we just need to look up the coefficient aT ,k−i , which takes time
O(k − i).

Together, all this implies that the coefficient of ind(H , ·) in pk−i ei can be computed
in time bounded by

O(4αm(βm + m)) = Õ(βm · 4αm). (9)

So the coefficient aH ,k can be computed in the same time (since we suppress polyno-
mial factors in m). Thus all coefficients aS,k for S ∈ T≤αk can be computed and listed
in time bounded by |T≤αk | multiplied by the expression (9), which is bounded by

Õ(n(e�)αmβm4
αm) (10)

by Lemma 2.3.
So the total running time is bounded by the time to compute the list T≤αm (which

is given by (7)) plus the time to compute the aS,k for S ∈ T≤αk (which is given by
(10)) for k = 1, . . . ,m. This proves the lemma. �

To finish the proof of the theorem, we compute pk for each k = 1, . . . ,m by adding
all the numbers aS,k over all S ∈ T≤αk(G) using (6) (these numbers were computed
in the previous lemma in time Õ((e�)αmβm4αmn)). Doing this addition takes time

O(m|T≤αm(G)|) = Õ(n(e�)αm).

Finally, knowing the pi , we can inductively compute the ei for i = 1, . . . ,m using the
relations (4), in quadratic time inm. Sowe see that the total running time for computing
e1, . . . , em is dominated by the computation of the αS,k and is Õ(n(e�)αmβm4αm).
This proves the theorem.

Since our algorithm is spread over several lemmas, we give an overview below.

Algorithm 1 Input: a BIGCP p (with parameters α and βi), a natural number m and
a graph G. Recall that p(G)(z) := ∑d(G)

i=0 ei (G)zi where the coefficients ei satisfy

123

1852 Algorithmica (2019) 81:1844–1858

ei (G) := ∑
H∈Gαi

λH ,i ind(H ,G). One inputs p via an algorithm A that can compute
λH ,i in time βi .

• Step 1: Use the algorithm of Lemma 2.4 to compute, for k = 1, . . . ,m, the
collection Tk = {S ⊆ V (G) | G[S] connected |S| ≤ αk}.

• Step 2: For each k = 1 . . . ,m, and S ⊆ V (G) with |S| ≤ αk, we iteratively
compute the coefficients aS,k using the following recursion

aS,k =
{

−kλG[S],k − ∑k−1
i=1

∑
(U ,T):U∪T=S aT ,(k−i)λG[U],i if S ∈ Tk;

0 otherwise,

as detailed in the proof of Lemma2.7 using (6) and (8). (Formally,we only compute
aS,k for S ∈ Tk and implicitly assume aS,k = 0 for any S ⊆ V (G) with |S| ≤ αk
and S /∈ Tk .)

• Step 3: For each k = 1, . . . ,m compute pk = ∑
S∈Tk aS,k .

• Step 4: Use the following recursion (i.e. the Newton identities (4) together with
the values pk computed in Step 3 to iteratively compute e1(G), . . . , em(G):

ei = 1

k

(
−pk −

k−1∑

i−1

ei pk−1

)

Output: the m coefficients e1(G), . . . , em(G).

3 Proof of Theorem 1.1

We first set up some notation before we state our key definition. For a graph H we
write H = i1H1 ∪ · · · ∪ ir Hr to mean that H is the disjoint union of i1 copies
of H1, i2 copies of H2 all the way to ir copies of Hr for connected and pairwise
non-isomorphic graphs H1, . . . , Hr . We write H = (H1, . . . , Hr). For vectors μ =
(μ1, . . . , μr), ν = (ν1, . . . , νr) ∈ Z

r≥0 we write μ ◦ ν for the vector in Z
r≥0 that is

the pointwise or Hadamard product of μ and ν. We denote by 〈μ, ν〉 the usual scalar
product of μ and ν. For a vector of variables x = (x1, . . . , xr) and μ ∈ Z

r≥0 we
sometimes write xμ := xμ1

1 · · · xμr
r .

For pairwise non-isomorphic and connected graphs H1, . . . , Hr we define the mul-
tivariate graph polynomial ZH (G) ∈ Z[x1, . . . , xr] as follows. For a graph G we
let

ZH (G; x) =
∑

γ∈Zr≥0

ind(γ H ,G)xγ ◦h,

where x = (x1, . . . , xr), γ = (γ1, . . . , γr), h := (|V (H1)|, . . . , |V (Hr)|) and where
γ H denotes the graph γ1H1 ∪· · ·∪γr Hr . Note that this is a finite polynomial because
G is finite and so there are only a finite number of non-zero terms ind(γ H ,G).

123

Algorithmica (2019) 81:1844–1858 1853

Computing ind(H ,G) for any two graphs H = i1H1 ∪ · · · ∪ ir Hr and G can
now be modelled as computing the coefficient of the monomial xi1h11 xi2h22 · · · xir hrr in
ZH (G; x). Let us start by gathering some facts about the polynomial ZH .

Proposition 3.1 The polynomial ZH is multiplicative, i.e., for any two graphs G1 and
G2, ZH (G1 ∪G2; x) = ZH (G1; x) · ZH (G2; x). In particular, any evaluation of ZH

is also multiplicative.

Proof Note first that everymonomial in ZH (G; x) is of the form xγ ◦h for some unique
choice of γ . For notational convenience we write sγ (G) := ind(γ H ,G). Consider
the coefficient of xγ ◦h in the polynomial ZH (G1; x) · ZH (G2; x). The coefficient is
given by

∑

μ+ν=γ

sμ(G1)sν(G2),

(where μ + ν denotes the usual vector addition of μ and ν). This counts precisely the
number of copies of γ1H1 ∪ · · · ∪ γr Hr in G1 ∪ G2, that is, sγ (G1 ∪ G2), which is
the coefficient of xγ ◦h in the polynomial ZH (G1 ∪ G2; x). �

Suppose μ ∈ Z
r≥0 and let z be a variable. Define the graph polynomial Zμ =

Zμ,H (G) ∈ Z[z] by

Zμ(z) = ZH (G; (μ1z, . . . , μr z)) =:
∑

i≥0

si (μ)zi ;

here the second equality defines the numbers si (μ) = si (μ)(G). Evaluating ZH (G; x)

at x = (μ1z, . . . , μr z), each monomial xγ ◦h will evaluate to (μ1z)γ1h1 · · · (μr z)γr hr

= μγ ◦hz〈γ ,h〉. Therefore the coefficient of zi in Zμ(z) is

si (μ) =
∑

γ∈Zr≥0
〈γ ,h〉=i

μγ ◦hind(γ H ,G) =
∑

γ∈Zr≥0
〈γ ,h〉=i

⎛

⎝
r∏

j=1

μ
γ j h j
j

⎞

⎠ ind(γ H ,G). (11)

Proposition 3.2 Fix H = (H1, . . . , Hr) where the Hi are pairwise non-isomorphic
connected graphs each of maximum degree at most � and fix μ ∈ Z

r≥0. Then

Zμ,H (G; z) is a BIGCP with parameters α = 1 and βi = i2r�i−1.

Proof Since Zμ,H (G) is a particular evaluation of ZH (G), we knowbyProposition 3.1
that it is multiplicative.

The coefficient of zi in Zμ,H (G; z) is given by (11). Since γ H is a graph with
exactly 〈γ , h〉 = i vertices, we can take α to be 1 in the definition of BIGCP.

For a given graph F , we must determine λF,i in the definition of BIGCP and the
time βi required to do this. Note that we may assume |V (F)| = i ; otherwise λF,i = 0.
If |V (F)| = i , we must test if F is isomorphic to a graph of the form γ H with
〈γ , h〉 = i and if so we must output the value of λF,i as μγ ◦h (this last step taking i

123

1854 Algorithmica (2019) 81:1844–1858

arithmetic operations). To test if F is isomorphic to a graph of the form γ H , we test
isomorphism of each component of F against each of the graphs H1, . . . , Hr , which
takes time at most O(i2r�i−1) using Lemma 2.2 at most ir times. Thus the total time
to compute λF,i is at most O(i2r�i−1). �

Now since Zμ,H (G; z) is a BIGCP, Theorem 2.1 allows us to compute the coef-
ficients si (μ) in (11) with the desired running time. However the si (μ) are linear
combinations of the numbers ind(γ H ,G), while we wish to compute one of these
numbers in particular, say ind(ρH ,G). By making careful choices of different μ,
we will obtain an invertible linear system whose solution will include the number
ind(ρH ,G). We will require Alon’s Combinatorial Nullstellensatz [1], which we
state here for the reader’s convenience.

Theorem 3.3 ([1]) Let f (x1, . . . , xn) be a polynomial of degree d over a field F.
Suppose the coefficient of themonomial xμ1

1 · · · xμn
n in f is nonzero andμ1+· · ·+μn =

d. If S1, . . . , Sn are finite subsets of F with |Si | ≥ μi + 1 then there exists a point
x ∈ S1 × · · · × Sn for which f (x) 	= 0.

Given a vector h ∈ N
r , let us write Pm,r ,h for the set of vectors γ ∈ Z

r≥0 such
that 〈γ , h〉 = m. We note that, as the the number of elements in Pm,r ,h is at most the
number of monomials in r variables of degree m, we have

|Pm,r ,h| ≤
(
m + r − 1

r − 1

)
. (12)

Enumerate the vectors in Pm,r ,h as γ 1, . . . , γ k and write γi, j for the j th component
of γ i . Given a vector ν ∈ N

r , we write ν∗ ∈ N
k for the vector whose i th component

ν∗
i is νγ i◦h, i.e.

ν∗
i = ν

γi,1h1
1 · · · νγi,r hr

r .

Lemma 3.4 Fix m, r ∈ N and h ∈ N
r , and let γ 1, . . . , γ k be an enumeration of the

elements inPm,r ,h as before. In time O(k5+k2mem), we can find vectors ν1, . . . , νk ∈
N
r such that ν∗

1, . . . , ν
∗
k ∈ N

k (as defined above) are linearly independent.

Proof For any vector ν, let us write ν| j to denote the vector consisting of the first
j components. Suppose we have found vectors ν1, . . . , ν
−1 ∈ N

r such that the
(
 − 1) × (
 − 1) matrix

M
−1 := (
ν∗
1|
−1, . . . , ν

∗

−1|
−1

)

has non-zero determinant. We will show how to find ν
 ∈ N
r such that the cor-

responding matrix M
 has non-zero determinant. First consider the components
of ν
 to be unknown variables x1, . . . , xr so that det(M
) becomes a polynomial
P = P(x1, . . . , xr) in the variables x1, . . . , xr . In fact it is a homogeneous polyno-
mial of degree m. Writing x = (x1, . . . , xr), we know that the coefficient of xγ
◦h
is ± det(M
−1) 	= 0 (consider the determinant expansion of the matrix M
 along the

123

Algorithmica (2019) 81:1844–1858 1855

th column). We must now find ν
 ∈ N
r such that det(M
) = P(ν∗

,1, . . . , ν
∗

,
) 	= 0,

where ν∗

,i is the i th component of ν∗

 .
Assume the components of γ
 ∈ N

r are a1, . . . , ar . Applying Theorem 3.3 to the
monomial xγ
◦h and taking the sets Si = {1, . . . , ai hi + 1} for i = 1, . . . , r , we
know there exists a vector ν
 ∈ S := S1 × · · · × Sr such that P(ν∗

,1, . . . , ν
∗

,
) 	= 0.

Computing the polynomial P requires time at most O(k · k3) (using that computing
the determinant of an n × n matrix takes O(n3) time) and evaluating it at every point
in S requires at most O(m · k · |S|) operations. We can bound |S| as follows:

|S| = (a1h1 + 1) · · · (arhr + 1) ≤
(
1

r

r∑

i=1

(ai hi + 1)

)r

=
(
m + r

r

)r

=
(
1 + m

r

)r ≤ em .

The first inequality follows from the arithmetic-geometric mean inequality. Iterating
the procedure, we can determine ν1, . . . , νk in time O(k · (k4 + mk|S|)) ≤ O(k5 +
k2mem). �

Remark 3.1 We suspect there should be a simpler argument than the one we have
just given (perhaps one where the vectors ν1, . . . , νk can be explicitly written down
rather than having an algorithm to determine them). Note that one can also use a faster
randomised algorithm by applying the Schwarz-Zippel Lemma.

We can now state our algorithm to compute ind(H ,G) for Theorem 1.1.

Algorithm 2 Input: two graphs H and G.

• Step 1: Determine the components of H using e.g. breadth-first search. Compute,
using Lemma 2.2 (i), the pairwise nonisomorphic components H1, . . . , Hr of H
and their multiplicities i1, . . . , ir .

• Step 2: Write H = i1H1 ∪ . . . ∪ ir Hr and H = (H1, . . . , Hr), let h be the vector
in N

r defined by h j = |Hj | for each j , and compute m = ∑r
j=1 i j h j . Consider

the multivariate polynomial ZH (G; x).
• Step 3: Recall

Pm,r ,h = {γ ∈ N
r : 〈γ , h〉 = m}.

Enumerate the set Pm,r ,h as {γ 1, . . . , γ k} with γ 1 = (i1, . . . , ir).
• Step 4: Recall that given a vector ν ∈ N

r , we write ν∗ ∈ N
k for the vector

(νγ i◦h)ki=1. Use Lemma 3.4 to determine vectors ν1, . . . , νk such that the vectors
ν∗
1, . . . , ν

∗
k are linearly independent.• Step 5: For each i = 1, . . . , k compute themth coefficient sm(νi) of the univariate

polynomial ZH ,νi using Algorithm 1. (Here ZH ,νi (z) is the evaluation of ZH (x)

at the vector x = zνi , where z is a scalar variable and this univariate satisfies the
properties of a BIGCP by Proposition 3.2.)

123

1856 Algorithmica (2019) 81:1844–1858

• Step 6: Invert the system of linear equations

〈ν∗
i , s〉 = sm(νi) for i = 1, . . . , k,

to find s ∈ N
k (with components s1, . . . , sk).

Output: s1 = ind(H ,G).

Proof of Theorem 1.1 Step 1 can be executed in timeO(m3�m)byLemma2.2 (i) to test
for isomorphism. Step 3, the enumeration of the elements of Pm,r ,h, can be executed
in time O(22m), as the size of Pm,r ,h is bounded by

(m+r−1
r−1

) = O(2m+r) = O(22m).
By Lemma 3.4, we can find the vectors ν1, . . . , νk ∈ N

r such that the vectors
ν∗
1, . . . , ν

∗
k ∈ N

k are linearly independent in time O(k5 + k2mem) = Õ(210m), noting
that by (12) k is at most

(m+r−1
r−1

) = O(2m+r) = O(22m). So step 4 can be executed

in Õ(210m) time.
By Proposition 3.2 and Theorem 2.1 we can compute the coefficient sm(νi) of zm

in ZH ,νi (G)(z) in time Õ((e�)αmβm4αmn) with α = 1 and β j = j2r� j−1. So Step
5, i.e. computing all these coefficients for i = 1, . . . , k takes time

Õ(k · ((4�)m)(e�)mn) = Õ((7�)2mn).

Recall that this coefficient is given by

sm(νi)(G) =
k∑

j=1

ν
γ j◦h
i ind(γ j H ,G) =

k∑

j=1

ν∗
i ind(γ j H ,G).

More conveniently, writing s ∈ Z
k≥0 for the vector whose j th component is s j =

ind(γ j H ,G), we have the invertible system of linear equations given by

〈ν∗
i , s〉 = sm(νi) for i = 1, . . . , k,

where we have computed the values of sm(νi) and ν∗
i , while the vector s is unknown

(the system is invertible because we chose the ν∗
i to be linearly independent). We can

then invert the system in time O(k3) = Õ(26m) (Step 6). In particular finding the
value of s1 = ind(H ,G) takes time Õ(26m). This proves correctness of the algorithm.

The total running time is dominated by the time to execute Step 4 and 5, which is
bounded by Õ(n(7�)2m + 210m)). �

4 Concluding Remarks

As we remarked in the introduction our approach also works in the setting of vertex-
and edge-coloured graphs. We will not elaborate on the details here, but just refer the
interested reader to Section3.3 of [18] where we have briefly explained how to extend
the results for computing coefficients of BIGCPs to the setting of coloured graphs.

123

Algorithmica (2019) 81:1844–1858 1857

In addition we note that the part of the proof given in Sect. 3 also carries over to the
coloured graphs setting replacing graph by coloured graph everywhere.

The approach used to prove Theorem 1.1 is very robust. Besides extending to the
coloured setting, it also easily extends to other graph like structures. For example, in
[18] it has been extended to fragments, i.e., vertex-coloured graphs in which some
edges may be unfinished, Liu et al. [14] extended it to insects, i.e., vertex-coloured
hypergraphs in which some edges may be unfinished and very recently, Barvinok and
the second author [4] applied this approach to enumerate integer points in certain poly-
topes. We expect our approach to be applicable to the problem of counting (induced)
substructures in other structures as well, as long as there is a notion of connectedness
and maximum degree.

Acknowledgements We thank John Lapinskas for raising a question about the complexity of our main
algorithm in a previous version of this paper, which led to an improved running time. We also thank Radu
Curticapean for informing us of some historical context to our result. We are grateful for the excellent
comments by the anonymous referees leading to an improved presentation of our result.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alon, N., Tarsi, M.: Combinatorics probability and computing. Combinatorial nullstellensatz 8(1),
7–30 (1999)

2. Arvind, V., Raman, V.: Approximation algorithms for some parameterized counting problems. In:
Algorithms and Computation, 13th International Symposium, ISAAC 2002 Vancouver, BC, Canada,
21–23 Nov 2002, Proceedings, pp. 453–464 (2002)

3. Barvinok, A.: Combinatorics and Complexity of Partition Functions, volume 30 of Algorithms and
Combinatorics. Springer, Berlin (2017)

4. Barvinok, A., Regts, G.: Weighted counting of non-negative integer points in a subspace (2017). arXiv
preprint arXiv:1706.05423

5. Borgs, C., Chayes, J., Kahn, J., Lovász, L.: Left and right convergence of graphs with bounded degree.
Random Struct. Algorithms 42(1), 1–28 (2013)

6. Chen, Y., Thurley, M., Weyer, M.: Understanding the complexity of induced subgraph isomorphisms.
In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, 7–11 July 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games,
pp. 587–596 (2008)

7. Csikvári, P., Frenkel, P.E.: Benjamini–Schramm continuity of root moments of graph polynomials.
Eur. J. Comb. 52, 302–320 (2016)

8. Curticapean, R., Dell, H., Fomin, F.V., Goldberg, L.A., Lapinskas, J.: A fixed-parameter perspective
on #bis. In: 12th International Symposium on Parameterized and Exact Computation, IPEC 2017, 6–8
Sept 2017, Vienna, Austria, pp. 13:1–13:13 (2017)

9. Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, 19–23 June 2017, pp. 210–223 (2017)

10. Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the boundedness of the vertex-
cover number counts. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, 18–21 Oct 2014, pp. 130–139 (2014)

11. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for
W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1706.05423

1858 Algorithmica (2019) 81:1844–1858

12. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33(4),
892–922 (2004)

13. Johnson, D.S., Szegedy, M.: What are the least tractable instances of max independent set? In: Pro-
ceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17–19 Jan 1999,
Baltimore, Maryland, pp. 927–928 (1999)

14. Liu, J., Sinclair, A., Srivastava, P.: The Ising partition function: Zeros and deterministic approximation.
In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, 15–17 Oct 2017, pp. 986–997 (2017)

15. Lovász, L.: Large Networks and Graph Limits, volume 60 of American Mathematical Society Collo-
quium Publications. American Mathematical Society, Providence (2012)

16. Nederlof, J.: Personal communication
17. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment. Math. Univ. Carolin.

26(2), 415–419 (1985)
18. Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for partition functions

and graph polynomials. SIAM J. Comput. 46(6), 1893–1919 (2017)
19. Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial, and the Lovász

local lemma. J. Stat. Phys. 118(5), 1151–1261 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Computing the Number of Induced Copies of a Fixed Graph in a Bounded Degree Graph
	Abstract
	1 Introduction
	2 Computing Coefficients of Graph Polynomials
	2.1 Induced Subgraph Counts
	2.2 Proof of Theorem 2.1

	3 Proof of Theorem 1.1
	4 Concluding Remarks
	Acknowledgements
	References

