
Algorithmica (2019) 81:668–702
https://doi.org/10.1007/s00453-018-0507-5

Level-Based Analysis of the Univariate Marginal
Distribution Algorithm

Duc-Cuong Dang1 · Per Kristian Lehre2 · Phan Trung Hai Nguyen2

Received: 11 September 2017 / Accepted: 16 August 2018 / Published online: 8 October 2018
© The Author(s) 2018

Abstract
Estimation of Distribution Algorithms (EDAs) are stochastic heuristics that search for
optimal solutions by learning and sampling from probabilistic models. Despite their
popularity in real-world applications, there is little rigorous understanding of their
performance. Even for the Univariate Marginal Distribution Algorithm (UMDA)—a
simple population-based EDA assuming independence between decision variables—
the optimisation time on the linear problemOneMaxwas until recently undetermined.
The incomplete theoretical understanding of EDAs is mainly due to the lack of appro-
priate analytical tools. We show that the recently developed level-based theorem for
non-elitist populations combined with anti-concentration results yield upper bounds
on the expected optimisation time of the UMDA. This approach results in the bound
O (nλ log λ + n2

)
on the LeadingOnes and BinVal problems for population sizes

λ > μ = Ω(log n), where μ and λ are parameters of the algorithm. We also prove
that the UMDA with population sizes μ ∈ O (√n

)∩Ω(log n) optimises OneMax in
expected time O (λn), and for larger population sizes μ = Ω(

√
n log n), in expected

time O (λ√
n
)
. The facility and generality of our arguments suggest that this is a

promising approach to derive bounds on the expected optimisation time of EDAs.

Keywords Estimation of distribution algorithms · Runtime analysis · Level-based
analysis · Anti-concentration

Preliminary versions of this work appeared in the Proceedings of the 2015 and 2017 Genetic and
Evolutionary Computation Conference (GECCO 2015 and 2017).

B Per Kristian Lehre
p.k.lehre@cs.bham.ac.uk

Duc-Cuong Dang
duc-cuong.dang@hds.utc.fr

Phan Trung Hai Nguyen
p.nguyen@cs.bham.ac.uk

1 Hanoi, Vietnam

2 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0507-5&domain=pdf
http://orcid.org/0000-0002-9521-1251
http://orcid.org/0000-0003-0783-2224


Algorithmica (2019) 81:668–702 669

1 Introduction

Estimation ofDistributionAlgorithms (EDAs) are a class of randomised search heuris-
ticswithmany practical applications [15,20,24,47,48]. Unlike traditional Evolutionary
Algorithms (EAs) which search for optimal solutions using genetic operators such as
mutation or crossover, EDAs build and maintain a probability distribution of the cur-
rent population over the search space, from which the next generation of individuals
is sampled. Several EDAs have been developed over the last decades. The algorithms
differ in how they capture interactions among decision variables, as well as in how they
build and update their probabilistic models. EDAs are often classified as either uni-
variate or multivariate; the former treats each variable independently, while the latter
also considers variable dependencies [40]. Well-known univariate EDAs include the
compact Genetic Algorithm (cGA [21]), the Population-Based Incremental Learning
Algorithm (PBIL [4]), and the Univariate Marginal Distribution Algorithm (UMDA
[37]). Given a problem instance of size n, univariate EDAs represent probabilistic
models as an n-vector, where each vector component is called a marginal. Some Ant
Colony Optimisation (ACO) algorithms and even certain single-individual EAs can
be cast in the same framework as univariate EDAs (or n-Bernoulli-λ-EDA, see, e.g.,
[18,22,25,42]). Multivariate EDAs, such as the Bayesian Optimisation Algorithm,
which builds a Bayesian network with nodes and edges representing variables and
conditional dependencies respectively, attempt to learn relationships between deci-
sion variables [22]. The surveys [1,22,39] describe further variants and applications
of EDAs.

Recently EDAs have drawn a growing attention from the theory community of evo-
lutionary computation [10,13,18,26–28,32,44–46]. The aim of the theoretical analyses
of EDAs in general is to gain insights into the behaviour of the algorithms when opti-
mising an objective function, especially in terms of the optimisation time, that is the
number of function evaluations, required by the algorithm until an optimal solution has
been found for the first time. Droste [14] provided the first rigorous runtime analysis
of an EDA, specifically the cGA. Introduced in [21], the cGA samples two individuals
in each generation and updates the probabilistic model according to the fittest of these
individuals. A quantity of ±1/K is added to the marginals for each bit position where
the two individuals differ. The reciprocal K of this quantity is often referred to as the
abstract population size of a genetic algorithm that the cGA is supposed to model.
Droste showed a lower boundΩ(K

√
n) on the expected optimisation time of the cGA

for any pseudo-Boolean function [14]. He also proved the upper bound O(nK ) for
any linear function, where K = n1/2+ε for any small constant ε > 0. Note that each
marginal of the cGA considered in [14] is allowed to reach the extreme values zero
and one. Such an algorithm is referred to as an EDA without margins, since in contrast
it is possible to reinforce some margins (also called borders) on the range of values for
each marginal to keep it away from the extreme probabilities, often within the interval
[1/n, 1−1/n]. AnEDAwithoutmargins can prematurely converge to suboptimal solu-
tions; thus, the runtime bounds of [14] were in fact conditioned on the event that early
convergence never happens. Very recently, Witt [45] studied an effect called domino
convergence on EDAs, where bits with heavy weights tend to be optimised before bits
with light weights. By deriving a lower bound of Ω(n2) on the expected optimisation

123



670 Algorithmica (2019) 81:668–702

time of the cGA on BinVal for any value of K > 0, Witt confirmed the claim made
earlier by Droste [14] that BinVal is a harder problem for the cGA than theOneMax
problem is. Moreover, Lengler et al. [32] considered K = O (√n/ log2 n

)
, which was

not covered by Droste in [14], and obtained a lower bound Ω(K 1/3n+n log n) on the
expected optimisation time of the cGA onOneMax. Note that if K = Θ(

√
n/ log2 n),

the above lower bound will be Ω(n7/6/ log2 n), which further tightens the bounds on
the expected optimisation time of the cGA.

An algorithm closely related to the cGA with (reinforced) margins is the 2-Max
Min Ant System with iteration best (2-MMASib). The two algorithms differ only in
the update procedure of the model, and 2-MMASib is parameterised by an evaporation
factor ρ ∈ (0, 1). Sudholt and Witt [42] proved the lower bounds Ω(K

√
n + n log n)

and Ω(
√
n/ρ + n log n) for the two algorithms on OneMax under any setting, and

upper bounds O(K
√
n) and O(

√
n/ρ) when K and ρ are in Ω(

√
n log n). Thus,

the optimal expected optimisation time Θ(n log n) of the cGA and the 2-MMASib
on OneMax is achieved by setting these parameters to Θ(

√
n log n). The analyses

revealed that choosing lower parameter values results in strong fluctuations that may
cause many marginals (or pheromones in the context of ACO) to fix early at the
lower margin, which then need to be repaired later. On the other hand, choosing
higher parameter values resolves the issue but may slow down the learning pro-
cess.

Friedrich et al. [18] pointed out two behavioural properties of univariate EDAs at
each bit position: a balanced EDA would be sensitive to signals in the fitness, while
a stable one would remain uncommitted under a biasless fitness function. During
the optimisation of LeadingOnes, when some bit positions are temporarily neutral,
while the others are not, both properties appear useful to avoid commitment to wrong
decisions. Unfortunately, many univariate EDAs without margins, including the cGA,
the UMDA, the PBIL and some related algorithms are balanced but not stable [18].
A more stable version of the cGA—the so-called stable cGA (or scGA)—was then
introduced in [18]. Under appropriate settings, it yields an expected optimisation time
O(n log n) on LeadingOnes with high probability. Furthermore, a recent study by
Friedrich et al. [17] showed that cGA can cope with higher levels of noise more
efficiently than mutation-only heuristics do.

Introduced by Baluja [4], the PBIL is another univariate EDA. Unlike the cGA that
samples two solutions in each generation, the PBIL samples a population ofλ individu-
als, from which the μ fittest individuals are selected to update the probabilistic model
using a convex combination with a smoothing parameter ρ ∈ (0, 1] of the current
model and the frequencies of ones among all selected individuals at that bit position.
The PBIL can be seen as a special case of the cross-entropy method [38] on the binary
hypercube {0, 1}n . Wu et al. [46] analysed the runtime of the PBIL on OneMax and
LeadingOnes. The authors argued that due to the use of a sufficiently large population
size, it is possible to prevent the marginals from reaching the lower border early even
when a large smoothing parameter ρ is used. Runtime results were proved for the PBIL
without margins onOneMax and the PBIL with margins on LeadingOnes, and were
then compared to the runtime of some Ant System approaches. However, the required
population size is large, i.e. λ = ω(n). Very recently, Lehre and Nguyen [28] obtained

123



Algorithmica (2019) 81:668–702 671

an upper boundO(nλ log λ+n2) on the expected optimisation time for the PBIL with
margins on BinVal and LeadingOnes, which improves the previously known upper
boundO(n2+ε) in [46] by a factor of nε, where ε is some positive constant, for smaller
population sizes λ = Ω(log n).

The UMDA is a special case of the PBIL with the largest smoothing parameter
ρ = 1, that is, the probabilistic model for the next generation depends solely on the
selected individuals in the current population. The algorithm has a wide range of appli-
cations, not only in computer science, but also in other areas like population genetics
and bioinformatics [20,48].Moreover, the UMDA relates to the notion of linkage equi-
librium [36,41], which is a popular model assumption in population genetics. Thus,
studies of the UMDA can contribute to the understanding of population dynamics in
population genetics.

Despite an increasing momentum in the runtime analysis of EDAs over the last
few years, our understanding of the UMDA in terms of runtime is still limited. The
algorithm was early analysed in a series of papers [5–8], where time-complexities of
the UMDA on simple uni-modal functions were derived. These results showed that the
UMDA with margins often outperforms the UMDA without margins, especially on
functions like BVLeadingOnes, which is a uni-modal problem. The possible reason
behind the failure of the UMDAwithout margins is due to fixation, causing no further
progression for the corresponding decision variables. The UMDAwith margins is able
to avoid this by ensuring that each search point always has a positive chance to be
sampled. Shapiro investigated the UMDA with a different selection mechanism than
truncation selection [40]. In particular, this variant of the UMDA selects individuals
whose fitnesses are no less than the mean fitness of all individuals in the current
population when updating the probabilistic model. By representing the UMDA as a
Markov chain, the paper showed that the population size has to be at least

√
n for

the UMDA to prevent the probabilistic model from quickly converging to the corners
of the hypercube on the search space. This phenomenon is well-known as genetic
drift [2]. A decade later, the first upper bound on the expected optimisation time of
the UMDA on OneMax was revealed [10]. Working on the standard UMDA using
truncation selection, Dang and Lehre [10] proved an upper bound O(nλ log λ) on the
expected optimisation time of the UMDA on OneMax, assuming a population size
λ = Ω(log n). If λ = Θ(log n), then the upper bound isO(n log n log log n). Inspired
by the previous work of [42] on cGA/2-MMASib, Krejca and Witt [26] obtained a
lower bound Ω(μ

√
n+ n log n) for the UMDA on OneMax via drift analysis, where

λ = (1+Θ(1))μ. Compared to [42], the analysis is much more involved since, unlike
in cGA/2-MMASib where each change of marginals between consecutive generations
is small and limited by to the smoothing parameter, large changes are always possible
in the UMDA. From these results, we observe that the latest upper and lower bounds
for the UMDA on OneMax still differ by Θ(log log n). This raises the question of
whether this gap could be closed.

This paper derives upper bounds on the expected optimisation time of the UMDA
on the following problems: OneMax, BinVal, and LeadingOnes. The preliminary
versions of this work appeared in [10] and [27]. Here we use the improved version of
the level-based analysis technique [9]. The analyses for LeadingOnes and BinVal
are straightforward and similar to each other, i.e. yielding the same runtime

123



672 Algorithmica (2019) 81:668–702

O(nλlogλ + n2); hence, they will serve the purpose of introducing the technique in
the context of EDAs. Particularly, we only require population sizes λ = Ω(log n) for
LeadingOnes which is much smaller than previously thought [6–8]. For OneMax,
we give a more detailed analysis so that an expected optimisation time O(n log n) is
derived if the population size is chosen appropriately. This significantly improves
the results in [9,10] and matches the recent lower bound in [26]. More specifi-
cally, we assume λ ≥ bμ for a sufficiently large constant b > 0, and separate two
regimes of small and large selected populations: the upper boundO(λn) is derived for
μ = Ω(log n)∩O(

√
n), and the upper boundO(λ

√
n) is shown forμ = Ω(

√
n log n).

These results exhibit the applicability of the level-based technique in the runtime anal-
ysis of (univariate) EDAs. Table 1 summarises the latest results about the runtime
analyses of univariate EDAs on simple benchmark problems; see [25] for a recent
survey on the theory of EDAs.

Related independent work Witt [44] independently obtained the upper bounds
O(λn) andO(λ

√
n) on the expected optimisation time of the UMDA on OneMax for

μ = Ω(log n) ∩ o(n) and μ = Ω(
√
n log n), respectively, and λ = Θ(μ) using an

involved drift analysis. While our results do not hold forμ = Ω(
√
n)∩O (√n log n

)
,

our methods yield significantly easier proofs. Furthermore, our analysis also holds
when the parent population size μ is not proportional to the offspring population size
λ, which is not covered in [44].

This paper is structured as follows. Section 2 introduces the notation used through-
out the paper and the UMDA with margins. We also introduce the techniques used,
including the level-based theorem, which is central in the paper, and an important
sharp bound on the sum of Bernoulli random variables. Given all necessary tools,
Sect. 3 presents upper bounds on the expected optimisation time of the UMDA on
both LeadingOnes and BinVal, followed by the derivation of the upper bounds on
the expected optimisation time of the UMDA on OneMax. The latter consists of two
smaller subsections according to two different ranges of values of the parent population
size. Section 5 presents a brief empirical analysis of the UMDA on LeadingOnes,
BinVal and OneMax to support the theoretical findings in Sects. 3 and 4. Finally,
our concluding remarks are given in Sect. 6.

2 Preliminaries

This section describes the three standard benchmark problems, the algorithm under
investigation and the level-based theorem, which is a general method to derive upper
bounds on the expected optimisation time of non-elitist population-based algorithms.
Furthermore, a sharp upper bound on the sum of independent Bernoulli trials, which
is essential in the runtime analysis of the UMDA on OneMax for a small population
size, is presented, followed by Feige’s inequality.

We use the following notation throughout the paper. The natural logarithm is
denoted as ln(·), and log(·) denotes the logarithm with base 2. Let [n] be the set
{1, 2, . . . , n}. The floor and ceiling functions are �x� and �x	, respectively, for x ∈ R.
For two random variables X ,Y , we use X 
 Y to indicate that Y stochastically
dominates X , that is Pr (X ≥ k) ≤ Pr (Y ≥ k) for all k ∈ R.

123



Algorithmica (2019) 81:668–702 673

Ta
bl
e
1

E
xp
ec
te
d
op
tim

is
at
io
n
tim

e
(n
um

be
r
of

fit
ne
ss

ev
al
ua
tio

ns
)
of

un
iv
ar
ia
te
E
D
A
s
on

th
e
th
re
e
pr
ob
le
m
s
O
n
eM

a
x
,L

ea
d
in
g
O
n
es

an
d
B
in
V
a
l

Pr
ob

le
m

A
lg
or
ith

m
C
on

st
ra
in
ts

R
un

tim
e

O
n
eM

a
x

U
M
D
A

λ
=

Θ
(μ

),
λ

=
O

(p
ol
y(
n)

)
Ω

(λ
√ n

+
n
lo
g
n)

[2
6]

λ
=

Θ
(μ

),
μ

=
Ω

(l
og

n)
∩o

(n
)

O
(λ
n )

[4
4]

λ
=

Θ
(μ

),
μ

=
Ω

(√ n
lo
g
n)

O
( λ

√ n)
[4
4]

λ
=

Ω
(μ

),
μ

=
Ω

(l
og

n)
∩O

( √
n)

O
(λ
n )

[T
he
or
em

8]

λ
=

Ω
(μ

),
μ

=
Ω

(√ n
lo
g
n)

O
( λ

√ n)
[T
he
or
em

9]

PB
IL

∗
μ

=
ω

(n
),

λ
=

ω
(μ

)
ω

(n
3/
2
)
[4
6]

cG
A

K
=

n1
/
2+

ε
Θ

(K
√ n)

[1
4]

K
=

O
( √

n/
lo
g2

n)
Ω

(K
1/
3
n

+
n
lo
g
n)

[3
2]

sc
G
A

ρ
=

Ω
(1

/
lo
g
n)

,
a

=
Θ

(ρ
),
c

>
0

Ω
(m

in
{2Θ

(n
) ,
2c

/
ρ
})
[1
3]

L
ea

d
in
g
O
n
es

U
M
D
A

μ
=

Ω
(l
og

n)
,
λ

=
Ω

(μ
)

O
( nλ

lo
g

λ
+

n2
)
[T
he
or
em

7]

PB
IL

λ
=

n1
+ε

,
μ

=
O
( nε

/
2
)

,
ε

∈(
0,

1)
O
( n2

+ε
)
[4
6]

λ
=

Ω
(μ

),
μ

=
Ω

(l
og

n)
O
( nλ

lo
g

λ
+

n2
)
[2
8]

sc
G
A

ρ
=

Θ
(1

/
lo
g
n)

,
a

=
O

(ρ
)

O
(n

lo
g
n )

[1
8]

B
in
V
a
l

U
M
D
A

μ
=

Ω
(l
og

n)
,
λ

=
Ω

(μ
)

O
( nλ

lo
g

λ
+

n2
)
[T
he
or
em

7]

PB
IL

λ
=

Ω
(μ

),
μ

=
Ω

(l
og

n)
O
( nλ

lo
g

λ
+

n2
)
[2
8]

cG
A

K
=

n1
/
2+

ε
Θ

(K
n)

[1
4]

an
y
K

>
0

Ω
(n

2
)
[4
5]

*W
ith

ou
tm

ar
gi
ns

123



674 Algorithmica (2019) 81:668–702

Weconsider a partition of the finite search spaceX = {0, 1}n intom ordered subsets
A1, . . . , Am called levels, i.e. Ai ∩ A j = ∅ for any i �= j and∪m

i=1Ai = X . The union
of all levels above j inclusive is denoted A≥ j := ∪m

i= j Ai . An optimisation problem
on X is assumed, without loss of generality, to be the maximisation of some function
f : X → R. A partition is called fitness-based (or f -based) if for any j ∈ [m − 1]
and all x ∈ A j , y ∈ A j+1 : f (y) > f (x). An f -based partitioning is called canonical
when x, y ∈ A j if and only if f (x) = f (y).

Given the search space X , each x ∈ X is called a search point (or individual),
and a population is a vector of search points, i.e. P ∈ X λ. For a finite population
P = (

x (1), . . . , x (λ)
)
, we define |P ∩ A j | := |{i ∈ [λ] | x (i) ∈ A j }|, i.e. the number

of individuals in population P which are in level A j . Truncation selection, denoted as
(μ, λ)-selection for some μ < λ, applied to population P transforms it into a vector
P ′ (called selected population) with |P ′| = μ by discarding the λ − μ worst search
points of P with respect to some fitness function f , where ties are broken uniformly
at random.

2.1 Three Problems

We consider the three pseudo-Boolean functions:OneMax, LeadingOnes and Bin-
Val, which are defined over the finite binary search spaceX = {0, 1}n andwidely used
as theoretical benchmark problems in runtime analyses of EDAs [10,14,26,28,44,46].
Note in particular that these problems are only required to describe and compare the
behaviour of the EDAs on problems with well-understood structures. The first prob-
lem, as its name may suggest, simply counts the number of ones in the bitstring and is
widely used to test the performance of EDAs as a hill climber [25]. While the bits in
OneMax have the same contributions to the overall fitness, BinVal, which aims at
maximising the binary value of the bitstring, has exponentially scaled weights relative
to bit positions. In contrast, LeadingOnes counts the number of leading ones in the
bitstring. Since bits in this particular problem are highly correlated, it is often used to
study the ability of EDAs to cope with dependencies among decision variables [25].

The global optimum for all functions is the all-ones bitstring, i.e. 1n . For any
bitstring x = (x1, . . . , xn) ∈ X , these functions is defined as follows:

Definition 1 OneMax(x) :=
n∑

i=1
xi .

Definition 2 LeadingOnes(x) :=
n∑

i=1

i∏

j=1
x j .

Definition 3 BinVal(x) :=
n∑

i=1
2n−i xi .

2.2 Univariate Marginal Distribution Algorithm

Introduced by Mühlenbein and Paaß [37], the Univariate Marginal Distribution
Algorithm (UMDA; see Algorithm 1) is one of the simplest EDAs, which assume

123



Algorithmica (2019) 81:668–702 675

independence between decision variables. To optimise a pseudo-Boolean function
f : {0, 1}n → R, the algorithm follows an iterative process: sample independently
and identically a population of λ offspring from the current probabilistic model and
update themodel using theμfittest individuals. Each sample-and-update cycle is called
a generation (or iteration). The probabilistic model in generation t ∈ N is represented
as a vector pt = (pt (1), . . . , pt (n)) ∈ [0, 1]n , where each component (or marginal)
pt (i) ∈ [0, 1] for i ∈ [n] and t ∈ N is the probability of sampling a one at the i-th bit
position of an offspring in generation t . Each individual x = (x1, . . . , xn) ∈ {0, 1}n
is therefore sampled from the joint probability distribution

Pr (x | pt ) =
n∏

i=1

pt (i)
xi (1 − pt (i))

(1−xi ) . (1)

Note that the probabilistic model is initialised as p0(i) := 1/2 for each i ∈ [n]. Let
x (1)
t , . . . , x (λ)

t be λ individuals that are sampled from the joint probability distribution
(1), then μ of which with the fittest fitness are selected to obtain the next model pt+1.
Let x (k)

t,i denote the value of the i-th bit position of the k-th individual in the current
sorted population Pt . For each i ∈ [n], the corresponding marginal of the next model
is

pt+1(i) := 1

μ

μ∑

k=1

x (k)
t,i ,

which can be interpreted as the frequency of ones among the μ fittest individuals at
bit-position i .

The extremeprobabilities—zero andone—must be avoided for eachmarginal pt (i);
otherwise, the bit in position i would remain fixed forever at either zero or one,
obstructing some regions of the search space. To avoid this, all marginals pt+1(i) are
usually restricted within the closed interval [1/n, 1 − 1/n], and such values 1/n and
1 − 1/n are called lower and upper borders, respectively. The algorithm in this case
is known as the UMDA with margins.

2.3 Level-Based Theorem

We are interested in the optimisation time of the UMDA, which is a non-elitist algo-
rithm; thus, tools for analysing runtime for this class of algorithms are of importance.
Currently in the literature, drift theorems have often been used to derive upper and
lower bounds on the expected optimisation time of the UMDA, see, e.g., [26,44]
because they allow us to examine the dynamics of each marginal in the vector-based
probabilistic model. In this paper, we take another perspective where we consider
the population of individuals. To do this, we make use of the so-called level-based
theorem.

Introduced byCorus et al. [9], the level-based theorem is a general tool that provides
upper bounds on the expected optimisation time of many non-elitist population-based

123



676 Algorithmica (2019) 81:668–702

Algorithm 1: UMDA with margins
parameter: offspring population size λ, parent population size μ, maximising f

1 t ← 0
2 initialise p0(i) ← 1/2 for each i ∈ [n]
3 repeat
4 for k = 1, 2, . . . , λ do

5 sample x(k)
t,i ∼ Bernoulli(pt (i)) for each i ∈ [n]

6 sort Pt ← {x(1)
t , x(2)

t , . . . , x(λ)
t } s.t. f (x(1)

t ) ≥ f (x(2)
t ) ≥ . . . ≥ f (x(λ)

t )

7 for i = 1, 2, . . . , n do

8 Xi ←∑μ
k=1 x

(k)
t,i

9 pt+1(i) ← max
{ 1
n ,min

{
1 − 1

n ,
Xi
μ

}}

10 t ← t + 1
11 until termination condition is fulfilled

Algorithm 2: Non-elitist population-based algorithm
1 t ← 0
2 initialise population P0
3 repeat
4 for i = 1, . . . , λ do
5 sample Pt+1(i) ∼ D(Pt ) independently

6 t ← t + 1
7 until termination condition is fulfilled

algorithms on awide range of optimisation problems [9]. It has been applied to analyse
the expected optimisation time of Genetic Algorithms with or without crossover on
various pseudo-Boolean functions and combinatorial optimisation problems [9], self-
adaptive EAs [11], the UMDA with margins on OneMax and LeadingOnes [10],
and very recently the PBIL with margins on LeadingOnes and BinVal [28].

The theorem assumes that the algorithm to be analysed can be described in the form
ofAlgorithm2. The population Pt in generation t ∈ N ofλ individuals is represented as
a vector (Pt (1), . . . , Pt (λ)) ∈ X λ. The theorem is general because it does not assume
specific fitness functions, selection mechanisms, or generic operators like mutation
and crossover. Rather, the theorem assumes that there exists, possibly implicitly, a
mapping D from the set of populations X λ to the space of probability distributions
over the search space X . The distribution D(Pt ) depends on the current population
Pt , and all individuals in population Pt+1 are sampled identically and independently
from this distribution [9]. The assumption of independent sampling of the individuals
holds for the UMDA, and many other algorithms.

Furthermore, the theorem assumes a partition A1, . . . , Am of the finite search space
X intom subsets, which we call levels. We assume that the last level Am consists of all
optimal solutions. Given a partition of the search spaceX , we can state the level-based
theorem as follows:

Theorem 4 [9] Given a partition (A1, . . . , Am) of X , define T := min{tλ | |Pt ∩
Am | > 0},where for all t ∈ N, Pt ∈ X λ is the population of Algorithm 2 in generation

123



Algorithmica (2019) 81:668–702 677

t . If there exist z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1) such that for any population
Pt ∈ X λ,

– (G1) for each level j ∈ [m − 1], if |Pt ∩ A≥ j | ≥ γ0λ then

Pry∼D(Pt )
(
y ∈ A≥ j+1

) ≥ z j .

– (G2) for each level j ∈ [m − 2] and all γ ∈ (0, γ0], if |Pt ∩ A≥ j | ≥ γ0λ and
|Pt ∩ A≥ j+1| ≥ γ λ then

Pry∼D(Pt )
(
y ∈ A≥ j+1

) ≥ (1 + δ) γ.

– (G3) and the population size λ ∈ N satisfies

λ ≥
(

4

γ0δ2

)
ln

(
128m

z∗δ2

)
,

where z∗ := min j∈[m−1]{z j }, then

E [T ] ≤
(
8

δ2

) m−1∑

j=1

[
λ ln

(
6δλ

4 + z jδλ

)
+ 1

z j

]
.

Informally, the first condition (G1) requires that the probability of sampling an
individual in levels A≥ j+1 is at least z j given that at least γ0λ individuals in the
current population are in levels A≥ j . Condition (G2) further requires that at least
γ λ of them are in levels A≥ j+1, the probability of sampling an offspring in levels
A≥ j+1 is at least (1 + δ)γ . The last condition (G3) sets a lower limit on the pop-
ulation size λ. As long as the three conditions are satisfied, an upper bound on the
expected time to reach the last level Am of a population-based algorithm is guaran-
teed.

To apply the level-based theorem, it is recommended to follow the five-step pro-
cedure in [9]: (1) identifying a partition of the search space (2) finding appropriate
parameter settings such that condition (G2) is met (3) estimating a lower bound z j
to satisfy condition (G1) (4) ensuring the the population size is large enough and (5)
derive the upper bound on the expected time to reach level Am .

Note in particular that Algorithm 2 assumes a mappingD from the space of popula-
tions X λ to the space of probability distributions over the search space. The mapping
D is often said to depend on the current population only [9]; however, this is not strictly
necessary. Very recently, Lehre and Nguyen [28] applied Theorem 4 to analyse the
expected optimisation time of the PBIL with a sufficiently large offspring population
size λ = Ω(log n) on LeadingOnes and BinVal, when the population for the next
generation is sampled using a mapping that depends on the previous probabilistic
model pt in addition to the current population Pt . The rationale behind this is that,
in each generation, the PBIL draws λ samples from the probability distribution (1),
that correspond to λ individuals in the current population. If the number of samples λ

is sufficiently large, it is highly likely that the empirical distributions for all positions

123



678 Algorithmica (2019) 81:668–702

among the entire population cannot deviate too far from the true distributions, i.e.
marginals pt (i) [28], due to the Dvoretzky–Kiefer–Wolfowitz inequality [34].

2.4 Feige’s Inequality

In order to verify conditions (G1) and (G2) of Theorem 4 for the UMDA on OneMax
using a canonical f -based partition A1, . . . , Am , we later need a lower bound on the
probability of sampling an offspring in given levels, that is Pry∼pt (y ∈ A≥ j ), where
y is the offspring sampled from the joint probability distribution (1). Let Y denote the
number of ones in the offspring y. It is well-known that the random variable Y follows
a Poisson–Binomial distribution with expectation E [Y ] = ∑n

i=1 pt (i) and variance
σ 2
n =∑n

i=1 pt (i) (1 − pt (i)). A general result due to Feige [16] provides such a lower
bound when Y < E [Y ]; however, for our purposes, it will be more convenient to use
the following variant [10].

Theorem 5 (Corollary 3 in [10]) Let Y1, . . . ,Yn be n independent random variables
with support in [0, 1], define Y = ∑n

i=1 Yi and μ = E [Y ]. It holds for every Δ > 0
that

Pr (Y > μ − Δ) ≥ min

{
1

13
,

Δ

1 + Δ

}
.

2.5 Anti-concentration Bound

In addition to Feige’s inequality, it is also necessary to compute an upper bound on
the probability of sampling an offspring in a given level, that is Pry∼pt

(
y ∈ A j

)

for any j ∈ [m], where y ∼ Pr(· | pt ) as defined in (1). Let Y be the random
variable that follows a Poisson–Binomial distribution as introduced in the previous
subsection.Baillon et al. [3] derived the following sharp upper bound on the probability
Pry∼pt

(
y ∈ A j

)
.

Theorem 6 (Adapted from Theorem 2.1 in [3]) Let Y be an integer-valued random
variable that follows a Poisson–Binomial distribution with parameters n and pt , and
let σ 2

n =∑n
i=1 pt (i)(1− pt (i)) be the variance of Y . For all n, y and pt , it then holds

that

σn · Pr (Y = y) ≤ η,

where η is an absolute constant being

η = max
x≥0

√
2xe−2x

∞∑

k=0

(
xk

k!
)2

≈ 0.4688.

123



Algorithmica (2019) 81:668–702 679

3 Runtime of the UMDA on LeadingOnes and BinVal

As a warm-up example, and to illustrate the method of level-based analysis, we con-
sider the two functions—LeadingOnes and BinVal—as defined in Definitions 2
and 3. It is well-known that the expected optimisation time of the (1+1) EA on
LeadingOnes isΘ(n2), and that this is optimal for the class of unary unbiased black-
box algorithms [29]. Early analysis of the UMDA on LeadingOnes [8] required an
excessively large population, i.e. λ = ω(n2 log n). Our analysis below shows that
a population size λ = Ω(log n) suffices to achieve the expected optimisation time
O(n2).

Theorem 7 The UMDA (with margins) with parent population size μ ≥ c log n for a
sufficiently large constant c > 0, and offspring population size λ ≥ (1+ δ)eμ for any
constant δ > 0, has expected optimisation time O(nλ log λ + n2) on LeadingOnes
and BinVal.

Proof We apply Theorem 4 by following the guidelines from [9].
Step 1 For both functions, we define the levels

A j := {x ∈ {0, 1}n | LeadingOnes(x) = j − 1}.

Thus, there are m = n + 1 levels ranging from A1 to An+1. Note that a constant
γ0 appearing later in this proof is set to γ0 := μ/λ, that coincides with the selective
pressure of the UMDA.

For LeadingOnes, the partition is clearly f -based as it is canonical to the function.
For BinVal, however, note that since all the j − 1 leading bits of any x ∈ A j are

ones, then the contribution of these bits to BinVal(x) is
∑ j−1

i=1 2n−i . On the other
hand, the contribution of bit position j is 0, and that of the last n − j bits is between
0 and

∑n
i= j+1 2

n−i =∑n− j−1
i=0 2i = 2n− j − 1, so in overall

j∑

i=1

2n−i − 1 ≥ BinVal(x) ≥
j−1∑

i=1

2n−i .

Therefore, for any j ∈ [n] and all x ∈ A j , and all y ∈ A j+1 we have that

BinVal(y) ≥
j∑

i=1

2n−i >

j∑

i=1

2n−i − 1 ≥ BinVal(x);

thus, the partition is also f -based for BinVal. This observation allows us to carry
over the proof arguments of LeadingOnes to BinVal.

Step 2 In (G2), for any level j ∈ [n − 1] satisfying |Pt ∩ A≥ j | ≥ γ0λ = μ

and |Pt ∩ A≥ j+1| ≥ λγ for some γ ∈ (0, γ0], we seek a lower bound (1 + δ)γ

for Pr
(
y ∈ A≥ j+1

)
where y ∼ D(Pt ). The given conditions on j imply that the μ

fittest individuals of Pt have at least j − 1 leading 1-bits and among them at least

123



680 Algorithmica (2019) 81:668–702

�γ λ	 have at least j leading 1-bits. Hence, pt+1(i) = 1 − 1/n for i ∈ [ j − 1] and
pt+1( j) ≥ max(min(1 − 1/n, γ λ/μ), 1/n) ≥ min(1 − 1/n, γ /γ0), so

Pr
(
y ∈ A≥ j+1

) ≥
j∏

i=1

pt+1(i) ≥ min

{(
1 − 1

n

) j

,

(
1 − 1

n

) j−1

· γ λ

μ

}

≥ min

{
1

e
,

γ

eγ0

}
= γ

eγ0
= λγ

eμ
≥ (1 + δ)γ,

due to γ ≤ γ0 and λ ≥ (1 + δ)eμ for any constant δ > 0. Therefore, condition (G2)
is now satisfied.

Step 3 In (G1), for any level j ∈ [n] satisfying |Pt ∩ A≥ j | ≥ γ0λ = μ we need
a lower bound Pr

(
y ∈ A≥ j+1

) ≥ z j . Again the condition on level j gives that the
μ fittest individuals of Pt have at least j − 1 leading 1-bits, or pt+1(i) = 1 − 1

n for
i ∈ [ j − 1]. Due to the imposed lower margin, we can assume pessimistically that
pt+1( j) = 1

n . Hence,

Pr
(
y ∈ A≥ j+1

) ≥
j∏

i=1

pt+1(i) ≥
(
1 − 1

n

) j−1

· 1
n

= 1

en
=: z j .

So, (G1) is satisfied for z j := 1
en .

Step 4 Considering (G3), because δ is a constant, and both 1/z∗ and m are O(n),
there must exist a constant c > 0 such that μ ≥ c log n ≥ (4/δ2) ln(128m/(z∗δ2)).
Note that λ = μ/γ0, so (G3) is satisfied.

Step 5 All conditions of Theorem 4 are satisfied, so the expected optimisation time
of the UMDA on LeadingOnes is

E [T ] = O
⎛

⎝
n∑

j=1

(
λ ln

(
λ

1 + λ/n

)
+ n

)⎞

⎠ = O
(
nλ log λ + n2

)
.

We now consider BinVal. In both problems, all that matters to determine the level
of a bitstring is the position of the leftmost zero-bit. Now consider two bitstrings in the
same level forBinVal, their rankings after the population is sorted are also determined
by some other less significant bits; however, the proof thus far never takes these bits
into account. Hence, the expected optimisation time of the UMDA on LeadingOnes
can be carried over toBinVal for the UMDAwith margins using truncation selection.

��

4 Runtime of the UMDA on OneMax

We consider the problem in Definition 1, i.e., maximisation of the number of ones in a
bitstring. It is well-known thatOneMax can be optimised in expected timeΘ(n log n)

using the simple (1 + 1) EA. The level-based theorem yielded the first upper bound
O(nλ log λ) on the expected optimisation time of the UMDA on OneMax, assuming

123



Algorithmica (2019) 81:668–702 681

that λ = Ω(log n) [10]. This leaves open whether an improved bound O(nλ) can be
obtained for the UMDA (with margins) on problem OneMax.

We now introduce additional notation used throughout the section. The following
random variables related to the sampling of a Poisson Binomial distribution with the
parameter vector pt = (pt (1), . . . , pt (n)) are often used in the proofs.

– Let Y := (Y1,Y2, . . . ,Yn) denote an offspring sampled from the probability dis-
tribution (1) in generation t , where Pr(Yi = 1) = pt (i) for each i ∈ [n].

– Let Yi, j := ∑ j
k=i Yk denote the number of ones sampled from the sub-vector

(pt (i), pt (i + 1), . . . , pt ( j)) of the model pt where 1 ≤ i ≤ j ≤ n.

4.1 Small Parent Population Size

Our approach refines the analysis in [10] by considering anti-concentration properties
of the random variables involved. As already discussed in Sect. 2.3, we need to verify
the three conditions (G1), (G2) and (G3) of Theorem 4 to derive an upper bound on
the expected optimisation time. The range of values of the marginals are (assuming
that μ < n)

pt (i) ∈
{
k

μ
| k ∈ [μ − 1]

}
∪
{
1 − 1

n
,
1

n

}
.

When pt (i) = 1−1/n or 1/n, we say that the marginal is at the upper or lower border
(or margin), respectively. Therefore, we can categorise values for pt (i) into three
groups: those at the upper margin 1 − 1/n, those at the lower margin 1/n, and those
within the closed interval [1/μ, 1−1/μ]. For OneMax, all bits have the same weight
and the fitness is just the sum of these bit values, so the re-arrangement of bit positions
will have no impact on the sampling distribution. Given the current sorted population,
recall that Xi := ∑μ

k=1 x
(k)
t,i , and without loss of generality, we can re-arrange the

bit-positions so that for two integers k, � ≥ 0, it holds

– for all i ∈ [1, k], 1 ≤ Xi ≤ μ − 1 and pt (i) = Xi/μ,
– for all i ∈ (k, k + �], Xi = μ and pt (i) = 1 − 1/n, and
– for all i ∈ (k + �, n], Xi = 0 and pt (i) = 1/n.

We define the levels using the canonical f -based partition

A j := {x ∈ {0, 1}n | OneMax(x) = j − 1
}
. (2)

Note that the probability appearing in conditions (G1) and (G2) of Theorem 4 is the
probability of sampling an offspring in levels A≥ j+1, that is Pr

(
Y1,n ≥ j

)
.

We aim at obtaining an upper boundO(nλ) on the expected optimisation time of the
UMDA on OneMax using the level-based theorem. The logarithmic factor O(log λ)

in the previous upper boundO(nλ log λ) in [10] stems from the lower bound Ω(1/μ)

on the parameter z j in the condition (G1) of Theorem 4. We aim for the stronger
bound z j = Ω(

n− j+1
n ). Note that in the following proofs, we choose the parameter

γ0 := μ/λ.

123



682 Algorithmica (2019) 81:668–702

Assume that the current level is A j , that is |Pt ∩ A≥ j | ≥ γ0λ = μ, which, together
with the two variables k and �, implies that there are at least j−�−1 ones from the first
k bit positions. To verify conditions (G1) and (G2) of Theorem 4, we need to calculate
the probability of sampling an offspring in levels A≥ j+1. It is thus more likely for
the algorithm to maintain the � ones for all bit positions i ∈ (k, k + �] (actually this
happens with probability at least 1/e), and also sample at least j − � ones from the
remaining n − � remaining bit positions. This lead us to consider three distinct cases
according to different configurations of the current population with respect to the two
parameters k and j in Step 3 of Theorem 8 below.

1. k ≥ μ. In this situation, the variance of Y1,k is not too small. By the result
of Theorem 6, the distribution of Y1,k cannot be too concentrated on its mean
E
[
Y1,k

] = j −�−1, and with probability at leastΩ(1), the algorithm can sample
at least j − � ones from the first k bit positions to obtain an offspring with at least
( j − �)+ � = j ones. Thus, the probability of sampling at least j ones is bounded
from below by

Pr(Y1,n ≥ j) ≥ Pr(Y1,k ≥ j − �)Pr(Yk+1,k+� = �) = Ω(1).

2. k < μ and j ≥ n + 1 − n
μ
. In this case, the current level is very close to the

last level An+1, and the bitstring has few zeros. As already obtained from [10],
the probability of sampling an offspring in A≥ j+1 in this case is Ω( 1

μ
). Since the

condition canbe rewritten as 1
μ

≥ n− j+1
n , it ensures that z j = Ω( 1

μ
) = Ω(

n− j+1
n ).

3. The remaining cases. Later will we prove that ifμ ≤ √
n(1 − c) for some constant

c ∈ (0, 1), and excluding the two cases above, imply 0 ≤ k < (1− c)(n − j + 1).
In this case, k is relatively small, and � is not too large since the current level is
not very close to the last level An+1. This implies that most zeros must be located
among bit positions i ∈ (k + �, n], and it suffices to sample an extra one from this
region to get at least ( j − � − 1) + � + 1 = j ones. The probability of sampling
an offspring in levels A≥ j+1 is then z j = Ω(

n− j+1
n ).

We now present our detailed runtime analysis for the UMDA on OneMax, when
the population size is small, that is, μ = Ω(log n) ∩ O(

√
n).

Theorem 8 For some constant a > 0 and any constant c ∈ (0, 1), the UMDA (with
margins) with parent population size a ln(n) ≤ μ ≤ √

n(1 − c), and offspring popu-
lation size λ ≥ (13e/(1− c))μ, has expected optimisation time O (nλ) on OneMax.

Proof We re-arrange the bit positions as explained above and follow the recommended
5-step procedure for applying Theorem 4 [9].

Step 1 The levels are defined as in Eq. (2). There are exactlym = n+1 levels from
A1 to An+1, where level An+1 consists of the optimal solution.

Step 2Weverify condition (G2) of Theorem 4. In particular, for some δ ∈ (0, 1), for
any level j ∈ [m − 2] and any γ ∈ (0, γ0], assuming that the population is configured
such that |Pt ∩ A≥ j | ≥ γ0λ = μ and |Pt ∩ A≥ j+1| ≥ γ λ > 0, we must show that the
probability of sampling an offspring in levels A≥ j+1 must be no less than (1 + δ)γ .
By the re-arrangement of the bit-positions mentioned earlier, it holds that

123



Algorithmica (2019) 81:668–702 683

k+�∑

i=k+1

Xi = μ� and
n∑

i=k+�+1

Xi = 0, (3)

where Xi for all i ∈ [n] are given inAlgorithm1.Byassumption, the current population
Pt consists of γ λ individuals with at least j ones and μ− γ λ individuals with exactly
j − 1 ones. Therefore,

n∑

i=1

Xi ≥ γ λ j + (μ − γ λ) ( j − 1) = γ λ + μ ( j − 1) . (4)

Combining (3), (4) and noting that λ = μ/γ0 yield

k∑

i=1

Xi =
n∑

i=1

Xi −
k+�∑

i=k+1

Xi −
n∑

i=k+�+1

Xi

≥ γ λ + μ ( j − 1) − μ� = μ

(
γ

γ0
+ j − 1 − �

)
.

Let Z = Y1,k + Yk+�+1,n be the integer-valued random variable, which describes
the number of ones sampled in the first k and the last n − k − � bit positions. Since
k + � ≤ n, the expected value of Z is

E [Z ] =
k∑

i=1

pt (i)+
n∑

i=k+�+1

pt (i) = 1

μ

k∑

i=1

Xi + n − k − �

n
≥ j − �− 1+ γ

γ0
. (5)

In order to obtain an offspring with at least j ones, it is sufficient to sample � ones in
positions k+1 to k+� and at least j−� ones from the other positions. The probability
of this event is bounded from below by

Pr
(
Y1,n ≥ j

) ≥ Pr (Z ≥ j − �) · Pr (Yk+1,k+� = �
)
. (6)

The probability to obtain � ≥ n − 1 ones in the middle interval from position k + 1 to
k + � is

Pr
(
Yk+1,k+� = �

) =
(
1 − 1

n

)�

≥
(
1 − 1

n

)n−1

≥ 1

e
(7)

by the result of Lemma10 for t = −1.We nowestimate the probability Pr (Z ≥ j − �)

using Feige’s inequality. Since Z takes integer values only, it follows by (5) that

Pr (Z ≥ j − �) = Pr (Z > j − � − 1) ≥ Pr

(
Z > E [Z ] − γ

γ0

)
.

123



684 Algorithmica (2019) 81:668–702

Applying Theorem 5 for Δ = γ /γ0 ≤ 1 and noting that we chose μ and λ such that
1/γ0 = λ/μ ≥ 13e/(1 − c) = 13e(1 + δ) yield

Pr (Z ≥ j − �) ≥ min

{
1

13
,

Δ

Δ + 1

}
≥ Δ

13
= γ

13γ0
≥ e (1 + δ) γ. (8)

Combining (6), (7), and (8) yields Pr
(
Y1,n ≥ j

) ≥ (1 + δ) γ , and, thus, condition
(G2) of Theorem 4 holds.

Step 3 We now consider condition (G1) for any level j . Let Pt be any population
where |Pt ∩ A≥ j | ≥ γ0λ = μ. For a lower bound on Pr

(
Y1,n ≥ j

)
, we modify the

population such that any individual in levels A≥ j+1 is moved to level A j . Thus, the μ

fittest individuals belong to level A j . By the definition of the UMDA, this will only
reduce the probabilities pt+1(i) on the OneMax problem. Hence, by Lemma 13, the
distribution of Y1,n for the modified population is stochastically dominated by Y1,n
for the original population. A lower bound z j that holds for the modified population
therefore also holds for the original population. All the μ fittest individuals in the
current sorted population Pt have exactly j − 1 ones, and, therefore,

∑n
i=1 Xi =

μ ( j − 1) and
∑k

i=1 Xi = μ ( j − � − 1). There are four distinct cases that cover all
situations according to different values of variables k and j . We aim to show that in
all four cases, we can use the parameter z j = Ω(

n− j+1
n ).

Case 0 k = 0. In this case, pt (i) = 1−1/n for 1 ≤ i ≤ j −1, and pt (i) = 1/n for
j ≤ i ≤ n. To obtain j ones, it suffices to sample only ones in the first j −1 positions,
and exactly a one in the remaining positions, i.e.,

Pr
(
Y1,n ≥ j

) ≥ n − j + 1

n

(
1 − 1

n

)n−1

= Ω

(
n − j + 1

n

)
.

Case 1 k ≥ μ. We will apply the anti-concentration inequality in Theorem 6. To
lower bound the variance of the number of ones sampled in the first k positions, we
use the bounds 1/μ ≤ pi (t) ≤ 1 − 1/μ which hold for 1 ≤ i ≤ k. In particular,

Var
[
Y1,k

] =
k∑

i=1

pt (i) (1 − pt (i)) ≥ k

μ

(
1 − 1

μ

)
≥ 9k

10μ
≥ 9

10
,

where the second inequality holds for sufficiently large n because μ ≥ a ln(n) for
some constant a > 0. Theorem 6 applied with σk ≥ √

9/10 now gives

Pr
(
Y1,k = j − � − 1

) ≤ η/σk .

Furthermore, since E
[
Y1,k

]
is an integer, Lemma 11 implies that

Pr
(
Y1,k ≥ E

[
Y1,k

]) ≥ 1/2. (9)

123



Algorithmica (2019) 81:668–702 685

By combining these two probability bounds, the probability of sampling an offspring
with at least j − � ones from the first k positions is

Pr
(
Y1,k ≥ j − �

) = Pr
(
Y1,k ≥ j − � − 1

)− Pr
(
Y1,k = j − � − 1

)

= Pr
(
Y1,k ≥ E

[
Y1,k

])− Pr
(
Y1,k = j − � − 1

)

≥ 1

2
− η

σk
>

1

2
− 0.4688√

9/10
= Ω(1).

In order to obtain an offspring in levels A≥ j+1, it is sufficient to sample at least j − �

ones from the k first positions and � ones from position k + 1 to position k + �.
Therefore, using (7) and the above lower bound, this event happens with probability
bounded from below by

Pr
(
Y1,n ≥ j

) ≥ Pr
(
Y1,k ≥ j − �

) · Pr (Yk+1,k+� = �
)

> Ω(1) · 1
e

= Ω

(
n − j + 1

n

)
.

Case 2 1 ≤ k < μ and j ≥ n(1 − 1/μ) + 1. The second condition is equivalent
to 1/μ ≥ (n − j + 1)/n. The probability of sampling an offspring in levels A≥ j+1 is
then bounded from below by

Pr
(
Y1,n ≥ j

) ≥ Pr
(
Y1,1 = 1

)
Pr
(
Y2,k ≥ j − � − 1

)
Pr
(
Yk+1,k+� = �

)

≥ 1

μ
Pr
(
Y2,k ≥ j − � − 1

) 1
e

≥ 1

14eμ
,

where we used the inequality Pr
(
Y2,k ≥ j − � − 1

) ≥ 1/14 for μ ≥ 14 proven in
[10]. Since 1/μ ≥ (n − j + 1)/n, we can conclude that

Pr
(
Y1,n ≥ j

) ≥ 1

14eμ
≥ n − j + 1

14en
= Ω

(
n − j + 1

n

)
.

Case 3 1 ≤ k < μ and j < n(1 − 1/μ) + 1. This case covers all the remaining
situations not included by the first two cases. The latter inequality can be rewritten as
n − j + 1 ≥ n/μ. We also have μ ≤ √

n(1 − c), so n/μ ≥ μ/(1 − c). It then holds
that

(1 − c)(n − j + 1) ≥ (1 − c)(n/μ) ≥ (1 − c)μ/(1 − c) = μ > k.

Thus, the two conditions can be shortened to 1 ≤ k < (1− c)(n− j +1). In this case,
the probability of sampling j ones is

Pr(Y1,n ≥ j) ≥ Pr
(
Y1,k ≥ j − � − 1

)
Pr
(
Yk+1,k+� = �

)
Pr
(
Yk+�+1,n ≥ 1

)

≥ 1

2
· 1
e

· n − k − �

n
= n − k − �

2en
,

123



686 Algorithmica (2019) 81:668–702

where the 1/2 factor in the last inequality is due to (9). Since � ≤ j − 1 and k <

(1 − c)(n − j + 1), it follows that

Pr
(
Y1,n ≥ j

)
>

n − (1 − c)(n − j + 1) − j + 1

2en
= Ω

(
n − j + 1

n

)
.

Combining all three cases together yields the probability of sampling an offspring in
levels A≥ j+1 as follows.

Pr
(
Y1,n ≥ j

) = Ω

(
n − j + 1

n

)
,

and by defining z j = c · n− j+1
n for a sufficiently small c > 0 and choosing z∗ :=

min j∈[n]{z j } = Ω(1/n), condition (G1) of Theorem 4 is satisfied.
Step 4 We consider condition (G3) regarding the population size. We have 1/δ2 =

O(1), 1/z∗ = O(n), and m = O(n). Therefore, there must exist a constant a > 0
such that

(
a

γ0

)
ln(n) ≥

(
4

γ0δ2

)
ln

(
128m

z∗δ2

)
.

The requirement μ ≥ a ln(n) now implies that

λ = μ

μ/λ
≥
(
a

γ0

)
ln(n) ≥

(
4

γ0δ2

)
ln

(
128m

z∗δ2

)
;

hence, condition (G3) is satisfied.
Step 5 We have verified all three conditions (G1), (G2), and (G3). By Theorem 4

and the bound z j = Ω((n − j + 1)/n), the expected optimisation time is therefore

E [T ] = O
⎛

⎝λ

n∑

j=1

ln

(
n

n − j + 1

)
+

n∑

j=1

n

n − j + 1

⎞

⎠ .

We simplify the two terms separately. By Stirling’s approximation (see Lemma 12),
the first term is

O
⎛

⎝λ

n∑

j=1

ln

(
n

n − j + 1

)⎞

⎠ = O
⎛

⎝λ ln
n∏

j=1

n

n − j + 1

⎞

⎠

= O
(

λ ln

(
nn

n!
))

= O
(

λ ln
nn · en
nn+1/2

)
= O (nλ) .

123



Algorithmica (2019) 81:668–702 687

The second term is

O
⎛

⎝
n∑

j=1

n

n − j + 1

⎞

⎠ = O
(

n
n∑

k=1

1

k

)

= O (n log n) .

Since λ > μ = Ω(log n), the expected optimisation time is

E [T ] = O (nλ) + O (n log n) = O (nλ) .

��

4.2 Large Parent Population Size

For larger parent population sizes, i.e., μ = Ω(
√
n log n), we prove the upper bound

O(λ
√
n) on the expected optimisation time of the UMDA on OneMax. Witt [44]

obtained a similar result, and we actually rely on one of his lemmas to derive our
improved result. In overall, our proof is not only significantly simpler but also holds
for different settings of μ and λ, that is, λ = Ω(μ) instead of λ = Θ(μ).

Theorem 9 For sufficiently large constants a > 1 and c > 0, the UMDA (with
margins) with offspring population size λ ≥ aμ, and parent population size μ ≥
c
√
n log n, has expected optimisation time O (λ√

n
)
on OneMax.

Here, we are mainly interested in the parent population size μ ≥ c
√
n log n for a

sufficiently large constant c > 0. In this case, Witt [44] found that Pr(T ≤ ncc
′
) =

O(n−cc′
), where c′ is another positive constant and T := min{t ≥ 0 | pt (i) ≤ 1/4} for

an arbitrary bit i ∈ [n]. This result implies that the probability of not sampling at least
an optimal solution within ncc

′
generations is bounded by O(n−cc′

). Therefore, the
UMDAneedsO(nλ log λ)/λ = O(n log λ)generations [10]with probabilityO(n−cc′

)

and O(λ
√
n)/λ = O(

√
n) with probability 1 − O(n−cc′

) to optimise OneMax. The
expected number of generations is

O(n−cc′
) · O(n log λ) + (1 − O(n−cc′

)) · O(
√
n)

If we choose the constant c large enough, then n log λ can subsume any polynomial
number of generations, i.e. n log λ ∈ poly(n), which leads toO(n−cc′

) ·O(n log λ) =
O(1). Therefore, the overall expected number of generations is still bounded by
O(

√
n), so the expected optimisation time is O(λ

√
n).

In addition, the analysis byWitt [44] implies that all marginals will generally move
to higher values and are unlikely to drop by a large distance. We then pessimistically
assume that all marginals are lower bounded by a constant pmin = 1/4. Again, we
rearrange the bit positions such that there exist two integers 0 ≤ k, � ≤ n, where
k + � = n and

– pt (i) ∈
[
pmin, 1 − 1

μ

]
for all 1 ≤ i ≤ k,

123



688 Algorithmica (2019) 81:668–702

– pt (i) = 1 − 1
n for all k + 1 ≤ i ≤ n.

Note that k > 0 because if k = 0 we would have sampled a globally optimal solution.

Proof of Theorem 9 We apply Theorem 4.
Step 1 We partition the search space into the m subsets A1, . . . , Am (i.e. levels)

defined by

Ai := {x ∈ {0, 1}n | fi−1 ≤ OneMax(x) < fi } for i ∈ [m − 1],
and Am := {1n},

where the sequence ( fi )i∈N is defined with some constant d ∈ (0, 1] as

f0 := 0 and fi+1 := fi + �d√n − fi	. (10)

The range of d will be specified later, but for now note that m = min{i | fi = n} + 1
and due to Lemma 15,1 we know that the sequence ( fi )i∈N is well-behaved: it starts
at 0 and increases steadily (at least 1 per level), then eventually reaches n exactly and
remains there afterwards. Moreover, the number of levels satisfies m = Θ(

√
n).

Step 2 For (G2), we assume that |Pt ∩ A≥ j | ≥ γ0λ = μ and |Pt ∩ A≥ j+1| ≥ γ λ.
Additionally, we make the pessimistic assumption that |Pt ∩ A≥ j+2| = 0, i.e. the
current population contains exactly γ λ individuals in A j+1, μ − γ λ individuals in
level A j , and λ − μ individuals in the levels below A j . In this case,

n∑

i=1

Xi = γ λ f j + (μ − γ λ) f j−1 = μ

(
f j−1 + γ

γ0

(
f j − f j−1

))
,

and

k∑

i=1

Xi =
n∑

i=1

Xi −
n∑

i=k+1

Xi = μ

(
f j−1 + γ

γ0

(
f j − f j−1

)− �

)
.

The expected value of Y1,k is

E
[
Y1,k

] = 1

μ

k∑

i=1

Xi = ( f j−1 − �) + γ

γ0

(
f j − f j−1

)
.

1 This and some other lemmas are stated in “Appendix”.

123



Algorithmica (2019) 81:668–702 689

Due to the assumption pt (i) ≥ pmin = 1/4, the variance of Y1,k is

Var
[
Y1,k

] =
k∑

i=1

pt (i)(1 − pt (i))

≥ pmin(k − E
[
Y1,k

]
)

= 1

4

(
n − � − E

[
Y1,k

])

= 1

4

(
n − � − f j−1 − γ

γ0

(
f j − f j−1

)+ �

)

≥ 1

4

(
n − f j−1 − d

(
n − f j−1

)) = 1

4

(
n − f j−1

)
(1 − d) .

The probability of sampling an offspring in A≥ j+1 is bounded from below by

Pr
(
Y1,n ≥ f j

) ≥ Pr(Y1,k ≥ f j − �) · Pr(Yk+1,n = �),

where

Pr(Yk+1,n = �) =
(
1 − 1

n

)�

≥
(
1 − 1

n

)n−1

≥ 1

e
,

and

Pr
(
Y1,k ≥ f j − �

) ≥ Pr
(
Y1,k ≥ E

[
Y1,k

])− Pr
(
E
[
Y1,k

] ≤ Y1,k ≤ f j − �
)
. (11)

By Theorem 6, we have

Pr
(
E
[
Y1,k

] ≤ Y1,k ≤ f j − �
) ≤ η

(
f j − � − E[Y1,k]

)

√
Var

[
Y1,k

]

= η

(
1 − γ

γ0

)
f j − f j−1√
Var

[
Y1,k

]

= 2η

(
1 − γ

γ0

)
d√
1 − d

≤
(
1 − γ

γ0

)
d√
1 − d

.

The last inequality follows from η ≈ 0.4688 < 1/2. Note that Pr
(
Y1,k ≥ E

[
Y1,k

]) ≥
ψ = Ω(1) due to Lemma 16, so (11) becomes

Pr(Y1,k ≥ f j − �) ≥ ψ −
(
1 − γ

γ0

)
d√
1 − d

≥ ψ
γ

γ0
. (12)

123



690 Algorithmica (2019) 81:668–702

The last inequality is satisfied if for any j ∈ [m − 1],
d√
1 − d

≤ ψ ⇐⇒ ψ−2d2 + d − 1 ≤ 0.

The discriminant of this quadratic equation is Δ = 1 + 4ψ−2 > 0. Vieta’s formula
[43] yields that the product of its two solutions is negative, implying that the equation
has two real solutions d1 < 0 and d2 > 0. Specifically,

d1 = −(1 + √
Δ)ψ2/2 < 0 and d2 = (−1 + √

Δ)ψ2/2 ∈ (0, 1). (13)

Therefore, if we choose any value of d such that 0 < d ≤ d2, then inequality (12)
always holds. The probability of sampling an offspring in A≥ j+1 is therefore bounded
from below by

Pr(Y1,n ≥ f j ) ≥ 1

e
· ψ

γ

γ0
≥ (1 + δ)γ.

The last inequality holds if we choose the population size in the UMDA such that
μ/λ = γ0 ≤ ψ/(1 + δ)e, where δ ∈ (0, 1]. Condition (G2) then follows.

Step 3Assume that |Pt ∩ A≥ j | ≥ γ0λ = μ. This means that theμ fittest individuals
in the current sorted population Pt belong to levels A≥ j . In other words,

n∑

i=1

Xi ≥ μ f j−1,

and

k∑

i=1

Xi =
n∑

i=1

Xi −
n∑

i=k+1

Xi ≥ μ f j−1 − μ� = μ( f j−1 − �).

The expected value of Y1,n is

E
[
Y1,n

] =
n∑

i=1

pt (i) = 1

μ

k∑

i=1

Xi +
n∑

i=k+1

(
1 − 1

n

)
≥ f j−1 − �

n
. (14)

An individual belonging to the higher levels A≥ j+1 must have at least f j ones. The
probability of sampling an offspring y ∈ A≥ j+1 is equivalent to Pr(Y1,n ≥ f j ).
According to the level definitions and following the result of Lemma 17, we have

Pr
(
Y1,n ≥ f j

) = Pr
(
Y1,n ≥ f j−1 + �d√n − f j−1	

)

≥ Pr

(
Y1,n ≥ E

[
Y1,n

]+ d
√
n − E

[
Y1,n

])
.

123



Algorithmica (2019) 81:668–702 691

In order to obtain a lower bound on Pr
(
Y1,n ≥ f j

)
, we need to bound the probability

Pr
(
Y1,n ≥ E

[
Y1,n

]+ d
√
n − E

[
Y1,n

])
from below by a constant. We obtain such a

bound by applying the result of Lemma 14. This lemma with constant d∗ ≥ 1/pmin =
4 and d ≤ d∗ yields

Pr
(
Y1,n ≥ f j

) ≥ Pr

(
Y1,n ≥ E

[
Y1,n

]+ d
√
n − E

[
Y1,n

])

≥ Pr

(
Y1,n ≥ min

{
E
[
Y1,n

]+ d∗
√
n − �E [Y1,n

]�, n
})

≥ κ > 0,

where κ is a constant. Hence, the probability of sampling an offspring in levels A≥ j+1
is bounded from below by a positive constant z j := κ independent of n.

Step 4 We consider condition (G3) regarding the population size. We have 1/δ2 =
O(1), 1/z∗ = O(1), and m = O(

√
n). Therefore, there must exist a constant c > 0

such that
(

c

γ0

)√
n ln(n) ≥

(
4

γ0δ2

)
ln

(
128m

z∗δ2

)
.

The requirement μ ≥ c
√
n ln(n) now implies that

λ = μ

μ/λ
≥
(

c

γ0

)√
n ln(n) ≥

(
4

γ0δ2

)
ln

(
128m

z∗δ2

)
;

hence, condition (G3) is satisfied.
Step 5 The probability of sampling an offspring in levels A≥ j+1 is bounded from

below by z j = κ . Having satisfied all three conditions, Theorem 4 then guarantees an
upper bound on the expected optimisation time of the UMDA on OneMax, assuming
that μ = Ω(

√
n log n),

E [T ] = O
⎛

⎝λ

m∑

j=1

1

z j
+

m∑

j=1

1

z j

⎞

⎠ = O(mλ) = O (λ√
n
)

since m = Θ(
√
n) due to Lemma 15. ��

5 Empirical Results

We have proved upper bounds on the expected optimisation time of the UMDA on
OneMax, LeadingOnes and BinVal. However, they are only asymptotic upper
bounds as growth functions of the problem and population sizes. They provide no
information on the multiplicative constants or the influences of lower order terms. Our
goal is also to investigate the runtime behaviour for larger populations. To complement

123



692 Algorithmica (2019) 81:668–702

(a) (b)

Fig. 1 Average runtime of the UMDA on OneMax with 95% confidence intervals plotted with error bars
in red colour. Models are also fitted via non-linear regression. a Small μ. b Large μ (Color figure online)

the theoretical findings, we therefore carried out some experiments by running the
UMDA on the three functions.

For each function, the parameters were chosen consistently with the theoretical
analyses. Specifically, we set λ = n, and n ∈ {100, 200, . . . , 4500}. Although the
theoretical results imply that significantly smaller population sizes would suffice, e.g.
λ = O(log n) for Theorem 8 we chose a larger population size in the experiments to
more easily observe the impact of λ on the running time of the algorithm. The results
are shown in Figs. 1, 2 and 3. For each value of n, the algorithm is run 100 times,
and then the average runtime is computed. The average runtime for each value of
n is estimated with 95% confidence intervals using the bootstrap percentile method
[30] with 100 bootstrap samples. Each average point is plotted with two error bars to
illustrate the upper and lower margins of the confidence intervals.

5.1 OneMax

In Sect. 4, we obtained two upper bounds on the expected optimisation time of the
UMDA on OneMax, which are tighter than the earlier upper bound O(nλ log λ) in
[10], as follows

– O (λn) with parent population sizes μ = Ω(log n) ∩ O(
√
n),

– O(λ
√
n) with parent population sizes μ = Ω(

√
n log(n)).

We therefore experimented with two different settings for the parent population
size: μ = √

n and μ = √
n log(n). We call the first setting small population and the

other large population. The empirical runtimes are shown in Fig. 1. Theorem 8 implies
the upper boundsO(n2) for the setting of small population andO(n3/2) for the setting
of large population. Following [30], we identify the three positive constants c1, c2
and c3 that best fit the models c1n log n, c2n3/2 and c3n2 in non-linear least square
regression. Note in particular that these models were chosen because they are close to

123



Algorithmica (2019) 81:668–702 693

Table 2 Correlation coefficient
ρ for the best-fit models in the
experiments with OneMax
shown in Fig. 1a, b

Setting Model ρ

μ = √
n 5.8297 n log n 0.9968

0.8104 n3/2 0.9996

0.0133 n2 0.9910

μ = √
n log n 7.7544 n log n 0.9974

1.0767 n3/2 0.9995

0.0177 n2 0.9903

Table 3 Correlation coefficient
ρ for the best-fit models in the
experiments with LeadingOnes
shown in Fig. 2

Setting Model ρ

μ = √
n 646.14 n log n 0.9756

91.160 n3/2 0.9928

1.5223 n2 0.9999

0.1851 n2 log n 0.9999

the theoretical results. The correlation coefficient ρ is then calculated for each model
to find the best-fit model.

In Table 2, we observe that for small parent populations (i.e. μ = √
n), model

0.8104 n3/2 fits the empirical data best, while the quadratic model gives the worst
result. For larger parent population (i.e. μ = √

n log n), the model 1.0767 n3/2 fits
best the empirical data among the three models. Since 0.8104 n3/2 ∈ O(n2), these
findings are consistent with the theoretical expected optimisation time andmay further
suggest that the quadratic bound in case of small population is not tight.

5.2 LeadingOnes

We conducted experiments with μ = √
n, and λ = n. According to Theorem 7, the

upper bound of the expected runtime is in this case O(nλ log λ + n2) = O(n2 log n).
Figure 2 shows the empirical runtime. Similarly to the OneMax problem, we
fit the empirical runtime with four different models—c1n log n, c2n3/2, c3n2 and
c4n2 log n—using non-linear regression. The best values of the four constants are
shown in Table 3 along with the correlation coefficients of the models.

Figure 2 and Table 3 show that both the model 1.5223 n2 and the model
0.1851 n2 log n, having the same correlation coefficient, fit well with the empirical
data (i.e. the empirical data lie between these two curves). This finding is consistent
with the theoretical runtime boundO(n2 log n). Note also that these two models differ
asymptotically by Θ(log n), suggesting that our analysis of the UMDA on Leadin-
gOnes is nearly tight.

123



694 Algorithmica (2019) 81:668–702

Fig. 2 Average runtime of the UMDA on LeadingOnes with 95% confidence intervals plotted with error
bars in red colour. Models are also fitted via non-linear regression (Color figure online)

(a) (b)

Fig. 3 Average runtime of the UMDA on BinVal with 95% confidence intervals plotted with error bars in
red colour. Models are also fitted via non-linear regression. a Small μ. b Large μ (Color figure online)

5.3 BinVal

Finally, we consider BinVal. The upper bound O(nλ log λ + n2) from Theorem 7
for the function is identical to the bound for LeadingOnes. Since BinVal is also a
linear function like OneMax, we decided to set the experiments similarly for these
functions, i.e. with different parent populations μ = √

n and μ = √
n log n. The

empirical results are shown in Fig. 3. Again the empirical runtime is fitted to the three
models c1n log n, c2n3/2 and c3n2. The best values of c1, c2 and c3 are listed in Table 4,
along with the correlation coefficient for each model.

123



Algorithmica (2019) 81:668–702 695

Table 4 Correlation coefficient
ρ for the best-fit models in the
experiments with BinVal
shown in Fig. 3a, b

Setting Model ρ

μ = √
n 10.489 n log n 0.9952

1.4605 n3/2 0.9999

0.0240 n2 0.9933

μ = √
n log n 11.973 n log n 0.9972

1.6596 n3/2 0.9994

0.0272 n2 0.9903

Theorem 7 gives the upper bound ofO(n2 log n) for the expected runtime of Bin-
Val. However, Fig. 3 and Table 4 show clearly that the model 1.4605 n3/2 fits best
the empirical runtime for μ = √

n. On the other hand, the empirical runtime lies
between the two models 11.973 n log n and 1.6586 n3/2 when μ = √

n log n. While
these observations are consistent with the theoretical upper bound since O(n3/2) and
O(n log n) are all members of O(n2 log n), they also suggest that our analysis of the
UMDA on BinVal given by Theorem 7 may be loose.

6 Conclusion

Despite the popularity of EDAs in real-world applications, little has been known about
their optimisation time, even for apparently simple settings such as the UMDA on toy
functions.More results for the UMDAon these simple problemswith well-understood
structures provide away todescribe and compare the performanceof the algorithmwith
other search heuristics. Furthermore, results about the UMDA are not only relevant to
evolutionary computation, but also to population genetics where it corresponds to the
notion of linkage equilibrium [36,41].

We have analysed the expected optimisation time of theUMDAon three benchmark
problems: OneMax, LeadingOnes and BinVal. For both LeadingOnes and Bin-
Val, we proved the upper bound O(nλ log λ + n2), which holds for λ = Ω(log n).
For OneMax, two upper bounds of O(λn) and O(λ

√
n) were obtained for μ =

Ω(log n) ∩O(
√
n) and μ = Ω(

√
n log n), respectively. Although our result assumes

that λ ≥ (1 + β)μ for some positive constant β > 0, it no longer requires that
λ = Θ(μ) as in [44]. Note that if λ = Θ(log n), a tight bound Θ(n log n) on the
expected optimisation time of the UMDA on OneMax is obtained, matching the
well-known tight bound Θ(n log n) for the (1 + 1) EA on the class of linear func-
tions. Although we did not obtain a runtime bound when the parent population size
is μ = Ω(

√
n) ∩ O(

√
n log n), our results finally close the existing Θ(log log n)-

gap between the first upper bound O(n log n log log n) for λ = Ω(μ) [10] and the
relatively new lower bound Ω(μ

√
n + n log n) for λ = (1 + Θ(1))μ [26].

Our analysis further demonstrates that the level-based theorem can yield, relatively
easily, asymptotically tight upper bounds for non-trivial, population-based algorithms.
An important additional component of the analysis was the use of anti-concentration
properties of the Poisson–Binomial distribution. Unless the variance of the sampled

123



696 Algorithmica (2019) 81:668–702

individuals is not too small, the distribution of the population cannot be too concen-
trated anywhere, even around the mean, yielding sufficient diversity to discover better
solutions.We expect that similar arguments will lead to new results in runtime analysis
of evolutionary algorithms.

Acknowledgements Funding was provided by Seventh Framework Programme (Grant No. 618091).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Lemma 10 ([35]) For all t ∈ R and n ∈ R
+,

(
1 + t

n

)n

≤ et ≤
(
1 + t

n

)n+t/2

.

Lemma 11 (Theorem3.2, [23])Let Y1,Y2, . . . ,Yn be n independent Bernoulli random
variables, andY :=∑n

i=1 Yi is the sumof these randomvariables. IfE[Y ] is an integer,
then

Pr (Y ≥ E[Y ]) ≥ 1/2.

Lemma 12 (Stirling’s approximation [31]) For all n ∈ N,

n! = Θ

(
nn+1/2

en

)
.

Lemma 13 (Lemma 8.4, [12]) Let X1, . . . , Xn be independent random variables
defined over some common probability space. Let Y1, . . . ,Yn be independent ran-
dom variables defined over a possibly different probability space. If Xi 
 Yi for all
i ∈ {1, 2, . . . , n}, then∑n

i=1 Xi 
∑n
i=1 Yi .

Lemma 14 (Lemma 3, [46]) Let Y1,Y2, . . . ,Yn be n independent Bernoulli random
variables with success probabilities p1, p2, . . . , pn. Let Y := ∑n

i=1 Yi be the sum of
these variables. If pi ≥ pmin for all i ∈ [n], where pmin > 0 is a constant, and any
constant d∗ ≥ 1/pmin then

Pr

(
Y ≥ min

{
E [Y ] + d∗√n − �E[Y ]�, n

})
≥ κ,

where κ is a positive constant independent of n.

Lemma 15 For any n ∈ N, any constant d ∈ (0, 1] independent to n and the sequence
( fi )i∈N defined according to (10), it holds that

123

http://creativecommons.org/licenses/by/4.0/


Algorithmica (2019) 81:668–702 697

(i) fi ≤ n for all i ∈ N, and ∃ j ∈ N : f j = n,
(ii) if � = min{i ∈ N | fi = n} then � = Θ(

√
n).

Proof We first prove (i), it is easy to see that fi are all integer, i.e. fi ∈ N for all i ∈ N.
Due to the ceiling function if fi < n, then fi+1 ≥ fi + 1, in other words starting
with f0 = 0, the sequence will increase steadily until it hits n exactly or overshoots it.
Assuming the later case of overshooting, that is, ∃k ≥ 0 : fk ≤ n−1 and fk+1 ≥ n+1
(and after that fk+2, . . . are ill-defined). By the definition of the sequence, the property
1 + x > �x	 of the ceiling function and d ≤ 1, we have

1 +√n − fk > �√n − fk	 ≥ �d√n − fk	 = fk+1 − fk ≥ 2,

this implies fk < n − 1 or fk ≤ n − 2. Repeating the above argument again gives
that 1 + √

n − fk > 3, and fk < n − 4, after a finite number of repetitions we will
conclude that fk < 0 which is a contradiction. Therefore, the sequence must hit n
exactly at one point in time then it will remain at that value.

To bound � in (ii), we pair ( fi )i∈N with (ri := √
n − fi )i∈N; thus, this sequence

starts at r0 = √
n, then decreases and eventually hits 0, that is,

√
n = r0 > r1 > r2 >

· · · > r�−1 > r� = 0. From (10), we have

(ri − ri+1)(ri + ri+1) = r2i − r2i+1 = fi+1 − fi = �dri	,

note that 1 + dri > �dri	 ≥ dri , then for i ≤ � − 1, we can divide both sides by
ri + ri+1 > 0 to get

1 + dri
ri + ri+1

> ri − ri+1 ≥ dri
ri + ri+1

.

Always restricted to i ≤ �− 1, we have that 1 > ri+1/ri ≥ 0, and therefore dri/(ri +
ri+1) = d/(1 + ri+1/ri ) > d/2. In addition, fi ≤ n − 1 then ri = √

n − fi ≥ 1 or
1/ri ≤ 1, so (1 + dri )/(ri + ri+1) = (1/ri + d)/(1 + ri+1/ri ) ≤ d + 1. Therefore,
for all i ≤ � − 1

d + 1 > ri − ri+1 >
d

2
.

Summing all these terms gives that

�(d + 1) >

�−1∑

i=0

(ri − ri+1) = r0 − r� = √
n >

�d

2
,

and this implies 2
√
n/d > � >

√
n/(d + 1), or � = Θ(

√
n). ��

Lemma 16 Let Y1,Y2, . . . ,Yk be k (k ≥ 1) independent Bernoulli random variables
with success probabilities p1, p2, . . . , pk, where pi ≥ pmin = 1/4 for each i ∈ [k].
Let Y1,k :=∑k

i=1 Yi . Then we always have

123



698 Algorithmica (2019) 81:668–702

Pr
(
Y1,k ≥ E

[
Y1,k

]) ≥ Ω(1).

Proof We start by considering small values of k. If k = 1, then

Pr
(
Y1,1 ≥ E

[
Y1,1

]) = Pr(Y1 = 1) = p1 ≥ 1/4.

If k = 2, then

Pr
(
Y1,2 ≥ E[Y1,2]

) ≥ Pr (Y1 = 1) · Pr (Y2 = 1) ≥ p1 p2 ≥ (1/4)2.

For larger values of k, following [46] we introduce another random variable Z =
(Z1, . . . , Zk) with success probabilities z1, . . . , zk , where zi ≥ pmin and E[Z1,k] =∑k

i=1 zi =∑k
i=1 pi = E

[
Y1,k

]
. However, we shift the total weight E

[
Y1,k

]
as far as

possible to the Zi with smaller indices as follows. We define m = �E[Y1,k ]−kpmin
1−pmin

�, and
let Z1, . . . , Zm all get success probability 1, and Zm+2, . . . , Zk get zi = pmin, more
precisely

zi =

⎧
⎪⎨

⎪⎩

1, for i = 1, . . . ,m,

q, for i = m + 1,

pmin, for i = m + 2, . . . , k,

where q ∈ [pmin, 1]. It is quite clear that (z1, . . . , zk) majorises (pt (1), . . . , pt (k)).
From [19,33], we now have

Pr
(
Y1,k ≥ E

[
Y1,k

]) ≥ Pr
(
Y1,k ≥ E

[
Y1,k

]+ 1
) ≥ Pr(Z1,k ≥ E

[
Z1,k

]+ 1).

Furthermore, with probability 1 we can get m ones and

E[Zm+2,k] = E
[
Z1,k

]− m − q ⇐⇒ E[Zm+2,k] + q = E
[
Z1,k

]− m,

then

Pr(Z1,k ≥ E
[
Z1,k

]+ 1) ≥ Pr(Zm+1,k ≥ E
[
Z1,k

]+ 1 − m)

≥ Pr(Zm+1 = 1) · Pr(Zm+2,k ≥ E
[
Z1,k

]− m)

= q · Pr(Zm+2,k ≥ E[Zm+2,k] + q)

≥ pmin · Pr(Zm+2,k ≥ E[Zm+2,k] + 1).

The last inequality follows the fact that pmin ≤ q ≤ 1. We now need a lower bound
on the probability Pr(Zm+2,k ≥ E[Zm+2,k] + 1), where

Zm+2,k ∼ Bin

(
k − m − 1,

1

4

)
.

123



Algorithmica (2019) 81:668–702 699

Now let k − m − 1 = 4t + x = 4(t − 1) + x + 4, where t ∈ N and x ∈ {0, 1, 2, 3}.
Then E[Zm+2,k] = t + x

4 , and

Pr(Zm+2,k ≥ E[Zm+2,k] + 1)

= Pr(Zm+2,k ≥ t + x

4
+ 1)

≥ Pr
(
Zm+2,k ≥ 4(t − 1) + x + 4

)

≥ Pr(Zm+2,m+2+4(t−1)−1 ≥ t − 1) · Pr(Zm+2+4(t−1),n ≥ x + 4)

= Pr(Zm+2,m+2+4(t−1)−1 ≥ E[Zm+2,m+2+4(t−1)−1]) · Pr(Zm+2+4(t−1),n ≥ x + 4)

≥ 1

2
·
(
1

4

)x+4

≥ 1

2
·
(
1

4

)7

.

The result follows the result of Lemma 11, whereE[Zm+2,m+2+4(t−1)−1] is an integer,
and x ≤ 3. This proves the Lemma. ��

We note that a similar result (without a specific value for the constant) can be found
in [12, Lemma 10.16].

Lemma 17 For any constant d ≤ 1 and E[Y1,n] ≥ f j−1 − �/n, it holds that

E
[
Y1,n

]+ d
√
n − E

[
Y1,n

] ≥ f j−1 + d
√
n − f j−1. (15)

Proof Let us rewrite (14) by introducing a variable x ≥ 0 as follows:

E
[
Y1,n

] = f j−1 − �

n
+ x (16)

We consider two different cases.

– Case 1 If x = �/n, then E
[
Y1,n

] = f j−1, and the lemma holds for all values of d.
– Case 2 If x �= �/n, then substituting (16) into (15) and let y := x − �/n ∈

[−�/n, 0) ∪ (0, n − f j−1], we have

d ≤ g
(
y, f j−1

) := y
√
n − f j−1 −√n − f j−1 − y

This always holds if we pick a constant d ≤ miny, f j−1 g
(
y, f j−1

)
. From ∂g/∂ y =

0, we obtain y = 0. Note that when y = 0, ∂2g/∂ y2 < 0. This means g(y, f j−1)

reaches the maximum value when y = 0 with respect to f j−1, and

123



700 Algorithmica (2019) 81:668–702

g
(
y, f j−1

) ≥ min
{
g
(−�/n, f j−1

)
, g
(
n − f j−1, f j−1

) }

= min
{√

n − f j−1,
√
n − f j−1 +√n − f j−1 + �/n

}

= √n − f j−1

≥ min
f j−1

{√
n − f j−1

}

= 1

due to f j−1 ≤ n − 1.

The lemma is proved by combining results of the two cases. ��

References

1. Armañanzas, R., Inza, I., Santana, R., Saeys, Y., Flores, J.L., Lozano, J.A., Van de Peer, Y., Blanco, R.,
Robles,V., Bielza,C., Larrañaga, P.:A reviewof estimation of distribution algorithms in bioinformatics.
BioData Min 1(1), 6 (2008)

2. Asoh, H., Mühlenbein, H.: On the mean convergence time of evolutionary algorithms without selection
and mutation. In: Proceedings of the 3rd International Conference on Parallel Problem Solving from
Nature, PPSN III, pp. 88–97 (1994)

3. Baillon, J.-B., Cominetti, R., Vaisman, J.: A sharp uniform bound for the distribution of sums of
Bernoulli trials. Comb. Probab. Comput. 25(3), 352–361 (2016)

4. Baluja, S.: Population-based incremental learning: a method for integrating genetic search based func-
tion optimization and competitive learning. Technical Report, Carnegie Mellon University (1994)

5. Chen, T., Lehre, P.K., Tang, K., Yao, X.: When is an estimation of distribution algorithm better than
an evolutionary algorithm? In: Proceedings of 2009 IEEE Congress on Evolutionary Computation, pp.
1470–1477 (2009)

6. Chen, T., Tang, K., Chen, G., Yao, X.: On the analysis of average time complexity of estimation of
distribution algorithms. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation, pp.
453–460 (2007)

7. Chen, T., Tang, K., Chen, G., Yao, X.: Rigorous time complexity analysis of univariate marginal distri-
bution algorithmwith margins. In: Proceedings of 2009 IEEE Congress on Evolutionary Computation,
pp. 2157–2164 (2009)

8. Chen, T., Tang, K., Chen, G., Yao, X.: Analysis of computational time of simple estimation of distri-
bution algorithms. IEEE Trans. Evol. Comput. 14(1), 1–22 (2010)

9. Corus,D.,Dang,D.-C., Eremeev,A.V., LehreP.K.: Level-based analysis of genetic algorithms andother
search processes. IEEE Trans. Evol. Comput. https://doi.org/10.1109/TEVC.2017.2753538 (2017)

10. Dang D.-C., Lehre P.K.: Simplified runtime analysis of estimation of distribution algorithms. In:
Proceedings of Genetic and Evolutionary Computation, GECCO’15, pp. 513–518 (2015)

11. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings
of the 14th International Conference on Parallel ProblemSolving fromNature, PPSNXIV, pp. 803–813
(2016)

12. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. CoRR.
arXiv:1801.06733 (2018)

13. Doerr, B., Krejca, M.S.: Significance-based estimation-of-distribution algorithms. In: Proceedings of
Genetic and Evolutionary Computation Conference, GECCO’18, pp. 1483–1490 (2018)

14. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions. Natl. Comput.
5(3), 257–283 (2006)

15. Ducheyne, E.I., De Baets, B., De Wulf, R.: Probabilistic Models for Linkage Learning in Forest
Management, pp. 177–194. Springer, Berlin (2005)

16. Feige, U.: On sums of independent random variables with unbounded variance and estimating the
average degree in a graph. SIAM J. Comput. 35(4), 964–984 (2006)

17. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.M.: The compact genetic algorithm is efficient under
extreme Gaussian noise. IEEE Trans. Evol. Comput. 21(3), 477–490 (2017)

123

https://doi.org/10.1109/TEVC.2017.2753538
http://arxiv.org/abs/1801.06733


Algorithmica (2019) 81:668–702 701

18. Friedrich, T., Kötzing, T., Krejca, M.S.: EDAs cannot be balanced and stable. In: Proceedings of
Genetic and Evolutionary Computation Conference, GECCO’16, pp. 1139–1146 (2016)

19. Gleser, L.J.: On the distribution of the number of successes in independent trials. Ann. Probab. 3(1),
182–188 (1975)

20. Gu,W.,Wu,Y., Zhang,G.Y.:Ahybrid univariatemarginal distribution algorithm for dynamic economic
dispatch of units considering valve-point effects and ramp rates. Int. Trans. Electr. Energy Syst. 25(2),
374–392 (2015)

21. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput.
3(4), 287–297 (1999)

22. Hauschild,M., Pelikan,M.:An introduction and survey of estimation of distribution algorithms. Swarm
Evol. Comput. 1(3), 111–128 (2011)

23. Jogdeo, K., Samuels, S.M.: Monotone convergence of binomial probabilities and a generalization of
ramanujan‘s equation. Ann. Math. Stat. 39(4), 1191–1195 (1968)

24. Kollat, J.B., Reed, P.M., Kasprzyk, J.R.: A new epsilon-dominance hierarchical Bayesian optimization
algorithm for large multiobjective monitoring network design problems. Adv. Water Resour. 31(5),
828–845 (2008)

25. Krejca, M.S., Witt, C.: Theory of estimation-of-distribution algorithms. CoRR. arXiv:1806.05392
(2018)

26. Krejca, M.S., Witt, C.: Lower bounds on the run time of the univariate marginal distribution algorithm
on OneMax. In: Proceedings of Foundations of Genetic Algorithms XIV, FOGA’17, pp. 65–79 (2017)

27. Lehre, P.K., Nguyen, P.T.H.: Improved runtime bounds for the univariate marginal distribution algo-
rithm via anti-concentration. In: Proceedings of Genetic and Evolutionary Computation Conference,
GECCO’17, pp. 1383–1390 (2017)

28. Lehre, P.K., Nguyen, P.T.H.: Level-based analysis of the population-based incremental learning algo-
rithm. In: Proceedings of the 15th International Conference on Parallel Problem Solving from Nature,
PPSN XV, pp. 105–116 (2018)

29. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In: Proceedings of Genetic and Evolu-
tionary Computation Conference, GECCO’10, pp. 1441–1448 (2010)

30. Lehre, P.K., Yao, X.: Runtime analysis of the (1+1) EA on computing unique input output sequences.
Inf. Sci. 259, 510–531 (2014)

31. Leiserson, C.E., Stein, C., Rivest, R., Cormen, T.H.: Introduction toAlgorithms.MIT Press, Cambridge
(2009)

32. Lengler, J., Sudholt, D., Witt, C.: Medium step sizes are harmful for the compact genetic algorithm.
In: Proceedings of Genetic and Evolutionary Computation Conference, GECCO’18, pp. 1499–1506
(2018)

33. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and its Applications.
Springer, New York (2011)

34. Massart, P.: The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality. Ann. Probab. 18(3),
1269–1283 (1990)

35. Mitrinovic, D.S.: Analytic Inequalities. Springer, Berlin (1970)
36. Mühlenbein, H., Mahnig, T.: Evolutionary computation and wright‘s equation. Theor. Comput. Sci.

287, 145–165 (2002)
37. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary

parameters. In: Proceedings of the 9th International Conference on Parallel Problem Solving from
Nature, PPSN IV, pp. 178–187 (1996)

38. Rubinstein, R.Y., Kroese, D.P.: The Cross Entropy Method: A Unified Approach To Combinato-
rial Optimization, Monte–Carlo Simulation (Information Science and Statistics). Springer, New York
(2004)

39. Santana, R., Mendiburu, A., Lozano, J.A.: A review of message passing algorithms in estimation of
distribution algorithms. Natl. Comput. 15(1), 165–180 (2016)

40. Shapiro, J.L.: Drift and scaling in estimation of distribution algorithms. Evol. Comput. 13(1), 99–123
(2005)

41. Slatkin, M.: Linkage disequilibrium—understanding the evolutionary past and mapping the medical
future. Nat. Rev. Genet. 9(6), 477–485 (2008)

42. Sudholt, D., Witt, C.: Update strength in EDAs and ACO: how to avoid genetic drift. In: Proceedings
of Genetic and Evolutionary Computation Conference, GECCO’16, pp. 61–68 (2016)

43. van der Waerden, B.L.: Algebra, vol. 1. Springer, New York (1991)

123

http://arxiv.org/abs/1806.05392


702 Algorithmica (2019) 81:668–702

44. Witt, C.: Upper bounds on the runtime of the univariate marginal distribution algorithm on OneMax.
In: Proceedings of Genetic and Evolutionary Computation Conference, GECCO’17, pp. 1415–1422
(2017)

45. Witt, C.: Domino convergence: why one should hill-climb on linear functions. In: Proceedings of
Genetic and Evolutionary Computation Conference, GECCO’18, pp. 1539–1546 (2018)

46. Wu, Z., Kolonko,M., Möhring, R.H.: Stochastic runtime analysis of the cross-entropy algorithm. IEEE
Trans. Evol. Comput. 21(4), 616–628 (2017)

47. Yu, T.-L., Santarelli, S., Goldberg, D.E.: Military Antenna Design Using a Simple Genetic Algorithm
and hBOA, pp. 275–289. Springer, Berlin (2006)

48. Zinchenko, L., Mühlenbein, H., Kureichik, V., Mahnig, T.: Application of the univariate marginal
distribution algorithm to analog circuit design. In: Proceedings of 2002 NASA/DoD Conference on
Evolvable Hardware, pp. 93–101 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Level-Based Analysis of the Univariate Marginal Distribution Algorithm
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Three Problems
	2.2 Univariate Marginal Distribution Algorithm
	2.3 Level-Based Theorem
	2.4 Feige's Inequality
	2.5 Anti-concentration Bound

	3 Runtime of the UMDA on LeadingOnes and BinVal
	4 Runtime of the UMDA on OneMax
	4.1 Small Parent Population Size
	4.2 Large Parent Population Size

	5 Empirical Results
	5.1 OneMax
	5.2 LeadingOnes
	5.3 BinVal

	6 Conclusion
	Acknowledgements
	Appendix
	References




