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Abstract
We study the problem of computing the so called minimum and maximum witnesses
for Boolean vector convolution. We also consider a generalization of the problem
which is to determine for each positive value at a coordinate of the convolution vec-
tor, q smallest (largest) witnesses, where q is the minimum of a parameter k and the
number of witnesses for this coordinate. We term this problem the smallest k-witness
problem or the largest k-witness problem, respectively. We also study the correspond-
ing smallest and largest k-witness problems for Boolean matrix product. First, we
present an Õ(n1.5k0.5)-time algorithm for the smallest or largest k-witness problem
for the Boolean convolution of two n-dimensional vectors, where the notation Õ( )

suppresses polylogarithmic in n factors. In consequence, we obtain new upper time
bounds on reporting positions of mismatches in potential string alignments and on
computing restricted cases of the (min,+) vector convolution. Next, we present a
fast (substantially subcubic in n and linear in k) algorithm for the smallest or largest
k-witness problem for the Boolean matrix product of two n × n Boolean matrices. It
yields fast algorithms for reporting k lightest (heaviest) triangles in a vertex-weighted
graph.
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1 Introduction

For a potential alignment of a pattern string with a text string over the same alphabet, a
position in the alignment where the pattern symbol is different from the text symbol is
a witness to the symbol mismatch while a position where the pattern and text symbol
are equal is a witness to the symbol match.

Similarly, if A and B are two n × n Boolean matrices and C is their Boolean
matrix product then for any entry C[i, j] = 1 of C, a witness is an index m such
that A[i, m] ∧ B[m, j] = 1. The smallest (or, largest) possible witness is called the
minimum witness (or, maximum witness, respectively).

The problems of finding “witnesses” have been extensively studied for several
decades, at the beginning independently within stringology and graph algorithms rely-
ing on matrix computations. In string matching, witnesses for symbol mismatches or
matches in potential alignments of two strings are sought [4,9,17] while in graph algo-
rithms, witnesses for the Boolean matrix product are typically sought, originally in
order to solve shortest path problems in graphs [2,3]. In both cases, highly non-trivial
efficient algorithmic solutions have been presented [2–4,17].

Also in both areas, useful generalizations and/or specializations of the problems
of finding witnesses have been studied. A natural generalization introduced for string
matching in [17] is to request up to k witnesses instead of a single one. It has been
efficiently solved by using concepts from group testing in [4] and conveyed to Boolean
matrix product in [4,14]. A natural specialization is to request minimum or maximum
witnesses. This specialization has been introduced and efficiently solved in [10] in the
context of finding lowest common ancestors in directed acyclic graphs and it found
many other applications since then (cf. [8,18,21]).

In analogy towitnesses forBooleanmatrix product, ifa andb are twon-dimensional
Boolean vectors and c is their Boolean convolution then for any coordinate ci = 1 of
c, a witness is an index l such that al ∧ bi−l = 1. In contrast to string matching and
Boolean matrix product, the problem of computing the witnesses of Boolean vector
convolution does not seem to be explicitly studied in the literature. On the other hand,
Boolean vector convolution is very much related to string matching [12], and hence
the algorithms for reporting witness or more generally up to k witnesses can be easily
conveyed from stringology to Boolean vector convolution (see Proposition 3.1).

In this paper,we study the problemof computingminimumandmaximumwitnesses
for Boolean vector convolution. We also consider a generalization of the problem
which is to determine for each positive (value at a)1 coordinate of the convolution
vector, q smallest (largest) witnesses, where q is the minimum of a parameter k and
the number of witnesses for this coordinate. We term this problem the smallest k-
witness problem or the largest k-witness problem, respectively. We also study the
corresponding generalization for Boolean matrix product.

Let ω(1, r , 1) denote the exponent of fast arithmetic multiplication of an n × nr

matrix by an nr × n matrix. In particular, ω(1, 1, 1) denoted by ω is known to not
exceed 2.373 [15,22]. Next, let the notation Õ( ) suppress polylogarithmic in n factors.
Our main contributions are as follows:

1 For brevity, we shall identify the i-th coordinate of a vector v with its value vi in the continuation.
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Table 1 Our upper time bounds for computing the (min,+) convolution of two n-dimensional integer
vectors either with coordinates having a bounded number of different values, or decomposable into a
number of non-decreasing or non-increasing subsequences, or just monotone subsequences

Vector a/vector b cb dif. values mb non-decr. subs. mb non-incr. subs.

ca different values Õ(cacbn) Õ(cambn1.5) Õ(cambn1.5)

ma non-decr. subs. Õ(macbn1.5) Õ(mambn1.5) ?

ma non-incr. subs. Õ(macbn1.5) ? Õ(mambn1.5)

ma mon. subs. Õ(macbn1.5) ? ?

arbitrary Õ(cbn1.844) ? ?

– an Õ(n1.5)-time algorithm for reporting minimum and maximum witnesses for
the Boolean convolution of two n-dimensional vectors, and more generally, an
Õ(n1.5k0.5)-time algorithm for the smallest or largest k-witness problem for the
convolution;

– as corollaries, Õ(n1.5k0.5) time bounds for the smallest or largest k-witness prob-
lems in string matching;

– in part as corollaries, several upper time bounds on computing the (min,+) integer
vector convolution in restricted cases, summarized in Table 1;

– an O(n2+λk)-time algorithm for the smallest or largest k-witness problem for the
Boolean matrix product of two n × n Boolean matrices, where λ is a solution to
the equation ω(1, λ, 1) = 1 + 2 λ + logn k;

– as a corollary, an O(n2+λk) time bound for the problem of reporting for each edge
of a vertex-weighted graph k lightest (heaviest) triangles containing it, where λ

satisfies the aforementioned equation; also, an O(min{nωk + n2+o(1)k, n2+λk})
time bound for the problem of reporting k lightest (heaviest) triangles in the input
vertex-weighted graph.

2 Preliminaries

For two n-dimensional vectors a = (a0, . . . , an−1) and b = (b0, . . . , bn−1)

over a semi-ring (U,⊕,�), their convolution over the semi-ring is a vector c =
(c0, . . . , c2n−2), where ci = ⊕min{i,n−1}

l=max{i−n+1,0} al � bi−l for i = 0, . . . , 2n − 2. Simi-
larly, for a p×q matrix A and a q ×r matrix B over the semi-ring, their matrix product
over the semi-ring is a p × r matrix C such that C[i, j] = ⊕q

m=1 A[i, m] � B[m, j]
for 1 ≤ i ≤ p and 1 ≤ j ≤ r . In particular, for the semi-rings (Z,+,×), (Z,min,+),

(Z,max,+), and ({0, 1},∨,∧), we obtain the arithmetic, (min,+), (max,+), and
the Boolean convolutions or matrix products, respectively.

We shall use the unit-cost RAM computational model [1] with computer word of
length logarithmic in the maximum of the size of the input and the value of the largest
input integer.

The following fact is well known (cf. [12]).
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Fact 2.1 Let p and q be two n-dimensional integer vectors. The arithmetic convolution
of p and q can be computed in Õ(n) time. Hence, also the Boolean convolution of two
n-dimensional vectors can be computed in Õ(n) time.

For a sequence S of integers, we shall denote the minimum number of monotone
subsequences into which S can be decomposed by mon(S).

Fact 2.2 [13,23] A sequence of n integers can be decomposed into O(mon(S) log n)

monotone subsequences in O(n1.5 log n) time.

Fact 2.3 (see Theorem 10 in [5]) The problem of computing the convolution of two
n-dimensional vectors over a semi-ring can be reduced to computing O(

√
n) products

of two O(
√

n) × O(
√

n) matrices over the semi-ring. Importantly, the matrices can
be constructed in O(n1.5) time in total and their entries are appropriately filled with
the coordinates of the vectors.

Fact 2.4 (Theorem 3.2 in [7]) Let A and B be two n × n integer matrices where the
entries of A range over at most c different integers. The (min,+) matrix product of A
and B can be computed in O(cn2.688) time.

Fact 2.5 [11] A lightest (heaviest) triangle in an undirected vertex weighted graph on
n vertices can be found in O(nω + n2+o(1)) time.

3 ExtremeWitnesses for Boolean Convolution

Let c = (c0, . . . , c2n−2) be the Boolean convolution of two n-dimensional Boolean
vectors a and b. A witness of ci = 1 is any l ∈ [max{i − n + 1, 0},min{i, n − 1}]
such that al ∧ bi−l = 1. A minimum witness (or maximum witness) of ci = 1 is
the smallest (or, the largest, respectively) witness of ci . The witnesses problem (or
minimum witness problem, or maximum witness problem) for the Boolean convolution
of two n-dimensional Boolean vectors is to determine witnesses (or, the minimum
witnesses or the maximum witnesses, respectively) for all non-zero coordinates of
the Boolean convolution of the vectors. The k-witness problem (or, the smallest k-
witness problem or the largest k-witness problem) for the Boolean convolution of two
n-dimensional Boolean vectors is to determine for each non-zero coordinate of the
convolution q witnesses (or, q smallest witnesses or q largest witnesses, respectively),
where q is the minimum of k and the number of witnesses for this coordinate.

The Boolean vector convolution is very much related to string matching problems
[12]. The corresponding problems of reporting a symbol mismatch or match, or up to
k such mismatches or matches for each potential alignments of the pattern with the
text have been studied in the so called non-standard stringology [4,17]. Also, the focus
of this paper is on extreme witnesses. For these reasons and on the other hand, for
the completeness sake, we just state a proposition and its generalization on standard
witnesses for Boolean vector convolution that can be obtained analogously as the well
known corresponding facts on string matching or Boolean matrix product.

Proposition 3.1 (Analogous to [3]) The witnesses problem for Boolean convolution of
two n-dimensional vectors can be solved in Õ(n) time.
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Proof sketch. The witnesses for the Boolean convolution c of two n-dimensional
vectors a and b can be computed analogously as the witnesses for the Boolean matrix
product [3]. The first observation is that for all coordinates of c that have a single
witness, their witnesses can be obtained by computing the arithmetic convolution of a
with the vector b′ resulting from replacing each 1 in bwith the number of the respective
coordinate. The next idea is to dilute the other vector b gradually so the number of
witnesses for each positive coordinate of c decreases finally to zero but in most cases
passing through 1 first. For instance, if ci has l witnesses and in each phase each
coordinate of b is set to 0 with probability 1

2 then after a logarithmic number of such
phases there is a positive probability that exactly one witness will remain. By iterating
the process a logarithmic number of times witnesses for all positive coordinates of c
can be determined with high probability.

In order to remove the randomness, we can use small c-wise ε-bias sample spaces
analogously asAlon andNaor in their deterministic algorithm forwitnesses ofBoolean
matrix product [3].

The algorithm, its analysis and derandomization are totally analogous to those of
the algorithm of Alon and Naor for witnesses of Boolean matrix product [3]. We refer
the reader for the technical details to their paper. It is sufficient to replace matrices
with vectors, entries with coordinates andBooleanmatrix product with Boolean vector
convolution in their proof. 
�

Following [4] and [14], one can also generalize Proposition 1 to include an algorith-
mic solution to the k-witness problem for Boolean convolution of two n-dimensional
vectors in Õ(nk) time.

With a moderate technical effort, the minimum or maximum witness problem for
Boolean convolution could be solved by combining the known O(n2.575)-time algo-
rithm for the corresponding problem of minimum or maximum witnesses of Boolean
matrix product [10] with the known reduction of vector convolution over an arbitrary
semi-ring to matrix product over the semi-ring described in Fact 2.3 [5]. The combina-
tion results in an O(n1.787)-time solution to the extreme witness problem for Boolean
convolution. We shall show that a substantially more efficient solution can be obtained
directly.

Theorem 3.2 The minimum witness problem (maximum witness problem, respectively)
for Boolean convolution of two n-dimensional vectors can be solved in Õ(n1.5) time.

Proof Let a and b be two n-dimensional vectors. Let r be an integer parameter between
1 and n. For p = 1, . . . , �n/r
, let a p be the Boolean n-dimensional vector resulting
from setting to zero all coordinates of a with indices not exceeding (p −1)r and those
with indices greater than pr . We compute, for each p = 1, . . . , �n/r
, the Boolean
convolution cp of a p and b. Next, for each i = 0, . . . , 2n − 2, we determine the
smallest p such that cp

i = 1. Then, if such a p exists, we determine the interval of
the implicants al ∧ bi−l of cp

i that potentially can have a non-zero value, i.e., where
l ∈ ((p − 1)r , pr ], and return the smallest l in the interval for which al ∧ bi−l = 1.
The �n/r
 computations of Boolean convolutions cp takes Õ(n2/r) time. The total
time taken by the determination of the smallest p is O(n × n/r). To determine the
smallest l for a given i and p requires examining the value of O(r) implicants and
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hence it takes O(nr) time in total. By setting r = �√n
, we obtain the claimed time
complexity. 
�

The method of Theorem 3.2 can be generalized to include the smallest k-witness
problem and the largest k-witness problem.

Theorem 3.3 The smallest k-witness problem as well as the largest k-witness problem
for Boolean convolution of two n-dimensional vectors can be solved in Õ(n1.5k0.5)
time.

Proof Let a and b be two input n-dimensional vectors. Let r be an integer parameter
between 1 and n. Analogously as in the proof of Theorem 3.2, for p = 1, . . . , �n/r
,
we let a p denote the Boolean n-dimensional vector resulting from setting to zero all
coordinates of a with indices not exceeding (p−1)r and thosewith indices greater than
pr .Next, we compute for each p = 1, . . . , �n/r
, the arithmetic convolutionw p of al

and b by interpreting these vectors as 0−1 ones. The arithmetic convolutions provide
us with the number of witnesses in each interval ((p − 1)r , pr ] for each coordinate ci

of the Boolean convolution c of a and b. Their coordinate-wise sum provides us with
the total number of witnesses for each coordinate of c. In order to solve the smallest k-
witness problem, for p = 1, . . . , �n/r
, and for i = 0, . . . , 2n −2,wheneverw p

i > 0
and the number of witnesses for ci found so far is less than the minimum of k and
the number of witnesses of ci , we search through the interval ((p − 1)r , pr ] from the
left to the right for further witnesses. For details see the algorithm depicted in Fig. 1.
In the worst case, for each i = 0, . . . , 2n − 2, we need to search through k of such
intervals. The total cost of the searches becomes O(n× n

r +n×k ×r), see lines 15–19
in the algorithm depicted in Fig. 1. On the other hand, the �n/r
 computations of the

arithmetic convolutions w p takes Õ(n2/r) time. By setting r = �
√

n
k 
, we obtain the

claimed time complexity for the smallest k-witness problem.
The largest k-witness problem can be solved analogously in the same asymptotic

time by considering the intervals in the opposite order and searching them from the
right to the left instead. 
�

3.1 StringMatching

Fisher andPatterson showed already in 1974 [12] that several stringmatching problems
can be efficiently reduced to Boolean vector convolution.

Suppose we are given two strings τ = τm−1τm−2...τ0 and ρ = ρ0ρ1...ρn−1, where
m < n, over a finite alphabet Σ. Following [12], for γ ∈ Σ, let Hγ ( ) be a function
from Σ to { true, false } such that Hγ (x) = true if and only if x = γ. If i + m ≤ n,

the question of whether τm−1τm−2...τ0 matches ρiρi+1...ρi+m−1 is equivalent to a
conjunction of the negations of terms

∨m−1
l=0 Hα(ρi+l)∧ Hβ(τm−1−l),where α, β ∈ Σ

and α �= β. Note that whenever such a term is true, the matching cannot take place as
at some position α clashes with β. In this way, the standard string matching problem
for τ and ρ easily reduces to O(|Σ |2) Boolean convolutions of two Boolean vectors
of length at most n.
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Fig. 1 An algorithm for the smallest k-witness problem for the Boolean convolution of two n-dimensional
vectors a and b

Observe now that witnesses for the aforementioned Boolean convolutions yield
positions of the clashes, in other words, symbol mismatches. If we modify the terms
to

∨m−1
l=0 Hα(ρi+l) ∧ Hα(τm−1−l), for α ∈ Σ, the witnesses for the O(|Σ |) Boolean

convolutions yield positions of two sided matches with α ∈ Σ. Hence, we obtain the
following theorem as a corollary from Theorem 3.3.

Theorem 3.4 Consider the string matching problem for a text string of length n and
a pattern string of length m < n, both over a finite alphabet. For each alignment of
the pattern with the text, we can provide locations of the k earliest symbol mismatches
and/or the k earliest symbol matches as well as locations of the k latest symbol mis-
matches and the k latest symbol matches in the alignments in Õ(n1.5k0.5) time in total.
In particular, we can also provide positions of the earliest and/or latest two-side sym-
bol matches with a given alphabet symbol (cf. ones problem in [17]) in the alignments
in Õ(n1.5k0.5) time in total.

3.2 (min,+) Convolution

Our original motivation has been an extension of the O(n1.859)-time algorithm due
to Chan and Levenstein for the (min,+) convolution of two n-dimensional vectors
with integer coordinates of size O(n) forming monotone sequences [6] to include
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Fig. 2 An algorithm for computing the (min, +) convolution c of two n-dimensional integer vectors a and
b, where the coordinates of a range over ca different values and the sequence of consecutive coordinates
of b is decomposable into mb monotone subsequences

the case where the vectors are decomposable into relatively few monotone subse-
quences. The major difficulty here is that a completion of the subsequences to full
monotone sequences can affect the result. Roughly, we can avoid this difficulty when
the coordinates of each of the vectors range over relatively few different values or
all the subsequences are simultaneously either non-decreasing or non-increasing (see
Table 1). The idea is to use our algorithm for minimum and maximum witnesses of
Boolean convolution.

The correctness of the algorithm depicted in Fig. 2 relies on the following straight-
forward lemma.

Lemma 3.5 In the algorithm depicted in Fig. 2, the following equivalence holds: dk �=
0 in line 13 if and only if min{al + bm |l + m = k ∧ al ∈ ai ∧ bm ∈ b j } is equal to the
first argument of the minimum in this line.

Theorem 3.6 Let a and b be two n-dimensional integer vectors such that the coordi-
nates of a range over at most ca different values while the sequence of the consecutive
coordinates of b can be decomposed into mb monotone subsequences. The algorithm
depicted in Fig. 2 computes their (min,+) convolution in Õ(cambn1.5) steps.

Proof By Lemma 3.5 and line 13 in the algorithm, none of the coordinates of the
output vector has a lower value than the corresponding coordinate of the (min,+)
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Fig. 3 An algorithm for computing the (min, +) convolution c of two n-dimensional integer vectors a and
b given with their decompositions into ma and mb subsequences that are either all non-decreasing or all
non-increasing

convolution of a and b. Conversely, if the k-th coordinate of the (min,+) convolution
of a and b equals al +bm , where l +m = k, then there exists i, j such that al ∈ ai and
bm ∈ b j . Hence again by Lemma 3.5 and line 13 in the algorithm, the k-th coordinate
in the output vector has value not larger than the k-th coordinate of the (min,+)

convolution of a and b.
The decomposition of the vector a into ca constant subsequences in line 1 trivially

takes O(n) time. Next, the decomposition of the vector b into Õ(ma) monotone
subsequences in line 5 takes O(n1.5 log n) time by Fact 2.2. The forming of the vectors
char(ai ) in lines 2–3 and char(b j ) in lines 6–7 take Õ(can + mbn) time in total.
The Õ(camb) computations of the minimum and maximum witnesses of the Boolean
convolution d in lines 9–11 take Õ(cambn1.5) time in total by Theorem 3.2. Finally,
the line 13 is executed Õ(cambn) times. The bound Õ(cambn1.5) follows.

If we are given decompositions of the two input n-dimensional vectors a and b into
monotone subsequences that are either all non-decreasing or all non-increasing then
we can use the algorithm depicted in Fig. 3 which is analogous to that depicted in
Fig. 2, in order to compute the (min,+) convolution of a and b. Thus, first for each
subsequence ai of a and each subsequence b j of b, we compute the Boolean vectors
char(ai ) and char(b j ) indicating with ones the coordinates of a or b covered by ai

or b j , respectively. Next, depending if the subsequences are non-decreasing or non-
increasing, for each pair of such subsequences ai and b j , we compute the minimum
witnesses of the Boolean convolution of char(ai ) and char(b j ) or the maximum
witnesses of this convolution, respectively. We use the extreme witnesses to update
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Fig. 4 An algorithm for computing the (min, +) convolution c of two n-dimensional integer vectors a and
b whose coordinates range over at most ca or cb different values, respectively

the current coordinates of the computed (min,+) convolution analogously as in the
algorithm depicted in Fig. 2. Hence, we obtain the following theorem.

Theorem 3.7 Let a and b be two n-dimensional integer vectors given with the decom-
positions of the sequences of their consecutive coordinates into ma and mb monotone
subsequences respectively such that all the subsequences are either non-decreasing or
non-increasing. The algorithm depicted in Fig. 3 computes the (min,+) convolution
of a and b in Õ(mambn1.5) time.

Proof The proof of the correctness of the algorithm depicted in Fig. 3 is analogous
to that of the correctness of the algorithm depicted in Fig. 2. The time complexity
analysis of the former algorithm is also similar to that of the latter algorithm. The
main difference is that the decompositions of a and b into subsequences are given
and that the O(n1.5)-time algorithm for minimum or maximum witnesses of Boolean
convolution is run mamb times instead of camb times. 
�

By combining Fact 2.3 with Fact 2.4, we also obtain the following bound.

Theorem 3.8 Let a and b be two n-dimensional integer vectors such that the coordi-
nates of a range over at most ca different values. The (min,+) convolution of a and
b can be computed in Õ(can1.844) time.

We can also consider the problem of computing the (min,+) integer vector con-
volution of the input vectors a and b, when their coordinates range over ca and cb

different integers, respectively. We can use the algorithm depicted in Fig. 4, analogous
to that depicted in Fig. 2. The first difference is that the subsequences b j on the side of
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b are also constant. It follows that for any pair of such constant subsequences ai and
b j , the value of the sum of any element from ai with any element from b j is constant
and it can be trivially computed as ai

1 + b j
1 a priori. For this reason, it is sufficient

to compute the Boolean convolution d of char(ai ) and char(b j ) for each pair ai

and b j . Then, for any non-zero coordinate of d, we need to update the corresponding
coordinate of the computed (min,+) convolution of a and b by taking the minimum
of the coordinate and ai

1 + b j
1 . By Fact 2.1, we obtain the following theorem.

Theorem 3.9 Let a and b be two n-dimensional integer vectors such that their coordi-
nates range over at most ca or cb different values, respectively. The algorithm depicted
in Fig. 4 computes the (min,+) convolution of a and b in Õ(cacbn) time.

Proof The algorithm depicted in Fig. 4 can be easily implemented in Õ(cacbn) time
by running cacb times the known Õ(n)-time algorithm for Boolean convolution of
two n-dimensional Boolean vectors, see Fact 2.1. 
�

4 ExtremeWitnesses for BooleanMatrix Product

For two n × n Boolean matrices A and B, a witness of a C[i, j] entry of the Boolean
matrix product of A and B is any index m such that A[i, m] ∧ B[m, j] = 1. Next,
the minimum witness and maximum witness for an entry of C as well as the witness
problem, the minimum and maximum witness problems, the k-witness problem, and
the smallest k-witness and largest k-witness problems for Boolean matrix product of
A and B are defined analogously as those for Boolean vector convolution.

In this section, we shall present a generalization of the algorithm for minimum and
maximum witnesses for Boolean matrix product from [10] to include the smallest and
largest k-witness problems.

Let � be a positive integer smaller than n. We may assume w.l.o.g. that n is divisible
by �. Partition the matrix A into n × � sub-matrices Ap and the matrix B into � × n
sub-matrices Bp, such that 1 ≤ p ≤ n/�, and the sub-matrix Ap covers the columns
(p−1) �+1 through p � of A whereas the sub-matrix Bp covers the rows (p−1) �+1
through p � of B.

For p = 1, . . . , n/�, let Wp be the arithmetic product of Ap and Bp treated as
0 − 1 matrices. On the other hand, let C denote the Boolean matrix product of A and
B. Then, Wp[i, j] = q if and only if there are exactly q witnesses of C[i, j] in the
interval ((p − 1) �, p �]. Consequently, the total number of witnesses of C[i, j] is
given by

∑n/�
p=1 Wp[i, j]. Therefore, the following lemma follows.

Lemma 4.1 Suppose that a C[i, j] entry of the Boolean product C of A and B is
positive. Let q be the minimum of k and the total number of witnesses of C[i, j]. Next,
let p′ be the minimum value of p such that

∑p
u=1 Wu[i, j] is not less than q. The

smallest q witnesses of C[i, j] belong to the interval [1, p′ �].

By this lemma, after computing all thematrix productsWp = Ap ·Bp, 1 ≤ p ≤ n/�,
we need O(n/� + k�) time per positive entry of C to find up to k smallest witnesses:
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Fig. 5 An algorithm for the smallest k-witness problem for the Booleanmatrix product of two n×n Boolean
matrices A and B

O(n/�) time to determine p′ and then O(k�) time to locate the up to k smallest
witnesses. See Fig. 5 for our algorithm for the smallest k-witness problem.

Recall thatω(1, r , 1) denotes the exponent of the multiplication of an n×nr matrix
by an nr ×n matrix. It follows that the total time taken by our algorithm for the smallest
k-witness problem is

O((n/�) · nω(1,logn �,1) + n3/� + n2 k�) .

Bysetting r to logn � and z to logn k, our upper bound transforms to O(n1−r+ω(1,r ,1)+
n3−r +n2+r+z). Note that by assuming r ≥ 1

2 − z
2 , we can get rid of the additive n3−r

term. See Fig. 5 in [24] for the graph of the function 1 − r + ω(1, r , 1). By solving
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the equation 1− λ + ω(1, λ, 1) = 2 + z + λ implying λ ≥ 1
2 − z

2 by ω(1, λ, 1) ≥ 2,
we obtain our main result.

Theorem 4.2 Let λ be such that ω(1, λ, 1) = 1+2 λ+ logn k. The smallest k-witness
problem as well as the largest k-witness problem for the Boolean matrix product of
two n × n Boolean matrices can be solved in O(n2+λk) time.

Le Gall has recently substantially improved upper time bounds on rectangular
matrix multiplication in [16]. In consequence, he could show that for the equation
ω(1, μ, 1) = 1+ 2μ, μ < 0.5302. This in particular improves the upper time bound
for the minimum and maximum witness problems from O(n2.575) to O(n2.5302). It
follows that for k � 1, λ in Theorem 4.2 is substantially smaller than 0.5302.

4.1 Lightest Triangles

By generalizing the reduction of the problem of reporting for each edge of a vertex-
weighted graph a heaviest triangle containing it to the maximum witness problem
for Boolean matrix product from [21] to include reporting k heaviest triangles and
the largest k-witness problem, we obtain the following theorem as a corollary from
Theorem 4.2.

Theorem 4.3 Let G be an undirected vertex weighted graph on n vertices and let k be a
natural number not exceeding n. Next, let λ be such that ω(1, λ, 1) = 1+2 λ+ logn k.
We can list for each edge {u, v} of G, qe lightest (heaviest) triangles {u, v, w} in G,
where qe is the minimum of k and the number of triangles {u, v, w} in G, in O(n2+λk)

time.

Proof Number the vertices ofG in non-decreasing vertex-weight order. Next, solve the
smallest (largest) k-witness problem for theBooleanmatrix productC of the adjacency
matrix of G with itself. For each edge e = {i, j} of G, the up to k smallest (or, largest)
witnesses of C[i, j] yield the qe lightest (or, heaviest, respectively) triangles in G
including e. Theorem 4.2 yields the claimed upper bound. 
�

As for the problem of finding k lightest (heaviest) triangles in a vertex-weighted
graph, iterating the O(nω + n2+o(1))-time algorithm for finding a lightest or heaviest
triangle described in Fact 2.5 seems to be a better choice for up to moderate values
of k. Before each next iteration, we remove the three vertices of the lastly reported
triangle. After k iterations, we stop and find among the reported triangles and no
more than 3(k − 1)n2 other triangles incident to the removed vertices, the k lightest
(heaviest) triangles if possible. The method takes O(nωk + n2+o(1)k + n2k), i.e.,
O(nωk + n2+o(1)k) time.

Theorem 4.4 Let G be an undirected vertex weighted graph on n vertices and let k be a
natural number not exceeding n. Next, let λ be such that ω(1, λ, 1) = 1+2 λ+ logn k.
We can list q lightest (heaviest) triangles in G, where q is the minimum of k and the
number of triangles in G, in O(min{nωk + n2+o(1)k, n2+λk}) time.
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Finding or detecting triangles of extreme weight in vertex-weighted graphs has a
number of applications . First of all, it can be used to solve the corresponding general
problem of finding or detecting subgraphs or induced subgraphs of extreme weigh
[11,20,21]. Vassilevska andWilliams list also two other applications in [19]: a general
variant of the 3-SUM problem and a general buyer-seller problem in computational
economy.

5 Final Remarks

It is an interesting open problem if any of our upper time bounds onminimumandmax-
imum witnesses for Boolean vector convolution and the extreme k-witness problems
both for Boolean vector convolution and Boolean matrix product can be substantially
improved? Note here that so far the O(n2+λ) time bound (where ω(1, λ, 1) = 1+2λ)
on minimum and maximum witnesses of Boolean matrix product established one
decade ago [10] couldn’t be improved (see also [8]).

The problems of Boolean vector convolution and Boolean matrix product seem
to be similar but there are some substantial differences between them. The former
problem admits almost a linear in the input size algorithm while for the latter problem
the current upper time bound is substantially non-linear [15,22]. There is a moderately
efficient reduction of vector convolution to matrix product described in Fact 2.3 while
such a reverse reduction is not known. Our upper time bounds for minimum and
maximum witnesses of Boolean vector convolution show that a direct approach to
Boolean vector convolution can yield better upper time bounds than those obtained
by conveying known upper time bounds for the witness problems for Boolean matrix
product via Fact 2.3 to those corresponding for Boolean vector convolution.

The extreme k-witness problems for Boolean matrix product presumably admit
several other applications often corresponding to generalizations of the applications
for minimum and maximum witnesses of Boolean matrix product [18,21] and/or the
applications of the k-witness problem for Booleanmatrix product [4], e.g., the all-pairs
k-bottleneck paths.

Finally, a potentially interesting direction for further research is to consider
approximation variants of the extreme witnesses problems and the (min,+) vector
convolution.
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