
Algorithmica (2019) 81:497–518
https://doi.org/10.1007/s00453-018-0489-3

Clifford Algebras Meet Tree Decompositions

Michał Włodarczyk1

Received: 31 May 2017 / Accepted: 24 July 2018 / Published online: 30 July 2018
© The Author(s) 2018

Abstract
We introduce the non-commutative subset convolution—a convolution of functions
useful when working with determinant-based algorithms. In order to compute it effi-
ciently, we take advantage of Clifford algebras, a generalization of quaternions used
mainly in the quantum field theory. We apply this tool to speed up algorithms counting
subgraphs parameterized by the treewidth of a graph. We present an O∗((2ω + 1)tw)-
time algorithm for counting Steiner trees and an O∗((2ω + 2)tw)-time algorithm
for counting Hamiltonian cycles, both of which improve the previously known upper
bounds. These constitute also the best known running times of deterministic algorithms
for decision versions of these problems and theymatch the best obtained running times
for pathwidth parameterization under assumption ω = 2.

1 Introduction

The concept of treewidth has been introduced by Robertson and Seymour in their work
on graphminors [13]. The treewidth of a graph is the smallest possible width of its tree
decomposition, i.e., a tree-like representation of the graph. Its importance follows from
the fact that many NP-hard graph problems become solvable on trees with a simple
dynamical programming algorithm. A similar idea of pathwidth captures the width of
a graph in case we would like to have a path decomposition. Formal definitions can
be found in Sect. 2.2.

Having a tree decomposition of boundedwidth allows to design efficient algorithms
using fixed-parameter tractability. An algorithm is called fixed-parameter tractable
(FPT) if it works in time complexity f (k)nO(1) where k is a parameter describing
hardness of the instance and f is a computable function.WealsousenotationO∗(f (k))

This work is partially supported by Foundation for Polish Science Grant HOMING PLUS/2012-6/2 and a
project TOTAL that has received funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme (Grant Agreement No. 677651).

B Michał Włodarczyk
m.wlodarczyk@mimuw.edu.pl

1 Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0489-3&domain=pdf
http://orcid.org/0000-0003-0968-8414

498 Algorithmica (2019) 81:497–518

that suppresses polynomial factors with respect to the input size. Problems studied in
this work are parameterized by the graph’s pathwidth or treewidth. To distinguish
these cases we denote the parameter respectively pw or tw.

It is natural to look for a function f that is growing relatively slow. For problems
with a local structure, like Vertex Cover or Dominating Set, there are simple
FPT algorithms parameterized by the size of the solution with a single exponential
running time. The basic idea is to store ctw states for each node of the decomposition
and take advantage of the Fast Subset Convolution (FSC) algorithm [2] to perform
the join operation in time O∗(ctw). As a result, time complexities for pathwidth and
treewidth parameterizations remain the same. The Fast Subset Convolution has proven
useful in many other problems, e.g., Chromatic Number, and enriched the basic
toolbox used for exponential and parameterized algorithms.

Problems with connectivity conditions, like Steiner Tree or Hamiltonian

Cycle, were conjectured to require time 2�(tw log tw) until the breakthrough work
of Cygan et al. [8]. They introduced the randomized technique Cut & Count work-
ing in single exponential time. The obtained running times were respectively O∗(3tw)

and O∗(4tw). Afterwards, a faster randomized algorithm for Hamiltonian Cycle

parameterized by the pathwidth was presented with running time O∗((2 + √
2)pw)

[7]. This upper bound as well as O∗(3pw) for Steiner Tree are tight modulo subex-
ponential factors under the assumption of Strong Exponential Time Hypothesis [7,8].

The question about the existence of single exponential deterministic methods was
answered positively by Bodlaender et al. [4]. However, in contrast to the Cut &
Count technique, a large gap has emerged between the running times for pathwidth
and treewidth parameterizations—the running times were respectively O∗(5pw),
O∗(10tw) for Steiner Tree and O∗(6pw), O∗(15tw) for Hamiltonian Cycle.
This could be explained by a lack of efficient algorithms to perform the join opera-
tion, necessary only for tree decompositions. Some efforts have been made to reduce
this gap and the deterministic running time for Steiner Tree has been improved to
O∗((2ω−1 · 3 + 1)tw) [9].

The algorithms proposed in [4] also count the number of Steiner trees or Hamil-
tonian cycles in a graph by expressing the value in question as a sum of squared
determinants of a particular family of submatrices of the graph incidence matrix. Very
recently, Curticapean et al. [6] pointed out limitations of this technique even with
respect to pathwidth parameterization. Namely, they proved that an algorithm count-
ingHamiltonian cycles in time O∗((6−ε)pw)would contradict the StrongExponential
Time Hypothesis.

1.1 Our Contribution

Themain contribution of this work is creating a link between Clifford algebras, objects
not being used in algorithmics to the best of our knowledge, and fixed-parameter
tractability. As the natural dynamic programming approach on tree decompositions
uses the Fast Subset Convolution to perform efficiently the join operation, there was
no such a tool for algorithms based on the determinant approach.

123

Algorithmica (2019) 81:497–518 499

Our first observation is that the FSC technique can be regarded as an isomorphism
theorem for some associative algebras. To put it briefly, a Fourier-like transform is
being performed in the FSC to bring computations to a simpler algebra. Interestingly,
this kind of transform is just a special case of theArtin–Wedderburn theorem [1],which
seemingly is not widely reported in computer science articles. The theorem provides
a classification of a large class of associative algebras, not necessarily commutative
(more in “Appendix A”). We use this theory to introduce the Non-commutative Subset
Convolution (NSC) and speed up multiplication operations in an algebra induced by
the join operation in determinant-based dynamic programming on tree decomposition.
An important building block is a fast Fourier-like transform for a closely related algebra
[11]. We hope our work will encourage researchers to investigate further algorithmic
applications of the Artin–Wedderburn theorem.

1.2 Our Results

We apply our algebraic technique to the determinant approach introduced by Bod-
laender et al. [4]. For path decomposition, they gave an O∗(5pw)-time algorithm
for counting Steiner trees and an O∗(6pw)-time algorithm for counting Hamiltonian
cycles. The running times for tree decomposition were respectively O∗(10tw) and
O∗(15tw). These gaps can be explained by the appearance of the join operation in tree
decompositions which could not be handled efficiently so far.

By performing NSC in time complexity O∗(2 ωn
2) we partially solve an open prob-

lem stated by the FPT community.1 Our further results may be considered similar to
those closing the gap between time complexities for pathwidth and treewidth param-
eterizations for Dominating Set by switching between representations of states
in dynamic programming [14]. We improve the running times to O∗((2ω + 1)tw)

for counting Steiner trees and O∗((2ω + 2)tw) for counting Hamiltonian cycles,
where ω denotes the matrix multiplication exponent (currently it is established that
ω < 2.373 [15]). These are not only the fastest known algorithms for counting these
objects, but also the fastest known deterministic algorithms for the decision versions
of these problems.

Observe that the running times for pathwidth and treewidth parameterizationsmatch
under the assumption ω = 2. Though we do not hope for settling the actual value of
ω, this indicates there is no further space for significant improvement unless pure
combinatorial algorithms (i.e., not based on matrix multiplication) are invented or the
running time for pathwidth parameterization is improved.

1.3 Organization of the Paper

Section 3 provides a brief introduction to Clifford algebras. The bigger picture of the
employed algebraic theory can be found in “Appendix A”. In Sect. 4 we define the
NSC and design efficient algorithms for variants of the NSC employing the algebraic
tools. Sections 5 and 6 present how to apply the NSC in counting algorithms for

1 It can be found on the list of open problems from 2014 FPT school (http://fptschool.mimuw.edu.pl/opl.
pdf) stated as different convolution.

123

http://fptschool.mimuw.edu.pl/opl.pdf
http://fptschool.mimuw.edu.pl/opl.pdf

500 Algorithmica (2019) 81:497–518

Steiner Tree and Hamiltonian Cycle. They contain main ideas improving the
running times, however in order to understand the algorithms completely one should
start from Sect. 4 (Determinant approach) in [4]. The algorithm for Hamiltonian
Cycle is definitely more complex and its details, formulated as two isomorphism
theorems, are placed in “Appendix C”.

2 Preliminaries

We will start with notation conventions.

1. A � B = C stands for (A ∪ B = C) ∧ (A ∩ B = ∅).
2. A	B = (A\B) ∪ (B\A).
3. [α] equals 1 if condition α holds and 0 otherwise.
4. For permutation f of a linearly ordered set U

sgn(f) = (−1)|{(a,b)∈U×U ∧ a<b∧ f (a)> f (b)}|.

5. For A, B being subsets of a linearly ordered set

IA,B = (−1)|{(a,b)∈A×B ∧ a>b}|. (1)

Let us note two simple properties of I .

Observation 1 For disjoint A, B

IA,B IB,A = (−1)|A||B|.

Observation 2 For A ∩ B = ∅ and C ∩ D = ∅

IA∪B,C∪D = IA,C IA,D IB,C IB,D .

2.1 Fast Subset Convolution

Let us consider a universe U of size n and functions f , g : 2U −→ Z.

Definition 1 The Möbius transform of f is function f̂ defined as

f̂ (X) =
∑

A⊆X

f (A).

Definition 2 Let f ∗ g denote a subset convolution of f , g defined as

(f ∗ g)(X) =
∑

A�B=X

f (A)g(B).

Theorem 3 (Björklund et al. [2]) The Möbius transform, its inverse, and the subset
convolution can be computed in time O∗(2n).

123

Algorithmica (2019) 81:497–518 501

2.2 Pathwidth and Treewidth

Definition 3 A tree (path) decomposition of a graph G is a tree T (path P) in which
each node x is assigned a bag Bx ⊆ V (G) such that

1. for every edge uv ∈ E(G) there is a bag Bx containing u and v,
2. for every vertex v the set {x | v ∈ Bx } forms a non-empty subtree (subpath) in the

decomposition.

The width of the decomposition is defined as maxx |Bx | − 1 and the treewidth (path-
width) of G is a minimum width over all possible tree (path) decompositions.

If a graph admits a tree decomposition of width t then it can be found in time
n · 2O(t3) [3] and a decomposition of width at most 4t + 1 can be constructed in time
poly(n) · 2O(t) [10]. We will assume that a decomposition of the appropriate type and
width is given as a part of the input.

Definition 4 A nice tree (path) decomposition is a decomposition with one special
node r called the root and in which each bag is one of the following types:

1. Leaf bag a leaf x with Bx = ∅,
2. Introduce vertex v bag a node x having one child y for which Bx = By � {v},
3. Forget vertex v bag a node x having one child y for which By = Bx � {v},
4. Introduce edge uv bag a node x having one child y for which u, v ∈ Bx = By ,
5. Join bag (only in tree decomposition) a node x having two children y, z with

condition Bx = By = Bz .

We require that every edge from E(G) is introduced exactly once and Br is an empty
bag. For each x we define Vx and Ex to be sets of respectively vertices and edges
introduced in the subtree of the decomposition rooted at x .

Given a tree (path) decomposition we can find a nice decomposition of the same
width in time n · twO(1) [8,10] and we will work only with these. When analyzing
running time of algorithms working on tree decompositions we will estimate the bag
sizes from the above assuming |Bx | = tw.

2.3 Problems Definitions

Steiner Tree

Input: graph G, set of terminals K ⊆ V (G), integer k
Decide: whether there is a subtree of G with at most k edges connecting all
vertices from K

Hamiltonian Cycle

Input: graph G
Decide:whether there is a cycle going through every vertex ofG exactly once
In the counting variants of problems we ask for a number of structures satisfying

the given conditions. This setting is at least as hard as the decision variant.

123

502 Algorithmica (2019) 81:497–518

3 Clifford Algebras

Some terms used in this section originate from the advanced algebra. For better under-
standing we suggest reading “Appendix A”.

Definition 5 The Clifford algebraClp,q(R) is a 2p+q -dimensional associative algebra
over a ring R. It is generated by x1, x2 . . . , xp+q .

These are rules of multiplication of generators:

1. e is a neutral element of multiplication,
2. x2i = e for i = 1, 2, . . . , p,
3. x2i = −e for i = p + 1, p + 2, . . . , p + q,
4. xi x j = −x j xi if i
= j .

All products (with respect to the ordering of elements) of 2p+q sets of generators
form a linear basis ofClp,q(R) and e is treated as a product of an empty set.We provide
a standard addition andwe extendmultiplication for all elements in an associative way.

We will be mostly interested inCln,0(Z) 2 and its natural embedding intoCln,0(R).
As q = 0, we can neglect condition 3 when analyzing these algebras.

For A = {a1, a2, . . . , ak} ⊆ [1 . . . n] where a1 < a2 < · · · < ak let xA =
xa1xa2 . . . xak . Each element ofCln,0(R) can be represented as

∑
A⊆[1...n] aAxA, where

aA are real coefficients. Using condition 4 we can deduce a general formula for mul-
tiplication in Cln,0(R) :

⎛

⎝
∑

A⊆[1...n]
aAxA

⎞

⎠

⎛

⎝
∑

B⊆[1...n]
bBxB

⎞

⎠ =
∑

C⊆[1...n]

⎛

⎝
∑

A	B=C

aAbB IA,B

⎞

⎠ xC (2)

where the meaning of IA,B is explained in (1).
Since the Clifford algebra over R is semisimple, it is isomorphic to a product

of matrix algebras by the Artin–Wedderburn theorem (see Theorem 11). However,
it is more convenient to first embed Cln,0(R) in a different Clifford algebra that is
isomorphic to a single matrix algebra. As a result, we obtain a monomorphism φ :
Cln,0(R) −→ M2m (R) (see Definition 10) where m = n

2 + O(1) and the following
diagram commutes (∗ stands for multiplication).

Cln,0(R)
φ

−−−−−−−−−−−−−−−→ M2m (R)

↓ ∗ ↓ ∗
Cln,0(R)

φ

−−−−−−−−−−−−−−−→ M2m (R)

(3)

Thus, we can perform multiplication in the structure that is more convenient for us.
For a, b ∈ Cln,0(Z) we can treat them as elements of Cln,0(R), find matrices φ(a)

and φ(b), multiply them efficiently, and then invert the φ transform. The result always
exists and belongs to Cln,0(Z) because Cln,0(Z) is closed under multiplication. The

2 Clifford algebras with q = 0 appear also in geometric literature as exterior algebras.

123

Algorithmica (2019) 81:497–518 503

monomorphism φ : Cln,0(R) −→ M2m (R) can be performed and inverted (within the
image) in O∗(2n) time [11]. However, the algorithm in [11] is analyzed in the infinite
precision model. For the sake of completeness, we revisit this construction and prove
the following theorem in “Appendix B”.

Theorem 4 The multiplication in Cln,0(Z), with coefficients having poly(n) number
of bits, can be performed in time O∗(2 ωn

2).

In order to unify the notation we will represent each element of Cln,0(Z) , that
is

∑
A⊆[1...n] aAxA, as a function f : 2[1...n] −→ Z, f (A) = aA. We introduce �S

convolution as an equivalence of multiplication in Cln,0(Z) . The equation (2) can be
now rewritten in a more compact form

(f �S g)(X) =
∑

A	B=X

f (A)g(B)IA,B . (4)

4 Non-commutative Subset Convolution

We consider a linearly ordered universe U of size n and functions f , g : 2U −→ Z.

Definition 6 Let f � g denote Non-commutative Subset Convolution (NSC) of func-
tions f , g defined as

(f � g)(X) =
∑

A�B=X

f (A)g(B)IA,B .

Theorem 5 NSC on an n-element universe can be performed in time O∗(2 ωn
2).

Proof Observe that condition A�B = X is equivalent to A	B = X ∧ |A|+|B| = |X |
so

(f � g)(X) =
∑

i+ j=|X |
i, j≥0

∑

A	B=X

f (A)
[
|A| = i

]
g(B)

[
|B| = j

]
IA,B .

Alternatively, we can write

(f � g)(X) =
∑

i+ j=|X |
i, j≥0

(fi �S g j)(X),

where fi (X) = f (X)
[
|X | = i

]
and likewise for g. The �S convolution, introduced

in (4), is equivalent to multiplication in Cln,0(R) . This means we reduced NSC to
O(n2)multiplications inCln,0(R)which could be performed in time O∗(2 ωn

2) accord-
ing to Theorem 4. ��
Remark 1 The technique of grouping the sizes of sets with polynomial burden in the
running time will turn useful in further proofs. We will call it size-grouping.

123

504 Algorithmica (2019) 81:497–518

In our applications we will need to compute a slightly more complex convolution.

Definition 7 When f , g are of type 2U × 2U −→ Z we can define f �2 g (NSC2) as
follows

(f �2 g)(X ,Y) =
∑

X1�X2=X
Y1�Y2=Y

f (X1,Y1)g(X2,Y2)IX1,X2 IY1,Y2 .

Theorem 6 NSC2 on an n-element universe can be performed in time O∗(2ωn).

Proof Let us introduce a new universe U ′ = UX ∪ UY of size 2n consisting of two
copies of U with an order so each element of UY is greater than any element of
UX . To underline that X ⊆ UX ,Y ⊆ UY we will use � notation when summing
subsets of UX and UY . In order to reduce NSC2 to NSC on the universe U ′ we need
to replace factor IX1,X2 IY1,Y2 with IX1�Y1,X2�Y2 . The latter term can be expressed
as IX1,X2 IY1,Y2 IX1,Y2 IY1,X2 due to Observation 2. As all elements from Xi ⊆ UX

compare less to elements from Yi ⊆ UY then IX1,Y2 = 1 and IY1,X2 depends only on
the sizes of Y1 and X2. To summarize,

IX1,X2 IY1,Y2 = IX1�Y1,X2�Y2(−1)|Y1||X2|.

Todealwith factor (−1)|Y1||X2| wehave to split the convolution into 4 parts for different
parities of |Y1| and |X2|. We define functions f ′, f ′

0, f ′
1, g

′, g′
0, g

′
1 : 2U ′ −→ Z as

f ′(X � Y) = f (X ,Y),

f ′
0(X � Y) = f (X ,Y)

[
|Y | ≡ 0 mod 2

]
,

f ′
1(X � Y) = f (X ,Y)

[
|Y | ≡ 1 mod 2

]
,

g′(X � Y) = g(X ,Y),

g′
0(X � Y) = g(X ,Y)

[
|X | ≡ 0 mod 2

]
,

g′
1(X � Y) = g(X ,Y)

[
|X | ≡ 1 mod 2

]
.

Now we can reduce NSC2 to 4 simpler convolutions.

(f �2 g)(X ,Y) =
∑

X1�X2=X
Y1�Y2=Y

f ′(X1 � Y1)g
′(X2 � Y2)IX1�Y1,Y2�X2(−1)|Y1||X2| =

= (f ′
0 � g′

0)(X � Y) + (f ′
0 � g′

1)(X � Y) + (f ′
1 � g′

0)(X � Y) − (f ′
1 � g′

1)(X � Y)

We have shown that computing NSC2 is as easy as NSC on a universe of size twice
the original universe size. Using Theorem 5 directly gives us the desired complexity.

��

123

Algorithmica (2019) 81:497–518 505

5 Counting Steiner Trees

We will revisit the theorem stated in the aforementioned work.

Theorem 7 (Bodlaender et al. [4]) There exist algorithms that given a graph G count
the number of Steiner trees of size i for each 1 ≤ i ≤ n − 1 in O∗(5pw) time if a path
decomposition of width pw is given, and in O∗(10tw) time if a tree decomposition of
width tw is given.

Both algorithms use dynamic programming over tree or path decompositions. We
consider vertices in a particular decomposition-based order and fix vertex v1 ∈ K ,
where K is the set of terminals. Let A = (av,e)v∈V ,e∈E be the incidence matrix, i.e.,
for e = uv, u < v we have au,e = 1, av,e = −1, and aw,e = 0 for any other vertex
w. For K ⊆ Y let AY ,X be a submatrix of A with rows in Y \ {v1} and columns in X .
The value of | det(AY ,X)| turns out to be 1 if the subgraph G(X ,Y) forms a tree and
0 otherwise. The main idea of the algorithm is to express the number of Steiner trees
for terminal set K with exactly i edges as

∑

K⊆Y⊆V , |Y |=i−1,

∑

E⊆E(Y ,Y), |X |=|Y |−1

det(AY ,X)2.

We consider partial sums representing summands belonging to the subtree of a
decomposition node x . We exploit the permutation formula for determinant and intro-
duce functions s1, s2 to control the image of permutations (there are two permutations
in each summand since we expand a square of determinant) within the bag Bx . We
also introduce function sY indicating which vertices belong to Y ∩ Bx . For node x of
the decomposition we define function Ax with arguments 0 ≤ i ≤ n − 1, sY , s1, s2 ∈
{0, 1}Bx as

∑

Y⊆Vx|Y |=i
(K∩Vx)⊆Y

Y∩Bx=s−1
Y (1)

∑

X⊆E(Y ,Y)∩Ex

∑

f1:X1−1→Y\{v1}\s−1
1 (0)

f2:X1−1→Y\{v1}\s−1
2 (0)

sgn(f1)sgn(f2)
∏

e∈X
a f1(e),ea f2(e),e (5)

Then the number of Steiner treeswith exactly i edges becomes Ar (i+1,∅,∅,∅) [4].
As observed therein, condition sY (v) = 0 implies that either s1(v) = s2(v) = 0 or
Ax (i, sY , s1, s2) = 0. This means there are at most n ·5tw triples for which Ax returns
a nonzero value.

For a node x of type introduce vertex, introduce edge, or forget vertex, with a
child y, the function Ax can be computed from Ay in linear time with respect to the
number of non-trivial states. This observation leads to a proof of Theorem 7 for path
decompositions. The only thing that is more difficult for tree decompositions is that
they include also join nodes having two children each. Here is the recursive formula3

3 As confirmed by the authors (private communication with Marek Cygan), the formula in [4] for the join
node is missing the first argument to the Ax function tracking the number of vertices of a Steiner tree, hence
we present a corrected version of this formula.

123

506 Algorithmica (2019) 81:497–518

for Ax for a join node x with children y, z.

Ax (i, sY , s1, s2) =
∑

iy+iz=i+|s−1
Y (1)|

s1,y+s1,z=s1
s2,y+s2,z=s2

Ay(iy, sY , s1,y, s2,y)Az(iz, sY , s1,z, s2,z)

Is−1
1,y(1),s

−1
1,z (1)

Is−1
2,y(1),s

−1
2,z (1)

(6)

The next lemma, however not stated explicitly in the discussed work, follows from
the proof of Theorem 7 (Theorem 4.4 in [4]).

Lemma 1 Assume there is an algorithm computing all nonzero values of Ax given by
(6) with running time f (tw). Then the number of Steiner trees of size i in a graph G
can be counted in O∗(max(f (tw), 5tw)) time if a tree decomposition of width tw is
given.

Wewill change notation for our convenience. Each function si will bematched with
set s−1

i (1). Let us replace functions Ax , Ay, Az with hi , fi , gi having first argument
fixed and operating on triples of sets. In this setting, the convolution can we written as

hi (A, B,C) =
∑

iy+iz=i+|A|
By�Bz=B
Cy�Cz=C

fiy (A, By,Cy)giz (A, Bz,Cz)IBy ,Bz ICy ,Cz . (7)

Observe that size-grouping allows us to neglect the restrictions for i, iy, iz . Hence, we
can work with a simpler formula

h(A, B,C) =
∑

By�Bz=B
Cy�Cz=C

f (A, By,Cy)g(A, Bz,Cz)IBy ,Bz ICy ,Cz . (8)

The only triples (sY (v), s1(v), s2(v)) allowed for each vertex v are (0, 0, 0),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1). In terms of set notation we can say that if
f (A, B,C)
= 0 then B ∪ C ⊆ A. Let f A : 2A × 2A −→ Z be f with the first
set fixed, i.e., f A(B,C) = f (A, B,C).

Lemma 2 For fixed A all values h(A, B,C) can be computed in time O∗(2ω|A|).

Proof We want to compute

hA(B,C) =
∑

By�Bz=B
Cy�Cz=C

fA(By,Cy)gA(Bz,Cz)IBy ,Bz ICy ,Cz = (f A �2 gA)(B,C),

what can be done in time O∗(2ω|A|) according to Theorem 6. ��
Lemma 3 The convolution (7) can be performed in time O∗((2ω + 1)tw).

123

Algorithmica (2019) 81:497–518 507

Proof We use size-grouping to reduce the problem to computing (8). Then we iterate
through all possible sets A and take advantage of Lemma 2. The total number of
operations (modulo polynomial factor) is bounded by

∑

A⊆U

2ω|A| =
tw∑

k=0

(
tw

k

)
2ωk = (2ω + 1)tw.

��
Keeping in mind that (6) and (7) are equivalent and combining Lemmas 1 and 3, we
obtain the following result.

Theorem 8 The number of Steiner trees of size i in a graph G can be computed in
O∗((2ω + 1)tw) time if a tree decomposition of width tw is given.

6 Counting Hamiltonian Cycles

Likewise in the previous section, we will start with a previously known theorem.

Theorem 9 (Bodlaender et al. [4]) There exist algorithms that given a graph G count
the number of Hamiltonian cycles in O∗(6pw) time if a path decomposition of width
pw is given, and in O∗(15tw) time if a tree decomposition of width tw is given.

We again consider vertices in a particular decomposition-based order and fix an
arbitrary vertex v1. For a subset S ⊆ E let AS be the submatrix of the incidence
matrix A (see previous section) with rows from V \ {v1} and columns from S. We
express the number of Hamiltonian cycles as

1

n

∑

X⊆E
s.t. ∀v∈V degX (v)=2

∑

S⊆X , |S|=n−1

det(AS)
2.

We again consider partial sums representing summands belonging to the subtree of
a decomposition node x and introduce functions s1, s2 to keep track of permutations’
images within the bag Bx . The function sdeg controls the degree of a vertex within
BX . The notation is analogous to (5). For each node x of the decomposition function
Ax is defined with arguments s1, s2 ∈ {0, 1}Bx and sdeg ∈ {0, 1, 2}Bx as

∑

X⊆Ex∀v∈(Vx \Bx)degX (v)=2
∀v∈Bx degX (v)=sdeg(v)

∑

S⊆X

∑

f1:S1−1→Vx\{v1}\s−1
1 (0)

f2:S1−1→Vx\{v1}\s−1
2 (0)

sgn(f1)sgn(f2)
∏

e∈S
a f1(e),ea f2(e),e (9)

The number of Hamiltonian cycles can be then expressed as Ar (∅,∅,∅)/n.
As observed in [4] we can restrict ourselves only to some subspace of states. When

sdeg(v) = 0 then all non-zero summands in (9) satisfy s1(v) = s2(v) = 0. When

123

508 Algorithmica (2019) 81:497–518

sdeg(v) = 2 then we can neglect all summands except for those satisfying s1(v) =
s2(v) = 1.

This time there are at most 6tw triples for which Ax returns a nonzero value. We
again argue that introduce vertex, introduce edge, and forget vertex nodes can be
handled the same way as for the path decomposition and the only bottleneck is formed
by join nodes. We present a formula for Ax if x is a join node with children y, z.

Ax (sdeg, s1, s2) =
∑

sdeg,y+sdeg,z=sdeg
s1,y+s1,z=s1
s2,y+s2,z=s2

Ay(sdeg,y, s1,y, s2,y)Az(sdeg,z, s1,z, s2,z)

Is−1
1,y(1),s

−1
1,z (1)

Is−1
2,y(1),s

−1
2,z (1)

(10)

Analogously to the algorithm for Steiner Tree, we formulate our claim as a
lemma following from the proof of Theorem 9 (Theorem 4.3 in [4]).

Lemma 4 Assume there is an algorithm computing all nonzero values of Ax given by
(10) with running time f (tw). Then the number of Hamiltonian cycles in a graph G
can be counted in O∗(max(f (tw), 6tw)) time if a tree decomposition of width tw is
given.

The only allowed triples of
(
sdeg(v), s1(v), s2(v)

)
for each vertex v are (0, 0, 0),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (2, 1, 1).

Lemma 5 Assume the Eq. (10) holds. Then it remains true after the following trans-
lation of the set of allowed triples

(
sdeg(v), s1(v), s2(v)

)
.

0, 0, 0 −→ 0, 0, 0

1, 0, 0 −→ 1, 0, 0

1, 0, 1 −→ 1, 0, 1

1, 1, 0 −→ 0, 1, 0

1, 1, 1 −→ 0, 1, 1

2, 1, 1 −→ 1, 1, 1

Proof The I.,. factors do not change as we do not modify the coordinates given by
functions s1, s2. Triples that match in (10) translate into matching triples as the trans-
formation keeps their additive structure. This fact can be illustrated by rewriting the
addition table from [4] with the new coordinates. ��

123

Algorithmica (2019) 81:497–518 509

000 100 101 110 111 211

000 000 100 101 110 111 211
100 100 X X X 211 X
101 101 X X 211 X X
110 110 X 211 X X X
111 111 211 X X X X
211 211 X X X X X

000 100 101 010 011 111

000 000 100 101 010 011 111
100 100 X X X 111 X
101 101 X X 111 X X
010 010 X 111 X X X
011 011 111 X X X X
111 111 X X X X X

Therefore we can treat function sdeg as a binary one. We unify the notation by
representing functions si with the corresponding sets s−1

i (1). We replace functions
Ax , Ay, Az with their counterparts h, f , g operating on triples of sets. For example,
expression Ax (sdeg, s1, s2) gets transformed into h(s−1

deg(1), s
−1
1 (1), s−1

2 (1)). In this
setting, the convolution looks as follows.

h(A, B,C) =
∑

A1�A2=A
B1�B2=B
C1�C2=C

f (A1, B1,C1)g(A2, B2,C2)IB1,B2 IC1,C2 (11)

Performing convolution (11) within the space of allowed triples involves more
sophisticated techniques than those in Sect. 5. Therefore the proof of the following
lemma is postponed to “Appendix C”.

Lemma 6 The convolution (11) can be computed in time O∗((2ω + 2)tw).

This result, together with Lemmas 4 and 5, leads to themain theorem of this section.

Theorem 10 The number of Hamiltonian cycles in a graph G can be computed in
O∗((2ω + 2)tw) time if a tree decomposition of width tw is given.

7 Conclusions

We have presented the Non-commutative Subset Convolution, a new algebraic tool
in algorithmics based on the theory of Clifford algebras. This allowed us to construct
faster deterministic algorithms for Steiner Tree, Feedback Vertex Set, and
Hamiltonian Cycle, parameterized by the treewidth. As the determinant-based
approach applies to all problems solvable by the Cut & Count technique [4,8], the
NSC can improve running times for a larger class of problems.

123

510 Algorithmica (2019) 81:497–518

The first open question is whether the gap between time complexities for the deci-
sion and counting versions of these problems could be closed. Ormaybe one can prove
this gap inevitable under a well-established assumption, e.g., SETH?

The second question is if it is possible to prove a generic theorem so the lemmas
like 3 or 6 would follow from it easily. It might be possible to characterize convolution
algebras that are semisimple and algorithmically construct isomorphisms with their
canonical forms described by the Artin–Wedderburn theorem.

The last question is what other applications of Clifford algebras and Artin–
Wedderburn theorem can be found in algorithmics.

Acknowledgements I would like to thank Marek Cygan for pointing out the bottleneck of the previously
known algorithms and for a support during writing this paper. I would also like to thank Paul Leopardi for
helping me understand the fast Fourier-like transform for Clifford algebras.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Associative Algebras

This section is not crucial to understanding the paper but it provides a bigger picture of
the applied theory. We assume that readers are familiar with basic algebraic structures
like rings or fields. More detailed introduction can be found, e.g., in [1].

Definition 8 A linear space A over a field K (or, more generally, a module over a ring
K) is called an associative algebra if it admits a multiplication operator A × A → A
satisfying the following conditions:

1. ∀a,b,c∈A a(bc) = (ab)c,
2. ∀a,b,c∈A a(b + c) = ab + ac, (b + c)a = ba + ca,
3. ∀a,b∈A,k∈K k(ab) = (ka)b = a(kb).

A set W ⊆ A is called a generating set if every element of A can be obtained from
W by addition and multiplication. The elements of W are called generators. It is easy
to see that multiplication defined on a generating set extends in an unambiguous way
to the whole algebra. We will often abbreviate the term associative as we will study
only such algebras.

Definition 9 The product of algebras A1, A2, . . . , Am is an algebra A1⊗A2⊗· · ·⊗Am

with multiplication performed independently on each coordinate.

Definition 10 For algebras A, B over a ring K , function φ : A → B is called
a homomorphism of algebras if it satisfy the following conditions:

1. ∀a,b∈A φ(a + b) = φ(a) + φ(b),
2. ∀a,b∈A φ(ab) = φ(a)φ(b),
3. ∀a∈A,k∈K φ(ka) = kφ(a).

If φ is reversible within its image then we call it a monomorphism and if additionally
φ(A) = B then we call φ an isomorphism

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2019) 81:497–518 511

Monomorphisms of algebras turn out extremely useful when multiplication in
algebra B is simpler than multiplication in A, because we can compute ab as
φ−1

(
φ(a)φ(b)

)
. This observation is used in Theorem 4 and Lemmas 6, 7. For a

better intuition, we depict the various ways of performing multiplication on diagrams
(3, 14).

Definition 11 A subset M of algebra A is called a simple left module if

1. ∀a∈A,b∈M ab ∈ M ,
2. ∀b,c∈M b + c ∈ M ,

and the only proper subset of M with these properties is {0}.
The next definition is necessary to exclude some cases of obscure algebras.

Definition 12 An algebra A is called semisimple if there is no non-zero element a so
for every simple left module M ⊆ A the set aM = {ab | b ∈ M} is {0}.

The theorem below has been stated in full generality for algebras over arbitrary
rings but we will formulate its simpler version for fields.

Theorem 11 (Artin–Wedderburn [1])Every finite-dimensional associative semisimple
algebra A over a field K is isomorphic to a product of matrix algebras

A ∼= Mn1(K1) ⊗ Mn2(K2) ⊗ · · · ⊗ Mnm (Km),

where Ki are fields containing K .

The related isomorphism is called a generalized Fourier transform (GFT) for A.
If we are able to perform GFT efficiently then we can reduce computations in A to
matrix multiplication. For some classes of algebras, e.g., abelian group algebras, there
are known algorithms for GFT with running time O(n log n) where n = dim A [12].

If the field K is algebraically closed (e.g., C) then all Ki = K and
∑m

i=1 n
2
i equals

the dimension of A. If the algebra A is commutative then all ni = 1 and A is isomorphic
to a product of fields. This is actually the case in the Fast Subset Convolution [2], where
the isomorphism is given by the Möbius transform.

B Proof of Theorem 4

Proof The transformation φ can be computed and inverted (within the image) in time
O∗(2n) assuming infinite precision and O(1) time for any arithmetic operation [11].
In order to compute φ accurately in the RAMmodel, we need to look inside the paper
[11]. The formulas therein are based on the work of Cnops [5].

Transformation φ can be represented as φ = γ ◦ υ where υ is a monomorphic
embedding into another Clifford algebra and γ is an isomorphism with the matrix
algebra. We modify the commutative isomorphism diagram (3) to illustrate these

123

512 Algorithmica (2019) 81:497–518

mappings in more detail.

Cln,0(Z) ↪→ Cln,0(R)
υ−→ Clm,m(R)

γ−→ M2m (R)

↓ ∗ ↓ ∗ ↓ ∗ ↓ ∗
Cln,0(Z) ↪→ Cln,0(R)

υ−→ Clm,m(R)
γ−→ M2m (R)

We begin with embedding υ : Cln,0(R) −→ Clm,m(R) where m = n
2 + O(1) (see

Definition 4.4 in [11]). Transformation υ is just a translation of basis so no arithmetic
operations are involved.

For the sake of disambiguation, we indicate the domain of the function γ with a
lower index: γk : Clk,k(R) −→ M2k (R). In the k-th step, we construct a matrix rep-
resentation of y ∈ Clk,k(R). Let y+, y− denote the projections of y onto subspaces
spanned by products of respectively even and odd number of generators.4 Of course,
y = y+ + y− and γk(y) = γk(y+) + γk(y−), since the mapping is linear. Such an
element y can be represented as y = a+bx−+cx++dx−x+ for x+, x− being the gen-
erators with indices 1,k (we have x2+ = e, x2− = −e) and a, b, c, d ∈ Clk−1,k−1(R).
Now we can apply the recursive formula from Theorem 5.2 in [11]:

γk(y+) = γk−1

([
a+ − d+, −b− − c−
−b− − c−, a+ + d+

])
,

γk(y−) = γk−1

([
a− − d−, −b+ + c+
b+ + c+, −a− − d−

])
,

where γk−1(M) stands for a block matrix with γk−1 applied to each element of M .
We see that computing

(
γk(y+), γk(y−)

)
can be reduced to computing 4 analogous

pairs for k − 1 and combining them using addition and subtraction. Hence, the coef-
ficients of the obtained matrix will also be integers with poly(n) number of bits and
the total number of arithmetic operations is O(m4m) = O(n2n).

The inverse transform γ −1 is also computed inm steps andwe continue using lower
index to indicate the domain alike for the forward transform. Let Y ∈ M2k (Z) and

Y =
[
Y11 Y12
Y21 Y22

]
, yi j = γ −1

k−1(Yi j).

Then from Theorem 7.1 in [11] we know that

γ −1
k (Y) = 1

2

(
(ˆy22 + y11) + (ˆy21 − y12)x− + (ˆy21 + y12)x+ + (ˆy22 − y11)x−x+

)
,

where ŷ = y+ − y− and the rest of notation is as above. We can reduce computing
γ −1
k to 4 queries from (k − 1)-th step so the total number of arithmetic operations is
O(m4m) = O(n2n).

This time the coefficients at each step are given as sums of elements from the
previous step divided by 2. We do not need to prove that they remain integer at all

4 For example, for y = 1 + x1 + 2x1x3 − 4x1x2x3 we have y+ = 1 + 2x1x3 and y− = x1 − 4x1x2x3.

123

Algorithmica (2019) 81:497–518 513

steps because we can postpone the division until the last step. As long as γ −1(Y) is a
product of two elements from Clm,m(Z), it is guaranteed that the numbers in the last
step are integers and our variables are divisible by 2m . What is more, if we know that
γ −1(Y) ∈ υ(Cln,0(Z)) then we can revert the υ transform and obtain φ−1(Y).

We have proven that we can switch representation between Cln,0(Z) and M2m (Z)

in time O∗(2n). The multiplication in M2m (Z) for inputs of poly(n) size can be
performed in time complexity O∗(2ωm) = O∗(2 ωn

2) and the resulting matrix also
contains only poly(n)-bits integers. This proves that the multiplication in Cln,0(Z)

admits an algorithm with running time O∗(2 ωn
2). ��

C Proof of Lemma 6

This section reduces the algorithm for Hamiltonian Cycle to two isomorphism
theorems and we suggest reading “Appendix A” first. Our goal is to compute values
of h for the allowed triples assuming that non-zero values of f , g also occur only for
the allowed triples.

h(A, B,C) =
∑

A1�A2=A
B1�B2=B
C1�C2=C

f (A1, B1,C1)g(A2, B2,C2)IB1,B2 IC1,C2 (12)

Taking advantage of the size-grouping technique (see Observation 1) we can replace
condition A1 � A2 = A with A1 ∪ A2 = A and focus on the following convolution.

(f � g)(A, B,C) =
∑

A1∪A2=A
B1�B2=B
C1�C2=C

f (A1, B1,C1)g(A2, B2,C2)IB1,B2 IC1,C2 (13)

Let Ham be a subspace of 2U × 2U × 2U −→ Z given by functions admitting
only the allowed triples (see Lemma 5), i.e., f ∈ Ham ∧ f (A, B,C)
= 0 implies
A ∩ (B	C) = C\B. Observe that Ham is closed under the � operation so it can
be regarded as a 6tw-dimensional algebra. Let HD be an algebra over space 2U\D ×
2D × 2D −→ Z with multiplication given by the � operator defined as

(f �g)(E, B,C) =
∑

E1�E2=E
B1�B2=B
C1�C2=C

f (E1, B1,C1)g(E2, B2,C2)IB1,B2 IC1,C2 (−1)|E1|(|B2|+|C2|).

123

514 Algorithmica (2019) 81:497–518

Wewant to show that Ham is isomorphic (see Definition 10) with a product of all HD

for D ⊆ U (see Definition 9). In particular, diagram (14) commutes.

Ham
τ

−−−−−−−−−−−−−−−→ ⊗
D⊆U

HD

↓ � ↓ �
Ham

τ

−−−−−−−−−−−−−−−→ ⊗
D⊆U

HD

(14)

where τD : Ham −→ HD is given as

(τD f)(E, B,C) = IB,E IC,E

∑

A⊆D

f (A, B ∪ E,C ∪ E).

Lemma 7 Transformation τ and its inverse can be performed in time O∗(6tw).

Corollary 1 Transformation τ is reversible.

Lemma 8 Given f , g ∈ HD we can compute f � g in time O∗(2ω|D|2|U\D|).

Lemma 9 Diagram (14) commutes, i.e., τ is a homomorphism of algebras.

Since τ is a reversible homomorphism of algebras of the same dimension 6tw we
obtain the following corollary.

Corollary 2 Transformation τ is an isomorphism of algebras.

As for the Clifford algebras, we can switch the representation of the algebra to
perform multiplication in the simpler one, and then revert the isomorphism to get the
result. The most time consuming part of the algorithm is performing the � convo-
lutions. Total number of operations modulo polynomial factor can be bounded with
Lemma 8 by

∑

D⊆U

2ω|D|2|U\D| =
tw∑

k=0

(
tw

k

)
2ωk2tw−k = (2ω + 2)tw. (15)

The rest of the appendix is devoted to proving Lemmas 7, 8 and 9.

Proof of Lemma 7 For fixed sets B,C let H = B∩C, F = B	C, B1 = B\C, C1 =
C\B. Observe that every allowed triple (A, B,C)must satisfy A∩F = C1. Therefore
we can represent Ham as a union of sets

TB1,C1,H =
{
(A1 ∪ C1, B1 ∪ H ,C1 ∪ H)

∣∣∣ A1 ⊆ U\(B1 ∪ C1)
}

for all pairwise disjoint triples B1,C1, H ⊆ U . Functions over TB1,C1,H can be param-
eterized with only the A1 argument. Consider following transformation over function

123

Algorithmica (2019) 81:497–518 515

space on TB1,C1,H .

(γB1,C1,H f)(A1) =
∑

A0⊆A1

f (A0 ∪ C1, B1 ∪ H ,C1 ∪ H)

Transform γB1,C1,H is just the Möbius transform, therefore it can be performed
and inverted in time O∗(2|U\(B1∪C1)|) (see Theorem 3). Values of γ f correspond
directly to values of τ f , that is, after computing values (γB1,C1,H f)(A1) for all allowed
arguments we can read all values (τD f)(E, B,C) and vice versa. We check this by
unrolling the formulas.

(τD f)(E, B,C) = IB,E IC,E

∑

A⊆D

f (A, B ∪ E,C ∪ E)

= IB,E IC,E

∑

A⊆D

f (A, B1 ∪ H ∪ E,C1 ∪ H ∪ E)

= IB,E IC,E

∑

A0⊆D\F
f (A0 ∪ C1, B1 ∪ H ∪ E,C1 ∪ H ∪ E)

= IB,E IC,E (γB1,C1,H∪E f)(D\F)

(γB1,C1,H f)(A1) =
∑

A0⊆A1

f (A0 ∪ C1, B1 ∪ H ,C1 ∪ H)

=
∑

A0⊆A1∪C1

f (A0, B1 ∪ H ,C1 ∪ H)

=
∑

A0⊆A1∪C1

f
(
A0, B2 ∪ (H\A1),C2 ∪ (H\A1)

)

= (τA1∪C1 f)(E, B2,C2)IB2,E IC2,E

where E = H\A1, B2 = B1 ∪ (H ∩ A1), C2 = C1 ∪ (H ∩ A1) are valid arguments
of τA1∪C1 .

To estimate the total number of operations consider all choices of F . The partition
into F = B1 � C1 can be done in 2|F | ways, the set H can be chosen in 2|U\F | ways,
and for such triple we have to perform the γB1,C1,H transform (or its inverse) what
involves O∗(2|U\F |) operations. Hence, the total running time (modulo polynomial
factors) is

∑

F⊆U

2|F |4|U\F | =
tw∑

k=0

(
tw

k

)
2k4tw−k = 6tw.

��

Proof of Lemma 8 Applying the size-grouping (see Remark 1) allows us to neglect
factor (−1)|E1|(|B2|+|C2|) and replace condition E1 � E2 = E with E1 ∪ E2 = E .

123

516 Algorithmica (2019) 81:497–518

Therefore it suffices to perform the � convolution on HD (the same as in (13)).

(f � g)(E, B,C) =
∑

E1∪E2=E
B1�B2=B
C1�C2=C

f (E1, B1,C1)g(E2, B2,C2)IB1,B2 IC1,C2 .

Let us denote
(μE f)(B,C) =

∑

F⊆E

f (F, B,C).

Transform μ and its inverse can be computed using Möbius transform (see Theo-
rem 3) in time O∗(2|U\D|) for all E and a fixed pair of sets B,C . We perform it for
all 4|D| such pairs.

It turns out thatμ is an isomorphism between (HD,�) and a product of all algebras
given by images ofμE for E ⊆ U\D (see Definitions 9, 10) with multiplication given
by NSC2, i.e., (μE f)�2 (μEg) = μE (f �g). We can again switch the representation
of the algebra, multiply the elements on all coordinates given by E , and then revert the
isomorphism. The computations below show that μ is a homomorphism of algebras
and we know already that μ is reversible.

(
(μE f) �2 (μEg)

)
(B,C) =

∑

B1�B2=B
C1�C2=C

(μE f)(B1,C1)(μEg)(B2,C2)IB1,B2 IC1,C2

=
∑

E1,E2⊆E
B1�B2=B
C1�C2=C

f (E1, B1,C1)g(E2, B2,C2)IB1,B2 IC1,C2

=
∑

F⊆E

∑

E1∪E2=F
B1�B2=B
C1�C2=C

f (E1, B1,C1)g(E2, B2,C2)IB1,B2 IC1,C2

= (
μE (f � g)

)
(B,C)

To perform multiplication ofμ(a) and μ(b), where a, b ∈ HD , we have to perform
NSC2 (O∗(2ω|D|) time complexity, see Theorem 6) for each E ⊆ U\D, what results
in desired running time. ��

Proof of Lemma 9 We need to show that for each B,C ⊆ D, D∩ E = ∅ it is (τD(f �
g))(E, B,C) = ((τD f) � (τDg))(E, B,C). Let us start with unrolling the formula
for τD(f � g). Keeping in mind that B ∩ E = C ∩ E = ∅ we can see that

(τD(f � g))(E, B,C)

=
∑

A⊆D

(f � g)(A, B ∪ E,C ∪ E)IB,E IC,E

123

Algorithmica (2019) 81:497–518 517

=
∑

A1,A2⊆D
B1�B2=B
E1�E2=E
C1�C2=C
F1�F2=E

f (A1, B1 ∪ E1,C1 ∪ F1)g(A2, B2 ∪ E2,C2 ∪ F1)

IB1∪E1,B2∪E2 IC1∪F1,C2∪F2 IB,E IC,E .
(16)

On the other hand, we have

((τD f) � (τDg))(E, B,C)

=
∑

E1�E2=E
B1�B2=B
C1�C2=C

(τD f)(E1, B1,C1)(τDg)(E2, B2,C2)IB1,B2 IC1,C2(−1)|E1|(|B2|+|C2|)

=
∑

A1,A2⊆D
E1�E2=E
B1�B2=B
C1�C2=C

f (A1, B1 ∪ E1,C1 ∪ E1)g(A2, B2 ∪ E2,C2 ∪ E2)

IB1,B2 IC1,C2 IB1,E1 IC1,E1 IB2,E2 IC2,E2(−1)|E1|(|B2|+|C2|).
(17)

We want to argue that all non-zero summands of (16) satisfy E1 = F1, E2 = F2.
Indeed, let us assume v ∈ F1\E1. As v ∈ E so v /∈ D ⊇ A, B,C and

([v ∈
A1], [v ∈ B1∪E1], [v ∈ C1∪F1]

) = (0, 0, 1)which is not a valid triple what implies
f (A1, B1 ∪ E1,C1 ∪ F1) = 0.
Assumption v ∈ E1\F1 leads to

([v ∈ A1], [v ∈ B1 ∪ E1], [v ∈ C1 ∪ F1]
) =

(0, 1, 0) but v ∈ E = E1 � E2 = F1 � F2 so
([v ∈ A2], [v ∈ B2 ∪ E2], [v ∈

C2 ∪ F2]
) = (0, 0, 1) and g(A2, B2 ∪ E2,C2 ∪ F1) = 0. The same arguments can be

used if v ∈ E2	F2.
Nowwe just need to prove that for E1 = F1, E2 = F2 the I factors in (16) and (17)

are equivalent. We apply Observation 2 to IB1∪E1,B2∪E2 IC1∪E1,C2∪E2 . We can omit
factor I 2E1,E2

= 1 as well as IB1,B2 IC1,C2 appearing also in (17). What is left to prove
is that

IB1,E2 IE1,B2 IB,E = IB1,E1 IB2,E2(−1)|E1||B2|,
IC1,E2 IE1,C2 IC,E = IC1,E1 IC2,E2(−1)|E1||C2|.

According to Observation 1 we can replace IE1,B2(−1)|E1||B2| with IB2,E1 what
reduces the formula in the first row to Observation 2 for B = B1 � B2, E = E1 � E2.
Applying analogous transformation to the second row finishes the proof. ��

References

1. Beachy, J.A.: Introductory Lectures on Rings and Modules, vol. 47. Cambridge University Press,
Cambridge (1999)

2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast subset convolution.
In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07,
pp. 67–74. ACM, New York (2007)

123

518 Algorithmica (2019) 81:497–518

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algo-
rithms for connectivity problems parameterized by treewidth. Inf. Comput. 243(C), 86–111 (2015)

5. Cnops, J.: Spherical geometry and möbius transformations. In: Brackx F., Delanghe R., Serras H.
(eds.) Clifford Algebras and Their Applications in Mathematical Physics: Proceedings of the Third
Conference Held at Deinze, Belgium, 1993, vol. 55. Springer (2012)

6. Curticapean, R., Lindzey, N., Nederlof, J.: A tight lower bound for counting Hamiltonian cycles
via matrix rank. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’18, pp. 1080–1099. Society for Industrial and Applied Mathematics, Philadelphia
(2018)

7. Cygan, M., Kratsch, S., Nederlof, J.: Fast Hamiltonicity checking via bases of perfect matchings. In:
Proceedings of the Forty-Fifth Annual ACMSymposium on Theory of Computing, pp. 301–310. ACM
(2013)

8. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving
connectivity problems parameterized by treewidth in single exponential time. In: 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science (FOCS), pp. 150–159. IEEE (2011)

9. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In:
Algorithms-ESA 2014, pp. 443–454. Springer (2014)

10. Kloks, T.: Treewidth: Computations and Approximations, vol. 842. Springer, Berlin (1994)
11. Leopardi, P.: A generalized FFT for Clifford algebras. Bull. Belg. Math. Soci. 11(5), 663–688 (2005)
12. Maslen, D.K., Rockmore, D.N.: Generalized FFTs: a survey of some recent results. In: Groups and

Computation II, vol. 28, pp. 183–287. American Mathematical Society (1997)
13. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory Ser. B 36(1),

49–64 (1984)
14. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic Programming on Tree Decompositions

Using Generalised Fast Subset Convolution, pp. 566–577. Springer, Berlin (2009)
15. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the Forty-

Fourth Annual ACM Symposium on Theory of Computing, pp. 887–898. ACM (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Clifford Algebras Meet Tree Decompositions
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Our Results
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Fast Subset Convolution
	2.2 Pathwidth and Treewidth
	2.3 Problems Definitions

	3 Clifford Algebras
	4 Non-commutative Subset Convolution
	5 Counting Steiner Trees
	6 Counting Hamiltonian Cycles
	7 Conclusions
	Acknowledgements
	A Associative Algebras
	B Proof of Theorem 4
	C Proof of Lemma 6
	References

