
Algorithmica (2019) 81:557–588
https://doi.org/10.1007/s00453-018-0424-7

Cutwidth: Obstructions and Algorithmic Aspects

Archontia C. Giannopoulou1 · Michał Pilipczuk2 · Jean-Florent Raymond1 ·
Dimitrios M. Thilikos3,4 · Marcin Wrochna2

Received: 13 April 2017 / Accepted: 2 March 2018 / Published online: 15 March 2018
© The Author(s) 2018

Abstract Cutwidth is one of the classic layout parameters for graphs. It measures how
well one can order the vertices of a graph in a linear manner, so that the maximum
number of edges between any prefix and its complement suffix is minimized. As graphs
of cutwidth at most k are closed under taking immersions, the results of Robertson
and Seymour imply that there is a finite list of minimal immersion obstructions for
admitting a cut layout of width at most k. We prove that every minimal immersion
obstruction for cutwidth at most k has size at most 2O(k3 log k). As an interesting
algorithmic byproduct, we design a new fixed-parameter algorithm for computing the
cutwidth of a graph that runs in time 2O(k2 log k) · n, where k is the optimum width and
n is the number of vertices. While being slower by a log k-factor in the exponent than
the fastest known algorithm, given by Thilikos et al. (J Algorithms 56(1):1–24, 2005;

This work was partially done while Archontia C. Giannopoulou was holding a post-doc position at
Warsaw Center of Mathematics and Computer Science and while Jean-Florent Raymond was affiliated to
the University of Warsaw and the University of Montpellier (LIRMM). The research of Archontia C.
Giannopoulou has been supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (ERC consolidator Grant DISTRUCT, Agreement No.
648527). The research of Michał Pilipczuk and Marcin Wrochna is supported by the Polish National
Science Center Grant SONATA 2013/11/D/ST6/03073. The research of Jean-Florent Raymond is
supported by the Polish National Science Center Grant PRELUDIUM 2013/11/N/ST6/02706. Michał
Pilipczuk is supported by the Foundation for Polish Science (FNP) via the START stipend programme.

B Marcin Wrochna
m.wrochna@mimuw.edu.pl

1 Technische Universität Berlin, Berlin, Germany

2 Institute of Informatics, University of Warsaw, Warsaw, Poland

3 AlGCo Project Team, CNRS, LIRMM, Montpellier, France

4 Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0424-7&domain=pdf
http://orcid.org/0000-0001-9346-2172

558 Algorithmica (2019) 81:557–588

J Algorithms 56(1):25–49, 2005), our algorithm has the advantage of being simpler
and self-contained; arguably, it explains better the combinatorics of optimum-width
layouts.

Keywords Cutwidth · Obstructions · Immersions · Fixed-parameter tractability

1 Introduction

The cutwidth of a graph is defined as the minimum possible width of a linear ordering
of its vertices, where the width of an ordering σ is the maximum, among all the prefixes
of σ , of the number of edges that have exactly one vertex in a prefix. Due to its natural
definition, cutwidth has various applications in a range of practical fields of computer
science: whenever data is expected to be roughly linearly ordered and dependencies
or connections are local, one can expect the cutwidth of the corresponding graph to be
small. These applications include circuit design, graph drawing, bioinformatics, and
text information retrieval; we refer to the survey of layout parameters of Díaz et al.
[7] for a broader discussion.

As finding a layout of optimum width is NP-hard [10], the algorithmic and com-
binatorial aspects of cutwidth were intensively studied. There is a broad range of
polynomial-time algorithms for special graph classes [14,15,27], approximation algo-
rithms [19], and fixed-parameter algorithms [23,24]. In particular, Thilikos et al.
[23,24] proposed a fixed-parameter algorithm for computing the cutwidth of a graph
that runs1 in time 2O(k2) · n, where k is the optimum width and n is the number of
vertices. Their approach is to first compute the pathwidth of the input graph, which
is never larger than the cutwidth. Then, the optimum layout can be constructed by
an elaborate dynamic programming procedure on the obtained path decomposition.
To upper bound the number of relevant states, the authors had to understand how an
optimum layout can look in a given path decomposition. For this, they borrow the
technique of typical sequences of Bodlaender and Kloks [3], which was introduced
for a similar reason, but for pathwidth and treewidth instead of cutwidth.

Since the class of graphs of cutwidth at most k is closed under immersions, and the
immersion order is a well-quasi ordering of graphs2 [20], it follows that for each k
there exists a finite obstruction set Lk of graphs such that a graph has cutwidth at most
k if and only if it does not admit any graph from Lk as an immersion. However, this
existential result does not give any hint on how to generate, or at least estimate the sizes
of the obstructions. The sizes of obstructions are important for efficient treatment of
graphs of small cutwidth; this applies also in practice, as indicated by Booth et al. [4]
in the context of VLSI design.

The estimation of sizes of minimal obstructions for graph parameters like path-
width, treewidth, or cutwidth, has been studied before. For minor-closed parameters
pathwidth and treewidth, Lagergren [18] showed that any minimal minor obstruction

1 Thilikos et al. [23,24] do not specify the parametric dependence of the running time of their algorithm.
A careful analysis of their algorithm yields the above claimed running time bound.
2 All graphs considered in this paper may have parallel edges, but no loops.

123

Algorithmica (2019) 81:557–588 559

to admitting a path decomposition of width k has size at most single-exponential in
O(k4), whereas for tree decompositions he showed an upper bound double-exponential
in O(k5) . Less is known about immersion-closed parameters, such as cutwidth. Govin-
dan and Ramachandramurthi [13] showed that the number of minimal immersion
obstructions for the class of graphs of cutwidth at most k is at least 3k−7 + 1, and
their construction actually exemplify minimal obstructions for cutwidth at most k
with (3k−5 − 1)/2 vertices. To the best of our knowledge, nothing was known about
upper bounds for the cutwidth case.

1.1 Results on Obstructions

Our main result concerns the sizes of obstructions for cutwidth.

Theorem 1 Suppose a graph G has cutwidth larger than k, but every graph with
fewer vertices or edges (strongly) immersed in G has cutwidth at most k. Then G has
at most 2O(k3 log k) vertices and edges.

The above result immediately gives the same upper bound on the sizes of graphs
from the minimal obstruction sets Lk as they satisfy the prerequisites of Theorem 1.
This somewhat matches the (3k−5 − 1)/2 lower bound of Govindan and Ramachan-
dramurthi [13].

Our approach for Theorem 1 follows the technique used by Lagergren [18] to prove
that minimal minor obstructions for pathwidth at most k have sizes single-exponential
in O(k4). Intuitively, the idea of Lagergren is to take an optimum decomposition for a
minimal obstruction, which must have width k + 1, and to assign to each prefix of the
decomposition one of finitely many “types”, so that two prefixes with the same type
“behave” in the same manner. If there were two prefixes, one being shorter than the
other, with the same type, then one could replace one with the other, thus obtaining
a smaller obstruction. Hence, the upper bound on the number of types, being double-
exponential in O(k4), gives some upper bound on the size of a minimal obstruction.
This upper bound can be further improved to single-exponential by observing that types
are ordered by a natural domination relation, and the shorter a prefix is, the weaker is
its type. An important detail is that one needs to make sure that the replacement can
be modeled by minor operations. For this, Lagergren uses the notion of linked path
decompositions (a weaker variant of lean path decompositions; cf. [1,25]).

To prove Theorem 1, we perform a similar analysis of prefixes of an optimum
ordering of a minimal obstruction. We show that prefixes can be categorized into a
bounded number of types, each comprising prefixes that have the same “behavior”.
Provided two prefixes with equally strong type appear one after the other, we can
“unpump” the part of the graph in their difference.

To make sure that unpumping is modeled by taking an immersion, we define linked
orderings for cutwidth and reprove the analogue of the result of Thomas [25] (see [1]
for simplified proofs): there is always an optimum-width ordering that is linked.
We remark this already follows from more general results on submodular functions:
the same is true for parameters like linear rank-width, as observed by Kanté and
Kwon [16], which in turns follows from the proof of an analogous theorem of Geelen

123

560 Algorithmica (2019) 81:557–588

et al. [11] that applies to branch-decompositions, and thus, e.g., to parameters known
as branch-width and carving-width. Linked cutwidth orderings have been used before
by Chudnovsky and Seymour [6] to show that tournaments are well-quasi-ordered by
immersions.

The proof of the upper bound on the number of types essentially boils down to the
following setting. We are given a graph G and a subset X of vertices, such that at most
� edges have exactly one endpoint in X . The question is how X can look like in an
optimum-width ordering of G. We prove that there is always an ordering where X is
split into at most O(k�) blocks, where k is the optimum width. This allows us to store
the relevant information on the whole X in one of a constant number of types (called
bucket interfaces). The swapping argument used in this proof holds the essence of the
typical sequences technique of Bodlaender and Kloks [3], while being, in our opinion,
more natural and easier to understand.

As an interesting byproduct, we can also use our understanding to treat the problem
of removing edges to get a graph of small cutwidth. More precisely, for parameters
w, k, we consider the class of all graphs G, such that w edges can be removed from
G to obtain a graph of cutwidth at most k. We prove that for every constant k, the
minimal (strong) immersion obstructions for this class have sizes bounded linearly in
w. Moreover we give an exponential lower bound to the number of these obstructions.
These results are presented in Sect. 6.

1.2 Algorithmic Results

Consider the following “compression” problem: given a graph G and its ordering σ

of width �, we would like to construct, if possible, a new ordering of the vertices
of G of width at most k, where k < �. Then the types defined above essentially
match states that would be associated with prefixes of σ in a dynamic programming
algorithm solving this problem. Alternatively, one can think of building an automaton
that traverses the ordering σ of width � while constructing an ordering of G of width
at most k. Hence, our upper bound on the number of types can be directly used to
limit the state space in such a dynamic programming procedure/automaton, yielding
an FPT algorithm for the above problem.

With this result in hand, it is not hard to design of an exact FPT algorithm for
cutwidth. One could introduce vertices one by one to the graph, while maintaining an
ordering of optimum width. Each time a new vertex is introduced, we put it anywhere
into the ordering, and it can be argued that the new ordering has width at most three
times larger than the optimum. Then, the dynamic programming algorithm sketched
above can be used to “compress” this approximate ordering to an optimum one in
linear FPT time.

The above approach yields a quadratic algorithm. To match the optimum, linear
running time, we use a similar trick as Bodlaender in his linear-time algorithm for
computing the treewidth of the graph [2]. Namely, we show that instead of processing
vertices one by one, we can proceed recursively by removing a significant fraction of
all the edges at each step, so that their reintroduction increases the width at most twice.
We then run the compression algorithm on the obtained 2-approximate ordering to get

123

Algorithmica (2019) 81:557–588 561

an optimum one. The main point is that, since we remove a large portion of the graph
at each step, the recursive equation on the running time solves to a linear function,
instead of quadratic. This gives the following.

Theorem 2 There exists an algorithm that, given an n-vertex graph G and an integer
k, runs in time 2O(k2 log k) · n and either correctly concludes that the cutwidth of G is
larger than k, or outputs an ordering of G of width at most k.

The algorithm of Theorem 2 has running time slightly larger than that of Thilikos
et al. [23,24]. The difference is the log k factor in the exponent, the reason for which
is that we use a simpler bucketing approach to bound the number of states, instead
of the more entangled, but finer, machinery of typical sequences. We believe the
main strength of our approach lies in its explanatory character. Instead of relying on
algorithms for computing tree or path decompositions, which are already difficult by
themselves, and then designing a dynamic programming algorithm on a path decom-
position, we directly approach cutwidth “via cutwidth”, and not “via pathwidth”. That
is, the dynamic programming procedure for computing the optimum cutwidth ordering
on an approximate cutwidth ordering is technically far simpler and conceptually more
insightful than performing the same on a general path decomposition. We also show
that the “reduction-by-a-large-fraction” trick of Bodlaender [2] can be performed also
in the cutwidth setting, yielding a self-contained, natural, and understandable algo-
rithm.

2 Preliminaries

We denote the set of non-negative integers by N and the set of positive integers by N
+.

For r, s ∈ N with r ≤ s, we denote [r] = {1, . . . , r} and [r, s] = {r, . . . , s}. Notice
that [0] = ∅.

Graphs All graphs considered in this paper are undirected, without loops, and may
have multiple edges. The vertex and edge sets of a graph G are denoted by V (G)

and E(G), respectively. For disjoint X,Y ⊆ V (G), by EG(X,Y) we denote the set
of edges of G with one endpoint in X and one in Y . If S ⊆ V (G), then we denote
δG(S) = |EG(S, V (G) \ S)|. We drop the subscript if it is clear from the context.
Every partition (A, B) of V (G) is called a cut of G; the size of the cut (A, B) is δ(A).

Cutwidth Let G be a graph and σ be an ordering of V (G). For u, v ∈ V (G), we write
u <σ v if u appears before v in σ . Given two disjoint sequences σ1 = 〈x1, . . . , xr1〉
and σ2 = 〈y1, . . . , yr2〉 of vertices in V (G), we define their concatenation as σ1 ◦σ2 =
〈x1, . . . , xr1 , y1, . . . , yr2〉. For X ⊆ V (G), let σX be the ordering of X induced by σ ,
i.e., the ordering obtained from σ if we remove the vertices that do not belong in X .
For a vertex v we denote by V σ

v the set {u ∈ V (G) | u ≤σ v}. A σ -cut is any cut
of the form (V σ

v , V (G) \ V σ
v) for v ∈ V (G). The cutwidth of an ordering σ of G is

defined as cwσ (G) = maxv∈V (G) δ(V σ
v). The cutwidth of G, cw(G), is the minimum

of cwσ (G) over all possible orderings of V (G).

Obstructions Let ≤ be a partial order on graphs. We say that G ′
� G if G ′ ≤ G and

G ′ is not isomorphic to G. A graph class G is closed under ≤ if whenever G ′ ≤ G and

123

562 Algorithmica (2019) 81:557–588

G ∈ G, we also have that G ′ ∈ G. Given a partial order ≤ and a graph class G closed
under ≤, we define the (minimal) obstruction set of G w.r.t. ≤, denoted by obs≤(G),
as the set containing all graphs where the following two conditions hold:

O1: G /∈ G, i.e., G is not a member of G, and
O2: for each G ′ with G ′

� G, we have that G ′ ∈ G.

We say that a set of graphs H is a ≤-antichain if it does not contain any pair of
comparable elements wrt. ≤. By definition, for any class G closed under ≤, the set
obs≤(G) is an antichain.

Immersions Let H and G be graphs. We say that G contains H as an immersion if
there is a pair of functions (φ,ψ), called an H -immersion model of G, such that φ

is an injection from V (H) to V (G) and ψ maps every edge uv of H to a path of
G between φ(u) and φ(v) so that different edges are mapped to edge-disjoint paths.
Every vertex in the image of φ is called a branch vertex. If we additionally demand that
no internal vertex of a path in ψ(E(H)) is a branch vertex, then we say that (φ,ψ) is a
strong H -immersion model and H is a strong immersion of G. We denote by H ≤i G
(H ≤si G) the fact that H is an immersion (strong immersion) of G; these are partial
orders. Clearly, for any two graphs H and G, if H ≤si G then H ≤i G. This implies
the following observation:

Observation 1 If G is a class closed under ≤i, then obs≤i(G) ⊆ obs≤si(G).

Robertson and Seymour proved in [20] that every ≤i-antichain is finite and conjec-
tured the same for ≤si. It is well-known that for every k ∈ N, the class Ck of graphs
of cutwidth at most k is closed under immersions. It follows from the results of [20]
that obs≤i(Ck) is finite; the goal of this paper is to provide good estimates on the sizes
of graphs in obs≤si(Ck). As the cutwidth of a graph is the maximum cutwidth of its
connected components, it follows that graphs in obs≤si(Ck) are connected. Moreover,
every graph in obs≤si(Ck) has cutwidth exactly k + 1, because the removal of any of
its edges decreases its cutwidth to at most k.

3 Bucket Interfaces

Let G be a graph and σ be an ordering of V (G). For a set X ⊆ V (G), the X-blocks in σ

are the maximal subsequences of consecutive vertices of σ that belong to X . Suppose
(A, B) is a cut of G. Then we can write σ = b1 ◦ . . . ◦ bp, where b1, . . . , bp are the
A- and B-blocks in σ ; these will be called jointly (A, B)-blocks. The next lemma is
the cornerstone of our approach: we prove that given a graph G and a cut (A, B) of
G, there exists an optimum cutwidth ordering of G where number of blocks depends
only on the cutwidth and the size of (A, B).

Lemma 1 Let � ∈ N
+ and G be a graph. If (A, B) is a cut of G of size �, then there is

an optimum cutwidth ordering σ of V (G) with at most (2� + 1) · (2cw(G) + 3) + 2�

(A, B)-blocks.

Proof Let σ be an optimum cutwidth ordering such that, subject to the width being
minimum, the number of (A, B)-blocks it defines is also minimized. Let σ = b1 ◦

123

Algorithmica (2019) 81:557–588 563

· · · · · ·
block j − 1

µ(j − 1)

block j

µ(j)

block j + 1

µ(j + 1)

block j + 2

Fig. 1 A cut (A, B) is highlighted (blue, red), with the corresponding blocks underlined and cuts between
them marked with dashed lines. Edges counted as p j and s j are thickened (Color figure online)

b2 ◦ · · · ◦ br , where b1, b2, . . . , br are the (A, B)-blocks of σ . If σ defines less than
three blocks, then the claim already follows, so let us assume r ≥ 3.

Consider any ordering σ ′ obtained by swapping two blocks, i.e., σ ′ = b1 ◦ · · · ◦
b j−1 ◦ b j+1 ◦ b j ◦ b j+2 . . . br , for some j ∈ [r − 1]. Observe that since the blocks
b1, . . . , br alternate as A-blocks and B-blocks, the ordering σ ′ has a strictly smaller
number of blocks; indeed, either j −1 ≥ 1, in which case b j−1 ◦b j+1 defines a single
block of σ ′, or j = 1 and hence j +2 ≤ r , in which case b j ◦b j+2 does. Therefore, by
choice of σ , for each j ∈ [r − 1], swapping b j and b j+1 in σ must yield an ordering
with strictly larger cutwidth.

We call a block free if it does not contain any endpoint of the cut edges EG(A, B).
We now prove that any sequence of consecutive free blocks in σ has at most 2cw(G)+3
blocks. Since the cut (A, B) has size �, there are at most 2� blocks that are not free.
This implies the claimed bound on the total number of all blocks in σ .

Suppose, to the contrary, that there exists a sequence of q > 2cw(G)+3 consecutive
free blocks in σ . Let these blocks be br , br+1, . . . , bs , where s − r + 1 = q. For
j ∈ [r, s − 1], we define μ(j) to be the size of the cut between all vertices inside or
preceding the vertices of block b j and all vertices inside or following the vertices of
block b j+1 in σ ; see Fig. 1. ��
Claim 1 For all j ∈ [r + 1, . . . , s − 2], we have that μ(j − 1) > μ(j) or μ(j) <

μ(j + 1).

Proof Suppose that for some j ∈ [r+1, s−2], μ(j) ≥ max(μ(j−1), μ(j+1)). We
will then show that the ordering σ ′ obtained by swapping the blocks b j and b j+1 still
has optimum cutwidth, a contradiction to the choice of σ . Notice that for every vertex
v preceding all vertices of b j or succeeding all vertices of b j+1, δ(V σ ′

v) = δ(V σ
v).

Thus, it remains to show that for any vertex v belonging to the block b j or to the block
b j+1, also δ(V σ ′

v) ≤ δ(V σ
v).

Let p j be the number of edges of G with one endpoint in the block b j and the other
endpoint preceding (in σ) all vertices of b j . Let also s j be the number of edges of G
with one endpoint in b j and the other endpoint succeeding (in σ) all vertices of b j

(and hence succeeding all vertices of block b j+1, since both b j and b j+1 are free).
Notice that μ(j) = μ(j − 1) − p j + s j and recall that μ(j) ≥ μ(j − 1). This yields
that s j ≥ p j .

Similarly, let p j+1 be the number of edges of G with one endpoint in b j+1 and
the other endpoint preceding all vertices of the block b j+1 (and, in particular, all

123

564 Algorithmica (2019) 81:557–588

vertices of block b j). Let also s j+1 be the number of edges of G with one endpoint
in b j+1 and the other endpoint succeeding all vertices of block b j+1. Again, we have
μ(j + 1) = μ(j)− p j+1 + s j+1 and μ(j) ≥ μ(j + 1). This yields that p j+1 ≥ s j+1.

Let v be a vertex of the block b j . Recall that the blocks b j and b j+1 are free and thus,
there are no edges between them. Observe then that δ(V σ ′

v) = δ(V σ
v)+s j+1 − p j+1 ≤

δ(V σ
v). Symmetrically, for any vertex v in b j+1, observe that δ(V σ ′

v) = δ(V σ
v)+ p j −

s j ≤ δ(V σ
v). Thus, cwσ ′(G) ≤ cwσ (G) = cw(G), a contradiction. ��

Claim 1 shows that for all j ∈ [r + 1, s − 2], we have μ(j − 1) > μ(j) or
μ(j) < μ(j + 1). It follows that any non-decreasing pair μ(j − 1) ≤ μ(j) must be
followed by an increasing pair μ(j) < μ(j +1). Hence, if jmin is the minimum index
such that μ(jmin) ≤ μ(jmin + 1), then the sequence μ(j) has to be strictly decreasing
up to jmin and strictly increasing from jmin + 1 onward. Since μ(j) ≤ cw(G) for
all j , the length q of the sequence of consecutive free blocks cannot be longer than
2cw(G) + 3 in total, concluding the proof. ��

We use the above lemma to bound the number of “types” of prefixes in graph
orderings. To describe such a prefix, i.e., one side of a cut in a graph, we use the
following definition.

Definition 1 A k-boundaried graph is a pair G = (G, x̄) where G is a graph and
x̄ = (x1, . . . , xk) is a k-tuple of the graph’s boundary vertices (ordered, not necessarily
distinct). The extension of G is the graph G∗ obtained from G by adding k new vertices
x ′

1, . . . , x
′
k and edges x1x ′

1, . . . , xkx
′
k . The join A ⊕ B of two k-boundaried graphs

A = (A, x̄), B = (B, ȳ) is the graph obtained from the disjoint union of A and B by
adding an edge xi yi for i ∈ [k].

From Lemma 1 we derive that for any given cut (A, B) of size � of a graph G with
cw(G) ≤ k, there is an optimum cutwidth ordering in which the vertices of A occur
in O(k�) blocks. Our next goal is to show that the only information about A that can
affect the cutwidth of G is: the placing of the endpoints of each cutedge (xi and x ′

i)
into blocks, and the cutwidth of each block (as an induced subgraph of A or A∗).
Recall that for an ordering σ of V (G), σ -cuts are cuts of the form (V σ

v , V (G) \ V σ
v),

for v ∈ V (G).

Definition 2 Let G be a graph and σ be an ordering of its vertices. An �-bucketing of
σ is a function T : V (G) → [�] such that T (u) ≤ T (v) for any u appearing before
v in σ . For every i ∈ [�], the set T−1(i) will be called a bucket; a bucket is naturally
ordered by σ . For every bucket T−1(i), i ∈ [�], let cuts(G, σ, T, i) be the family of
σ -cuts containing on one side all vertices of buckets appearing before i and a prefix (in
σ) of the i-th bucket. For an ordering σ of the vertices of a graph G, define the width of
the bucket i , i ∈ [�], as the maximum width of any cut in the family cuts(G, σ, T, i).
Formally,

cuts(G, σ, T, i) =
{(
V σ

v , V (G) \ V σ
v

) : v ∈ T−1(i)
}

,

width(G, σ, T, i) = max { |EG(L , R)| : (L , R) ∈ cuts(G, σ, T, i) } .

123

Algorithmica (2019) 81:557–588 565

Notice that every σ -cut of G is in cuts(G, σ, T, i) for at least one bucket i ∈ [�];
since cwσ (G) is the maximum of |EG(L , R)| over σ -cuts (L , R), we have

cwσ (G) = max
i∈[�] width(G, σ, T, i). (1)

For two k-boundaried graphs A = (A, x̄), B = (B, ȳ), we slightly abuse notation and
understand the edges x1x ′

1, . . . , xkx
′
k in A∗ to be the same as y′

1y1, . . . , y′
k yk in B∗

and as x1y1, . . . , xk yk in A ⊕ B. That is, for an ordering σ of A ⊕ B with �-bucketing
T , we define T |A∗(v) to be T (v) for v ∈ V (A) and T (yi) for v = x ′

i . We define σ |A∗
as an ordering that orders x ′

i just as σ orders yi , with the order between x ′
i and x ′

j
chosen arbitrarily when yi = y j . The following lemma shows that if an �-bucketing
respects the sides of a cut, then the width of any bucket can be computed as the sum
of contributions of the sides.

Lemma 2 Let k, � be positive integers and A = (A, x̄), B = (B, ȳ) be two k-
boundaried graphs. Let also σ be a vertex ordering of A ⊕ B with �-bucketing T .
If T−1(i) does not contain any vertex of A, for some i ∈ [�], that is, T−1(i) ∩
V (A) = ∅, then it holds that width(A ⊕ B, σ, T, i) = width(A, σ |A, T |A, i) +
width(B∗, σ |B∗ , T |B∗ , i).

Proof Consider any cut (L , R) in cuts(G, σ, T, i). Observe that for every edge e of
EA⊕B(L , R) one of the following holds:

1. e ∈ EA(L ∩ V (A), R ∩ V (A)) or 3. e ∈ EG(L ∩ V (A), R ∩ V (B)), or
2. e ∈ EB(L ∩ V (B), R ∩ V (B)) or 4. e ∈ EG(R ∩ V (A), L ∩ V (B)).

Since we do not distinguish between the vertices xi and the vertices y′
i , we

equivalently obtain that for every edge e ∈ EA⊕B(L , R), e is either an edge in
EA(L ∩ V (A), R ∩ V (A)) or an edge in EB∗(L ∩ V (B∗), R ∩ V (B∗)). Observe that
(L∩V (A), R∩V (A)) is a cut in cuts(A, σ |A, T |A, i) and (L∩V (B∗), R∩V (B∗))
is a cut in cuts(B∗, σ |B∗ , T |B∗ , i). Therefore, the total number of edges crossing
these cuts is at mostwidth(A, σ |A, T |A, i)+width(B∗, σ |B∗ , T |B∗ , i). This proves
that

width(A ⊕ B, σ, T, i) ≤ width(A, σ |A, T |A, i) + width(B∗, σ |B∗ , T |B∗ , i).

For the converse inequality, observe that since the bucket T−1(i) does not
contain any vertices of A, we have T |−1

A (i) = ∅. Hence there is exactly one
cut in cuts(A, σ |A, T |A, i), namely (L A, RA), where L A = T−1({1, . . . , i −
1}) ∩ V (A) and RA = T−1({i + 1, . . . , �}) ∩ V (A). Let (LB, RB) be a cut
in cuts(B∗, σ |B∗ , T |B∗ , i) maximizing |EB∗(LB, RB)|. Then, since we assumed
that T−1(i) does not contain any vertices of A (and thus, may only contain ver-
tices of B), it follows that (L A ∪ LB, RA ∪ RB) is a cut in cuts(G, σ, T, i).
As above, every edge of A ⊕ B crossing this cut is either in EA(L A, RA) or in
EB∗(LB, RB), where we again do not distinguish between the vertices xi and y′

i .
Hence

123

566 Algorithmica (2019) 81:557–588

width(A ⊕ B, σ, T, i) ≥ |EA⊕B(L , R)|
= |EA(L A, RA)| + |EB∗(LB, RB)|
= width(A, σ |A, T |A, i) + width(B∗, σ |B∗ , T |B∗ , i).

��
Replacing the roles of A and B above, we obtain that if T−1(i) does not contain

any vertex of B, then

width(A ⊕ B, σ, T, i) = width(A∗, σ |A∗ , T |A∗ , i) + width(B, σ |B, T |B, i).

Intuitively, this implies that the cutwidth of A ⊕ B depends on A only in the widths of
each block relative to A and A∗ (in any bucketing where buckets are either A-blocks
or B-blocks). Therefore, replacing A with another boundaried graph whose extension
has an ordering and bucketing with the same widths preserves cutwidth (as long as
endpoints of the cut edges are placed in the same buckets too). This is formalized in
the next definition.

Definition 3 For k, � ∈ N, a (k,�)-bucket interface consists of functions:

– b, b′ : [k] → [�] identifying the buckets which contain xi and x ′
i , respectively

– μ,μ∗ : [�] → [0, k] corresponding to the widths of buckets.

A k-boundaried graph G conforms with a (k, �)-bucket interface if there exists an
ordering σ of the vertices of G∗ and an �-bucketing T of G∗ such that:

– T (v) is odd for v ∈ V (G) and even for v ∈ {x ′
1, . . . , x

′
k},

– T (xi) = b(i) and T (x ′
i) = b′(i), for each i ∈ [k],

– width(G, σ |G , T |G, j) ≤ μ(j), for each j ∈ [�],
– width(G∗, σ, T, j) ≤ μ∗(j), for each j ∈ [�].

Observation 2 For all k, � ∈ N
+ there are ≤ 22(k log �+� log(k+1)) (k, �)-bucket inter-

faces.

We call two k-boundaried graphs G1, G2 (k,�)-similar if the sets of (k, �)-
bucket interfaces they conform with are equal. The following lemma subsumes the
above ideas. The proof follows easily from Lemma 2 and the fact that cwσ (G) =
maxi∈[�] width(G, σ, T, i) [Eq. (1)].

Theorem 3 Let k, r be two positive integers. Let also A1 and A2 be two k-boundaried
graphs that are (k, �)-similar, where � = (2k+1)·(2r+4). Then for any k-boundaried
graph B where cw(A1 ⊕ B) ≤ r , it holds that cw(A2 ⊕ B) = cw(A1 ⊕ B).

Proof Let Ai = (Ai , x̄ i), B = (B, ȳ) and suppose that cw(A1⊕B) ≤ r . By Lemma 1,
there is an optimum cutwidth ordering σ1 of the vertices of A1 ⊕ B that has at most
� − 1 (V (A1), V (B))-blocks. In particular cwσ1(A1 ⊕ B) = cw(A1 ⊕ B) ≤ r . By
adding an empty block at the front, if necessary, we may assume that the number of
blocks is at most �, while odd-indexed blocks are V (A1)-blocks and even-indexed
blocks are V (B)-blocks. Then, there is an �-bucketing T1 of σ1 such that T1(v) is odd
for v ∈ A1 and even for v ∈ B. Therefore σ1|A∗

1
and T1|A∗

1
certify that the following

(k, �)-bucket interface conforms with A1:

123

Algorithmica (2019) 81:557–588 567

– b(i) = T1(x1
i) and b′(i) = T1|A∗

1
(x1

i
′
) = T1(yi) for i ∈ [k],

– μ(i) = width(A1, σ1|A1, T1|A1, i) and
μ∗(i) = width(A∗

1, σ1|A∗
1
, T1|A∗

1
, i) for i ∈ [�].

By (k, �)-similarity, there is an ordering σ2 of A∗
2 and its �-bucketing T2 such that:

– each bucket T−1
2 (i) is contained in A2 for odd i ∈ [�] and

in {x2
1
′
, . . . , x2

k
′} for even i ∈ [�]

– b(i) = T2(x2
i) and b′(i) = T2(x2

i
′
) for i ∈ [k],

– μ(i) ≥ width(A2, σ2|A2 , T2|A2 , i) and
μ∗(i) ≥ width(A∗

2, σ2|A∗
2
, T2|A∗

2
, i) for i ∈ [�].

Given this, define an assignment of vertices into buckets Π : V (A2 ⊕ B) → [�] as
follows.

– Π(v) = T1(v) for v ∈ V (B) and
– Π(v) = T2(v) for v ∈ V (A2).

Clearly,

Π |B = T1|B and (2)

Π |A2 = T2|A2 . (3)

We claim that Π |A∗
2

= T2|A∗
2

and Π |B∗ = T1|B∗ also hold. Indeed,

Π |A∗
2
(x2′

i) = Π(yi) (we consider x2′
i as yi)

= T1(yi) (by definition)

= b′(i) ((k, �)-bucket interface)

= T2(x
2′
i) ((k, �)-similarity)

and, similarly,

Π |B∗(y′
i) = Π(x2

i) (we consider y′
i as x2

i)

= T2(x
2
i) (by definition)

= b(i) ((k, �)-bucket interface)

= T1(x
1
i) ((k, �)-similarity)

= T1|B∗(y′
i) (by definition).

Thus, we obtain that

Π |A∗
2

= T2|A2 (4)

Π |B∗ = T1|B∗ . (5)

Note also that vertices of A2 are mapped to odd buckets and vertices of B are
mapped to even buckets. We use Π to define an ordering π of the vertices of A2 ⊕B as
follows. Formally, we let u <π u if and only if one of the following conditions hold:

123

568 Algorithmica (2019) 81:557–588

1. Π(u) < Π(v),
2. u <σ2 v and Π(u) = Π(v) is odd, or
3. u <σ1 v and Π(u) = Π(v) is even.

Note that this is a linear ordering as it first sorts the vertices according to the
bucket they belong to and then according to the ordering induced in this bucket by the
orderings σ1 and σ2. Note also that by definition Π is an �-bucketing of π . Recall that,
from Eq. (4), Π |A∗

2
= T2|A2 . This, together with the observation that the vertices of

A2 are mapped to odd buckets of Π , implies that

π |A∗
2

= σ2|A∗
2

and that (6)

π |A2 = σ2|A2 . (7)

Moreover, recall that Π |B∗ = T1|B∗ . This, together with the fact that the vertices of
B are mapped to even buckets of Π , implies that

π |B∗ = σ1|B∗ and that (8)

π |B = σ1|B . (9)

We now bound the width of each bucket. Let i ∈ [�]. Notice that if i is even the by
construction Π−1(i) contains only vertices from B. Therefore,

width(A2 ⊕ B, π,Π, i)

= width(A2, π |A2 ,Π |A2 , i) + width(B∗, π |B∗ ,Π |B∗ , i)

= width(A2, σ2|A2 , T2|A2 , i) + width(B∗, σ1|B∗ , T1|B∗ , i)

≤ μ(i) + width(B∗, σ1|B∗ , T1|B∗ , i)

= width(A1, σ1|A1, T1|A1, i) + width(B∗, σ1|B∗ , T1|B∗ , i)

= width(A1 ⊕ B, σ1, T1, i), (10)

where the first equality follows from Lemma 2, the second equality holds by
Eqs. (3), (7), (8), and (5), the third inequality follows from the (k, �)-bucket interface,
and the fifth equality follows from Lemma 2. We similarly argue, using μ∗ instead
of μ, that for odd i ∈ [�], width(A2 ⊕ B, π,Π, i) = width(A1 ⊕ B, σ1, T1, i). In
particular,

width(A2 ⊕ B, π,Π, i) = width(A∗
2, π |A∗

2
,Π |A∗

2
, i) + width(B, π |B,Π |B, i)

= width(A∗
2, σ2|A∗

2
, T2|A∗

2
, i) + width(B, σ1|B, T1|B, i)

≤ μ∗(i) + width(B, σ1|B, T1|B, i)

= width(A∗
1, σ1|A∗

1
, T1|A∗

1
, i) + width(B, σ1|B, T1|B, i)

= width(A1 ⊕ B, σ1, T1, i). (11)

Similarly, to Eq. 10, we get that the first equality follows from Lemma 2, the second
equality holds by Eqs. (2) (4), (6) and (9), the third inequality follows from the (k, �)-
bucket interface, and the fifth equality follows from Lemma 2.

123

Algorithmica (2019) 81:557–588 569

Therefore, from Eqs. (10) and (11) we obtain that

cwπ (A2 ⊕ B) = max
i∈[�] width(A2 ⊕ B, π,Π, i)

≤ max
i∈[�] width(A1 ⊕ B, σ1, T1, i) = cwσ1(A1 ⊕ B).

Moreover, since cw(A2 ⊕B) ≤ cwπ (A2 ⊕B) and σ1 is an optimum cutwidth ordering
for A‘ ⊕ B, it follows that

cw(A2 ⊕ B) ≤ cw(A1 ⊕ B) ≤ r.

So in particular cw(A2 ⊕ B) ≤ r . By applying the same reasoning, but with A1 and
A2 reversed, we obtain also the converse inequality cw(A2 ⊕ B) ≤ cw(A1 ⊕ B). This
proves that indeed cw(A2 ⊕ B) = cw(A1 ⊕ B). ��

4 Obstruction Sizes and Linked Orderings

In this section we establish the main result on the sizes of obstructions for cutwidth.
We first introduce linked orderings and prove that there is always an optimum ordering
that is linked.

Definition 4 (linked ordering) An ordering σ of V (G) is linked if for any two vertices
u ≤σ u′, there exist min{δ(V σ

v) | u ≤σ v ≤σ u′} edge-disjoint paths between V σ
u and

V (G) \ V σ
u′ in G.

Lemma 3 ([6,11,16]) For each graph G, there is a linked ordering σ of V (G) with
cwσ (G) = cw(G).

Proof Without loss of generality, we may assume that the graph is connected. Let σ

be an optimum cutwidth ordering of V = V (G). Subject to the optimality of σ , we
choose σ so that

∑
v∈V δ(V σ

v) is minimized. We prove that σ defined in this manner
is in fact linked.

Assume the contrary. Then by Menger’s theorem, there exist vertices u <σ u′ in
V and i ∈ N such that δ(V σ

v) > i for every u ≤σ v ≤σ u′, but a minimum cut (A, B)

of G with V σ
u ⊆ A and V \ V σ

u′ ⊆ B has size δ(A) ≤ i . We partition A into sets A1
and A2, where A1 = V σ

u and A2 = A \ A1, and we partition B into sets B1 and B2,
where B2 = V \ V σ

u′ and B1 = B \ B2 (see Fig. 2). Notice that A2 = A \ V σ
u = {v |

u <σ v ≤σ u′} ∩ A and that B1 = B \ (V \ V σ
u′) = {v | u <σ v ≤σ u′} ∩ B. Let σ ′

be the ordering of V obtained by concatenating σ |A1 , σ |A2 , σ |B1 , and σ |B2 .
We prove that δ(V σ ′

v) ≤ δ(V σ
v), for every v ∈ V . Observe first that for every vertex

v ∈ A1 ∪B2 it holds that V σ ′
v = V σ

v and thus, δ(V σ ′
v) = δ(V σ

v). Let now v ∈ A2. Then
V σ ′

v = V σ
v ∩ A. By the submodularity of cuts it follows that δ(V σ

v ∪ A)+δ(V σ
v ∩ A) ≤

δ(A) + δ(V σ
v). Notice that (V σ

v ∪ A, V \ (V σ
v ∪ A)) is also a cut separating A1 = V σ

u
and B2 = V \ V σ

u′ . From the minimality of (A, B) it follows that δ(A) ≤ δ(V σ
v ∪ A).

Therefore, δ(V σ
v ∩ A) ≤ δ(V σ

v). As V σ ′
v = V σ

v ∩ A, we obtain that δ(V σ ′
v) ≤ δ(V σ

v).

123

570 Algorithmica (2019) 81:557–588

u u
A1 A2 ∪ B1 B2

u u
A1 A2 B1

B2

Fig. 2 An ordering of vertices with the minimum cut (A, B) between A1 and B2 of size i highlighted
in blue and red. Below, the modified ordering, with cutwidth bounded using submodularity (Color figure
online)

Symmetrically, let now v ∈ B1. Then V σ ′
v = V σ

v ∪ A. By the submodularity of cuts
we have δ(V σ

v ∪ A)+δ(V σ
v ∩ A) ≤ δ(A)+δ(V σ

v). Notice that (V σ
v ∩ A, V \(V σ

v ∩ A))

is a cut separating A1 and B2. From the minimality of (A, B) it follows that δ(A) ≤
δ(V σ

v ∩ A). Therefore, δ(V σ
v ∪ A) ≤ δ(V σ

v). As V σ ′
v = V σ

v ∪ A, we obtain that
δ(V σ ′

v) ≤ δ(V σ
v).

Thus, δ(V σ ′
v) ≤ δ(V σ

v) ≤ cw(G) for every v ∈ V , and hence cwσ ′(G) = cw(G).
Finally, note that δ(V σ ′

v) = δ(A) ≤ i < δ(V σ
v) for the last vertex v in A. Thus∑

v δ(V σ ′
v) <

∑
v δ(V σ

v), contradicting the choice of σ . Therefore, σ is a linked
ordering of V with cwσ (G) = cw(G). ��

The rest of Sect. 4 is devoted to the proof of Theorem 1. Before we proceed with
this proof, we need a series of auxiliary lemmas.

For every s, r ∈ N
+, we set As,r = [s, s + r − 1]. We prove the following.

Lemma 4 Let N be a positive integer. For every s, r ∈ N
+ and every word w over

As,r of length Nr there is a symbol k ∈ As,r and a subword u of w such that (a) u
contains only numbers not smaller than k, and (b) u contains the number k at least N
times.

Proof We prove the lemma by induction on r . Notice that for r = 1, As,r = {s} and
thus the only word w of length N is sN . Thus, the lemma holds with k = s and u = w.
We proceed to the inductive step for r > 1.

Let now s ∈ N and let w be a word over As,r of length Nr . If s occurs at least N
times, then again, the lemma holds with k = s and u = w. Thus, we may assume
that s occurs at most N − 1 times. Then, since w has length at least Nr , there exists
a subword w′ of w of length at least Nr−1 over As,r \ {s} = As+1,r−1. From the
inductive hypothesis, there exists k ∈ As+1,r−1 ⊆ As,r and a subword u of w′ such
that k occurs at least N times in u and u contains only numbers at least k. Since w′ is
a subword of w, u is also a subword of w. This completes the inductive step and the
proof of the lemma. ��

We use Lemma 4 only for s = 1, giving the following corollary.

Corollary 1 Let r, N be positive integers and let w be a word of length Nr over the
alphabet [r]. Then there is a number k ∈ [r] and a subword u of w such that (a) u
contains only numbers not smaller than k, and (b) u contains the number k at least N
times.

123

Algorithmica (2019) 81:557–588 571

We also need one additional statement about boundaried graphs and bucket inter-
faces.

Lemma 5 Let k, � ∈ N. Suppose A = (A, x̄) and B = (B, ȳ) are two k-boundaried
graphs, and suppose further that there is an immersion model (φ,ψ) of A in B
such that φ(xi) = yi , for all i = 1, 2, . . . , k. Then for every (k, �)-bucket interface
(b, b′, μ, μ∗), if B conforms to (b, b′, μ, μ∗) then also A conforms to (b, b′, μ, μ∗).

Proof First, we extend the immersion model (φ,ψ) to an immersion model (φ∗, ψ∗)
of A∗ in B∗ by putting φ∗(x ′

i) = y′
i and ψ∗(xi x ′

i) = yi y′
i for all i ∈ [k]. Suppose that

ordering σ of V (B∗) and its �-bucketing T certify that B conforms to (b, b′, μ, μ∗).
We define ordering σ ′ of V (A∗) and its �-bucketing T ′ as follows:

– For u, v ∈ V (A∗), we put u <σ ′ v if and only if φ∗(u) <σ ′ φ∗(v).
– For u ∈ V (A∗), we put T ′(u) = T (φ∗(u)).

It is easy to see that T ′ is an �-bucketing of σ ′. We now verify that σ ′ and T ′ certify that
A conforms to (b, b′, μ, μ∗). The first two conditions of conforming follow directly
from the definition of σ ′ and T ′, so we are left with the third and the fourth condition.

For the third condition, take any j ∈ [�]. It suffices to show that for any cut (L ′, R′) ∈
cuts(A, σ ′|A, T ′|A, j), we have that |EA(L ′, R′)| ≤ μ(j). By the construction of
(σ ′, T ′) it follows that there is a cut (L , R) ∈ cuts(B, σ |B, T |B, j) such thatφ(L ′) ⊆
L and φ(R′) ⊆ R. Since (σ, T) certified that B conforms to (b, b′, μ, μ∗), we have
that |EB(L , R)| ≤ μ(j). Take any uv ∈ EA(L ′, R′), and observe that ψ(uv) is a path
in B leading from φ(u) ∈ L to φ(v) ∈ R. Consequently, one of the edges of this path
must belong to EB(L , R). Since paths ψ(uv) are pairwise edge-disjoint for different
edges uv ∈ EA(L ′, R′), we infer that

|EA(L ′, R′)| ≤ |EB(L , R)| ≤ μ(j).

This establishes the third condition. The fourth condition follows by the same argument
applied to graphs A∗ and B∗, instead of A and B. ��

The following theorem is the technical counterpart of Theorem 1. Its proof is based
on Theorem 3, Lemma 3, Observation 2 and the idea of “unpumping” repeating types,
presented in the introduction. The linkedness is used to make sure that within the
unpumped segment of the ordering, one can find the maximum possible number of
edge-disjoint paths between the parts of the graph on the left side and on the right
side of the segment. This ensures that the graph obtained from unpumping can be
immersed in the original one.

Theorem 4 Let k be a positive integer. If G ∈ obs≤si(Ck), then |V (G)| ≤ Nk+1,
where N = 22((k+1) log �+� log(k+2)) + 2 and � = (2k + 3) · (2k + 6).

Proof Take any G ∈ obs≤si (Ck) and assume, towards a contradiction, that |V (G)| >

Nk+1. Let σ = 〈v1, v2, . . . , v|V (G)|〉 be a linked optimum cutwidth ordering of G,
which exists by Lemma 3. We define ci = δ(V σ

vi
), that is, ci is the size of the cut between

the vertices of G up to vi and the rest of the graph. Notice that since G ∈ obs≤si (Ck),

123

572 Algorithmica (2019) 81:557–588

we have that cw(G) = k + 1 and G is connected. This implies that ci ∈ [k + 1], for
every i ∈ [|V (G)| − 1].

Observe that c1c2 . . . c|V (G)|−1 is a word of length at least Nk+1 over the alphabet
[k + 1]. From Corollary 1, it follows that there exist 1 ≤ s ≤ t < |V (G)| and
q ∈ [k + 1] such that for every s ≤ i ≤ t we have ci ≥ q, and there also exist N
distinct indices s ≤ i1 < i2 < · · · < iN ≤ t such that ci j = q, for every j ∈ [N].
Without loss of generality we may assume that i1 = s and iN = t .

For each j ∈ [N], define a q-boundaried graph G j = (G j , (z1
j , z

2
j , . . . , z

q
j)) in the

following way. First, by linkedness, we find edge-disjoint paths P1, . . . , Pq between
V σ

vi1
and V \V σ

viN
. Notice that for each j ∈ [N] the cut EG(V σ

vi j
, V (G)\V σ

vi j
) contains

exactly one edge of each path Pi . Denote this edge by eij , for i ∈ [q]. For i ∈ [q], let

xij be the endpoint of eij that belongs to V σ
vi j

, and let yij be the endpoint that does not

belong to V σ
vi j

. We construct G j by taking G[V σ
vi j

], adding fresh boundary vertices

(z1
j , z

2
j , . . . , z

q
j), and adding one fresh edge xij z

i
j for each i ∈ [q].

Now consider any pair of indices 1 ≤ j1 < j2 ≤ N . Observe that there exists an
immersion model (φ,ψ) of G j1 in G j2 such that φ(zij1) = zij2 for each i ∈ [q]. Indeed,

we can put φ(u) = u for each u ∈ V (G j1) and φ(zij1) = zij2 for each i ∈ [q]. Then ψ

can be defined by taking ψ(e) = e for each e ∈ E(G j1) and mapping each edge xij1 z
i
j1

to an appropriate infix of the path Pi , extended by the edge xij2 z
i
j2

. Consequently, G j1
and G j2 satisfy the prerequisites of Lemma 5. We infer that if by ζ(j) we denote the
set of (q, �)-bucket interfaces to which G j conforms, then

ζ(1) ⊇ ζ(2) ⊇ . . . ⊇ ζ(N − 1) ⊇ ζ(N).

Observation 2 implies that N is larger by more than 1 than the total number of (q, �)-
bucket interfaces. It follows that there exists an index j , 1 ≤ j < N , such that

ζ(j) = ζ(j + 1).

In other words, the q-boundaried graphs G j and G j+1 are (q, �)-similar.
Define a q-boundaried graph G′ = (G ′, (y1

j+1, . . . , y
q
j+1)) by taking G ′ =

G[V (G)\V σ
i j+1

]. It can be now seen that G j+1 ⊕G′ is exactly the graph G with every
edge of the cut EG(V σ

vi j
, V (G) \V σ

vi j
) subdivided once. Since subdividing edges does

not change the cutwidth of the graph, we have that

cw(G j+1 ⊕ G′) = cw(G) > k. (12)

On the other hand, q-boundaried graphs G j and G j+1 are (q, �)-similar. Since � ≥
(2q + 3) · (2q + 6), by Theorem 3 we conclude that

cw(G j ⊕ G′) = cw(G j+1 ⊕ G′). (13)

Examine the graph G j ⊕ G′. In the join operation, we added an edge zij y
i
j+1 for each

i ∈ [q], which means each vertex zij has exactly two incident edges in G j ⊕ G′: one

123

Algorithmica (2019) 81:557–588 573

connecting it to xij and one connecting it to yij+1. Let H be the graph obtained from

G j ⊕ G′ by dissolving every vertex zij , i.e., removing it and replacing edges xij z
i
j and

zij y
i
j+1 with a fresh edge xij y

i
j+1. Subdividing edges does not change the cutwidth of

a graph, so we obtain that:
cw(H) = cw(G j ⊕ G′) (14)

Finally, it is easy to see that G admits H as a strong immersion: a strong immersion
model of H in G can be constructed by mapping the vertices and edges of G j and G ′
identically, and then mapping each of the remaining edges xij y

i
j+1 to a corresponding

infix of the path Pi . Also, since i j < i j+1, the graph H has strictly less vertices
than G. However, from Eqs. (12)–(14) we conclude that cw(H) = cw(G) > k. This
contradicts the assumption that G ∈ obs≤si (Ck). ��
Proof (of Theorem 1) Theorem 4 provides an upper bound on the number of vertices
of a graph in obs≤si (Ck). Observe that since such a graph has cutwidth k + 1, each
of its vertices has degree at most 2(k + 1). It follows that any graph from obs≤si (Ck)
has 2O(k3 log k) vertices and edges. Finally, by Observation 1 we have obs≤i(Cq) ⊆
obs≤si (Cq), so the same bound holds also for immersions instead of strong immersions.
This concludes the proof of Theorem 1. ��

5 An Algorithm for Computing Cutwidth

In this section we present an exact FPT algorithm for computing the cutwidth of
the graph. First, we need to give a dynamic programming algorithm that given an
approximate ordering σ of width r , finds, if possible, an ordering of width at most k,
where k ≤ r is given.

Our algorithm takes advantage of the given ordering σ and essentially computes, for
each subgraph of G induced by a prefix of σ , the (r, �)-bucket interfaces it conforms
to. More precisely, in Lemma 6 we show that if G has an optimum ordering of width
k, then there is an optimum ordering were each of these induced subgraphs occupies
at most � = O(rk) buckets, allowing to restrict our search to (r, �)-bucket profiles (a
variant of bucket interfaces to be defined later, refined so as to consider border vertices
more precisely). The proof slightly strengthens that of Lemma 1.

Lemma 6 Let G be a graph with an ordering σ of width r . Then there exists also
an ordering τ of optimum width, i.e., with cwτ (G) = cw(G), that has the following
property: for every prefix X of σ , the number of X-blocks in τ is at most 2r · cw(G)+
cw(G) + 4r + 2.

Proof Lemma 1 asserts that for each cut (A, B) of G of size at most r , there exists an
optimum-width ordering of V (G) where the number of (A, B)-blocks is at most

(2r + 1) · (2cw(G) + 3) + 2r = 4r · cw(G) + 2cw(G) + 8r + 3.

As A-blocks and B-blocks appear alternately, at most half rounded up of the (A, B)-
blocks can be A-blocks. Hence, the number of A-blocks in such an optimum-width
ordering is at most 2r · cw(G) + cw(G) + 4r + 2; we denote this quantity by λ.

123

574 Algorithmica (2019) 81:557–588

The proof of Lemma 1 in fact shows that for any ordering σ of V (G) and any cut
(A, B) of G of size at most r , either σ already has at most 2λ−1 (A, B)-blocks, or an
ordering σ ′ can be obtained from σ by swapping its (A, B)-blocks so that σ ′ has strictly
less (A, B)-blocks. Therefore, by reordering (A, B)-blocks of σ , we eventually get a
new ordering which has at most 2λ− 1 (A, B)-blocks, and hence at most λ A-blocks.

For i = 1, 2, . . . , |V (G)|−1, let (Ai , Bi) be the cut of G, where Ai is the prefix of
σ of length i , while Bi is the suffix of σ of length |V (G)|− i . Let τ0 be any optimum-
width ordering of G. We now inductively construct orderings τ1, τ2, . . . , τ|V (G)|−1,
as follows: once τi is constructed, we apply the above reordering procedure to τi and
cut (Ai+1, Bi+1). This yields a new ordering τi+1 of optimum width such that the
number of Ai+1-blocks in τi+1 is at most λ. Furthermore, τi+1 is obtained from τi by
reordering Ai+1- and Bi+1-blocks in τi . Hence, whenever X is a subset of Ai+1, then
any X -block in τi remains consecutive in τi+1, as it is contained in one Ai+1-block
in τi that is moved as a whole in the construction of τi+1. Consequently, if for all
j ≤ i we had that the number of A j -blocks in τi is at most λ, then this property is also
satisfied in τi+1. It is now clear that a straightforward induction yields the following
invariant: for each j ≤ i , then number of A j -blocks in τi is at most λ. Therefore
τ = τ|V (G)|−1 gives an ordering with the claimed properties. ��
Bucket profiles We now define a refinement of the widths of the buckets of a bucket
interface as well as a refinement of the notion of bucket interfaces. They are used in
the dynamic programming algorithm of Lemma 7.

Definition 5 Let (G, x̄) be a k-boundaried graph and let S = {x1, . . . , xk,
x ′

1, . . . , x
′
k} ⊆ V (G∗).

Let now σ be an ordering of V (G∗) and T be an �-bucketing of σ . For every bucket
T−1(i), i ∈ [�], let T−1(i)∩ S = {v1, v2, . . . , vp} for some v1 <σ v2 <σ · · · <σ vp;
we then define

T−1
j (i) =

⎧
⎪⎨
⎪⎩

{v ∈ T−1(i) : v <σ v1} for j = 0,

{v ∈ T−1(i) : v j <σ v <σ v j+1} for j ∈ [p − 1],
{v ∈ T−1(i) : vp <σ v} for j = p.

Let alsocuts(G, σ, T, i, j) be the family of σ -cuts containing on one side all vertices
appearing before v j−1 (or, if j = 0, all vertices of buckets appearing before bucket i)
and a prefix (in σ) of T−1

j (i). For an ordering σ of the vertices of a graph G, define

the width of j-th segment T−1
j (i) of the bucket i , i ∈ [�], j ∈ [0, p], as the maximum

width of any cut in the family cuts(G, σ, T, i, j). Formally,

cuts(G, σ, T, i, j) =
{(

T−1({1, . . . , i − 1}) ∪ L , T−1({i + 1, . . . , �}) ∪ R
)

:
(L , R) is a σ -cut of T−1(i) with v j ∈ L , v j+1 ∈ R

}
,

width(G, σ, T, i, j) = max { |EG(L , R)| : (L , R) ∈ cuts(G, σ, T, i, j) } .

We also need to refine the notion of a (k, �)-bucket interface.

123

Algorithmica (2019) 81:557–588 575

Definition 6 For k, � ∈ N, a (k,�)-bucket profile consists of functions:

– b, b′ : [k] → [�] identifying the buckets which contain xi and x ′
i , respectively,

– p, p′ : [k] → [k] highlighting the ordering between the vertices xi and x ′
i inside

a bucket, respectively,
– ν : [�] × [0, k] → [0, k] corresponding to the widths of segments of buckets

defined by the vertices xi , respectively.

A k-boundaried graph G conforms with a (k, �)-bucket profile, if there exists an
ordering σ of the vertices of G∗ and an �-bucketing T such that:

– T (v) is odd for v ∈ V (G) and even for v ∈ {x ′
1, . . . , x

′
k},

– T (xi) = b(i) and T (x ′
i) = b′(i), for each i ∈ [k],

– p(i) < p(j), if b(i) = b(j) and xi <σ x j , and p′(i) < p′(j) if b′(i) = b′(j) and
x ′
i <σ x ′

j ,
– width(G, σ |G , T |G, j, s) = ν(j, s), for each j ∈ [�] and s ∈ [0, k].

From the fact that the boundary vertices of a k-boundaried graph G split the buckets
defined by T into at most 2k segments in total it follows that:

Observation 3 For any pair (k, �) of positive integers, there is a set of at most

22k(log �+log k)+(�+2k) log(k+1)

(k, �)-bucket profiles that a k-boundaried graph G can possibly conform with, and
this set can be constructed in time polynomial in its size.

The (k, �)-bucket profiles that Observation 3 refers to will be called valid. By
making use of these two notions we ensure that we will be able to update the widths
of each bucket every time a new vertex is processed by the dynamic programming
algorithm. We are now ready to prove Lemma 7.

Lemma 7 Let r ∈ N
+. Given a graph G and an ordering σ of its vertices with

cwσ (G) ≤ r , an ordering τ of the vertices of G with cwτ (G) = cw(G) can be
computed in time 2O(r2 log r) · |V (G)|.
Proof The algorithm attempts to compute an ordering of width k for consecutive
k = 0, 1, 2, The first value of k for which the algorithms succeeds is equal to
the value of the cutwidth, and then the constructed ordering may be returned. Since
there is an ordering of width r , we will always eventually succeed for some k ≤ r ,
which implies that we will make at most r +1 iterations. Hence, from now on we may
assume that we know the target width k ≤ r for which we try to construct an ordering.

Given a graph G and an ordering σ of its vertices with cwσ (G) ≤ r we denote by
Gw the graph induced by the vertices of the prefix of σ of length w. Then we naturally
define the boundaried graph Gw, where we introduce a boundary vertex xi for each
edge ei of the cut EG(V (Gw), V (G) \ V (Gw). Note that this cut has at most r edges.

By Lemma 6, we know that there is an optimum-width ordering τ such that every
prefix V (Gw) of σ has at most � blocks in τ . Our dynamic programming algorithm
will simply inductively reconstruct all (k, �)-bucket profiles that may correspond to

123

576 Algorithmica (2019) 81:557–588

V (Gw)-blocks in τ , for each consecutive w in the ordering σ , eventually reconstructing
τ , if cwτ (G) ≤ k.

We now construct an auxiliary directed graph D that will model states and transitions
of our dynamic programming algorithm. Let � = 4rk + 2k + 8r + 4. First, for every
w ∈ [0, |V (G)|] and every valid (k, �)-bucket profile P , we add a vertex (w, P) to
D. Thus, by Observation 3, the digraph D has at most

22k(log �+log k)+(�+2k) log(k+1) · (|V (G)| + 1) = 2O(r2 log r) · |V (G)|

vertices. We add an edge ((w, P), (w + 1, P ′)), whenever the (k, �)-bucket profile P
can be expanded to the (k, �)-bucket profile P ′ in the sense that we explain now.

We describe which bucket profiles P ′ expand P by guessing where the new vertex
would land in the bucket profile P , assuming that Gw conforms to P . After the guess is
made, the updated profile P becomes the expanded profile P ′. Different guesses lead
to different profiles P ′ which extend P; this corresponds to different ways in which the
construction of the optimum ordering can continue. As describing the details of this
expansion relation is a routine task, we prefer to keep the description rather informal,
and leave working out all the formal details to the reader.

Let vw+1 be the (w + 1)-st vertex in the ordering σ , that is, vw+1 ∈ V (Gw+1) \
V (Gw). We construct (by guessing) a (k, �)-bucket profile P ′ from the (k, �)-bucket
profile P in the following way. First, we guess an even bucket of P to place each one
of the vertices in V (G∗

w+1)\V (G∗
w): the new vertices of the extension that correspond

to new edges of the cut EG(V (Gw+1), V (G) \ V (Gw+1)) that are incident to vw+1.
Notice that each bucket contains, at any moment, at most r vertices. Therefore, we
have at most r + 1 possible choices about where each vertex will land in each bucket
(including the placing in the order, as indicated by the function p′(·). Notice also that
there are at most r + 1 vertices in V (G∗

w+1) \ V (G∗
w). Therefore we have at most

(�(r + 1))r+1 options for this guess.
Next, we choose the place vw+1 is going to be put in. If vw+1 is an endpoint of an

edge from the cut EG(V (Gw), V (G) \ V (Gw)), then this place is already indicated
by functions b′(·) and p′(·) in the bucket profile P; if there are multiple edges in the
cut EG(V (Gw), V (G)\V (Gw)) that have vw+1 as an endpoint, then all of them must
be placed next to each other in the same even bucket (otherwise P has no extension).
Otherwise, if vw+1 is not an endpoint of an edge from EG(V (Gw), V (G) \ V (Gw)),
we guess the placing of vw+1 by guessing an even bucket (one of at most �+1 options)
together with a segment between two consecutive extension vertices in this bucket (one
of at most r + 1 options).

The placing of vw+1 may lead to one of three different scenarios; we again guess
which one applies. First, vw+1 can establish a new odd bucket and split the even bucket
into which it was put into two new even buckets, one on the left and one on the right
of the new odd bucket containing vw+1; the other extension vertices placed in this
bucket are split accordingly. Second, vw+1 can be present at the leftmost or rightmost
end of the even bucket it is placed in, so it gets merged into the neighboring odd
bucket. Finally, if the even bucket in which vw+1 is placed did not contain any other
extension vertices of G∗

w, then vw+1 can be declared to be the last vertex placed in

123

Algorithmica (2019) 81:557–588 577

this bucket, in which case we merge it together with both neighboring odd buckets. In
these scenarios, whenever the extended profile turns out to have more than � buckets,
we discard this option.

Having guessed how the placing of vw+1 will affect the configuration of buckets,
we proceed with updating the sizes of cuts, as indicated by the function ν(·). For this,
we first examine all the edges of the cut EG(V (Gw), V (G) \ V (Gw)) that have vw+1
as an endpoint. These edges did not contribute to the values of ν(·) in the bucket profile
P , but should contribute in P ′. Note that given the placement of vw+1, for each such
edge we exactly see over which segments this edge “flies over”, and therefore we can
update the values of ν(·) for these segments by incrementing them by one. Finally,
when vw+1 got merged to a neighboring odd bucket (or to two of them), we may also
need to take into account one more cut in the value of ν(·) for the last/first segment of
this bucket: the one between vw+1 and the vertices placed in this bucket. It is easy to
see that from the value of ν(·) for the segment in which vw+1 is placed, and the exact
placement of the endpoints of all the boundary edges, we can deduce the exact size
of this cut. Hence, the relevant value of ν(·) can be efficiently updated by taking the
maximum of the old value and the deduced size of the cut. We update ν in a similar
fashion when vw+1 merges with both neighboring odd buckets. If at any point any of
the values of ν(·) exceeds k, we discard this guess.

This concludes the definition of the extension. For every (k, �)-bucket profile P
and every (k, �)-bucket profile P ′ that extends it, we add to D an arc from (w, P) to
(w + 1, P ′). It is easy to see from the description above that, given P and P ′, it can
be verified in time polynomial in r whether such an arc should be added.

Finally, in the graph D we determine using, say, depth-first search, whether there
is a directed path from node (0, P∅) to node (|V (G)|, Pfull), where P∅ is an empty
bucket profile and Pfull is a bucket profile containing just one odd bucket. It is clear
from the construction that if we find such a path, then by applying operations recorded
along such a path we obtain an ordering of the vertices of G of width at most k. On
the other hand, provided k = cw(G), by Lemma 6 we know that there is always an
optimum-width ordering τ such that every prefix of σ has at most � blocks in τ . Then
the (k, �)-bucket profiles naturally defined by the prefixes of σ in τ define a path from
(0, P∅) to (|V (G)|, Pfull) in D.

The graph D has 2O(r2 log r) · |V (G)| vertices and arcs, and the depth-first search
runs in time linear in its size. It is also trivial to reconstruct the optimum-width order-
ing of the vertices of G from the obtained path in linear time. This yields the promised
running time bounds. ��

Having the algorithm of Lemma 7, a standard application of the iterative com-
pression technique immediately yields a 2O(k2 log k) · n2 time algorithm for computing
cutwidth, as sketched in Sect. 1. Simply add the vertices of G one by one, and apply
the algorithm of Lemma 7 at each step. However, we can make the dependence on n
linear by adapting the approach of Bodlaender [2]; more precisely, we make bigger
steps. Such a big step consists of finding a graph H that can be immersed in the input
graph G, which is smaller by a constant fraction, but whose cutwidth is not much
smaller. This is formalised in Lemma 9. For its proof we need the following definition
and a known result about obstacles to small cutwidth.

123

578 Algorithmica (2019) 81:557–588

Definition 7 A perfect binary tree is a rooted binary tree in which all interior nodes
have two children and all leaves have the same distance from its root. The height of a
perfect binary tree is the maximum root-to-leaf distance.

Lemma 8 ([13,17,22]) If T is a perfect binary tree of height 2k, then its cutwidth is
cw(T) ≥ k.

Lemma 9 There is an algorithm that given apositive integer k andagraphG,works in
time O(k2·|V (G)|)and either concludes that cw(G) > k, or finds agraph H immersed
in G such that |E(H)| ≤ |E(G)| · (1 − 1/(2k + 1)4(k+1)+3) and cw(G) ≤ 2cw(H).
Furthermore, in the latter case, given an ordering σ of the vertices of H, an ordering
τ of the vertices of G with cwτ (G) ≤ 2cwσ (H) can be computed in O(|V (G)|) time.
Proof Without loss of generality we assume that G is connected, because we can
apply the algorithm on the connected components of G separately and then take the
disjoint union of the results.

Observe first that we may assume that every vertex in G is incident to at most
2k edges, as otherwise, we could immediately conclude that cw(G) > k. This also
implies that every vertex in G has at most 2k neighbors; by N (v) we denote the set
of neighbors of a vertex v, and N (X) = (

⋃
v∈X N (v)) \ X for a vertex subset X . Let

G ′ be the graph obtained from G by exhaustively dissolving any vertices of degree 2
whose neighbors are different. That is, having such a vertex v, we delete it from the
graph and replace the two edges incident to it with a fresh edge between its neighbors,
and we proceed doing this as long as there are such vertices in the graph. Clearly, the
eventually obtained graph G ′ can be immersed in G, we have |E(G ′)| ≤ |E(G)|, the
degree of every vertex in G ′ is the same to its degree in G, and cw(G ′) ≤ cw(G).
However, observe that any ordering of the vertices of G ′ can be turned into an ordering
of the vertices of G with the same width by placing each dissolved vertex in any place
between its two original neighbors. Thus, cw(G ′) = cw(G).

Moreover, G ′ can be constructed in linear time by inspecting, in any order, all the
vertices that have degree 2 in the original graph G. It is also easy to see that, given an
ordering of vertices of G ′, one can reconstruct in linear time an ordering of G of at
most the same width.

Altogether, it is now enough to either conclude that cw(G ′) > k or find a graph H
immersed in G ′ such that

|E(H)| ≤ |E(G ′)| · (
1 − 1/ (2k + 1)4(k+1)+2)

and cw(G ′) ≤ 2cw(H ′). Therefore, from now on we may assume that if the graph G ′
contains a vertex that is incident to two edges then this vertex is incident to an edge of
multiplicity 2. Let V1 be the set of vertices of degree 1 in G ′. We consider two cases
depending on the size of V1.

Case 1 |V1| ≥ |E(G ′)|/(2k+1)4(k+1)+2. Notice first that V1 ⊆ N (N (V1)), and recall
that every vertex in G ′ is incident to at most 2k edges and therefore has at most 2k
neighbors. It follows then that |V1| ≤ 2k ·|N (V1)| and hence |N (V1)| ≥ |E(G ′)|/(2k+
1)4(k+1)+3. Let H be the graph obtained from G ′ by removing, for each vertex in

123

Algorithmica (2019) 81:557–588 579

N (V1), one of its neighbors in V1. Then |E(H)| ≤ |E(G ′)| · (1 − 1/(2k + 1)4(k+1)+3)

and H is immersed in G ′ (as it is an induced subgraph). Hence, H is also immersed
in G. Furthermore, let σ be any ordering of the vertices of H . Then, we can obtain
an ordering of the vertices of G ′ by placing each deleted vertex next to its original
neighbors. Notice that this placement increases the width of σ by at most 1 in total,
and thus by a multiplicative factor of at most 2. As we already showed how to obtain
an ordering of V (G) from a given ordering of V (G ′), the lemma follows for the case
where |V1| ≥ |E(G ′)|/(2k + 1)4(k+1)+2.

Case 2 |V1| < |E(G ′)|/(2k + 1)4(k+1)+2. For every v ∈ V (G ′) and every positive
integer s, we define Bs(v) to be the ball of radius s around v, that is, the set of
vertices at distance at most s from v in G ′. Recall that every vertex of G ′ has at
most 2k neighbors and observe then that |Bs(v)| ≤ (2k + 1)s . We construct a set of
vertices v1, v2, . . . , v� ∈ V (G ′) whose pairwise distance is greater than 4(k+1) in the
following greedy way. Having chosen v1, . . . , vi , if B4(k+1)(v1)∪· · ·∪ B4(k+1)(vi) �=
V (G ′) then let vi+1 be any vertex outside of B4(k+1)(v1) ∪ · · · ∪ B4(k+1)(vi). If such
a vertex does not exist, we stop by putting � = i and consider the set v1, v2, . . . , v�.
Observe here that we can calculate B4(k+1)(vi) by breadth-first search in O((2k +
1)4(k+1)+1) time, by stopping the search at depth 4(k + 1). However, note we do
not need to revisit a previously visited vertex, unless we reach it with fewer steps.
That is, starting with i = 0, we mark which vertices we have already visited (the set
B4(k+1)(v1)∪ · · · ∪ B4(k+1)(vi)) and remember minimum distances from {v1, . . . , vi }
to each previously visited vertex. Considering vertices in any order, we let vi+1 be
the first not yet visited. We then mark the new ball of radius 4(k + 1) around it, but
only exploring a previously visited vertex when the minimum distance to it strictly
decreases by adding vi+1. This way, we explore each vertex at most 4(k+1) times, as
this is an upper bound on the minimum distance of any vertex when first visited. Hence
the sequence v1, . . . , v� can be computed in O(k2|V (G)|) time. We now estimate the
length � of the sequence.

Recall that for every i ∈ [�], |B4(k+1)(vi)| ≤ (2k + 1)4(k+1) and that V (G) =⋃
i∈[�] B4(k+1)(vi). From the above and the fact that |E(G ′)| ≤ 2k · |V (G ′)| (as every

vertex of G ′ is incident to at most 2k edges of G ′), it follows that

� ≥ |V (G ′)|/(2k + 1)4(k+1) ≥ |E(G ′)|/(2k + 1)4(k+1)+1.

By construction, the distance between vi and v j is greater than 4(k + 1), for
distinct i, j ∈ [�]. Therefore, the balls B2(k+1)(v1), . . . , B2(k+1)(v�) are vertex-
disjoint. Moreover, since we have that |V1| < |E(G ′)|/(2k + 1)4(k+1)+2, at most
|E(G ′)|/(2k + 1)4(k+1)+2 of those balls contain a vertex of degree 1. Therefore, the
remaining � − |E(G ′)|/(2k + 1)4(k+1)+2 balls are disjoint with V1. Let I ⊆ [�] be
the set of indices for which the balls B2(k+1)(vi), i ∈ I , are disjoint from V1. Observe
that

|I | ≥ � − |E(G ′)|/(2k + 1)4(k+1)+2 ≥ |E(G ′)|/(2k + 1)4(k+1)+2.

��

123

580 Algorithmica (2019) 81:557–588

Claim 2 In time O(|E(G ′)|) we can either conclude that cw(G ′) > k, or for each
i ∈ I find a cycle in G ′ passing only through the vertices of the ball B2(k+1)(vi).

Proof Suppose for some i ∈ I , B2(k+1)(vi) does not contain a cycle. We will prove
that every vertex in G ′[B2(k+1)(vi)] has degree at least 3 in G ′, and that every edge
appears with multiplicity 1. Notice first that every edge of the graph G ′[B2(k+1)(vi)]
has multiplicity 1, as otherwise an edge with multiplicity at least 2 would form a
cycle, a contradiction. Notice also that B2(k+1)(vi) does not have any vertex that has
degree 2 in G. Indeed, recall that by the construction of the graph G ′ any vertex of
degree 2 is incident only to one edge of multiplicity 2, which is again a contradiction.
Moreover, by the choice of i ∈ [I], we obtain that B2(k+1)(vi)∩V1 = ∅ and therefore,
G ′[B2(k+1)(vi)] does not have any vertex that has degree 1 in G. We conclude that
every vertex in G ′[B2(k+1)(vi)] has degree at least 3 in G, and every edge appears
with multiplicity 1. Recall that the subgraph of G ′ induced by B2(k+1)(vi) contains
the full breadth-first search tree of vertices at distance at most 2(k + 1) from vi . If
G ′[B2(k+1)(vi)] did not contain any cycle, then it would be equal to this breadth-
first search tree, and in this tree all vertices except possibly the last layer would have
degrees at least 3. Hence,G ′ would contain as a subgraph a perfect binary tree of height
2(k + 1). From Lemma 8, this tree has cutwidth at least k + 1. The algorithm can thus
check (by breadth-first search) for a cycle in the subgraph induced by B2(k+1)(vi). If
it does not find any such cycle it immediately concludes that cw(G) = cw(G ′) > k.

If for every i ∈ I , the breadth-first search in G ′[B2(k+1)(vi)] finds a cycle, then the
algorithm obtained, in total time O(|E(G ′)|), a set of at least |I | ≥ E(G ′)/(2(k +
1))4(k+1)+2 vertex-disjoint (and hence edge-disjoint) cycles. ��

Let us assume that the algorithm has now found a set C of at least E(G ′)/
(2k + 1)4(k+1)+2 edge-disjoint cycles and let H be the subgraph obtained from G ′ by
removing one, arbitrarily chosen, edge eC from each cycle C ∈ C. Then H can be
immersed in G ′ and |E(H)| ≤ |E(G ′)| · (1 − 1/(2k + 1)4(k+1)+2). To complete the
proof of the lemma we will prove that if σ is any ordering of the vertices of H then σ

is also an ordering of the vertices of G ′ such that cwσ (G ′) ≤ 2cwσ (H). Notice that
by reintroducing an edge eC of G ′ to H we increase the width of the σ -cuts separating
its endpoints by exactly 1. Observe also that since eC belongs to the cycle C , the rest
of the cycle forms a path PC in H that connects the endpoints of eC . Therefore, each
of the σ -cuts separating the endpoints of eC has to contain at least one edge of PC .
Since for different edges eC , for C ∈ C, the corresponding paths PC are pairwise
edge-disjoint and they are present in H , it follows that the size of each σ -cut in G ′ is
at most twice the size of this σ -cut in H . Therefore cwσ (G ′) ≤ 2cwσ (H). Thus, H
can be returned, concluding the algorithm. ��

We are now ready to put all the pieces together.

Proof (of Theorem 2) Given an n-vertex graph G and an integer k, one can in time
2O(k2 log k) · n either conclude that cw(G) > k, or output an ordering of G of width
at most k. The proof follows the same recursive Reduction and Compression scheme
as the algorithm of Bodlaender [2]. By applying Lemma 9, we obtain a significantly
smaller immersion H , and we recurse on H . This recursive call either concludes that

123

Algorithmica (2019) 81:557–588 581

cw(H) > k, which implies cw(G) > k, or it produces an ordering of H of optimum
width cw(H) ≤ k. This ordering can be lifted, using Lemma 9 again, to an ordering of
G of width ≤ 2k. Given this ordering, we apply the dynamic programming procedure
of Lemma 7 to construct an optimum ordering of G in time 2O(k2 log k) · |V (G)|.

Since at each recursion step the number of edges of the graph drops by a multi-
plicative factor of at least 1/(2k + 1)4(k+1)+3, we see that the graph Gi at level i of
the recursion will have at most (1 − 1/(2k + 1)4(k+1)+3)i · |E(G)| edges. Hence, the
total work used by the algorithm is bounded by the sum of a geometric series:

∞∑
i=0

2O(k2 log k) · |E(Gi)| ≤ 2O(k2 log k) · |E(G)| ·
∞∑
i=0

(
1 − 1/(2k + 1)4k+7

)i

= 2O(k2 log k) · |E(G)| · (2k + 1)4k+7

= 2O(k2 log k) · |E(G)|. (15)

��

6 Obstructions to Edge-Removal Distance to Cutwidth

Throughout this section, by Ok(w) we mean a quantity bounded by ck · w + dk , for
some constant ck, dk depending on k only.

Given a graph G and a k ∈ N, we define the parameter dcwk(G) as the minimum
number of edges that can be deleted from G so that the resulting graph has cutwidth
at most k (so dcwk(G) fits in the wider category of “graph modification parameters”).
In other words:

dcwk(G) = min{|F | : F ⊆ E(G) and cw(G \ F) ≤ k}

Let Cw,k = {G | dcwk(G) ≤ w}. Notice that Ck = C0,k .
In this section, we provide bounds to the sizes of the obstruction sets of the class

of graphs G with dcwk(G) ≤ w, for each k, w ∈ N. Our results are the following.

Theorem 5 For every w, k ∈ N, every graph in obs≤si(Cw,k) has Ok(w) vertices.

Theorem 6 For every k, w ∈ N where k ≥ 7, the set obs≤i(Cw,k) contains at least(3k−7+w+1
w+1

)
non-isomorphic graphs.

From Observation 1, both bounds of Theorems 5 and 6 holds for both immersions
and strong immersions as well.

Given a collection H of graphs, we define the parameter aicH(G) as the minimum
number of edges whose removal from G creates an H-immersion free graph, that is,
a graph that does not admit any graph from H as an immersion. In both subsections
that follow, we need the following observation.

Observation 4 For every graph G and every w ∈ N, it holds that dcww(G) =
aicobs(Cw)(G).

123

582 Algorithmica (2019) 81:557–588

We remark that, within the same set of authors, we have recently studied kerneliza-
tion algorithms for edge removal problems to immersion-closed classes. The following
result has been obtained in [12]: whenever a finite collection of graphs H contains
at least one planar subcubic graph, and all graphs from H are connected, then the
problem of computing aicH(G), parameterized by the target value, admits a linear
kernel. These prerequisites are satisfied for H = obs(Cw), and hence the problem of
computing dcww(G), parameterized by the target value k, admits a linear kernel.

The connections between kernelization procedures and upper bounds on minimal
obstruction sizes have already been noticed in the literature; see e.g., [8]. Intuitively,
whenever the kernelization rules apply only minor or immersion operations, the ker-
nelization algorithm can be turned into a proof of an upper bound on the sizes of
minimal obstacles for the corresponding order. Unfortunately, this is not the case for
the results of [12]: the main problem is the lack of linked decompositions for parameter
tree-cut width, which plays the central role. Here, the situation is different, as we know
that there are always linked orderings of optimum width. We therefore showcase how
to use the linkedness to obtain a linear upper bound on the sizes of obstructions for
Cw,k . The arguments are somewhat similar as in [12]: we use the idea of protrusions,
adapted to the setting of edge cuts, and we try to replace protrusions with smaller
ones having the same behavior. The main point is that linkedness ensures us that the
replacement results in an immersion of the original graph.

6.1 Upper Bound on Obstruction Size

A partial q-boundaried graph is a pair G = (G, x̄) where G is a graph and x̄ =
(x1, . . . , xq) is a q-tuple that consists either of vertices of G or from empty slots (that
are indices that do not correspond to vertices of G). If xi is an empty slot, we denote
it by xi = �. The extension of such G is defined just as for q-boundaried graphs, but
we put x ′

i = �′ iff xi = �. Intuitively a partial q-boundaried graph extends the notion
of a boundaried graph by allowing the vertices of the boundary to carry indices from
a set whose cardinality might be bigger than the boundary.

Let H be a graph and let (X1, X2) be its cut where q = δ(X1). Let EH (X1, X2) =
{e1, . . . , eq} where ei = {x1

i , x
2
i }, i ∈ [q], and such that x j

i ∈ X j for (i, j) ∈ [q]×[2].
For j ∈ [2], we say that the pair (X1, X2) generates the q-boundaried graph A j =
(A j , x j) if Ai = G[Xi] and xi = (x j

1 , . . . , x j
q).

We denote by Bq,h the collection containing every q-boundaried graph that can be
generated from some cut (X1, X2) of some graph H where |V (H)|+|E(H)| ≤ h and
q = δ(X1). Moreover, we denote by Mq,h the set of all partial q-boundaried graphs
F′ = (F ′, x̄ ′) such that, for some F = (F, x̄) of Bq,h , F ′ is a subgraph of F and a
vertex xi in x̄ ′ is an empty slot iff xi ∈ V (F) \ V (F ′).

In other words,Mq,h contains all partial q-boundaried graphs that can be generated
by a graph whose number of edges and vertices does not exceed h. We insist that if
H = (H, x) ∈ Mq,h , then the vertices of H are taken from some fixed repository of
h vertices and that an element xi of x is either an empty slot (i.e., xi = �) or the i-th
vertex of some predetermined ordering (x1, . . . , xq) of q vertices from this repository.
This permits us to assume that |Mq,h | is bounded by some function that depends only
on q and h.

123

Algorithmica (2019) 81:557–588 583

Let G = (G, x) be a q-boundaried graph and H = (H, y) be a partial q-boundaried
graph. Let also G∗ and H∗ be the extensions of G and H, respectively. We also assume
that, for all i ∈ [q], either yi = xi or yi = �. For an edge subset R ⊆ E(G∗), we say
that H is an R-avoiding strong immersion in G if there is an H∗-immersion model
(φ,ψ) of G∗ \ R where, for every i ∈ [q] such that yi �= �, it holds that φ(yi) = xi
and φ(y′

i) = x ′
i �= �. We now define the R-avoiding (q, h)-folio of G as the set of all

partial q-boundaried graphs in Mq,h that are R-avoiding strong immersions in G and
we denote it by folioq,h,R(G). We finally define

Fq,h(G) = {folioq,h,R(G) | R ⊆ E(G∗) and |R| ≤ q}.

Given two q-boundaried graphs G1 and G2 we write G1 ∼q,h G2 in order to denote
that Fq,h(G2) = Fq,h(G2). As Fq,h maps each q-boundaried graph to a collection of
subsets of Mq,h we have the following.

Lemma 10 There is some function f1 : N
2 → N such that for every two non-negative

integers q and h, the number of equivalence classes of ∼q,h is at most f1(q, h).

The next lemma is a consequence of the definition of the function Fq,h .

Lemma 11 LetH be some set of connected graphs, each of at most h vertices, and let
Gi = (Gi , xi), i ∈ {1, 2} be two q-boundaried graphs such thatG1 ∼q,h G2 and such
both G1,G2 areH-immersion free. Then, for every q-boundaried graph F = (F, y),
it holds that aicH(F ⊕ G1) = aicH(F ⊕ G2).

The proof is omitted as it is very similar to the one in [5] where a similar encoding
was defined in order to treat the topological minor relation. To see the main idea, recall
that Fq,h(Gi) registers all different “partial occurrences” of graphs of ≤ h vertices
(and therefore also of graphs of H) in G′

i , for all possible ways to obtain G′
i from

Gi after removing at most q edges. This encoding is indeed sufficient to capture the
behavior of all possible edge sets whose removal from F⊕Gi creates an H-free graph.
Indeed, as both G1 and G2 are H-immersion free, any such set should have at most q
edges inside Gi as, if not, the q-boundary edges between F and Gi would also make
the same job. A similar discussion is also present in [12].

Given a graph G and a subset X ⊆ V (G), we write cwσ (G, X) = δG(X) +
cwσX (G[X]). We require the following extension of the definition of linked orderings.

Definition 8 (extended linkedordering) LetG be an-vertex graph and let X be a subset
of V (G). An ordering σ = 〈v1, . . . , vn〉 of G is X -linked if X = {vn−|X |+1, . . . , vn}
and for every i, j ∈ [n − |X |, n] where i < j there exist min{δ({v1, . . . , vh}) | i ≤
h ≤ j} edge-disjoint paths between {v1, . . . , vi } and {v j , . . . , vn} in G.

The proof of the following result is very similar to the one of Lemma 3. We just
move X to the end of the ordering, in the order given by σ , and apply exhaustively the
same refinement step based on submodularity, but only to the subordering induced by
X .

Lemma 12 For every graph G and every subset X of V (G), if there exists an ordering
σ of G such that cwσ (G, X) ≤ r , then there exists an X-linked ordering σ ′ of G such
that cwσ ′(G, X) ≤ r .

123

584 Algorithmica (2019) 81:557–588

Let w1, w2 ∈ N, G be a graph, and X ⊆ V (G). We say that X is an (w1, w2)-
cutwidth-edge-protrusion of G if δ(X) ≤ w1 and cw(G[Xi]) ≤ w2.

The next lemma uses an idea similar to the one of Lemma 4. Here ∼q,h plays the
role of (q, �)-similarity.

Lemma 13 There is a computable function f2 : N
2 → N such that the following

holds: Let k be a non-negative integer and let H be a finite set of connected graphs,
each having at most h vertices and edges. Let also G be a graph and let X be a
(2k, k)-cutwidth-edge-protrusion of G. If |X | > f2(k, h), then G contains as a proper
strong immersion a graph G ′ where aicH(G) = aicH(G ′).

Proof We set f2(k, h) = (f1(3k, h) + 1)3k+1 − 1. We have that |X | > f2(k, h) or,
equivalently, |X | ≥ (f1(3k, h) + 1)3k+1. We set � = |X |. Let σ ∗ = 〈x1, . . . , x�〉
be an ordering of the vertices in X such that cwσ ∗(G[X]) ≤ k. Let σ =
〈v1, . . . , vn−�, vn−�+1, . . . , vn〉 be any ordering of V (G) such that σ ∗ is a suffix of σ ,
i.e., 〈x1, . . . , x�〉 = 〈vn−�+1, . . . , vn〉. It follows that cwσ (G, X) ≤ cwσ ∗(G[X]) +
δG(X) ≤ k + 2k = 3k. From Lemma 12, there is an X -linked ordering σ ′ of V (G),
where cwσ ′(G, X) ≤ 3k.

We set ki = δG[X]({x1, . . . , xi−(n−�)) + δG(X) and observe that ki ≤ k + 2k =
3k, i ∈ [n − �, n − 1]. We set up the alphabet A = {0, 1, . . . , 3k} and we see w =
kn−�, kn−�+1, . . . , kn−1 as a word on A. Let also N = f1(3k, h). Notice that |w| =
|X | = � ≥ (f1(3k, h) + 1)3k+1 = (N + 1)|A|. From Corollary 1, if |w| ≥ (N + 1)|A|,
there are a, b ∈ [n − �, n − 1], a < b and some p ∈ A such that ka, kb ≥ p and
p appears in {ka, . . . , kb} at least N + 1 times. Let these appearance be at indices
a ≤ i1 < i2 < . . . < iN+1 ≤ b.

By X -linkedness, there are p edge-disjoint paths Pi , for i ∈ [p], from {v1, . . . , vi1}
to {viN+1 , . . . , v|V (G)|}. Observe that for each j ∈ [N + 1], each path Pi must
cross exactly one edge of the cut δG({v1, . . . , vi j }); let this edge be zijw

i
j , where

zij ∈ {v1, . . . , vi j } and wi
j /∈ {v1, . . . , vi j }. For each j ∈ [N + 1] we define

p-boundaried graphs F j = (Fj , (z1
j , . . . , z

p
j)) where Fj = G[{v1, . . . , vi j }] and

G j = (G j , (w
1
j , . . . , w

p
j)), G j = G[{vi j+1, . . . , v|V (G)|}].

As, from Lemma 10, the equivalence relation ∼3k,h has at most N equivalent
classes, there are j1, j2 such that a ≤ j1 < j2 ≤ b such that G j1 ∼3k,h G j2 . Let
G ′ = Fi j1

⊕Gi j2
; it is easy to observe that G ′ is a proper immersion of G, because the

edges added when joining can be modeled using appropriate infixes of the paths Pi .
From Lemma 11, however, we have aicH(Fi ⊕ Gi) = aicH(Fi ⊕ G j), and therefore
aicH(G) = aicH(G ′). ��
Lemma 14 Let k, w, � ∈ N and let G be a graph. If dcwk(G) ≤ w and |V (G)| ≥
� · (2w + 1) + 2w, then G has a (2k, k)-cutwidth-edge-protrusion X where |X | ≥ �.

Proof We denoten = |V (G)|. Let F be a set of edges ofG such that ifG ′ = G\F , then
cw(G ′) ≤ k. Let σ = 〈v1, . . . , vn〉 be an ordering of V (G ′) such that cwσ (G ′) ≤ k.
Let I denote the indices in σ of the endpoints of the edges in F and notice that |I | ≤ 2w.
We consider the maximal intervals of [n] that do not intersect I . The set [n] \ I has
n− |I | ≥ n− 2w elements, that are distributed among at most |I | + 1 ≤ 2w + 1 such

123

Algorithmica (2019) 81:557–588 585

intervals. By the pigeonhole principle, one interval {i, . . . , j} has at least n−2w
2w+1 ≥ �

elements.
Consider now the set X = {vi , . . . , v j }, |X | ≥ �. Notice that for σ ′ =

〈vi , . . . , v j 〉, cwσ ′(G[X]) ≤ k. Moreover there are at most δG ′({v1, . . . , vi−1}) +
δG ′({v j+1, . . . , vn}) ≤ 2k edges with one vertex in X and the other not in X . There-
fore, δG(X) ≤ 2k and X is a (2k, k)-cutwidth-edge-protrusion of G. ��
Proof (of Theorem 5) We set H = obs≤im (Ck). By Theorem 4, there is a f3 : N → N

such that graphs from H have at most h = f3(k) vertices. Let G ∈ obs≤im (Cw,k). This
means that dcwk(G) = w + 1, while, for every proper strong immersion G ′ of G, it
holds that dcwk(G ′) ≤ w. This, together with Observation 4 and Lemma 13, implies
that G cannot have a (2k, k)-cutwidth-edge-protrusion X of more than � = f2(k, h),
vertices. As dcwk(G) = w + 1, Lemma 14 implies that |V (G)| < � · (2w + 3) +
2(w + 1) = Ok(w) vertices. ��

Notice that Theorem 5 can be seen as an application of Lemma 3 on the existence of
linked orderings of optimum cutwidth (along with Lemma 12, that is an easy extension
of it). We stress that this bound is constructive as, by going through the proof, one can
make an estimation of the functions of k hidden in the Ok notation. In future work we
plan to further develop the above technique of proving such linear bounds for other
edge modification problems. Some analogous work for vertex modification problems
have been done in [8] where the parameter k is the number of vertices that one should
remove in order to transform a graph to one of treewidth at most k. The corresponding
bound in [8] is wOk (1), is non-constructive, and follows a distinct (more elaborated)
approach.

6.2 Lower Bound on Number of Obstructions

We now focus on the proof of Theorem 6. We need the following result.

Theorem 7 ([13])For every k ≥ 7, the number of non-isomorphic connected minimal
obstructions in obs≤i(Ck) is at least 3k−7 + 1.

Recall that, given a graph class H, we defined aicH(G) as the minimum number of
edges of G whose removal yields an H-immersion-free graph. We set Cw,H = {G |
aicH(G) ≤ w}. In particular C0,H is the class of all H-immersion free graphs. If G
and H are graphs, we denote by G � H the disjoint union of G and H .

The following observations follow directly from the definition of aicH.

Observation 5 If G and H are graphs, then H ≤i G implies that aicH(H) ≤
aicH(G).

Observation 6 If G and H are graphs, then aicH(G � H) = aicH(G) + aicH(H).

Observation 7 If G ∈ obs≤i(Cw,H), then aicH(G) = w + 1.

Lemma 15 Let H be some ≤i-antichain. For every non-negative integer w, if
G1, . . . ,Gw+1 are (not necessarily distinct) members of H, then

⊎w+1
i=1 Gi ∈

obs≤i(Cw,H).

123

586 Algorithmica (2019) 81:557–588

Proof Let G = ⊎w+1
i=1 Gi . To prove that G ∈ obs≤i(Cw,H) we have to show that it

satisfies O1 and O2. Notice that since H is an ≤i-antichain, aicH(H) = 1 for every
H ∈ H. By Observations 6 and 7, aicH(G) = ∑w+1

i=1 aicH(Gi) = w + 1 and O1
holds. Therefore, G /∈ Cw,H. Let now G ′ is a proper immersion of G. This mean that
G ′ = ⊎w+1

i=1 G ′
i where G ′

i ≤i Gi and at least one of G ′
1, . . . ,G

′
w+1 is different than

Gi . W.l.o.g. we assume that this graph is Gw+1. As H is a ≤i-antichain, G ′
w+1 is not

isomorphic to a graph of H. Therefore aicH(G ′
w+1) = 0. Then, by Observations 5

and 6, aicH(G ′) = ∑k
i=1 aicH(G ′

i) + aicH(G ′
w+1) ≤ ∑w

i=1 aicH(Gi) + 0 = w and
O2 holds. ��

Theorem 8 If k is a non-negative integer and H is a ≤i-antichain that contains at
least q connected graphs, then |obs≤i(Cw,H)| ≥ (q+w

w+1

)
.

Proof Let H′ be some subset of H containing q connected graphs. Using Lemma 15,
we observe that every multiset of cardinality w + 1 whose elements belong to H′
corresponds to a different (i.e., non-isomorphic) obstruction of Cw,H. Therefore,
|obs≤i(Cw,H)| is at least the number of multisets of cardinality w + 1 the elements of
which are taken from a set of cardinality q, which is known to be

(q+w
w+1

)
. ��

Proof (of Theorem 6) From Observation 4, it holds that Cw,k = Cw,Hk , where Hk =
obs≤i(Ck). This means that obs≤i(Cw,k) = obs≤i(Cw,Hk). The result follows from
Theorems 7 and 8. ��

7 Conclusions

In this paper we have proved that the immersion obstructions for admitting a layout of
cutwidth at most k have sizes single-exponential in O(k3 log k). The core of the proof
can be interpreted as bounding the number of different behavior types for a part of the
graph that has only a small number of edges connecting it to the rest. This, in turn,
gives an upper bound on the number of states for a dynamic programming algorithm
that computes the optimum cutwidth ordering on an approximate one. This last result,
complemented with an adaptation of the reduction scheme of Bodlaender [2] to the
setting of cutwidth, yields a direct and self-contained FPT algorithm for computing
the cutwidth of a graph. In fact, we believe that our algorithm can be thought of
“Bodlaender’s algorithm for treewidth in a nutshell”. It consists of the same two
components, namely a recursive reduction scheme and dynamic programming on an
approximate decomposition, but the less challenging setting of cutwidth makes both
components simpler, thus making the key ideas easier to understand. For an alternative
attempt of simplification of the algorithm of Bodlaender and Kloks [3], applied for
the case of pathwidth, see [9].

In our proof of the upper bound on the number of types/states, we used a somewhat
new bucketing approach. This approach holds the essence of the typical sequences
of Bodlaender and Kloks [3], but we find it more natural and conceptually simpler.
The drawback is that we lose a log k factor in the exponent. It is conceivable that we
could refine our results by removing this factor provided we applied typical sequences

123

Algorithmica (2019) 81:557–588 587

directly, but this is a price that we are willing to pay for the sake of simplicity and
being self-contained.

An important ingredient of our approach is the observation that there is always an
optimum cutwidth ordering that is linked: the cutsizes along the ordering precisely
govern the edge connectivity between prefixes and suffixes. Recently, there is a grow-
ing interest in parameters that are tree-like analogues of cutwidth: tree-cut width [26]
and carving-width [21]. In future work, we aim to explore and use linkedness for
tree-cut decompositions and carving decompositions in a similar manner as presented
here.

Acknowledgements The second author thanks Mikołaj Bojańczyk for the common work on understand-
ing and reinterpreting the Bodlaender-Kloks dynamic programming algorithm [3], which influenced the
bucketing approach presented in this paper. We also thank O-joung Kwon for pointing us to [11,16], as
well as an anonymous referee for noting that the running time in Lemma 9 can be reduced to polynomial
by amortization.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bellenbaum, P., Diestel, R.: Two short proofs concerning tree-decompositions. Comb. Probab. Comput.
11(6), 541–547 (2002)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996)

3. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of
graphs. J. Algorithms 21(2), 358–402 (1996)

4. Booth, H., Govindan, R., Langston, M.A., Ramachandramurthi, S.: Cutwidth approximation in linear
time. In: Proceedings of the Second Great Lakes Symposium on VLSI, pp. 70–73. IEEE (1992)

5. Chatzidimitriou, D., Raymond, J., Sau, I., Thilikos, D.M.: An O(log OPT)-approximation for
covering/packing minor models of θr . In: Proceedings of WAOA 2015, pp. 122–132 (2015).
arXiv:1510.03945

6. Chudnovsky, M., Seymour, P.D.: A well-quasi-order for tournaments. J. Comb. Theory Ser. B 101(1),
47–53 (2011)

7. Díaz, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356
(2002)

8. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F -deletion: approximation, kernelization
and optimal FPT algorithms. In: Proceedings of FOCS 2012, pp. 470–479. IEEE Computer Society
(2012)

9. Fürer, M.: Faster computation of path-width. In: Mäkinen, V., Puglisi, J.S., Salmela, L. (eds.) Com-
binatorial Algorithms: 27th International Workshop, IWOCA 2016, Helsinki, Finland, August 17–19,
2016, Proceedings, pp. 385–396. Springer, Cham (2016)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, New York (1979)
11. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Branch-width and well-quasi-ordering in matroids and

graphs. J. Comb. Theory, Ser. B 84(2), 270–290 (2002). A correction is available at http://www.math.
uwaterloo.ca/~jfgeelen/Publications/bn-corr.pdf

12. Giannopoulou, A.C., Pilipczuk, M., Thilikos, D.M., Raymond, J.F., Wrochna, M.: Linear kernels for
edge deletion problems to immersion-closed graph classes (2016). arXiv:1609.07780

13. Govindan, R., Ramachandramurthi, S.: A weak immersion relation on graphs and its applications.
Discrete Math. 230(1), 189–206 (2001)

14. Heggernes, P., van’t Hof, P., Lokshtanov, D., Nederlof, J.: Computing the cutwidth of bipartite permu-
tation graphs in linear time. SIAM J. Discrete Math. 26(3), 1008–1021 (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1510.03945
http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.pdf
http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.pdf
http://arxiv.org/abs/1609.07780

588 Algorithmica (2019) 81:557–588

15. Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of split graphs and threshold
graphs. SIAM J. Discrete Math. 25(3), 1418–1437 (2011)

16. Kanté, M.M., Kwon, O.: An upper bound on the size of obstructions for bounded linear rank-width
(2014). arXiv:1412.6201

17. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl. Math. 43(1), 97–101 (1993)
18. Lagergren, J.: Upper bounds on the size of obstructions and intertwines. J. Comb. Theory Ser. B 73(1),

7–40 (1998)
19. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approx-

imation algorithms. J. ACM 46(6), 787–832 (1999)
20. Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash–Williams’ immersion conjecture. J. Comb.

Theory Ser. B 100(2), 181–205 (2010)
21. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)
22. Takahashi, A., Ueno, S., Kajitani, Y.: Minimal acyclic forbidden minors for the family of graphs with

bounded path-width. Discrete Math. 127(1–3), 293–304 (1994). (Graph theory and applications
(Hakone, 1990))

23. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth I: a linear time fixed parameter algorithm. J.
Algorithms 56(1), 1–24 (2005)

24. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth II: algorithms for partial w-trees of bounded
degree. J. Algorithms 56(1), 25–49 (2005)

25. Thomas, R.: A Menger-like property of tree-width: the finite case. J. Comb. Theory Ser. B 48(1), 67–76
(1990)

26. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theory Ser. B 110,
47–66 (2015)

27. Yannakakis, M.: A polynomial algorithm for the min-cut linear arrangement of trees. J. ACM 32(4),
950–988 (1985)

123

http://arxiv.org/abs/1412.6201

	Cutwidth: Obstructions and Algorithmic Aspects
	Abstract
	1 Introduction
	1.1 Results on Obstructions
	1.2 Algorithmic Results

	2 Preliminaries
	3 Bucket Interfaces
	4 Obstruction Sizes and Linked Orderings
	5 An Algorithm for Computing Cutwidth
	6 Obstructions to Edge-Removal Distance to Cutwidth
	6.1 Upper Bound on Obstruction Size
	6.2 Lower Bound on Number of Obstructions

	7 Conclusions
	Acknowledgements
	References

