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Abstract This erratum fixes a technical problem in the paper published in Algorith-
mica, Volume 79, Number 3, November 2017, pp. 886–908. Theorem 1 of this paper
gives upper bounds on both worst testing cost and expected testing cost of the decision
tree built by Algorithm 1. Although the statement is correct, the proof presented in the
paper has a problem. The proof relies on the analysis of a nonlinear program (NLP)
given by Eqs. (5)–(9), which is not convex as mistakenly proved in Appendix A.2. In
this erratum we present a correct proof of Theorem 1. Instead of analyzing the NLP
we analyze a related linear program.

1 Notation and Algorithm 1

For the sake of self containment we present some notations and the description of
Algorithm 1 introduced in [1].

The original article can be found online at https://doi.org/10.1007/s00453-016-0211-2.
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We define cost (D, s) as the sum of the tests’ cost on the path from the root of D to
the leaf associated with object s. Then, the worst testing cost and the expected testing
cost of D are, respectively, defined as

costW (D) = max
s∈S {cost (D, s)} and costE (D) =

∑

s∈S
cost (D, s)p(s). (1)

Given a positive number j and two decision trees DE and DW for instance I , the
procedure CombineTrees(DE ,DW , j) (see Algorithm 1) constructs a new decision
tree D j for I whose worst testing cost is increased by at most j w.r.t the worst testing
cost of DW , i.e., costW (D j ) ≤ j + costW (DW ). Our algorithm uses the definition of
a j -replaceable node, by which we mean a node v in D such that the total cost of the
tests on the path from the root of D to v (including v) is larger than j and the cost
of the path from the root of D to the parent of v is smaller than or equal to j . The
procedure Trade-Off repeatedly uses CombineTrees to create several decision
trees (one of these trees being DW ) with increasingly worst testing cost and chooses
the one with the best expected testing cost. We will show that this way it can guarantee
the best possible trade-off.

Algorithm 1 Computes trade-off tree between DW and DE

Procedure CombineTrees(DE , DW , j)
1: D j ← DE
2: Traverse D j and construct R = {v | v is a j-replaceable node of D j }
3: for each v ∈ R do
4: Replace in D j the subtree rooted at v with DW
5: return D j

Procedure Trade-Off(DE , DW ,C)
1: for j = 0, . . . ,C do
2: D j ← CombineTrees(DE , DW , j)
3: j∗ ← arg min

0≤ j≤C
costE (D j )

4: return D j∗

Proposition 1 The decision tree D j returned by CombineTrees has worst testing
cost at most j + costW (DW ).

2 Correct Analysis of Algorithm 1

Now we analyze the decision tree D = D j∗ output by Trade-Off(DE , DW ,C),
where C is an integer parameter. Notice that D is the decision tree with minimum
expected testing cost among the decision trees D0, D1, D2, . . . , DC , where D j is the
decision tree returned by CombineTrees(DE , DW , j). It follows from the previous
proposition that costW (D) ≤ C + costW (DW ).

The analysis of the expected testing cost of D is more involved. In order to simplify
the notation we will let W = costW (DW ). We also assume for simplicity in the
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following that test costs are integers. Given a decision tree D′ and an object/leaf s ∈ S
with cost (D′, s) = κ we will say that s has cost κ in D′.

Let pi , with i = 1, . . . ,C , be the sum of the probabilities of objects with cost i in
DE and pC+1 be the sum of the probabilities of the objects with cost larger than C in
DE . Clearly:

costE (DE ) ≥
C+1∑

i=1

pi · i.

Furthermore, for j = 0, . . . ,C , we have that:

costE (D j ) ≤
j∑

i=1

pi · i +
⎛

⎝( j + W )

C+1∑

i= j+1

pi

⎞

⎠

because the objects whose cost in DE is larger than j have cost at most j + W in
D j . Moreover, for a probability distribution q = (q1, . . . , qC+1), let

f (q) = min
j=0,...,C

{∑ j
i=1 qi · i + ( j + W )

∑C+1
i= j+1 qi∑C+1

i=1 qi · i

}
,

and let p = (p1, . . . , pC+1). Thus, we have

costE (D)

costE (DE )
= min

j=0,...,C

{
costE (D j )

costE (DE )

}
≤ f (p) ≤ max

q∈P
f (q), (2)

where P = {(q1, q2, . . . , qC+1)| ∑C+1
i=1 qi = 1 and q1, q2, . . . , qC+1 ≥ 0}. The next

lemma gives the exact value of maxq∈P f (q).

Lemma 1 Let p∗ = (p∗
i , . . . , p

∗
C+1), with

p∗
i =

⎧
⎪⎨

⎪⎩

(W−1)i−1

Wi , i = 1, . . . ,C

(W−1)C

WC , i = C + 1.

(3)

We have that p∗ ∈ P and

f (p∗) = 1(
1 − (W−1

W

)C+1
) = max

q∈P
f (q).

Proof The statements p∗ ∈ P and

f (p∗) = 1(
1 − (W−1

W

)C+1
)
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can be verified through simple calculations (see Appendix A).
To prove that f (p∗) = maxq∈P f (q), we first show that

max
q∈P

f (q) = max
q′ min

j=0,...,C

⎧
⎨

⎩

j∑

i=1

q ′
i · i + ( j + W )

C+1∑

i= j+1

q ′
i

⎫
⎬

⎭ s. t. (4)

C+1∑

i=1

i · q ′
i = 1 (5)

q ′
i ≥ 0, i = 1, . . . ,C + 1. (6)

In fact, let r = argmaxq∈P f (q) and let K = ∑C+1
i=1 i · ri . Then, r/K is a solution

for the problem defined by Eqs. (4)–(6) and its objective value is f (r). Conversely,
let r′ be the optimal solution of the problem defined by Eqs. (4)–(6) and let z′ be the
corresponding objective function value. Moreover, let

K ′ = 1
∑C+1

i=1 r ′
i

.

Then, K ′r′ ∈ P and f (K ′r′) = z′,
Therefore, we can analyze the optimum value of the optimization problem defined

by Eqs. (4)–(6). This problem can be formulated as a linear program as follows:

max z s. t. (7)

z −
j∑

i=1

i · qi − ( j + W )

⎛

⎝
C+1∑

i= j+1

qi

⎞

⎠ ≤ 0, j = 0, . . . ,C (8)

C+1∑

i=1

i · qi = 1 (9)

qi ≥ 0, i = 1, . . . ,C + 1. (10)

Thus, to show that

max
q∈P

f (q) = 1(
1 − (W−1

W

)C+1
) ,

it suffices to exhibit a feasible solution for the dual of the above LP with objective
value 1(

1−
(
W−1
W

)C+1
) .

The dual of the LP defined by Eqs. (7)–(9) is given by

min λE s. t. (11)
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k · λE −
k−1∑

j=0

( j + W )λ j −
C∑

j=k

kλ j ≥ 0, k = 1, . . . ,C + 1 (12)

C∑

j=0

λ j ≥ 1 (13)

λ j ≥ 0, j = 0, . . . ,C . (14)

It is possible to show (seeAppendixB for calculations) thatλ∗ = (λ∗
E , λ∗

0, . . . , λ
∗
C ),

where

λ∗
j = W j (W − 1)C− j

WC+1 − (W − 1)C+1 ,

for j = 0, ...,C and λ∗
E = 1(

1−
(
W−1
W

)C+1
) is a feasible solution for the dual problem,

which establishes the lemma. �	
Thus, by setting C = 
ρW� we get the following theorem.

Theorem 1 Fix an instance I of the decision tree optimization problem and let DE

be a decision tree such that costE (DE ) = OPTE (I ). For every ρ > 0 there exists a
decision tree D such that

costW (D) ≤ (1 + ρ)OPTW (I ) and costE (D) ≤
(

1

1 − e−ρ

)
OPTE (I ).

Proof Let W = OPTW (I ) and C = 
ρW�. Let DW be a decision tree such that
costW (DW ) = W. It follows from the analysis above that the decision tree D output
by Trade-Off(DE , DW ,C) has worst testing cost at most C +W < (1+ρ)W and
expected testing cost smaller than

1(
1 −

(
W−1
W

)C+1
)OPTE (I ) ≤

⎛

⎜⎝
1

1 −
(
W−1
W

)ρW

⎞

⎟⎠ OPTE (I ) ≤
(

1

1 − e−ρ

)
OPTE (I ).

A Calculations for p∗ in Lemma 1

In order to verify that p∗ ∈ P it suffices to use the fact that p∗
0, . . . , p

∗
C form a

geometric progression with ratio (W − 1)/W .
To show that

f (p∗) = 1

1 − (W−1)C+1

WC+1

,
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it is enough to use the following identities

C+1∑

i=1

i · p∗
i = W − (C + W )

(W − 1)C

WC
+ (C + 1)

(W − 1)C

WC

j∑

i=1

i · p∗
i = W − ( j + W )

(W − 1) j

W j

C+1∑

i= j+1

p∗
i = (W − 1) j

W j
.

B Calculations with the Dual Solution in Lemma 1

In this section we prove that λ∗ = (λ∗
E , λ∗

0, λ
∗
1, . . . , λ

∗
C ) is a feasible solution for the

dual problem given by Eqs. (11)–(14).
To verify that constraint (13) is satisfied we use the fact that λ∗

0, λ
∗
1, . . . , λ

∗
C form

a geometric sequence. In addition, to verify that constraint (12) holds we use the
following identities:

W
k−1∑

j=0

λ∗
j = (W − 1)C+1−k · Wk+1 − W (W − 1)C+1

WC+1 − (W − 1)C+1 (15)

k
C∑

j=k

λ∗
j = k · WC+1 − kWk(W − 1)C−k+1

WC+1 − (W − 1)C+1 , (16)

k−1∑

j=0

jλ∗
j = kWk · (W − 1)C−k+1 − Wk+1 · (W − 1)C+1−k + W (W − 1)C+1

WC+1 − (W − 1)C+1

(17)

and

kλ∗
E = kWC+1

WC+1 − (W − 1)C+1 .
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