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Evolutionary algorithms (EAs) are general-purpose optimizers that mimick principles
from the natural evolution of species. They maintain a collection of possible solutions
(the population) and then apply operators like mutation and/or recombination to create
new solutions (the offspring). A selection process then chooses a new population for
the next generation. Evolutionary algorithms are popular in practice as they can be
easily applied to various problems. In contrast to problem-specific algorithms they
require minimal or no knowledge about the problem in hand, as long as there is a way
to quantify the solution quality (fitness) of new solutions. A challenge when applying
EAs is that their performance and their dynamic behavior is not well understood.
To remedy this, theoretical computer scientists employ methods from the analysis of
randomized algorithms to analyze the performance of EAs with mathematical rigor.
The aim is to develop a fundamental understanding of these algorithms and to aid
in the design of new and more effective EAs. The theory track of the annual ACM
Genetic and Evolutionary Computation Conference (GECCO) is the first tier event
for advances in this direction.

In this special issue nine selected papers from the 2017 edition of the GECCO
theory track are collected, each one of them carefully revised and extended to meet
the high quality standards of Algorithmica.

Many evolutionary algorithms use an offspring population; i.e., in each iteration
they evaluate the quality of several solution candidates, so as to profit from paralleling
their quality assessment. The quality of these search points determines where and how
the search is continued. One of the simplest algorithms using such a population-based
approach is the (1+λ) Evolutionary Algorithm, shortly (1+λ) EA. It is known that
EAs with large offspring populations can benefit from an increased mutation rate as
λ offspring can amplify the chances of making good progress in one generation. But
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analytically determining the optimal mutation rate is a challenging task, in particular
since it is not necessarily stable throughout the whole optimization process. In The
(1 + λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate Doerr, Gießen,
Witt and Yang propose and analyze a simple mechanism able to discover and track
good mutation rates automatically during the run of the algorithm. The algorithm
generates half the offspring with a lower mutation rate and the other half with a
higher mutation rate than the current one. The current mutation rate is then adjusted
with a preference towards the rate that brought forward the best offspring. For the
classic OneMax benchmark problem the authors prove that this simple mechanism
yields asymptotically best possible average performance amongst all λ-parallel unary
unbiased black-box algorithms, that is, all search algorithms using unbiased mutation
operators that create λ search points in parallel.

Classic evolutionary algorithms work with an explicit representation of the cur-
rent best solution candidates, and create new solutions by mutation or recombining
previously evaluated ones. Estimation of distribution algorithms (EDAs), in contrast,
maintain one or more probability distributions over the entire search space. New solu-
tion candidates are sampled from these distributions and their quality determines how
the distributions are updated for the next iteration. The Univariate Marginal Distribu-
tion Algorithm (UMDA) is an EDA that performs component-wise updates. Despite
being one of the simplest EDA variants, its mathematical analysis turns out to be chal-
lenging already for well-structured optimization benchmarks. The two papers Upper
Bounds on the Running Time of the Univariate Marginal Distribution Algorithm on
OneMax byWitt and Level-based Runtime Analysis of the UnivariateMarginal Distri-
bution Algorithm by Dang, Lehre, and Nguyen both present new parameter-dependent
upper bounds on the performance of the UMDA on the OneMax function. The two
papers differ not only in the parameter ranges for which the results are derived, but
more crucially also in the techniques that are used to prove the runtime statements.
Witt provides a detailed analysis of the intricate dynamics on each bit. In particular,
he identifies two distinct parameter regimes leading to expected optimization times
O(n log n) on OneMax and a phase transition in the behavior of the algorithm. This
leads to novel insights into the dynamic behavior of the UMDA. Dang et al. apply
the so-called level-based theorem, a general analysis technique for population-based
stochastic processes, alongwith anti-concentration bounds.Upper bounds are obtained
for three different functions: OneMax, LeadingOnes, and BinVal.

An important application area of evolutionary algorithms are problems exposing
some sort of uncertainty, e.g., unknown problem representation, noisy function evalu-
ations, and dynamically changing objective functions. Four papers in this special issue
address questions stemming from such uncertain problem environments.

The contribution Solving Problems with Unknown Solution Length at Almost No
Extra Cost considers the optimization of two classic benchmark problems OneMax
and LeadingOnes with the (1+1) EA. While the performance of this algorithm is
quite well understood on these two functions, it was not known how well the algo-
rithm performs when the problems are embedded in larger strings with possibly many
positions that do not influence the quality of the solution candidates. Doerr, Doerr, and
Kötzing prove that the resulting overhead is surprisingly small, even if no information
about the position of the relevant bits is known (or explicitly learned) by the algorithm.
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Uncertainty in the form of noisy function evaluations is studied by Qian, Bian,
Jiang, and Tang in their work Running Time Analysis of the (1+1)-EA for OneMax
and LeadingOnes under Bit-wise Noise. Extending the previous 1-bit noise model, in
which one randomly chosen bit of the solution candidate is flipped before the quality
evaluation, the authors regard a noisemodel inwhich every bit is flipped independently
with some positive probability p. It is shown that the (1+1) EA can be efficient for
small noise levels, but fails to be efficient when the noise level increases. The threshold
between efficient and non-efficient performance can be shifted significantly when
solution candidates are evaluated several times.

Another contribution studying noisy function evaluations is offered by Gavenčiak,
Geissmann, and Lengler in Sorting by Swaps with Noisy Comparisons. Unlike most
existing works in the theory of randomized search heuristics literature, which often
focus on pseudo-Boolean optimization problems, the authors consider a permutation-
based problem. Precisely, they study how noisy evaluations affect the classical sorting
problem when tackled by an algorithm that in each iteration compares two randomly
chosen elements and swaps them if they are in the wrong order. However, the noisy
comparison returns an incorrect result with a fixed probability p. The authors provide
a theoretical analysis for two cases: if the elements considered are always neighbored
to each other, the algorithm approaches a stationary distribution of high quality in
expected time Θ(n2). If elements can have arbitrary distances, the algorithm mixes
faster, but the stationary distribution is much worse, in terms of several performance
indicators. Experiments complete the picture by studying intermediate models where
the elements can have arbitrary distances up to a parameter r .

One of the most important challenges in the optimization of real-world problems
is to handle the (often numerous) constraints which restrict the space of admissible
solutions. This topic is gaining increasing interest in the evolutionary computation
literature. The mathematical analysis of constrained black-box optimization prob-
lems, however, is largely unexplored. The work Reoptimization Time Analysis of
Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints
offers a mathematical study of optimization problems with dynamic constraints. Shi,
Schirneck, Friedrich, Kötzing, and Neumann show that several classical evolution-
ary algorithms are quite efficient in locating new optimal solutions when the uniform
constraint of an otherwise linear optimization problem changes. After acceptance and
online publication of the manuscript the authors have found two mistakes, which will
be corrected in an upcoming erratum. These mistakes concern Theorems 9 and 18,
where upper bounds for the multi-objective EA and the multi-objective variant of the
(μ+ (λ, λ)) GA of order nD log D and nD, respectively, are claimed. In the erratum
both bounds will be corrected to O(nD2).

TheMetropolis algorithm (MA), equivalent to the well-known simulated annealing
algorithm with constant temperature, rejects worsening moves with a probability that
depends on the fitness decrease and always accepts improving moves. Population
genetics has studied a similar biological process called Strong SelectionWeakMutation
(SSWM), for which rigorous runtime results emerged recently. SSWM also rejects
worsening moves similar to the MA, but it may also reject improving moves with a
probability that decreases with the fitness improvement. In the paper On the Analysis
of Trajectory-Based Search Algorithms:When is it Beneficial to Reject Improvements?
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Nallaperuma, Oliveto, Pérez Heredia, and Sudholt ask when rejecting improvements
may benefit search. The authors set out to construct example problems where both
MA and SSWM perform differently. This task is complicated by the fact that both
algorithms have the same stationary distribution. Consequently, the authors construct
a family of example functionswith very largemixing times such that SSWMis efficient
whileMA shows poor performance over a very long time, for all possible choices of the
temperature parameter. The reason is that rejecting small improvements allows SSWM
to follow the steepest gradient, whereas MA follows the first gradient it discovers.
This enables SSWM to find a set of global optima, whereas MA tends to get stuck in
local optima. Theoretical and experimental results further explore relations to best-
improvement local search and first-improvement local search.

Island models are popular ways of running evolutionary algorithms on parallel
hardware. Several islands evolve populations independently, possibly running on dif-
ferent machines. Every τ generations these islands exchange solutions along a given
communication topology connecting the islands in a process calledmigration in order
to coordinate their searches. The paper Island Models Meet Rumor Spreading by
Doerr, Fischbeck, Frahnow, Friedrich, Kötzing, and Schirneck introduces a novel
way of implementing communication: instead of each island broadcasting migrants
to all neighboring islands, the authors use rumor spreading, where each island only
communicates with one randomly chosen island. Randomized rumor spreading is a
well-known epidemic paradigm that was shown to lead to fast, efficient, and robust dis-
semination in various applications. The paper shows that randomized rumor spreading
is able to reduce the overall costs of the expected optimization time plus the expected
amount of communication across the island model, compared to common topologies.
The paper further refines previous analyses for a range of topologies and introduces
results for novel topologies like binary trees.

We hope that with this special issue we further increase the interest of the general
algorithms research community into evolutionary computation methods. We thank all
authors for their submissions, our reviewers for their careful and detailed comments,
and the Algorithmica team as well as the editor-in-chief Ming-Yang Kao for their
excellent support.

Carola Doerr and Dirk Sudholt
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