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Abstract A secure set S in a graph is defined as a set of vertices such that for any
X ⊆ S the majority of vertices in the neighborhood of X belongs to S. It is known
that deciding whether a set S is secure in a graph is co-NP-complete. However, it
is still open how this result contributes to the actual complexity of deciding whether
for a given graph G and integer k, a non-empty secure set for G of size at most k
exists. In this work, we pinpoint the complexity of this problem by showing that it is
�P

2 -complete. Furthermore, the problem has so far not been subject to a parameterized
complexity analysis that considers structural parameters. In the present work, we prove
that the problem is W[1]-hard when parameterized by treewidth. This is surprising
since the problem is known to be FPTwhen parameterized by solution size and “subset
problems” that satisfy this property usually tend to be FPT for bounded treewidth as
well. Finally, we give an upper bound by showing membership in XP, and we provide
a positive result in the form of an FPT algorithm for checking whether a given set is
secure on graphs of bounded treewidth.

Keywords Secure set ·Complexity analysis · Parameterized complexity · Treewidth ·
Parameterized algorithms

1 Introduction

The objective of many problems that can be modeled as graphs is finding a group
of vertices that together satisfy some property. In this respect, one of the concepts
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that has been quite extensively studied [31] is the notion of a defensive alliance [20],
which is a set of vertices such that for each element v at least half of its neighbors are
also in the alliance. The name “defensive alliance” stems from the intuition that the
neighbors of such an element v that are also in the alliance can help out in case v is
attacked by its other neighbors. Notions like this can be applied to finding groups of
nations, companies or individuals that depend on each other, but also to more abstract
situations like finding groups of websites that form communities [18].

In this work, we are looking at a natural generalization of defensive alliances called
secure sets, which have been introduced by Brigham et al. [11]. While defensive
alliances make sure that each element of an alliance can defend itself against attacks
from its neighbors, they do not account for attacks on multiple vertices at the same
time. To this end, we can employ a stronger concept: A secure set of a graph G is
a subset S of the vertices of G such that for each X ⊆ S, the number of vertices in
N [X ] ∩ S is not less than the number of vertices in N [X ]\S. Here N [X ] denotes the
closed neighborhood of X in G, i.e., X together with all vertices adjacent to X . The
Secure Set problem can now be stated as follows: Given a graph G and an integer
k, does there exists a secure set S of G such that 1 ≤ |S| ≤ k?

It is known that deciding whether a given set S is secure in a graph is co-NP-
complete [21], so it would not be surprising if finding (non-trivial) secure sets is also
a very hard problem. Unfortunately, the exact complexity of this problem has so far
remained unresolved. This is an unsatisfactory state of affairs because it leaves the
possibility open that existing approaches for solving the problem (e.g., [1]) are sub-
optimal in that they employ unnecessarily powerful programming techniques. Hence
we require a precise complexity-theoretic classification of the problem.

Due to its high complexity, it makes sense to look at the parameterized complex-
ity [13,16,19,26] of the problem and to study if Secure Set becomes tractable under
the assumption that certain parameters of the problem instances are small. For some
parameters, this may be a reasonable assumption in practice. For instance, it has been
shown that Secure Set can be solved in linear time if the solution size is bounded by
a constant [17]. If we are only interested in small secure sets, the resulting algorithm
is therefore a good choice.

However, we often cannot make the assumption that the solutions are small. In such
cases, it is a common strategy to consider structural parameters instead, whichmeasure
in a certain way how complex the graph underlying a problem instance is. One of the
most studied structural parameters is treewidth [5,7,27], which indicates how close
a graph is to being a tree. Treewidth is an attractive parameter because many hard
problems become tractable on instances of bounded treewidth, and in several practical
applications it has been observed that the considered problem instances exhibit small
treewidth [5,24,30]. In [22] it has been shown that a certain variant of Secure Set
becomes easy on trees, but the complexity of Secure Set parameterized by treewidth
is listed as an open problem in that work and has so far remained unresolved.

Thefirstmain contribution of our paper is to show that Secure Set is�P
2 -complete.

Unlike the existing co-NP-hardness proof [21], which uses a (quite involved) reduction
from Dominating Set, we base our proof on a reduction from a problem in the area
of logic. To be specific, we first show that the canonical �P

2 -complete problem Qsat2
can be reduced to a variant of Secure Set, where vertices can be forced to be in
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or out of every solution, and pairs of vertices can be specified to indicate that every
solution must contain exactly one element of each such pair. In order to prove the
desired complexity result, we then successively reduce this variant to the standard
Secure Set problem. At the same time, we show �P

2 -completeness for the exact
variants of these problems, where we are interested in secure sets exactly of a certain
size.

Membership in the class �P
2 is rather obvious; in fact, [1] presents a polynomial-

time reduction to Answer Set Programming [10] and thus shows this result implicitly.
Together with our corresponding hardness result, it follows that Secure Set is �P

2 -
complete, and it turns out that all the problem variants we consider in this paper are
�P

2 -complete.
We thus complete the picture of the precise complexity of the Secure Set problem,

and we also provide completeness results for variants of the problem that have already
been proposed [22] but for which no complexity analysis has been performed so far.
Our results underline that Secure Set is among the few rather natural problems
in graph theory that are complete for the second layer of the polynomial hierarchy
(like, e.g., Clique Coloring [25] or 2- Coloring Extension [28]). Moreover,
�P

2 -hardness of Secure Set indicates that an efficient reduction to the Sat problem
is not possible (unless the polynomial hierarchy collapses).

The second main contribution of our paper is a parameterized complexity analysis
of Secure Setwith treewidth as the parameter. We show that this problem is hard for
the classW[1], which rules out a fixed-parameter tractable algorithm under commonly
held complexity-theoretic assumptions. This result is rather surprising for two reasons:
First, the problem is tractable on trees [22] and often problems that become easy
on trees turn out to be fixed-parameter tractable when parameterized by treewidth.1

Second, this makes Secure Set one of the very few “subset problems” that are fixed-
parameter tractable w.r.t. solution size but not w.r.t. treewidth. Problems with this kind
of behavior are rather rare, as observed by Dom et al. [15].

Beside this parameterized hardness result, we also give an upper bound by showing
that Secure Set is in the class XP, which means that it can be solved in polynomial
time on instances of bounded treewidth. We do so by providing an algorithm where
the degree of the polynomial depends on the treewidth.

Finally, we present a positive result for the co-NP-complete problem of checking
whether a given set of vertices is secure in a graph: We provide an algorithm that
solves the problem in linear time for graphs of bounded treewidth.

This paper is organized as follows: We first provide the necessary background in
Sect. 2. Then we analyze the complexity of Secure Set in Sect. 3, where we show
that this problem, along with several variants, is �P

2 -complete. In Sect. 4, we consider
the parameterized complexity of Secure Set where treewidth is our parameter of
interest. Section 5 concludes the paper with a discussion.

The present work extends a conference paper [4], which did not contain any results
about the parameterized complexity of the considered problems.Beside the new results
in Sect. 4, we also slightly modified some of the reductions that prove �P

2 -hardness so

1 To be precise, [22] shows that a slight variant of Secure Set is tractable on trees, since Secure Set
on trees is trivial. Our results, however, also imply W[1]-hardness for this particular variant.
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Fig. 1 A graph with a minimum
non-empty secure set indicated
by circled vertices

a b

c d e

that they preserve bounded treewidth, which allows us to reuse them for our parameter-
ized hardness proofs.We also added a reduction (which eliminates necessary vertices),
which made one of the reductions (from the exact variant of the problem to the non-
exact variant) from the previous paper redundant.

2 Background

All graphs are undirected and simple unless stated otherwise. We denote the set of
vertices and edges of a graph G by V (G) and E(G), respectively. We denote an
undirected edge between vertices u and v as (u, v) or equivalently (v, u). It will be
clear from the context whether an edge (u, v) is directed or undirected. Given a graph
G, the open neighborhood of a vertex v ∈ V (G), denoted by NG(v), is the set of all
vertices adjacent to v, and NG [v] = NG(v) ∪ {v} is called the closed neighborhood
of v. Let S ⊆ V (G). We abuse notation by writing NG(S) and NG[S] to denote⋃

v∈S NG(v) and
⋃

v∈S NG[v], respectively. If it is clear from the context which graph
is meant, we write N (·) and N [·] instead of NG(·) and NG [·], respectively.
Definition 1 Given a graph G, a set S ⊆ V (G) is secure in G if for each X ⊆ S it
holds that |N [X ] ∩ S| ≥ |N [X ]\S|.
We often write “S is secure” instead of “S is secure in G” if it is clear from the context
which graph is meant. By definition, the empty set is secure in any graph. Thus, in the
following decision problems we ask for secure sets of size at least 1. The following is
our main problem:

Secure Set

Input: A graph G and an integer k with 1 ≤ k ≤ |V (G)|
Question: Does there exist a set S ⊆ V (G) with 1 ≤ |S| ≤ k that is secure?

Figure 1 shows a graph together with a minimum non-empty secure set S = {a, b, c}.
Observe that for any X ⊆ S the condition |N [X ] ∩ S| ≥ |N [X ]\S| is satisfied.

Note that the well-known Defensive Alliance problem is a special case of
Secure Setwhere only those subsets X of S are considered that have size 1. For exam-
ple, in Fig. 1, the set S′ = {a, b} is a defensive alliance as |N [v] ∩ S′| ≥ |N [v]\S′|
holds for each v ∈ S′, but S′ is not a secure set, since for X ′ = S′ it holds that
|N [X ′] ∩ S′| < |N [X ′]\S′|.

We now define three variants of the Secure Set problem that we require in our
proofs. Secure SetF generalizes the Secure Set problem by designating some “for-
bidden” vertices that may never be in any solution. This variant can be formalized as
follows:
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Secure SetF

Input: A graph G, an integer k and a set V� ⊆ V (G)

Question: Does there exist a set S ⊆ V (G)\V� with 1 ≤ |S| ≤ k that is secure?

Secure SetFN is a further generalization that, in addition, allows “necessary” vertices
to be specified that must occur in every solution.

Secure SetFN

Input: A graph G, an integer k, a set V� ⊆ V (G) and a set V	 ⊆ V (G)

Question: Does there exist a set S ⊆ V (G)\V� with V	 ⊆ S and 1 ≤ |S| ≤ k
that is secure?

Finally, we introduce the generalization Secure SetFNC. Here we may state pairs of
“complementary” vertices where each solution must contain exactly one element of
every such pair.

Secure SetFNC

Input: A graph G, an integer k, a set V� ⊆ V (G), a set V	 ⊆ V (G) and a
set C ⊆ V (G)2

Question: Does there exist a set S ⊆ V (G)\V� with V	 ⊆ S and 1 ≤ |S| ≤ k
that is secure and, for each pair (a, b) ∈ C , contains either a or b but
not both?

For our results on structural parameters, we need a way to represent the structure of a
Secure SetFNC instance by a graph that augments G with the information in C :

Definition 2 Let I be a Secure SetFNC instance, let G be the graph in I and letC the
set of complementary vertex pairs in I . By the primal graph of I we mean the graph
G ′ with V (G ′) = V (G) and E(G ′) = E(G) ∪ C .

While the Secure Set problem asks for secure sets of size at most k, we also
consider the Exact Secure Set problem that concerns secure sets of size exactly
k. Note that a secure set may become insecure by adding or removing elements, so
this is a non-trivial problem variant. Analogously, we also define exact versions of the
three generalizations of Secure Set presented above.

When the task is not to find secure sets but to verify whether a given set is secure,
the following problem is of interest:

Secure Set Verification

Input: A graph G and a set S ⊆ V (G)

Question: Is S secure?

This problem is known to be co-NP-complete [21].
In this paper’s figures, we often indicate necessary vertices by means of a triangular

node shape, and forbidden vertices by means of either a square node shape or a
superscript square in the node name. If two vertices are complementary, we often
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Fig. 2 Illustration of forbidden,
necessary and complementary
vertices

a b = c

d e

=

express this in the figures by putting a 
= sign between them. For example, in Fig. 2,
the vertices b and c are complementary and occur in no solution together; also the
vertices b and e are complementary. Note, however, that by putting a 
= sign between
two vertices we do not mean to express that there is an edge between them. For
instance, there is no edge between b and c, but there is an edge between b and e,
which is explicitly drawn. The vertex a and the “anonymous” vertex adjacent to c
are necessary and occur in every solution; d� and the “anonymous” vertex adjacent
to e are forbidden and occur in no solution. In this figure, the unique minimum non-
empty secure set satisfying the conditions of forbidden, necessary and complementary
vertices consists of a, b and the “anonymous” necessary vertex adjacent to c.

The following terminology will be helpful: We often use the terms attackers and
defenders of a subset X of a secure set candidate S. By these wemean the sets N [X ]\S
and N [X ]∩ S, respectively. To show that a subset X of a secure set candidate S is not a
witness to S being insecure, we sometimes employ the notion of a defense of X w.r.t. S,
which assigns to each attacker a dedicated defender: If we are able to find an injective
mapping μ : N [X ]\S → N [X ] ∩ S, then obviously |N [X ]\S| ≤ |N [X ] ∩ S|, and we
call μ a defense of X w.r.t. S. Given such a defense μ, we say that a defender d repels
an attack on X by an attacker a whenever μ(a) = d. Consequentially, when we say
that a set of defenders D can repel attacks on X from a set of attackers A, we mean
that there is a defense that assigns to each element of A a dedicated defender in D.

To warm up, we make some easy observations that we will use in our proofs. First,
for every set R consisting of a majority of neighbors of a vertex v, whenever v is in a
secure set, also some element of R must be in it:

Observation 1 Let S be a secure set in a graph, let v ∈ S and let R ⊆ N (v). If
|R| > 1

2N [v], then S contains an element of R.

Proof Suppose that |R| > 1
2 |N [v]| and S contains no element of R. Since all elements

of R attack v, |N [v]\S| > 1
2 |N [v]|. Hence 2|N [v]\S| > |N [v]| = |N [v] ∩ S| +

|N [v]\S|, and we obtain the contradiction |N [v]\S| > |N [v] ∩ S|. �
Next, if one half of the neighbors of an element v of a secure set attacks v, then the
other half of the neighbors must be in the secure set:

Observation 2 Let S be a secure set in a graph, let v ∈ S and let N (v) be partitioned
into two equal-sized sets A, D. If A ∩ S = ∅, then D ⊆ S.

Proof Since N (v) is partitioned into A and D such that A∩ S = ∅, we get N (v)∩ S =
D ∩ S. If some element of D is not in S, then D ∩ S ⊂ D and A ⊂ N [v]\S. By
|D| = |A|, we get |D ∩ S| + 2 ≤ |N [v]\S|. From |N [v] ∩ S| = 1 + |N (v) ∩ S| =
1 + |D ∩ S| we now obtain the contradiction |N [v] ∩ S| < |N [v]\S|. �
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In particular, if half of the neighbors of v are forbidden, then v can only be in a given
secure set if all non-forbidden neighbors are also in the secure set.

Finally, we recapitulate some background from complexity theory. The class �P
2

is the class of problems that are solvable in polynomial time by a nondeterministic
Turing machine that has access to an NP oracle. The canonical problem complete for
this class is Qsat2, which asks, given a formula ∃x1 . . . ∃xnx∀y1 . . . ∀ynyψ , where
ψ is a propositional 3-DNF formula, whether there is a truth assignment to the xi
variables such that for all truth assignments to the yi variables ψ evaluates to true.

In parameterized complexity theory [13,16,19,26], we study problems that consist
not only of an input and a question, but also of some parameter of the input that is
represented as an integer. A problem is in the class FPT (“fixed-parameter tractable”)
if it can be solved in time f (k) · nc, where n is the input size, k is the parameter,
f is a computable function that only depends on k, and c is a constant that does
not depend on k or n. We call such an algorithm an FPT algorithm, and we call it
fixed-parameter linear if c = 1. Similarly, a problem is in the class XP (“slice-wise
polynomial”) if it can be solved in time f (k) · ng(k), where f and g are computable
functions. Note that here the degree of the polynomial may depend on k, so such
algorithms are generally slower than FPT algorithms. For the class W[1] it holds that
FPT ⊆ W[1] ⊆ XP, and it is commonly believed that the inclusions are proper, i.e.,
W[1]-hard problems do not admit FPT algorithms. W[1]-hardness of a problem can
be shown using parameterized reductions, which are reductions that run in FPT time
and produce an equivalent instance whose parameter is bounded by a function of the
original parameter.

For problems whose input can be represented as a graph, one important parameter
is treewidth, which is a structural parameter that, roughly speaking, measures the
“tree-likeness” of a graph. It is defined by means of tree decompositions, originally
introduced in [27]. The intuition behind tree decompositions is to obtain a tree from a
(potentially cyclic) graph by subsuming multiple vertices under one node and thereby
isolating the parts responsible for cyclicity.

Definition 3 A tree decomposition of a graph G is a pair T = (T, χ) where T is a
(rooted) tree and χ : V (T ) → 2V (G) assigns to each node of T a set of vertices of G
(called the node’s bag), such that the following conditions are met:

1. For every vertex v ∈ V (G), there is a node t ∈ V (T ) such that v ∈ χ(t).
2. For every edge (u, v) ∈ E(G), there is a node t ∈ V (T ) such that {u, v} ⊆ χ(t).
3. For every v ∈ V (G), the subtree of T induced by {t ∈ V (T ) | v ∈ χ(t)} is

connected.

We call maxt∈V (T )|χ(t)|−1 the width of T . The treewidth of a graph is the minimum
width over all its tree decompositions.

In general, constructing an optimal tree decomposition (i.e., a tree decomposition
with minimum width) is intractable [2]. However, the problem is solvable in linear
time on graphs of bounded treewidth (specifically in time wO(w3) · n, where w is the
treewidth) [6] and there are also heuristics that offer good performance in practice [8,
14].

In this paper we will consider so-called nice tree decompositions:
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Fig. 3 A graph G and a nice tree decomposition T of G rooted at the leftmost node

Definition 4 A tree decomposition T = (T, χ) is nice if each node t ∈ V (T ) is of
one of the following types:

1. Leaf node: The node t has no child nodes.
2. Introduce node: The node t has exactly one child node t ′ such that χ(t)\χ(t ′)

consists of exactly one element.
3. Forget node: The node t has exactly one child node t ′ such that χ(t ′)\χ(t) consists

of exactly one element.
4. Join node: The node t has exactly two child nodes t1 and t2 with χ(t) = χ(t1) =

χ(t2).

Additionally, the bags of the root and the leaves of T are empty.

A tree decomposition of width w for a graph with n vertices can be transformed
into a nice one of width w with O(wn) nodes in fixed-parameter linear time [23].

For any tree decomposition T and an element v of some bag in T , we use the
notation tTv to denote the unique “topmost node” whose bag contains v (i.e., tTv does
not have a parent whose bag contains v). Figure 3 depicts a graph and a nice tree
decomposition, where we also illustrate the tTv notation.

When we speak of the treewidth of an instance of Secure Set, Secure SetF,
Secure SetFN, Exact Secure Set, Exact Secure SetF or Exact Secure SetFN,
we mean the treewidth of the graph in the instance. For an instance of Secure SetFNC

or Exact Secure SetFNC, we mean the treewidth of the primal graph.

3 Complexity of the Secure Set Problem

This section is devoted to proving the following theorem:

Theorem 1 The following problems are all �P
2 -complete: Secure Set, Exact

Secure Set, Secure SetF, Exact Secure SetF, Secure SetFN, Exact Secure
SetFN, Secure SetFNC and Exact Secure SetFNC.

We prove this by providing a chain of polynomial reductions from Qsat2 to the
problems under consideration.

3.1 Hardness of Secure Set with Forbidden, Necessary and Complementary
Vertices

Lemma 1 Secure SetFNC and Exact Secure SetFNC are �P
2 -hard.
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Fig. 4 Graph corresponding to the Qsat2 formula ∃x1∃x2∃x3 ∀y1∀y2
(
(¬x1 ∧ x2 ∧ y1) ∨ (x3 ∧ ¬y1 ∧

y2) ∨ (x3 ∧ ¬y1 ∧ ¬y2)
)
. To avoid clutter, we omit labels for the vertices from Y	, Y ′	, Y�, T	, T ′

� and

T ′�, and we draw some edges in a dashed style

Proof We reduce from Qsat2 to Secure SetFNC. This also proves �P
2 -hardness

for the exact variant because our reduction makes sure that all solutions of the
Secure SetFNC instance have the same size. We are given a quantified Boolean for-
mula ϕ = ∃x1 . . . ∃xnx∀y1 . . . ∀ynyψ , whereψ is in 3-DNF and contains nt terms. We
assume that no term contains both a variable and its complement (since such a term
can never be satisfied) and that each term contains at least one universally quantified
variable (since ϕ is trivially true otherwise).

We construct an instance (G, k, V	, V�,C) of Secure SetFNC in the following.
For an illustration, see Fig. 4. We define a graph G by choosing the union of the
following sets as V (G):

X = {x1, . . . , xnx } X = {x1, . . . , xnx }
Y = {y1, . . . , yny } Y = {y1, . . . , yny }

Y	 =
{
y	
i, j , yi, j

	 | 1 ≤ i ≤ ny, 1 ≤ j ≤ nt
}

Y ′	 =
{
y	
j | 1 ≤ j ≤ nt − 1

}

Y� =
{
y�
i, j | 1 ≤ i ≤ ny, 1 ≤ j ≤ nt + 1

}
H =

{
d�
1 , d�

2 , t�
}

T = {t1, . . . , tnt } T = {
t1, . . . , tnt

}

T� =
{
t1

�
, . . . , tnt

�}
T	 =

{
t1

	
, . . . , tnt

	}

T ′ = {t ′1, . . . , t ′nt } T ′ = {t ′1, . . . , t ′nt }
T ′

� =
{
t ′�1 , . . . , t ′�nt

}
T ′� =

{

t ′1
�

, . . . , t ′nt
�

}
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Next we define the set of edges. In the following, whenever we sloppily speak of a
literal in the context of the graph G, we mean the vertex corresponding to that literal
(i.e., some xi , xi , yi or yi ), and we proceed similarly for terms. Furthermore, when we
are dealing with a (vertex corresponding to a) literal l, then l shall denote the (vertex
corresponding to the) complement of l. For any term ti , let LX (ti ) and LY (ti ) denote
the set of existentially and universally quantified literals, respectively, in ti .

E(G) =
{(

ti , t
�)

,
(
ti , ti

	)
,
(
t ′i , t ′�i

)
,

(

t ′i , t ′i
�

)

| ti ∈ T

}

∪ (
T ′ × (Y ∪ Y )

)

∪
{(

l, ti
�)

, (l, ti ) | ti ∈ T, l ∈ LX (ti )
}

∪
{(

l, t ′i
)

| ti ∈ T, l ∈ LY (ti )
}

∪
{(

d�
1 , ti

)
| ti ∈ T, |LX (ti )| ≤ 1

}
∪

{(
d�
2 , ti

)
| ti ∈ T, LX (ti ) = ∅

}

∪
{(

yi , y
	
i, j

)
,
(
yi , yi, j

	)
| 1 ≤ i ≤ ny, 1 ≤ j ≤ nt

}

∪
{(

yi , y
�
i, j

)
,
(
yi , y

�
i, j

)
| y�

i, j ∈ Y�
}

∪
(
Y ′	 × (Y ∪ Y )

)

Finally, we define

V	 = Y ∪ Y ∪ Y	 ∪ Y ′	 ∪ T	, V� = Y� ∪ T� ∪ T ′
� ∪ T ′� ∪ H,

C = {(xi , xi ) | 1 ≤ i ≤ nx } ∪
{(
ti , ti

)
,
(
ti , t

′
i

)
,
(
t ′i , t ′i

) | 1 ≤ i ≤ nt
}

,

and k = |V	| + nx + 2nt .
The following observations are crucial: Elements of X ∪ X are only adjacent to

vertices from T� (which are forbidden) and T . For any i , each element of X ∪ X is
adjacent to ti

� ∈ T� iff it is adjacent to ti ∈ T . Furthermore, for any i, j , if xi or xi
is adjacent to t j , then setting the variable xi to true or false, respectively, falsifies the

term t j . Finally, for any i, j , if yi or yi is adjacent to t ′j , then setting the variable yi to
true or false, respectively, falsifies the term t j .

The intuition is that the complementary pairs (xi , xi ) guess a truth assignment to
the existentially quantified variables. We now need to check if such a truth assignment
has the property that the formula ψ is true for all extensions of this assignment to
the universally quantified variables. Trying out all these extensions amounts to going
through all subsets of a solution candidate and comparing the numbers of attackers
and defenders.

To illustrate, let S be a solution candidate (i.e., a set of vertices) and suppose
S satisfies the conditions on forbidden, necessary and complementary vertices. We
denote the truth assignment to x1, . . . , xnx encoded in S by IS . Moreover, let R be a
subset of S containing either y j or y j for each universally quantified variable y j . We
denote the extension of IS to y1, . . . , yny encoded in R by IS,R . For any term ti that is
falsified already by IS , the vertex t ′i attacks all vertices y j and y j . At the same time,

for any term ti that is not falsified by IS , the vertex t ′i attacks y j or y j if setting the
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variable y j to true or false, respectively, falsifies ti . Hence, the number of attacks from

vertices of the form t ′i or t ′i on R is exactly the number of terms that are falsified by
IS,R . With the help of the vertices in Y ′	, we can afford up to nt − 1 falsified terms,
but if we falsify all nt terms, then R is a witness that S is not secure.

The Secure SetFNC instance (G, k, V	, V�,C) can be constructed in time poly-
nomial in the size of ϕ. We claim that ϕ is true iff (G, k, V	, V�,C) is a positive
instance of Secure SetFNC.
“Only if ” direction If ϕ is true, then there is an assignment I to x1, . . . , xnx such that,
for all assignments extending I to y1, . . . , yny , some term in ψ is satisfied. We define
a set

S = V	 ∪ {xi ∈ X | I (xi ) = true} ∪ {xi ∈ X | I (xi ) = false}
∪

{
ti ∈ T , t ′i ∈ T ′ | there is some l ∈ LX (ti ) such that I 
|� l

}

∪ {
ti ∈ T, t ′i ∈ T ′ | for all l ∈ LX (ti ) it holds that I |� l

}
.

We observe that |S| = k, V� ∩ S = ∅, V	 ⊆ S, and that for any (a, b) ∈ C it holds
that a ∈ S iff b /∈ S. By construction, whenever some element of X ∪ X is in S, then
all its neighbors in T are in S; and whenever some ti is in S, then some neighbor of ti
in X ∪ X is in S.

We claim that S is a secure set in G. Let R be an arbitrary subset of S. We show
that R has at least as many defenders as attackers by constructing a defense, which
assigns to each attacker of R a dedicated defender in N [R] ∩ S. We distinguish cases
regarding the origins of the attacks on R.

– We repel each attacker ti
� ∈ T� using ti . Since ti

� attacks R, R must contain
some element of X ∪ X that is adjacent to ti

� and thus also to ti , so ti ∈ N [R]∩ S.
– Each attacker from X ∪ X ∪ {d�

1 , d�
2 } is adjacent to some ti ∈ T ∩ R. We repel

that attacker using ti
	, which is adjacent to ti . Note that it cannot be the case that

ti is attacked by more than one vertex in X ∪ X ∪ {d�
1 , d�

2 } because ti has exactly
two neighbors from that set and would not be in S if neither of these neighbors
was in S.

– If t� attacks R, then it attacks at least one element of T ∩ R, which is adjacent to
some element of X ∪ X that is also in S. We repel t� using any such element of
X ∪ X .

– Any attack from some ti ∈ T on R must be on ti
	. Since ti /∈ S, ti

	 is not
consumed for repelling an attack on ti , so we repel ti with ti

	.
– If some t ′�i ∈ T ′

� attacks R (by attacking t ′i ), we repel t ′�i with t ′i .
– Analogously, we repel each attacker t ′i

� ∈ T ′� with t ′i .
– If, for some i with 1 ≤ i ≤ ny , the vertices y�

i, j for 1 ≤ j ≤ nt + 1 attack R, then

we distinguish the following cases: If yi is in R, then the adjacent vertices y	
i, j for

1 ≤ j ≤ nt are in the neighborhood of R, too. We then repel each y�
i, j with y	

i, j for

1 ≤ j ≤ nt , and we repel y�
i,nt+1 with yi . Otherwise, yi is in R, and we proceed

symmetrically using yi, j	 and yi as dedicated defenders.
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– In order to account for attacks from T ′ ∪ T ′ on R, we distinguish two cases.
– If, for some i with 1 ≤ i ≤ ny , both yi and yi are in R, then, in the step before,

we have repelled each y�
i, j with the respective y	

i, j or yi , but all yi, j
	 are still

free. These vertices can repel all attacks from T ′ ∪ T ′, as there are at most nt
such attacks.

– Otherwise we show that there are at most nt −1 attacks from T ′ ∪T ′, and they
can be repelled using Y ′	. Consider the (partial) assignment J that assigns the
same values to the variables x1, . . . , xnx as the assignment I above, and, for any
variable yi , sets yi to true or false if R contains the vertex yi or yi , respectively.
By assumption we know that our assignment to x1, . . . , xnx is such that for
all assignments to y1, . . . , yny some term ti in ψ is true. In particular, it must
therefore hold that J falsifies no existentially quantified literal in ti . Then, by
construction of S, the vertex t ′i is not in S. We also know that J falsifies no
universally quantified literal in ti . But then the vertices from Y ∪ Y adjacent
to the vertex t ′i are not in R due to our construction of J , so t ′i does not attack
any vertex in R. From this it follows that there are at most nt − 1 attacks from
T ′ ∪ T ′ on R. We can repel all these attacks using the vertices y	

1 , . . . , y	
nt−1.

This allows us to conclude |N [R] ∩ S| ≥ |N [R]\S|. Therefore S is secure.

“If ” direction Suppose S is a secure set in G satisfying the conditions regarding
forbidden, necessary and complementary vertices. First observe that |S| = k because
the complementary vertex pairs make sure that S contains exactly half of V (G)\(V	 ∪
V�).

If S contains some l ∈ X ∪ X , then N (l) ∩ T ⊆ S by Observation 2. If S contains
some ti ∈ T , then ti must be adjacent to some element of X ∪ X that is also in S by
Observation 1.

We construct an interpretation I on the variables x1, . . . , xnx that sets exactly those
xi to truewhere the corresponding vertex xi is in S, andwe claim that for each extension
of I to the universally quantified variables there is a satisfied term in ψ . To see this,
suppose to the contrary that some assignment J to all variables extends I but falsifies all
terms in ψ . Then we define a set R consisting of all vertices yi such that J (yi ) = true,
all vertices yi such that J (yi ) = false, and all vertices in (T ′ ∪T ′)∩ S that are adjacent
to these vertices yi or yi . We show that this contradicts S being secure: Clearly, R is a
subset of S and has |R| defenders due to itself, nt − 1 defenders due to Y ′	, and ny · nt
defenders due to N (R) ∩ Y	. This amounts to |N [R] ∩ S| = |R| + nt − 1 + ny · nt .
On the other hand, there are nt attacks on R from T ′ ∪ T ′. This is because for any
term ti in ψ one of the following cases applies:

– The term ti is falsified already by I . Then t ′i ∈ S and thus t ′i /∈ S. The vertex t ′i ,
however, is adjacent to every element of Y ∪ Y , so it attacks R.

– The term ti is not falsified by I but by J . Then t ′i /∈ S, and LY (ti ) contains some

literal l with l ∈ N (t ′i ) and J |� l, so l is in R and attacked by t ′i .
In addition to these nt attackers, R has |R ∩ (T ′ ∪ T ′)| attackers in N (R)∩(T ′

�∪T ′�),

as well as ny · (nt + 1) attackers in Y�. As |R| = ny + |R ∩ (T ′ ∪ T ′)|, we obtain in
total
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|N [R]\S| = nt + |R ∩ (T ′ ∪ T ′)| + ny · (nt + 1)

= |R| + nt + ny · nt > |N [R] ∩ S|.

This contradicts S being secure, so for each extension of I to the universally quantified
vertices, ψ is true; hence ϕ is true. �

3.2 Hardness of Secure Set with Forbidden and Necessary Vertices

Next we present a transformation τFNC that eliminates complementary vertex pairs by
turning a Secure SetFNC instance into an equivalent Secure SetFN instance. Along
with τFNC, we define a function σ FNC

I , for each Secure SetFNC instance I , such that
the solutions of I are in a one-to-one correspondence with those of τFNC(I ) in such a
way that any two solutions of I have the same size iff the corresponding solutions of
τFNC(I ) have the same size.We use these functions to obtain a polynomial-time reduc-
tion from Secure SetFNC to Secure SetFN as well as from Exact Secure SetFNC

to Exact Secure SetFN.
Before we formally define our reduction, we briefly describe the underlying

intuition. The gadget in Fig. 5 is added for every complementary pair (a, b).
It is constructed in such a way that every solution must either contain all of
{a, aab, aab1 , . . . , aabn+4} or none of them, and the same holds for {b, bab, bab1 , . . . ,

babn+4}. By making the vertex 	ab necessary, every solution must contain one of these
two sets. At the same time, the bound on the solution size makes sure that we cannot
afford to take both sets for any complementary pair.

Definition 5 We define a function τFNC, which assigns a Secure SetFN instance
to each Secure SetFNC instance I = (G, k, V�, V	,C). For this, we use n to
denote |V (G)| and first define a function σ FNC

I : x �→ x + |C | · (n + 6). For
each (a, b) ∈ C , we introduce new vertices aab, bab and 	ab as well as, for any
x ∈ {a, b}, sets of new vertices Yab

x � = {xab1 , . . . , xabn+1}, Zab
x � = {xabn+2, x

ab
n+3, x

ab
n+4},

Yab
x� = {xab�1 , . . . , xab�n+1 } and Zab

x� = {xab�n+2 , xab�n+3 , xab�n+4 }. We use the notation

u ⊕ v to denote the set of edges {(u, v), (u, u�), (v, v�), (u, v�), (v, u�)}. Now we
define the Secure SetFN instance τFNC(I ) = (G ′, k′, V ′

�, V ′	), where k′ = σ FNC
I (k),

V ′
� = V� ∪ ⋃

(a,b)∈C (Yab
a� ∪ Yab

b� ∪ Zab
a� ∪ Zab

b�), V ′	 = V	 ∪ ⋃
(a,b)∈C {	ab} and G ′

is the graph defined by

V (G ′) = V (G) ∪
⋃

(a,b)∈C

({	ab, aab, bab} ∪ Yab
a � ∪ Yab

b � ∪ Yab
a� ∪ Yab

b�

∪ Zab
a �∪ Zab

b �∪ Zab
a� ∪ Zab

b�
)
,

E(G ′) = E(G) ∪
⋃

(a,b)∈C

⋃

x∈{a,b}

({(	ab, xab)} ∪ ({x} × Yab
x �) ∪ ({xab} × Zab

x �)

∪
⋃

1≤i≤n+3

xabi ⊕ xabi+1

)
.
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aab1

aab2

...

aabn+1

aabn+2

aabn+3
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...

aabn+1

aabn+2

aabn+3
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ab bab
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...

babn+1

babn+2

babn+3
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bab2

...

babn+1

babn+2

babn+3

babn+4

Fig. 5 Gadget for a pair of complementary vertices (a, b) in the reduction from Secure SetFNC to
Secure SetFN. The vertices a and b may have additional neighbors from the original graph

We illustrate our construction in Fig. 5.

Lemma 2 Let I = (G, k, V�, V	,C) be a Secure SetFNC instance, let A be the set
of solutions of I and let B be the set of solutions of τFNC(I ). There is a bijection
g : A → B such that |g(S)| = σFNC

I (|S|) holds for every S ∈ A.

Proof We use the same auxiliary notation as in Definition 5 and we define g as S �→
S ∪ ⋃

(a,b)∈C, x∈S∩{a,b}({	ab, xab} ∪ Yab
x � ∪ Zab

x �). For every S ∈ A, we thus obtain

|g(S)| = σ FNC
I (|S|), and we first show that indeed g(S) ∈ B.

Let S ∈ A and let S′ denote g(S). Obviously S′ satisfies V ′
� ∩ S′ = ∅ and V ′	 ⊆ S′.

To see that S′ is secure in G ′, let X ′ be an arbitrary subset of S′. Since S is secure in G
and X ′ ∩V (G) ⊆ S, there is a defenseμ : NG[X ′ ∩V (G)]\S → NG[X ′ ∩V (G)]∩ S.
We now construct a defense μ′ : NG ′ [X ′]\S′ → NG ′ [X ′] ∩ S′. For any attacker v of
X ′ in G ′, we distinguish three cases.
– If v is some xab�i ∈ Yab

x� ∪ Zab
x� for some (a, b) ∈ C and x ∈ {a, b}, we set

μ′(v) = xabi . This element is in NG ′ [X ′] since v is only adjacent to xabi or neighbors
of it.

– If v is aab or bab for some (a, b) ∈ C , its only neighbor in X ′ can be 	ab and we
set μ′(v) = 	ab.

– Otherwise v is in NG[X ′∩V (G)]\S (by our construction of S′). Since the codomain
of μ is a subset of the codomain of μ′, we may set μ′(v) = μ(v).

Since μ′ is injective, each attack on X ′ in G ′ can be repelled by S′. Hence S′ is secure
in G ′.

Clearly g is injective. It remains to show that g is surjective. Let S′ be a solution
of τFNC(I ). First we make the following observations for each (a, b) ∈ C and each
x ∈ {a, b}:
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– If some xabi ∈ Yab
x � is in S′, then Yab

x � ∪ Zab
x �∪ {x} ⊆ S′ by Observation 2.

– If some xabi ∈ Zab
x � is in S′, then Yab

x � ∪ Zab
x �∪ {xab} ⊆ S′ for the same reason.

– If x ∈ S′, then Yab
x � ∩ S′ 
= ∅. To see this, suppose x ∈ S′. Let Dx consist

of those pairs (c, d) ∈ C such that x ∈ {c, d} and Y cd
x � ∩ S′ 
= ∅, and let Ax

consist of those pairs (c, d) ∈ C such that x ∈ {c, d} and Y cd
x � ∩ S′ = ∅. Now let

X ′ = {x} ∪ {xcd1 , . . . , xcdn | (c, d) ∈ Dx }. By the previous observations, X ′ ⊆ S′.
The defenders of X ′ are the element x , the |Dx | ·(n+1) elements of

⋃
(c,d)∈Dx

Y cd
x �

and perhaps some elements of NG(x), which consists of at most n−1 vertices. The
attackers of X ′ are the |Dx | · (n+ 1) elements of

⋃
(c,d)∈Dx

Y cd
x�, the |Ax | · (n+ 1)

elements of
⋃

(c,d)∈Ax
Y cd
x � and perhaps some elements of NG(x). Thus, if Ax is

nonempty, then the set X ′ has more attackers than defenders in G ′. However, S′ is
secure, so Ax must be empty, which implies Yab

x � ∩ S′ 
= ∅.
– If xab ∈ S′, then Zab

x �∩ S′ 
= ∅ by Observation 1.

So for each (a, b) ∈ C and x ∈ {a, b}, S′ contains either all or none of {x, xab} ∪
Yab
x � ∪ Zab

x �.
For every (a, b) ∈ C , S′ contains aab or bab, since 	ab ∈ S′, whose neighbors

are aab and bab. It follows that |S′| > |C | · (n + 6) even if S′ contains only one
of each (a, b) ∈ C . If, for some (a, b) ∈ C , S′ contained both a and b, we could
derive a contradiction to |S′| ≤ σ FNC

I (k) = k + |C | · (n + 6) because then |S′| >

(|C | + 1) · (n + 6) > σ FNC
I (k). So S′ contains either a or b for any (a, b) ∈ C .

We construct S = S′ ∩ V (G) and observe that S′ = g(S), V	 ⊆ S, V� ∩ S = ∅,
and |S ∩ {a, b}| = 1 for each (a, b) ∈ C . It remains to show that S is secure in G.
Let X be an arbitrary subset of S. We construct X ′ = X ∪ ⋃

(a,b)∈C,x∈X∩{a,b} Yab
x �

and observe that each Yab
x � we put into X ′ entails |Yab

x � ∪ {xabn+2}| = n + 2 additional

defenders and |Yab
x� ∪ {xab�n+2 }| = n + 2 additional attackers of X ′ in G ′ compared to

X in G; so |NG ′ [X ′] ∩ S′| − |NG [X ] ∩ S| = |NG ′ [X ′]\S′| − |NG[X ]\S|. Clearly X ′
is a subset of S′, so |NG ′ [X ′] ∩ S′| ≥ |NG ′ [X ′]\S′| as S′ is secure in G ′. We conclude
|NG[X ] ∩ S| ≥ |NG [X ]\S|. Hence S is secure in G. �

As τFNC is clearly computable in polynomial time, the following result follows:

Corollary 1 Secure SetFN is �P
2 -hard.

The instances of Secure SetFNC are identical to the instances of the exact variant,
so τFNC is also applicable to the exact case. In fact it turns out that this gives us also
a reduction from Exact Secure SetFNC to Exact Secure SetFN.

Corollary 2 Exact Secure SetFN is �P
2 -hard.

Proof Let I and I ′ =τFNC(I )beourExact Secure SetFNC andExact Secure SetFN

instances, respectively, and let k and k′ denote their respective solution sizes. By
Lemma 2, there is a bijection g between the solutions of I and the solutions of I ′ such
that, for every solution S of I , g(S) has σ FNC

I (k) = k′ elements, and for every solution
S′ of I ′, g−1(S′) has k elements since σ FNC

I is invertible. �
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Fig. 6 Result of the
transformation τFN applied to
an example graph with two
adjacent vertices a and b, where
b is necessary. Every solution in
the depicted graph contains b, w
and w′

a

a

wa

wa w

b

3.3 Hardness of Secure Set with Forbidden Vertices

Now we present a transformation τFN that eliminates necessary vertices. Our trans-
formation not only operates on a problem instance, but also requires an ordering � of
the necessary vertices. For now, we can consider this as an arbitrary ordering. It will
become more important in Sect. 4.1, where we reuse this transformation for showing
W[1]-hardness w.r.t. treewidth.

Before formally defining the transformation τFN, we refer to Fig. 6, which shows
the result for a simple example graph with only two vertices a and b, of which b is
necessary. The basic idea is that the vertex w must be in every solution S because any
vertex that is in S also eventually forces w to be in S. Once w ∈ S, the construction
to the right of w makes sure that b ∈ S.

Definition 6 We define a function τFN, which assigns a Secure SetF instance to
each pair (I,�), where I = (G, k, V�, V	) is a Secure SetFN instance and � is an
ordering of the elements of V	. For this, let V �denote V (G)\(V� ∪ V	). We use n to
denote |V (G)|, andwe first define a function σ FN

I : x �→ xn+3x+n−|V	|+|V �|+2.
We use W to denote the set of new vertices {w} ∪ {wv,w

′
v, w

�
v , w′�

v | v ∈ V �}. The
intention is for each w�

v and w′�
v to be forbidden, for w and each w′

v to be in every
secure set, and for wv to be in a secure set iff v is in it at the same time. We write V+
to denote V	 ∪V �∪{w}; for each v ∈ V+, we use Av to denote the set of new vertices
{v1, . . . , vn+1, v

�
1 , . . . , v�

n+1}, and we use shorthand notation A
�

v = {v1, . . . , vn+1}
and A�

v = {v�
1 , . . . , v�

n+1}. The intention is for each v�
i to be forbidden and for each

vi to be in a secure set iff v is in it at the same time. We use the notation u ⊕ v

to denote the set of edges {(u, v), (u, u�), (v, v�), (u, v�), (v, u�)}. If V	 = ∅,
let P = ∅; otherwise let P be the set consisting of all pairs (u, v) such that v is
the direct successor of u according to �, as well as the pair (u, w), where u is the
greatest element according to �. Now we define τFN(I,�) = (G ′, k′, V ′

�), where
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a

a1 a2 · · · an+1

a1 a2 an+1

wa

wa wa

wa

w

Fig. 7 Illustration of the gadget that makes sure w and w′
a are in every secure set. The vertex a is a non-

necessary, non-forbidden vertex from the Secure SetFN instance and may have other neighbors from this
instance. The vertex w has two neighbors (as depicted here) for each non-necessary, non-forbidden vertex
from the Secure SetFN instance, and additionally the neighbors depicted in Fig. 8

x

x1 x2 · · · xn+1

x1 x2 xn+1

y

y1 y2 · · · yn+1

y1 y2 yn+1

w

w1 w2 · · · wn+1

w1 w2 wn+1

Fig. 8 Illustration of the gadget that makes sure every secure set contains all necessary vertices as it must
contain w. Here we assume there are the two necessary vertices x and y, and we use the ordering x � y

V ′
� = V� ∪ {w�

v , w′�
v | v ∈ V �} ∪ ⋃

v∈V+ A�
v , k′ = σ FN

I (k), and G ′ is the graph
defined by

V (G ′) = V (G) ∪ W ∪
⋃

v∈V+
Av,

E(G ′) = E(G) ∪ {(v, vi ) | v ∈ V+, 1 ≤ i ≤ n + 1}
∪

⋃

v∈V+, 1≤i≤n

vi ⊕ vi+1 ∪
⋃

(u,v)∈P

un+1 ⊕ v1

∪
⋃

v∈V �

vn+1 ⊕ wv ∪
{
(w,wv), (w,w′

v), (wv,w
′
v), (wv,w

′�
v ) | v ∈ V �

}
.

We illustrate our construction in Figs. 7 and 8.

We now prove that τFN yields a correct reduction for any ordering �.

Lemma 3 Let I = (G, k, V�, V	) be a Secure SetFN instance, let� be an ordering
of V	, let A be the set of solutions of I and let B be the set of solutions of τFN(I,�).
There is a bijection g : A → B such that |g(S)| = σFN

I (|S|) holds for every S ∈ A.

Proof We use the same auxiliary notation as in Definition 6 and we define g as S �→
S ∪ ⋃

v∈S A
�

v ∪ A
�

w ∪ {w} ∪ {w′
v | v ∈ V �} ∪ {wv | v ∈ S ∩ V �}. For every S ∈ A, we

thus obtain |g(S)| = |S|+ |S|(n+1)+ (n+1)+1+|V �|+ (|S|− |V	|) = σ FN
I (|S|),

and we first show that indeed g(S) ∈ B.
Let S ∈ A and let S′ denote g(S). Obviously S′ satisfies V ′

� ∩ S′ = ∅. To see
that S′ is secure in G ′, let X ′ be an arbitrary subset of S′. Since S is secure in G and
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X ′ ∩ V (G) ⊆ S, there is a defense μ : NG [X ′ ∩ V (G)]\S → NG [X ′ ∩ V (G)] ∩ S.
We now construct a defense μ′ : NG ′ [X ′]\S′ → NG ′ [X ′] ∩ S′. For any attacker a of
X ′ in G ′, we distinguish the following cases:

– If a is some v�
i ∈ A�

v for some v ∈ V+, then a can only attack either vi or a
neighbor of vi , all of which are in S′, and we set μ′(a) = vi .

– Similarly, if a is w�
v for some v ∈ V �, then we set μ′(a) = wv .

– If a is w′�
v for some v ∈ V �, then a attacks wv and we set μ′(a) = w′

v .
– If a is wv for some v ∈ V �, then it attacks w or w′

v , which is not used for repelling
any attack because w′�

v cannot attack X ′, so we set μ′(a) = w′
v .

– Otherwisea is in NG[X ′∩V (G)]\S (by our construction of S′). Since the codomain
of μ is a subset of the codomain of μ′, we may set μ′(a) = μ(a).

Since μ′ is injective, each attack on X ′ in G ′ can be repelled by S′. Hence S′ is secure
in G ′.

Clearly g is injective. It remains to show that g is surjective. Let S′ be a solution of
τFN(I,�). We first show that V	 ∪ {w} ⊆ S′:

– If S′ contains some v ∈ V	 ∪ V �, then S′ contains an element of A
�

v by Observa-
tion 1.

– If S′ contains an element of A
�

v for some v ∈ V+, then {v} ∪ A
�

v ⊆ S′ by
Observation 2.

– If vn+1 ∈ S′ for some v ∈ V �, then wv ∈ S′ for the same reason.
– Furthermore, if S′ contains an element of A

�

v for some v ∈ V	 ∪ {w}, then also
A

�

u ⊆ S′ for every u ∈ V	 ∪ {w} for the same reason.
– If wv ∈ S′ for some v ∈ V �, then {w,w′

v, vn+1} ⊆ S′ by Observation 2.
– If w′

v ∈ S′ for some v ∈ V �, then w ∈ S′ because at least wv or w must be in S′
and the former implies w ∈ S′ as we have seen.

– The previous observations show that any vertex being in S′ implies w ∈ S′. Since
S′ is nonempty, it follows thatw ∈ S′. We now show that S′ contains an element of
A

�

w. Suppose the contrary, letU = S′∩{wv | v ∈ V �}, letU ′ = S′∩{w′
v | v ∈ V �}

and consider X ′ = {w}∪U . The defenders of X ′ consist of exactly 1+|U ′|+2|U |
elements, whereas there are exactly (n+1)+ (|V �|− |U ′|)+ (|V �|− |U |)+3|U |
attackers.With |V �| ≥ |U ′| ≥ |U | andn > 0 inmind,we arrive at the contradiction
|NG ′ [X ′] ∩ S′| < |NG ′ [X ′]\S′|.

– The previous observations show that for every v ∈ V	 ∪ {w} it holds that {v} ∪
A

�

v ⊆ S′. Finally, we show that {w′
v | v ∈ V �} ⊆ S′. Suppose, for the sake of

contradiction, that there is some u ∈ V � such that w′
u /∈ S′. We have seen that the

latter can only be the case if u /∈ S′. Observe that {w}∪{wi | 2 ≤ i ≤ n+1}∪{wv |
v ∈ V �∩ S′} is a subset of S′ that is attacked by {w′

u} ∪ A�
w ∪ {v�

n+1, w
�
v , w′�

v |
v ∈ V � ∩ S′} ∪ {wv | v ∈ V �\S′}, but the defenders are a proper subset of
{w} ∪ A

�

w ∪ {vn+1, wv,w
′
v | v ∈ V �∩ S′} ∪ {w′

v | v ∈ V �\S′}. This contradicts S′
being secure in G ′.

Let S = S′ ∩ V (G). By the previous observations, it is easy to see that S′ = g(S).
It remains to show that S is secure in G. Let X be an arbitrary subset of S. We
construct X ′ = X ∪ ⋃

v∈X A
�

v and observe that the number of additional defenders of
X ′ in G ′ compared to X in G is equal to the number of additional attackers; formally
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|NG ′ [X ′] ∩ S′| − |NG[X ] ∩ S| = |NG ′ [X ′]\S′| − |NG[X ]\S|. Clearly X ′ ⊆ S′, so
|NG ′ [X ′] ∩ S′| ≥ |NG ′ [X ′]\S′| as S′ is secure in G ′. Consequently |NG [X ] ∩ S| ≥
|NG[X ]\S|. Hence S is secure in G. �

Given an ordering �, clearly τFN(I,�) is computable in polynomial time. We can
thus easily obtain a reduction from Secure SetFN to Secure SetF by first computing
an arbitrary ordering � of the necessary vertices in polynomial time. This also gives
us a hardness result for the exact case, analogous to Corollary 2.

Corollary 3 Secure SetF and Exact Secure SetF are �P
2 -hard.

3.4 Hardness of Secure Set

We now introduce a transformation τF that eliminates forbidden vertices. The basic
idea is that we ensure that a forbidden vertex f is never part of a solution by adding
so many neighbors to f that we could only defend f by exceeding the bound on the
solution size.

Definition 7 We define a function τF, which assigns a Secure Set instance to each
Secure SetF instance I = (G, k, V�). For each f ∈ V�, we introduce new vertices
f ′, f1, . . . , f2k . Now we define τF(I ) = (G ′, k), where G ′ is the graph defined by

V (G ′) = V (G) ∪ { f ′, f1, . . . , f2k | f ∈ V�},
E(G ′) = E(G) ∪ {( f, fi ), ( f ′, fi ) | f ∈ V�, 1 ≤ i ≤ 2k}.

Lemma 4 Every Secure SetF instance I has the same solutions as the Secure Set
instance τF(I ).

Proof Let I = (G, k, V�) and τF(I ) = (G ′, k). Each secure set S in G is also secure
in G ′ because the subgraph of G induced by NG [S] is equal to the subgraph of G ′
induced by NG ′ [S]. Now let S′ be a solution of τF(I ). For every f ∈ V�, neither
f nor f ′ are in S′ because each of these vertices has at least 2k neighbors, and S′
cannot contain any fi because NG ′( fi ) = { f, f ′}. Hence S′ is also secure in G as the
subgraphs induced by the respective neighborhoods are again equal. �

This immediately yields the following result.

Corollary 4 Secure Set and Exact Secure Set are �P
2 -hard.

4 Complexity of Secure Set Parameterized by Treewidth

In this section we study the parameterized complexity of the Secure Set problem
when treewidth is the parameter.

We first show that all variants of Secure Set considered in this paper are W[1]-
hard for this parameter by reusing some reductions from Sect. 3 and proving that they
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preserve bounded treewidth. Under the widely held assumption that FPT 
= W[1],
this rules out fixed-parameter tractable algorithms for these problems.

Second, we show that the co-NP-complete Secure Set Verification problem
is solvable in linear time on instances whose treewidth is bounded by a constant.
We do this by providing a fixed-parameter linear algorithm that performs dynamic
programming on a tree decomposition of the input graph. Although bounded treewidth
most likely does not lead tofixed-parameter tractability of the problemoffinding secure
sets, this proves that it does for the problem of verifying whether a given set is secure.

Third, we show that all the variants of the Secure Set problem considered in this
paper are solvable in polynomial time on instances whose treewidth is bounded by
a constant. We again do this by providing a polynomial-time dynamic programming
algorithm, but this time the degree of the polynomial depends on the treewidth.

4.1 Hardness of Secure Set Parameterized by Treewidth

In this subsection, we prove the following theorem:

Theorem 2 The following problems are all W[1]-hard when parameterized by
treewidth: Secure Set, Exact Secure Set, Secure SetF, Exact Secure SetF,
Secure SetFN, Exact Secure SetFN, Secure SetFNC, and Exact Secure SetFNC.

To prove this, we reduce from the following problem [3], which is known to be W[1]-
hard [29] parameterized by the treewidth of the graph:

Minimum Maximum Outdegree

Input: A graph G, an edge weighting w : E(G) → N
+ given in unary and a

positive integer r

Question: Is there an orientation of the edges of G such that, for each v ∈ V (G),
the sum of the weights of outgoing edges from v is at most r?

Lemma 5 Secure SetFNC and Exact Secure SetFNC, both parameterized by the
treewidth of the primal graph, areW[1]-hard.
Proof Let an instance of Minimum Maximum Outdegree be given by a graph
G, an edge weighting w : E(G) → N

+ in unary and a positive integer r . From
this we construct an instance of both Secure SetFNC and Exact Secure SetFNC. An
example is given in Fig. 9. For each v ∈ V (G), we define the set of new vertices
Hv = {hv

1, . . . , h
v
r−1}, and for each (u, v) ∈ E(G), we define the sets of new vertices

Vuv = {uv
1, . . . , u

v
w(u,v)} and Vvu = {vu1 , . . . , vuw(u,v)}. We now define the graph G ′

with

V (G ′) = V (G) ∪
⋃

v∈V (G)

Hv ∪
⋃

(u,v)∈E(G)

(Vuv ∪ Vvu),

E(G ′) = {(v, h) | v ∈ V (G), h ∈ Hv}
∪ {(u, x) | (u, v) ∈ E(G), x ∈ Vuv}
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a

ab2

ab1

ab3

ba1

ba2

ba3

b
ha
1

ha
2

hb
1

hb
2

Fig. 9 Result of our transformation on a sample Minimum Maximum Outdegree instance with r = 3
and two vertices a, b that are connected by an edge of weight 3. Complementary vertex pairs are shown via
dashed lines. Necessary vertices have a 	 symbol next to their name

∪ {(x, v) | (u, v) ∈ E(G), x ∈ Vvu}
∪ {(

uv
i , v

u
i

) | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)
}
.

We also define the set of complementary vertex pairs C = {(uv
i , v

u
i ) | (u, v) ∈

E(G), 1 ≤ i ≤ w(u, v)} ∪ {(vui , uv
i+1) | (u, v) ∈ E(G), 1 ≤ i < w(u, v)}.

Finally, we define the set of necessary vertices V	 = V (G) ∪ ⋃
v∈V (G) Hv and

k = |V	| + ∑
(u,v)∈E(G) w(u, v). We use I to denote (G ′, k,C, V	,∅), which is an

instance of Secure SetFNC and also of Exact Secure SetFNC. Obviously I is a pos-
itive instance of Secure SetFNC iff it is a positive instance of Exact Secure SetFNC

because the necessary and complementary vertices make sure that every solution
of the Secure SetFNC instance I has exactly k elements. Hence we only consider
Secure SetFNC.

The intention is that for each orientation of G we have a solution candidate S in I
such that an edge orientation from u to v entails Vvu ⊆ S and Vuv ∩ S = ∅, and the
other orientation entails Vuv ⊆ S and Vvu ∩ S = ∅. For each outgoing edge of v in
the orientation of G, there are as many attackers of v in I as the weight of that edge.
Together with Hv , v can repel up to r such attacks. The other neighbors of v that are
in S cannot help v since they are in turn attacked by their neighbors.

Clearly I can be computed in polynomial time. We now show that the treewidth of
the primal graph of I depends only on the treewidth of G. We do so by modifying an
optimal tree decomposition T of G as follows:

1. For each (u, v) ∈ E(G), we take an arbitrary node whose bag B contains both u
and v and add to its children a chain of nodes N1, . . . , Nw(u,v)−1 such that the bag
of Ni is B ∪ {uv

i , u
v
i+1, v

u
i , vui+1}.

2. For each v ∈ V (G), we take an arbitrary node whose bag B contains v and add to
its children a chain of nodes N1, . . . , Nr−1 such that the bag of Ni is B ∪ {hv

i }.
It is easy to verify that the result is a valid tree decomposition of the primal graph of
I and its width is at most the treewidth of G plus four.

We claim that (G, w, r) is a positive instance ofMinimum Maximum Outdegree
iff I is a positive instance of Secure SetFNC.

“Only if ” direction Let D be the directed graph given by an orientation of the edges
of G such that for each vertex the sum of weights of outgoing edges is at most r . The
set S = V	 ∪ {vu1 , . . . , vuw(u,v) | (u, v) ∈ E(D)} is secure in G: Let X be an arbitrary
subset of S. Every attacker must be some element uv

i . If v
u
i ∈ X , then we can use vui to

repel the attack from uv
i . Otherwise u ∈ X , so we can use either u or one of the r − 1
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elements of Hu to repel the attack from uv
i . These are sufficiently many defenders:

For every vertex v ∈ V (G) ∩ X , at most r neighbors attack v as otherwise the sum
of weights of outgoing edges of v in D would be greater than r . Finally, it is easy to
verify that |S| = k, V	 ⊆ S, and exactly one element of each pair of complementary
vertices is in S.
“If ” direction Let S be a solution of I . For every (u, v) ∈ E(G), either Vuv ⊆ S
or Vvu ⊆ S due to the complementary vertex pairs. We define a directed graph D
by V (D) = V (G) and E(D) = {(u, v) | Vvu ⊆ S} ∪ {(v, u) | Vuv ⊆ S}. Suppose
there is a vertex v in D whose sum of weights of outgoing edges is greater than r .
We construct X = {v} ∪ ⋃

(u,v)∈E(D) Vvu , which is a subset of S. Now v has more
than r attacking neighbors, but all defenders except v and Hv must already defend
themselves against their attacking neighbor. This contradicts S being secure. �

Now we reduce from Secure SetFNC to Secure SetFN to showW[1]-hardness of
the latter problem. We reuse the function τFNC from Definition 5 and show that this
gives us a reduction that preserves bounded treewidth.

Lemma 6 Secure SetFN, parameterized by the treewidth of the graph, isW[1]-hard.
Proof Let I be a Secure SetFNC instance whose primal graph we denote by G. We
obtain an equivalent Secure SetFN instance τFNC(I ), whose graph we denote by G ′.
This reduction is correct, as shown in Lemma 2. It remains to show that the treewidth
of G ′ is bounded by a function of the treewidth of G. Let T be an optimal nice tree
decomposition of G. We build a tree decomposition T ′ of G ′ by modifying a copy
of T in the following way: For every pair (a, b) of complementary vertices, we pick
an arbitrary node t in T whose bag B contains both a and b, and we add a chain of
nodes N1, . . . , N2n+3 between t and its parent such that, for 1 ≤ i ≤ n + 1, the bag
of Ni is B ∪ {aabi , aab�i , aabi+1, a

ab�
i+1 }, the bag of Nn+2 is B ∪ {aab, bab,	ab} ∪ Zab

a �∪
Zab
a� ∪ Zab

b �∪ Zab
b�, and the bag of Nn+2+i is B ∪ {babn+3−i , b

ab�
n+3−1, b

ab
n+2−i , b

ab�
n+2−i }.

It is easy to verify that T ′ is a valid tree decomposition of G ′. Furthermore, the width
of T ′ is at most the width of T plus 15.

Just like before, we get an analogous result for the exact variant. It can be proved
in the same way as Corollary 2.

Corollary 5 Exact Secure SetFN, parameterized by the treewidth of the graph, is
W[1]-hard.

We next show W[1]-hardness of Secure SetF by reducing from Secure SetFN

using the function τFN fromDefinition6.This functionmaps aSecure SetFN instance,
together with an ordering � of the necessary vertices, to an equivalent Secure SetF

instance. We show that by choosing � appropriately, this gives us a reduction that
preserves bounded treewidth.

Lemma 7 Secure SetF, parameterized by the treewidth of the graph, isW[1]-hard.
Proof Let I = (G, k, V�, V	) be a Secure SetFN instance and let T be an optimal
nice tree decomposition of G. We can compute such a tree decomposition in FPT
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time [6]. Let � be the ordering of the elements of V	 that is obtained in linear time by
doing a post-order traversal of T and sequentially recording the elements that occur
for the last time in the current bag. We obtain the Secure SetF instance τFN(I,�),
whose graph we denote by G ′. This reduction is correct, as shown in Lemma 3, and
computable in FPT time. It remains to show that the treewidth of G ′ is bounded by a
function of the treewidth of G. To this end, we use T to build a tree decomposition
T ′ of G ′. We initially set T ′ := T and modify it by the following steps:

1. We insert w into every bag.
2. For every (u, v) ∈ P , we add v, v1 and v�

1 into the bag of every node between
(and including) tT

′
u and tT

′
v . Note that the bag of tT

′
u contains both u and v. After

this step, we have increased the bag size of each node by at most five.
3. For each v ∈ V+, we use Bv to denote the bag of tT

′
v and replace tT

′
v by a

chain of nodes N1, . . . , Nn , where Nn is the topmost node and the bag of Ni is
Bv ∪ {vi , v�

i , vi+1, v
�
i+1}. After this step, note that, for each (u, v) ∈ P , the bag

of the new node tT
′

u contains un+1, u�
n+1, v1 and v�

1 .

4. For each v ∈ V �, we add wv , w�
v , w′

v and w′�
v to the bag of tT

′
v , which already

contains w, vn+1, v�
n+1.

It is easy to verify that T ′ is a valid tree decomposition of G ′. Furthermore, the width
of T ′ is at most the width of T plus twelve. �

We again get an analogous result for the exact variant.

Corollary 6 Exact Secure SetF, parameterized by the treewidth of the graph, is
W[1]-hard.

Finally, we show W[1]-hardness of Secure Set by reducing from Secure SetF

while preserving bounded treewidth.

Lemma 8 Secure Set, parameterized by the treewidth of the graph, is W[1]-hard.
Proof Let I = (G, k, V�) be aSecure SetF instance, letG ′ denote the graph of τF(I )
and let T be an optimal nice tree decomposition of G. We build a tree decomposition
T ′ ofG ′ bymodifying a copy of T in the followingway: For every f ∈ V�, we pick an
arbitrary node t inT whose bag B contains f , andwe add a chain of nodes N1, . . . , N2k
between t and its parent such that, for 1 ≤ i ≤ 2k, the bag of Ni is B ∪ { f ′, fi }. It is
easy to verify that T ′ is a valid tree decomposition of G ′. Furthermore, the width of
T ′ is at most the width of T plus two. �

We again get an analogous result for the exact variant.

Corollary 7 Exact Secure Set, parameterized by the treewidth of the input graph,
isW[1]-hard.

4.2 A Fixed-Parameter Tractable Algorithm for Secure Set Verification

While we have seen in Sect. 4.1 that Secure Set parameterized by treewidth is most
likely not FPT, we now present a positive result: The co-NP-complete [21] Secure
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Set Verificationproblem,which consists of checkingwhether a given set Ŝ is secure
in a graph G, is FPT parameterized by the treewidth of G. We show this by giving a
fixed-parameter linear algorithm that follows the principle of dynamic programming
on a tree decomposition T of G. The core idea is the following: For each node t of T
and each X ⊆ Ŝ ∩ χ(t), we store an integer cŜ,t (X), which indicates that X can be
extended to a set X̂ ⊆ Ŝ using “forgotten” vertices from further down in T in such
a way that the difference between defenders and attackers of X̂ is cŜ,t (X) and X̂ is
the “worst” subset of Ŝ that can be obtained in this way. To compute these values, we
traverse T from the bottom up and use recurrence relations to compute the values for
the current node t of T based on the values we have computed for the children of t . If
we then look at the values we have computed at the root of T , we can decide if there
is a subset of Ŝ that is “bad enough” to witness that Ŝ is not secure.

Dynamic programming algorithms like this are quite common for showing FPT
membership w.r.t. treewidth and some examples can be found in [13,26]. Proving
their correctness is a usually rather tedious structural induction argument along the
tree decomposition:At every node t ofT , we have to prove that the recurrence relations
indeed characterize the value they are supposed to represent. Examples of such proofs
can be found in [13].

We now formally define the values that we will compute at each tree decomposition
node. Let G be a graph with a nice tree decomposition T and let Ŝ ⊆ V (G) be the
candidate for which we want to check if it is secure. For each node t of T and each
set of vertices A, we define At = {a ∈ A | a ∈ χ(t ′), t ′ is a descendant of t}. For
any X̂ ⊆ Ŝ, we call |NG[X̂ ]t ∩ Ŝ| − |NG [X̂ ]t\Ŝ| the score of X̂ w.r.t. Ŝ at t (or just
the score of X̂ if Ŝ and t are clear from the context) and denote it by scoreŜ,t (X̂).
Furthermore, we call |NG[X̂ ] ∩ χ(t) ∩ Ŝ|− |(NG [X̂ ] ∩ χ(t))\Ŝ| the local score of X̂
w.r.t. Ŝ at t and denote it by lscoreŜ,t (X̂). Finally, for each X ⊆ Ŝ ∩ χ(t), we define
the value

cŜ,t (X) = min
X̂⊆Ŝt , X̂∩χ(t)=X

{
scoreŜ,t (X̂)

}
.

When r is the root of T , both Ŝr = Ŝ and χ(r) = ∅ hold, so Ŝ is secure if and only if
cŜ,r (∅) is nonnegative.

We now describe how to compute all such values in a bottom-up manner by dis-
tinguishing the node type of t , and we prove the correctness of our computation by
structural induction along the way. In this correctness proof, we use additional ter-
minology: We say that a set X̂ is an extension of X w.r.t. Ŝ at t if it is one of those
sets considered in the definition of cŜ,t (X) that has minimum score; formally X̂ ⊆ Ŝt ,
X̂ ∩ χ(t) = X and scoreŜ,t (X̂) = cŜ,t (X). We may omit Ŝ or t if they are clear from
the context.

Leaf node. If t is a leaf node, then its bag is empty and obviously cŜ,t (∅) = 0
holds.
Introduce node. Let t be an introduce nodewith child t ′, let v be the unique element
of χ(t)\χ(t ′), let X ⊆ Ŝ ∩ χ(t) and let X ′ = X\{v}. We prove that the following
equation holds:
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cŜ,t (X) =

⎧
⎪⎨

⎪⎩

cŜ,t ′(X
′) + 1 if v ∈ NG[X ] ∩ Ŝ

cŜ,t ′(X
′) − 1 if v ∈ NG[X ]\Ŝ

cŜ,t ′(X
′) otherwise

First consider the case where v ∈ NG[X ] ∩ Ŝ. Let X̂ be an extension of X at
t , so scoreŜ,t (X̂) = cŜ,t (X). From v /∈ NG [X̂\{v}]t ′ and v ∈ NG [X̂ ]t ∩ Ŝ we
infer scoreŜ,t (X̂) = scoreŜ,t ′(X̂\{v}) + 1. Moreover, the set X̂\{v} is one of
the candidates considered for an extension of X ′ in the definition of cŜ,t ′ , so we
obtain cŜ,t ′(X

′) ≤ scoreŜ,t ′(X̂\{v}). In total, this gives us cŜ,t (X) ≥ cŜ,t ′(X
′)+1.

Conversely, let X̂ ′ be an extension of X ′ at t ′, so scoreŜ,t ′(X̂
′) = cŜ,t ′(X

′). We
distinguish two cases.
1. If v ∈ X , then from v /∈ NG[X̂ ′]t ′ and v ∈ NG [X̂ ′ ∪ {v}]t ∩ Ŝ we infer

scoreŜ,t (X̂
′∪{v}) = scoreŜ,t ′(X̂

′)+1. Since X = X ′∪{v} and X ′ = X̂ ′∩χ(t ′),
it holds that X = (X̂ ′ ∪ {v}) ∩ χ(t). Hence the set X̂ ′ ∪ {v} is one of the
candidates considered for an extension of X in the definition of cŜ,t and we
obtain cŜ,t (X) ≤ scoreŜ,t (X̂

′ ∪ {v}).
2. Otherwise v /∈ X . In this case X = X ′, v /∈ X̂ ′ and X = X̂ ′ ∩ χ(t). Hence

the set X̂ ′ is considered in the definition of cŜ,t (X) and we get cŜ,t (X) ≤
scoreŜ,t (X̂

′). Since v is adjacent to an element of X , we infer scoreŜ,t (X̂
′) =

scoreŜ,t ′(X̂
′) + 1.

In both cases, we obtain cŜ,t (X) ≤ cŜ,t ′(X
′)+1, so indeed cŜ,t (X) = cŜ,t ′(X

′)+1.
Next consider the case where v ∈ NG [X ]\Ŝ. Clearly v /∈ X . Let X̂ be an extension
of X at t , so scoreŜ,t (X̂) = cŜ,t (X). From v /∈ NG [X̂ ]t ′ and v ∈ NG [X̂ ]t\Ŝwenow
infer scoreŜ,t (X̂) = scoreŜ,t ′(X̂) − 1. Similar to before, by definition of cŜ,t ′(X

′)
we obtain cŜ,t ′(X

′) ≤ scoreŜ,t ′(X̂). In total, this gives us cŜ,t (X) ≥ cŜ,t ′(X
′) − 1.

Conversely, let X̂ ′ be an extension of X ′ at t ′, so scoreŜ,t ′(X̂
′) = cŜ,t ′(X

′). Since
v /∈ X̂ ′ and X = X̂ ′ ∩ χ(t), X̂ ′ is considered in the definition of cŜ,t (X) and
we get cŜ,t (X) ≤ scoreŜ,t (X̂

′). Since v is adjacent to an element of X , we infer
scoreŜ,t (X̂

′) = scoreŜ,t ′(X̂
′) − 1. We obtain cŜ,t (X) ≤ cŜ,t ′(X

′) − 1, so indeed
cŜ,t (X) = cŜ,t ′(X

′) − 1.
Finally consider the remaining case where v /∈ NG [X ] and, in particular, v /∈ X
holds as well as X = X ′. Using elementary set theory with Ŝt\{v} = Ŝt ′ and
χ(t) = χ(t ′) ∪ {v} in mind, we can prove that {X̂ ⊆ Ŝt | X̂ ∩ χ(t) = X} is equal
to {X̂ ⊆ Ŝt ′ | X̂ ∩ χ(t ′) = X ′}. Hence a set X̂ is considered in the definition of
cŜ,t (X) iff it is considered in the definition of cŜ,t ′(X

′). For every X̂ ⊆ Ŝt such that
X̂ ∩ χ(t) = X , observe that v /∈ NG [X̂ ]t , since v is not adjacent to any element
of X and if it were adjacent to some element of X̂\X , then T would not be a valid
tree decomposition. This proves that every such X̂ has the same score at t and t ′.
Hence cŜ,t (X) = cŜ,t ′(X

′).
Forget node. Let t be a forget node with child t ′, let v be the unique element
of χ(t ′)\χ(t) and let X ⊆ Ŝ ∩ χ(t). We prove that the following equation
holds:
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cŜ,t (X) =
{
min{cŜ,t ′(X), cŜ,t ′(X ∪ {v})} if v ∈ Ŝ

cŜ,t ′(X) otherwise

Clearly Ŝt = Ŝt ′ and all scores at forget nodes are identical to those in the respec-
tive child node. The case where v /∈ Ŝ is trivial as then Ŝ ∩ χ(t) = Ŝ ∩ χ(t ′), i.e.,
the domains of cŜ,t and cŜ,t ′ are equal, and the sets considered in the definitions
of cŜ,t (X) and cŜ,t ′(X) are the same. Hence we consider the case where v ∈ Ŝ.
Let X̂ be an extension of X at t , so cŜ,t (X) = scoreŜ,t (X̂) = scoreŜ,t ′(X̂). If
v /∈ X̂ , then X̂ ∩ χ(t ′) = X , so we obtain cŜ,t ′(X) ≤ scoreŜ,t ′(X̂) by definition
of cŜ,t ′(X). On the other hand, if v ∈ X̂ , then X̂ ∩ χ(t ′) = X ∪ {v}, so we obtain
cŜ,t ′(X ∪ {v}) ≤ scoreŜ,t ′(X̂). As one of these two inequalities applies, we get
cŜ,t (X) ≥ min{cŜ,t ′(X), cŜ,t ′(X ∪ {v})}.
Conversely, every extension X̂ ′ of X at t ′ is considered in the definition of
cŜ,t (X), so cŜ,t (X) ≤ scoreŜ,t (X̂

′) = scoreŜ,t ′(X̂
′) = cŜ,t ′(X). Moreover, every

extension X̂ ′ of X ∪ {v} at t ′ is also considered in the definition of cŜ,t (X),
so cŜ,t (X) ≤ scoreŜ,t (X̂

′) = scoreŜ,t ′(X̂
′) = cŜ,t ′(X ∪ {v}). If we combine

these two inequalities, we get cŜ,t (X) ≤ min{cŜ,t ′(X), cŜ,t ′(X ∪ {v})}. Hence
cŜ,t (X) = min{cŜ,t ′(X), cŜ,t ′(X ∪ {v})}.
Join node. Let t be a join node with children t ′, t ′′ such that χ(t) = χ(t ′) = χ(t ′′),
and let X ⊆ Ŝ ∩ χ(t). We prove that the following equation holds:

cŜ,t (X) = cŜ,t ′(X) + cŜ,t ′′(X) − lscoreŜ,t (X)

Let X̂ be an extension of X at t , so scoreŜ,t (X̂) = cŜ,t (X). The set X̂ ′ = X̂ ∩ Ŝt ′

satisfies X̂ ′ ∩ χ(t ′) = X , so cŜ,t ′(X) ≤ scoreŜ,t ′(X̂
′). Symmetrically, for

X̂ ′′ = X̂ ∩ Ŝt ′′ it holds that cŜ,t ′′(X) ≤ scoreŜ,t ′′(X̂
′′).

There is no element of V (G)t ′′ \χ(t) that is adjacent to an element of X̂ ′\X , other-
wise T would not be a valid tree decomposition. Hence NG [X̂ ′]t = NG[X̂ ′]t ′ , and
symmetrically NG[X̂ ′′]t = NG [X̂ ′′]t ′′ . This entails scoreŜ,t (X̂

′) = scoreŜ,t ′(X̂
′)

and scoreŜ,t (X̂
′′) = scoreŜ,t ′′(X̂

′′).
Since NG [X̂ ]t ∩ Ŝ is the union of NG[X̂ ′]t ∩ Ŝ and NG[X̂ ′′]t ∩ Ŝ, and these latter
two sets have NG [X ] ∩ χ(t) ∩ Ŝ as their intersection, we can apply the inclusion-
exclusion principle to obtain |NG [X̂ ]t ∩ Ŝ| = |NG[X̂ ′]t ∩ Ŝ| + |NG [X̂ ′′]t ∩ Ŝ| −
|NG [X ] ∩ χ(t) ∩ Ŝ|. In a similar way, we get |NG[X̂ ]t\Ŝ| = |NG[X̂ ′]t\Ŝ| +
|NG [X̂ ′′]t\Ŝ|−|(NG [X ] ∩ χ(t))\Ŝ)|.Wecan establish scoreŜ,t (X̂) = scoreŜ,t (X̂

′)
+scoreŜ,t (X̂

′′)−lscoreŜ,t (X) by putting these equations together. The inequalities
we have derived before now allow us to conclude cŜ,t (X) ≥ cŜ,t ′(X)+cŜ,t ′′(X)−
lscoreŜ,t (X).
Now let X̂ ′ and X̂ ′′ be extensions of X at t ′ and at t ′′, respectively. We have that
cŜ,t ′(X) = scoreŜ,t ′(X̂

′) and cŜ,t ′′(X) = scoreŜ,t ′′(X̂
′′). The set X̂ = X̂ ′ ∪ X̂ ′′

is clearly considered in the definition of cŜ,t (X), so cŜ,t (X) ≤ scoreŜ,t (X̂). Fol-
lowing the same reasoning as before, we obtain scoreŜ,t (X̂) = scoreŜ,t (X̂

′) +
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scoreŜ,t (X̂
′′) − lscoreŜ,t (X). This gives us cŜ,t (X) ≤ cŜ,t ′(X) + cŜ,t ′′(X) −

lscoreŜ,t (X). Hence cŜ,t (X) = cŜ,t ′(X) + cŜ,t ′′(X) − lscoreŜ,t (X).

Using these recurrence relations, we can traverse the tree decomposition T in a
bottom-up way and compute at each node t of T the value cŜ,t (X) for each X ⊆
Ŝ ∩ χ(t). Hence for each node of T we compute at most 2w values, where w is the
width of T . By choosing the right data structure for adjacency tests [13, Exercise 7.16],
each value can be computed in timeO(w3). SinceT hasO(w·|V (G)|)manynodes and
T can be computed in fixed-parameter linear time [6], (in fact in time 2O(w3) · |V (G)|
as observed by [9]), we thus get an algorithmwith fixed-parameter linear running time
for checking whether a given set Ŝ is secure.

Theorem 3 Given a graph G, a tree decomposition of G of weight w and a set
Ŝ ⊆ V (G), we can decide in time O(2w · w4 · |V (G)|) whether Ŝ is secure in G.

Our algorithm can easily be adjusted to find a witness if Ŝ is not secure, i.e., to print
a subset of Ŝ that has more attackers than defenders. After cŜ,t has been computed
for each t , this can be done via a final top-down traversal by a standard technique in
dynamic programming on tree decompositions [26]: Alongside each value cŜ,t (X),
we store the “origin” of this value and recursively combine the origins of cŜ,r (∅),
where r is the root of T .

In our definition of the Secure Set Verification problem, we were only con-
cerned with checking whether a set is secure, but we did not mention the additional
constructs that we consider in this paper, like complementary vertex pairs or necessary
or forbidden vertices. However, these additions pose no difficulty at all because we
can just check the respective conditions in linear time.

4.3 A Polynomial Algorithm for Secure Set on Bounded Treewidth

We now present an algorithm for finding secure sets, not just verifying whether a given
set is secure. Our algorithm works by dynamic programming on a tree decomposition
of the input and extends the algorithm fromSect. 4.2. For graphs of bounded treewidth,
the algorithm presented in this section runs in polynomial time. However, in contrast to
the algorithm in Sect. 4.2, it is not an FPT algorithm since the degree of the polynomial
depends on the treewidth. This is to be expected since the problemof finding secure sets
of a certain size is W[1]-hard when parameterized by treewidth, as we have shown in
Lemma 8. Our algorithm provides an upper bound for the complexity of this problem,
namely membership in the class XP.

Let G be a graph with a nice tree decomposition T , and let t be a node of T . In
Sect. 4.2, we were given one particular secure set candidate Ŝ that we wanted to check,
so we only computed one value for each X ⊆ Ŝ ∩ χ(t), namely the lowest score of
any X̂ ⊆ Ŝt whose intersection with χ(t) is X . Here, in contrast, we cannot restrict
ourselves to only one secure set candidate, and multiple candidates may have the same
intersection with χ(t). We therefore compute multiple objects for each subset of χ(t),
since two subsets of V (G)t that have the same intersection with χ(t) may have to be
distinguished due to their subsets having different scores.
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Let S ⊆ χ(t). By FS we denote the set of functions from2S to an integer. Let c ∈ FS

and let k be an integer. We say that a set Ŝ ⊆ V (G)t is (S, t, c, k)-characterized if
|Ŝ| = k, Ŝ ∩ χ(t) = S and, for each X ⊆ S, it holds that c(X) = cŜ,t (X), where cŜ,t
is the function defined in Sect. 4.2. For each S ⊆ χ(t), we now define the set

CS,t = {(c, k) | there is a (S, t, c, k) − characterized set}.

When r is the root of T , there is a secure set of size k in G if and only if there is an
element (c, k) ∈ C∅,r such that c(∅) ≥ 0. To see this, first suppose there is a secure
set Ŝ of size k in G. Then there is a function c : {∅} → Z such that Ŝ is (∅, r, c, k)-
characterized, so (c, k) ∈ C∅,r and c(∅) = cŜ,r (∅), which means that c(∅) is the
lowest score of any subset of Ŝ. Since Ŝ is secure in G, this number is nonnegative.
For the other direction, let (c, k) ∈ C∅,r such that c(∅) ≥ 0. Then there is a (∅, r, c, k)-
characterized set Ŝ, obviously of size k. Since c(∅) ≥ 0, the lowest score of any subset
of Ŝ is nonnegative, which proves that Ŝ is secure in G.

We now describe how to compute all such values in a bottom-up manner.

Leaf node. If t is a leaf node, its bag is empty and obviously C∅,t = {(c, 0)} holds,
where c maps ∅ to 0.
Introduce node. Let t be an introduce node with child t ′ and let v be the unique
element of χ(t)\χ(t ′). For each S ⊆ χ(t) and each function c ∈ FS\{v}, we define
a function c ⊕S,t v : 2S → Z. Its intended purpose is to obtain a version of c that
applies to t instead of t ′. If v ∈ S, we need to increase scores where v can serve
as an additional defender, and otherwise we need to decrease scores where v can
serve as an additional attacker. We now make this formal. Let S ⊆ χ(t), X ⊆ S,
X ′ = X\{v} and c ∈ FS\{v}.

(c ⊕S,t v)(X) =

⎧
⎪⎨

⎪⎩

c(X ′) + 1 if v ∈ NG [X ] ∩ S

c(X ′) − 1 if v ∈ NG [X ]\S
c(X ′) otherwise

For each S ⊆ χ(t) and each function c ∈ FS there is a unique function c′ ∈ FS\{v}
such that c = c′ ⊕S,t v, and we denote c′ by originS,t (c).
The following statements can be proved by arguments similar to those in Sect. 4.2:
Let Ŝ ⊆ V (G)t ′ , S = Ŝ ∩ χ(t ′) and (c, k) ∈ CS,t ′ such that Ŝ is (S, t ′, c, k)-
characterized. The set Ŝ∪{v} is (S∪{v}, t, c⊕S∪{v},tv, k+1)-characterized and Ŝ is
(S, t, c⊕S,t v, k)-characterized. Hence (c⊕S∪{v},t v, k+1) ∈ CS∪{v},t and (c⊕S,t

v, k) ∈ CS,t . Conversely, let Ŝ ⊆ V (G)t , S = Ŝ∩χ(t) and (c, k) ∈ CS,t such that
Ŝ is (S, t, c, k)-characterized, and let c′ = originS,t (c) and k′ = k − |S ∩ {v}|.
The set Ŝ\{v} is (S\{v}, t ′, c′, k′)-characterized. Hence (c′, k′) ∈ CS\{v},t ′ .
From these observations, the following equation follows for every S ⊆ χ(t):

CS,t = {(c ⊕S,t v, k + |S ∩ {v}|) | (c, k) ∈ CS\{v},t ′ }

Forget node. Let t be a forget node with child t ′ and let v be the unique element of
χ(t ′)\χ(t). For each S ⊆ χ(t) and each function c ∈ FS∪{v}, we define a function
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c �∈
S,t v, and for each S ⊆ χ(t) and each function c ∈ FS , we define a function

c �/∈
S,t v. Each of these functions maps every subset of S to an integer.

(
c �∈

S,t v
)
(X) = min{c(X), c(X ∪ {v})}

(
c �/∈

S,t v
)
(X) = c(X)

Next we define functions origin∈
S,t and origin

/∈
S,t that map each element of FS to a

set of elements of FS∪{v} and FS , respectively:

origin∈
S,t (c) = {

c′ ∈ FS∪{v} | c = c′ �∈
S,t v

}

origin/∈
S,t (c) = {

c′ ∈ FS | c = c′ �/∈
S,t v

}

The following statements can be proved by arguments similar to those in Sect. 4.2:
Let Ŝ ⊆ V (G)t ′ , S = Ŝ ∩ χ(t ′) and (c, k) ∈ CS,t ′ such that Ŝ is (S, t ′, c, k)-
characterized. If v ∈ Ŝ, then Ŝ is (S\{v}, t, c �∈

S,t v, k)-characterized and (c �∈
S,t

v, k) ∈ CS\{v},t ; otherwise Ŝ is (S, t, c�/∈
S,t v, k)-characterized and (c�/∈

S,t v, k) ∈
CS,t . Conversely, let Ŝ ⊆ V (G)t , S = Ŝ ∩ χ(t) and (c, k) ∈ CS,t such that Ŝ is
(S, t, c, k)-characterized. If v ∈ Ŝ, then there is some c′ ∈ origin∈

S,t (c) such that Ŝ
is (S ∪ {v}, t ′, c′, k)-characterized and (c′, k) ∈ CS∪{v},t ′ ; otherwise there is some
c′ ∈ origin/∈

S,t (c) such that Ŝ is (S, t ′, c′, k)-characterized and (c′, k) ∈ CS,t ′ .
From these observations, the following equation follows for every S ⊆ χ(t):

CS,t = {(
c �∈

S,t v, k
) | (c, k) ∈ CS∪{v},t ′

} ∪ {(
c �/∈

S,t v, k
) | (c, k) ∈ CS,t ′

}

Join node. Let t be a join node with children t ′, t ′′ such that χ(t) = χ(t ′) = χ(t ′′).
For each S ⊆ χ(t), and each c′, c′′ ∈ FS , we define a function c′ ⊗S,t c′′, which
maps each subset of S to an integer.

(c′ ⊗S,t c
′′)(X) = c′(X) + c′′(X) − lscoreS,t (X)

Next we define a function originS,t that maps each element of FS to a subset of
FS × FS :

originS,t (c) = {(c′, c′′) ∈ FS × FS | c = c′ ⊗S,t c
′′}

The following statements can be proved by arguments similar to those in Sect. 4.2:
Let Ŝ′ ⊆ V (G)t ′ , Ŝ′′ ⊆ V (G)t ′′ , S = Ŝ′ ∩ Ŝ′′, (c′, k′) ∈ CS,t ′ and (c′′, k′′) ∈ CS,t ′′
such that Ŝ′ is (S, t ′, c′, k′)-characterized and Ŝ′′ is (S, t ′′, c′′, k′′)-characterized,
and let c = c′ ⊗S,t c′′ and k = k′ + k′′ − |S|. The set Ŝ′ ∪ Ŝ′′ is (S, t, c, k)-
characterized and (c, k) ∈ CS,t . Conversely, let Ŝ ⊆ V (G)t , S = Ŝ ∩ χ(t)
and (c, k) ∈ CS,t such that Ŝ is (S, t, c, k)-characterized. There is some (c′, c′′) ∈
originS,t (c) aswell as integers k

′, k′′ such that k = k′+k′′−|S|, the set Ŝ∩V (G)t ′ is
(S, t ′, c′, k′)-characterized and Ŝ∩V (G)t ′′ is (S, t ′′, c′′, k′′)-characterized. Hence
(c′, k′) ∈ CS,t ′ and (c′′, k′′) ∈ CS,t ′′ .
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From these observations, the following equation follows for every S ⊆ χ(t):

CS,t = {(c′ ⊗S,t c
′′, k′ + k′′ − |S|) | (c′, k′) ∈ CS,t ′ , (c′′, k′′) ∈ CS,t ′′ }

We can now traverse the tree decomposition T in a bottom-up way and at each
node t of T compute the set CS,t for each S ⊆ χ(t). Let n denote the number of
vertices of G and w denote the width of T . Every element of CS,t is a pair (c, k),
where c is a function that maps each subset of S to an integer between −n and n,
there are at most 2w subsets of S, and k is an integer between 0 and n. Hence there
are at most (2n + 1)2

w · (n + 1) elements of CS,t . Each individual element of CS,t

can be computed in time O(2w). Finally, there are at most 2w possible values for S
and O(wn) many nodes in T . We thus get an algorithm that takes as input an integer
k together with a graph G whose treewidth we denote by w, and determines in time
f (w) ·ng(w) whether G admits a secure set of size k, where f and g are functions that
only depend on w.

This algorithm for Exact Secure Set obviously also gives us an algorithm for
Secure Set by checking all solution sizes from 1 to k. Finally, we can easily extend
it to accommodate complementary vertex pairs as well as necessary and forbidden
vertices. Hence we get the following XP membership result:

Theorem 4 Secure Set,Exact Secure Set, Secure SetF,Exact Secure SetF,
Secure SetFN, Exact Secure SetFN, Secure SetFNC and Exact Secure SetFNC

can be solved in polynomial time if the treewidth of the input is bounded by a constant.

By keeping track of the origins of our computed values during our bottom-up
traversal of the tree decomposition, we can easily adapt the algorithm to find solutions
if they exist.

5 Conclusion

In this work, we have solved a complexity problem in graph theory that, to the best of
our knowledge, has remained open since the introduction of secure sets [11] in 2007.
We have shown that the problem of deciding whether, for a given graph G and integer
k, G possesses a non-empty secure set of size at most k is �P

2 -complete. We moreover
obtained �P

2 -completeness for seven further variants of this problem.
In the second part of this paper, we analyzed the complexity of the Secure Set

problem parameterized by the treewidth of the input graph. In particular, we showed
that bounded treewidth does not make the problem fixed-parameter tractable unless
FPT = W[1]. Nevertheless, we provided a polynomial-time algorithm for finding
secure sets on graphs of bounded treewidth and thus showed membership in the class
XP. As a positive result, we could show that the co-NP-complete problem of verify-
ing whether a given set is secure can be solved in fixed-parameter linear time when
parameterized by treewidth.

There are several interesting directions for future research. One open question is
which additional restrictions beside bounded treewidth need to be imposed on Secure
Set instances to achieve fixed-parameter tractability. On the other hand, the Secure
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Set Verification problem may remain FPT for parameters that are less restrictive
than treewidth. We showed W[1]-hardness and XP-membership of Secure Set, so
a tight bound is still lacking, albeit perhaps more of theoretical interest due to the
fact that problems at a certain level of the weft hierarchy generally do not admit
faster algorithms than problems at higher levels. To classify a problem as FPT w.r.t.
treewidth, a common approach is to express it in monadic second-order logic (MSO)
and then invokeCourcelle’s Theorem [12], which immediately proves that the problem
is FPT. We showed that Secure Set Verification is FPT, but it is not clear if it
can be expressed in MSO. If it cannot, then our FPT result could hint at possible
extensions of MSO whose model-checking problem is still FPT. Similarly, we believe
that MSO can be extended in such a way that Secure Set can be expressed and that a
variant of Courcelle’s Theorem for showing membership in XP instead of FPT holds.
Finally, some of our results seem to be transferable to (variants of) the Defensive
Alliance problem, so it would be interesting to investigate if some of our reductions
and algorithms can help in the study of such related problems.
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