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Abstract In the Edge Bipartization problem one is given an undirected graph G
and an integer k, and the question is whether k edges can be deleted from G so that it
becomes bipartite. Guo et al. (J Comput Syst Sci 72(8):1386–1396, 2006) proposed an
algorithm solving this problem in timeO(2k ·m2); today, this algorithm is a textbook
example of an application of the iterative compression technique. Despite extensive
progress in the understanding of the parameterized complexity of graph separation
problems in the recent years, no significant improvement upon this result has been
yet reported. We present an algorithm for Edge Bipartization that works in time
O(1.977k · nm), which is the first algorithm with the running time dependence on the
parameter better than 2k . To this end, we combine the general iterative compression
strategy of Guo et al. (2006), the technique proposed by Wahlström (in: Proceedings
of SODA’14, SIAM, 2014) of using a polynomial-time solvable relaxation in the
form of a Valued Constraint Satisfaction Problem to guide a bounded-depth branching
algorithm, and an involved Measure&Conquer analysis of the recursion tree.

1 Introduction

The Edge Bipartization problem asks, for a given graph G and integer k, whether
one can turn G into a bipartite graph using at most k edge deletions. Together with its
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close relative Odd Cycle Transversal (OCT), where one deletes vertices instead
of edges, Edge Bipartization was one of the first problems shown to admit a
fixed-parameter (FPT) algorithm using the technique of iterative compression. In a
breakthrough paper [28] that introduces this methodology, Reed et al. showed how to
solve OCT in time O(3k · kmn).1 In fact, this was the first FPT algorithm for OCT.
Following this, Guo et al. [14] applied iterative compression to show fixed-parameter
tractability of several closely related problems. Among other results, they designed
an algorithm for Edge Bipartization with running time O(2k · m2). Today, both
the algorithms of Reed et al. and of Guo et al. are textbook examples of the iterative
compression technique [5,11].

Iterative compression is in fact a simple idea that boils down to an algorithmic
usage of induction. In case of Edge Bipartization, we introduce edges of G one by
one, and during this process we would like to maintain a solution F to the problem,
i.e., F ⊆ E(G) is such that |F | ≤ k and G − F is bipartite. When the next edge e is
introduced to the graph, we observe that F ∪ {e} is a solution of size at most k + 1,
that is, at most one too large. Then the task reduces to solving Edge Bipartization

Compression: given a graph G and a solution that exceeds the budget by at most one,
we are asked to find a solution that fits into the budget.

Surprisingly, this simple idea leads to great algorithmic gains, as it reduces the
matter to a cut problem. Guo et al. [14] showed that a simple manipulation of the
instance reduces Edge Bipartization Compression to the following problem that
we call Terminal Separation: We are given an undirected graph G with a set T of
k+1 disjoint pairs of terminals, where each terminal is of degree 1 in G. The question
is whether one can color one terminal of every pair white and the second black in
such a way that the minimum edge cut between white and black terminals is at most
k. Thus, the algorithm of Guo et al. [14] boils down to trying all the 2k+1 colorings
of terminals and solving a minimum edge cut problem. For OCT, we similarly have a
too large solution X ⊆ V (G) of size k + 1, and we are looking for a partition of X
into (L , R, Z), where the size of the minimum vertex cut between L and R in G − Z
is at most k − |Z |. Thus it suffices to solve 3k+1 instances of a flow problem.

The search for FPT algorithms for cut problems has been one of the leading
directions in parameterized complexity in the recent years. Among these, Odd
Cycle Transversal and Edge Bipartization play a central role; see for
instance [14,16,18–20,22,25,28] and references therein. Of particular importance is
the work of Kratsch and Wahlström [22], who gave the first (randomized) polynomial
kernelization algorithms for Odd Cycle Transversal and Edge Bipartization.
The main idea is to encode the cut problems that arise when applying iterative com-
pression into a matroid with a representation that takes small space. The result of
Kratsch and Wahlström sparked a line of further work on applying matroid methods
in parameterized complexity.

Another thriving area in parameterized complexity is the optimality program, prob-
ably best defined by Marx in [27]. The goal of this program is to systematically
investigate the optimum complexity of algorithms for parameterized problem by prov-

1 Even though Reed et al. [28] state their running time asO(4k · kmn), it is not hard to adjust the analysis
to show that the algorithm in fact works in time O(3k · kmn); see e.g. [16,26].
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ing possibly tight lower and upper bounds. For the lower bounds methodology, the
standard complexity assumptions used are the Exponential Time Hypothesis (ETH)
and the Strong Exponential Time Hypothesis (SETH). In the recent years, the optimal-
ity program has achieved a number of successes. For instance, under the assumption
of SETH, we now know the precise bases of exponents for many classical problems
parameterized by treewidth [7,8,23]. To explain the complexity of fundamental param-
eterized problems for which natural algorithms are based on dynamic programming
on subsets, Cygan et al. [3] introduced a new hypothesis resembling SETH, called the
Set Cover Conjecture (SeCoCo). See [24,27] for more examples.

For our techniques, the most important is the line of work of Guillemot [13], Cygan
et al. [9], Lokshtanov et al. [25], and Wahlström [30] that developed a technique
for designing parameterized algorithm for cut problems called LP-guided branching.
The idea is to use the optimum solution to the linear programming relaxation of the
considered problem in order to measure progress. Namely, during the construction of a
candidate solution bymeans of a backtracking process, the algorithmachieves progress
not only when the budget for the size of the solution decreases (as is usual in branching
algorithms), but also when the lower bound on the optimum solution increases. Using
this concept, Cygan et al. [9] showed a 2knO(1)-time algorithm forNode Multiway

Cut. Lokshtanov et al. [25] further refined this technique and applied it to improve
the running times of algorithms for several important cut problems. In particular, they
obtained a 2.3146knO(1)-time algorithm for Odd Cycle Transversal, which was
the first improvement upon the classicO(3k · kmn)-time algorithm of Reed et al. [28].
From the point of view of the optimality program, this showed that the base 3 of the
exponent was not the final answer for Odd Cycle Transversal.

In works [9,25] it was essential that the considered linear programming relax-
ation is half-integral, which restricts the applicability of the technique. Recently,
Wahlström [30] proposed to use stronger relaxations in the form of certain polynomial-
time solvable Valued Constraint Satisfaction Problems (VCSPs). Using this idea, he
was able to show efficient FPT algorithms for the node and edge deletion variants of
Unique Label Cover, for which natural LP relaxations are not half-integral.

Despite substantial progress on the node deletion variant, for Edge Bipartiza-

tion there has been no improvement since the classic algorithm of Guo et al. [14] that
runs in timeO(2k ·m2). The main technical contribution of Lokshtanov et al. [25] is a
2.3146knO(1)-time algorithm for Vertex Cover parameterized by the excess above
the value of the LP relaxation (VC-above-LP); the algorithm for OCT is a corollary
of this result due to folklore reductions from OCT to VC-above-LP via the Almost
2- SAT problem. Thus the algorithm for OCT in fact relies on the LP relaxation for
the Vertex Cover problem, which has very strong combinatorial properties; in par-
ticular, it is half-integral. No such simple and at the same time strong relaxation is
available for Edge Bipartization. The natural question stemming from the optimal-
ity program, whether the 2k term for Edge Bipartization could be improved, was
asked repeatedly in the parameterized complexity community, for example by Daniel
Lokshtanov at WorKer’13 [6], repeated later at [4].
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1.1 Our Results and Techniques

In this paper we answer this question in affirmative by proving the following theorem.

Theorem 1.1 Edge Bipartization can be solved in time O(1.977k nm).

Thus, the 2 in the base of the exponent is not the ultimate answer for Edge Bipar-

tization.
To prove Theorem 1.1, we pursue the approach proposed by Guo et al. [14] and use

iterative compression to reduce solving Edge Bipartization to solving Terminal

Separation (see Sect. 2 for a formal definition of the latter). This problem has two
natural parameters: |T |, the number of terminal pairs, and p, the bound on the size
of the cut between white and black terminals. The approach of Guo et al. is to use a
simpleO(2|T | · pm) algorithm that tries all colorings of terminal pairs and computes
the size of a minimum cut between the colors.

The observation that is crucial to our approach is that one can express Terminal
Separation as a very restricted instance of the Edge Unique Label Cover prob-
lem. More precisely, in this setting the task is to assign each vertex of G a label from
{A, B}. Pairs of T present hard (of infinite cost) inequality constraints between the
labels of terminals involved, while edges of G present soft (of unit cost) equality con-
straints between the endpoints. The goal is to minimize the cost of the labeling, i.e.,
the number of soft constraints broken. An application of the results of Wahlström [30]
(with the further improvements of Iwata et al. [17] regarding linear dependency on the
input size) immediately gives an O(4p · m) algorithm for Terminal Separation.

Thus, we have in hand two substantially different algorithms for Terminal

Separation. If we plug in |T | = k + 1 and p = k, as is the case in the instance
that we obtain from Edge Bipartization Compression, then we obtain running
timesO(2k ·km) andO(4k ·m), respectively. The idea now is that these two algorithms
present two complementary approaches to the problem, and we would like to combine
them to solve the problemmore efficiently. To this end, we need to explain more about
the approach of Wahlström [30].

The algorithm of Wahlström [30] is based on measuring the progress by means of
the optimum solution to the relaxation of the problem in the form of a Valued CSP
instance. In our case, this relaxation has the following form: We assign each vertex a
label from {⊥, A, B}, where⊥ is an additional marker that should be thought of as not
yet decided. The hard constraints have zero cost only for labelings (A, B), (B, A) and
(⊥,⊥), and infinite cost otherwise. The soft constraints have cost 0 for equal labels on
the endpoints, 1 for unequal from {A, B}, and 1

2 when exactly one endpoint is assigned⊥. Based on previous results of Kolmogorov et al. [21], Wahlström observed that
this relaxation is polynomial-time solvable, and moreover it is persistent: whenever
the relaxation assigns A or B to some vertex, then it is safe to perform the same
assignment in the integral problem (i.e., only with the “integral” labels A, B). The
algorithm constructs an integral labeling by means of a backtracking process that fixes
the labels of consecutive vertices of the graph. During this process, it maintains an
optimum solution to the relaxation that is moreover maximal, in the sense that one
cannot extend the current labeling by fixing integral labels on some undecided vertices
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without increasing the cost. This can be done by dint of persistence and polynomial-
time solvability: we can check in polynomial time whether a non-trivial extension
exists, and then it is safe to fix the labels of vertices that get decided. Thus, when the
algorithm considers the next vertex u and branches into two cases, fixing label A or
B on it, the optimum cost of the relaxation increases by at least 1

2 in each branch.
Hence the recursion tree can be pruned at depth 2p, and we obtain an 4pnO(1)-time
algorithm.

Our algorithm for Terminal Separation applies a similar branching strategy,
where at each point we maintain some labeling of the vertices with A, B, and ⊥
(undecided). Every terminal pair is either already resolved [assigned (A, B) or (B, A)],
or unresolved [assigned (⊥,⊥)]. Using the insight of Wahlström we can assume that
this labeling is maximal. Intuitively, we look at the unresolved pairs from T and try
to identify a pair (s, t) for which branching into labelings (A, B) and (B, A) leads to
substantial progress. Here, we measure the progress in terms of a potential μ that is a
linear combination of three components:

• t , the number of unresolved terminal pairs;
• k, the current budget for the cost of the sought integral solution;
• ν, the difference between k and the cost of the current solution to the relaxation.

These ingredients are taken with weights αt = 0.59950, αν = 0.29774, and αk =
1 − αt − αν = 0.10276. Thus, the largest weight is put on the progress measured in
terms of the number of resolved terminal pairs. Indeed, we want to argue that if we
can identify a possibility of recursing into two instances, where in each of them at
least one new terminal pair gets resolved, but in one of them we resolve two terminal
pairs, then we can pursue this branching step.

Therefore, we are left with the following situation: when branching on any terminal
pair, only this terminal pair gets resolved in both branches. Then the idea is to find a
branching stepwhere the decrease of the auxiliary components of the potential, namely
ν and k, is significant enough to ensure the promised running time of the algorithm.
Here we apply an extensive combinatorial analysis of the instance to show that finding
such a branching step is always possible. In particular, our analysis can end up with a
branching not on a terminal pair, but on the label of some other vertex; however, we
make sure that in both branches some terminal pair gets eventually resolved. Also, in
some cases we localize a part of the input that can be simplified (a reduction step),
and then the analysis is restarted.

To sum up, we would like to highlight two aspects of our contribution. First, we
answer a natural question stemming from the optimality program, showing that 2k is
not the final dependency on the parameter for Edge Bipartization. Second, our algo-
rithm can be seen as a “proof of concept” that the LP-guided branching technique, even
in the more abstract variant of Wahlström [30], can be combined with involved Mea-
sure&Conquer analysis of the branching tree. Note that in the past Measure&Conquer
and related techniques led to rapid progress in the area of moderately-exponential
algorithms [12].

We remark that the goal of the current paper is clearly improving 2k factor, and
not optimizing the dependence of the running time on the input size. However, we do
estimate it. Using the tools prepared by Iwata, Wahlström, and Yoishida [17], we are
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able to implement the algorithm so that it runs in time O(1.977k · nm). Naively, this
seems like an improvement over the algorithm of Guo et al. [14] that had quadratic
dependence onm, however this is not the case.Wenamely use the recent approximation
algorithm for Edge Bipartization ofKolay et al. [19] that in timeO(kO(1) ·m) either
returns a solution Fapx of size at most O(k2), or correctly concludes that there is no
solution of size k. Then we start iterative compression from G − Fapx and introduce
edges of Fapx one by one, so we need to solve the Terminal Separation problem
only O(k2) times. In our case each iteration takes time O(1.977k · nm), but for the
approach of Guo et al. it would take time O(2k · km). Thus, by using the same idea
based on [19], the algorithm of Guo et al. can be adjusted to run in timeO(2k · k3m).
It is just that the newer algorithm of Kolay et al. [19] was not known at the time of
writing [14].

1.2 Organization of the Paper

In Sect. 2 we give background on iterative compression and the VCSP-based tools
borrowed from [17,30]. In particular, we introduce formally the Terminal Sepa-

ration problem and reduce solving Edge Bipartization to it. In Sect. 3 we set
up the Measure&Conquer machinery that will be used by our branching algorithm,
and we introduce preliminary reductions. In Sect. 4 we prove some auxiliary results
on low excess set, which is the key technical notion used in our combinatorial anal-
ysis. Finally, we present the whole algorithm in Sect. 5. Sect. 6 is devoted to some
concluding remarks and open problems.

2 Preliminaries

2.1 Graph Notation

For all standard graph notation, we refer to the textbook of Diestel [10]. For the input
instance (G, k) of Edge Bipartization, we denote n = |V (G)| and m = |E(G)|.
As isolated vertices are irrelevant for the Edge Bipartization problem, we assume
that G does not contain any such vertices, and hence n = O(m).

2.2 Cuts and Submodularity

As edge cuts in a graph are themain topic of thiswork, let us introduce some convenient
notation. In all graphs in this paper we allow multiple edges, but not loops, as they are
irrelevant for the problem. For a graphG and two disjoint vertex sets A, B ⊆ V (G), by
EG(A, B) we denote the set of edges with one endpoint in A and the second endpoint
in B. If any of the sets A or B is a singleton, say A = {a}, we write EG(a, B) instead
of EG({a}, B). We drop the subscript if the graph G is clear from the context.

For a set A ⊆ V (G), we denote d(A) = |E(A, V (G)\A)|. It is well known that
the d(·) function is submodular, that is, for every A, B ⊆ V (G) it holds that

d(A) + d(B) ≥ d(A ∩ B) + d(A ∪ B). (1)
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In fact, a study of the proof of (1) allows us to state the difference in the inequality.

d(A) + d(B) = d(A ∩ B) + d(A ∪ B) + 2|E(A\B, B \ A)|. (2)

Since d(·) is symmetric (i.e., d(A) = d(V (G)\A)), by applying (1) to A and the
complement of B, we obtain a property sometimes called posimodularity: for every
A, B ⊆ V (G) it holds that

d(A) + d(B) ≥ d(A\B) + d(B\A). (3)

Or, with the error term:

d(A) + d(B) = d(A\B) + d(B\A) + 2|E (A ∩ B, V (G)\(A ∪ B)) |. (4)

2.3 Iterative Compression and the Compression Variant

Let (G, k) be an input Edge Bipartization instance. The opening step of our
algorithm is the standard usage of iterative compression. We start by applying the
approximation algorithm of [19] that, given (G, k), in time O(kO(1)m) either cor-
rectly concludes that it is a no-instance, or produces a set Z ⊆ E(G) of size O(k2)
such that G − Z is bipartite.

Let Z be the obtained set, |Z | = r = O(k2) and Z = {e1, e2, . . . , er }. Let Gi =
G − {ei+1, ei+2, . . . , er } for 0 ≤ i ≤ r ; note that Gr = G while G0 = G − Z , which
is bipartite. Our algorithm, iteratively for i = 0, 1, . . . , r , computes a solution Xi to
the instance (Gi , k), or concludes that no such solution exists. Clearly, since Gi is a
subgraph of G, if we obtain the latter conclusion for some i , we can report that (G, k)
is a no-instance.

For i = 0, G0 = G − Z is bipartite, thus X0 = ∅ is a solution. Consider now an
instance (Gi , k) for 1 ≤ i ≤ r , and assume that a solution Xi−1 has already been
computed. Let X ′

i = Xi−1 ∪ {ei }. If |X ′
i | ≤ k, we can take Xi = X ′

i and continue.
Otherwise, we can make use of the structural insight given by the set X ′

i and solve the
following problem.

Edge Bipartization Compression

Input: A graph G, and integer k, and a set X ′ ⊆ E(G) of size k + 1 such that
G − X ′ is bipartite.
Goal: Compute a set X ⊆ E(G) of size at most k such that G − X is bipartite, or
conclude that no such set exists.

If we could efficiently solve an Edge Bipartization Compression instance
(Gi , k, X ′

i ), we can take the output solution as Xi and proceed to the next step of this
iteration. Consequently, it suffices to prove the following theorem.

Theorem 2.1 Edge Bipartization Compression can be solved in time O(cknm)

for some constant c < 1.977.

123



924 Algorithmica (2019) 81:917–966

2.4 The Terminal Separation Problem

Following the algorithm of [14], we phrase Edge Bipartization Compression as
a separation problem.

Consider a graph G with a family T of pairs of terminals in G. A pair (A, B)

with A, B ⊆ V (G) is a terminal separation if A ∩ B = ∅ and, for every terminal
pair P , either one of the terminals in P belongs to A and the second to B, or P ⊆
V (G)\(A∪B). A terminal separation (A, B) is integral if A∪B = V (G).2 A terminal
separation (A′, B ′) extends (A, B) if A ⊆ A′ and B ⊆ B ′. The cost of a terminal
separation (A, B) is defined as c(A, B) = (d(A) + d(B))/2. Note that if (A, B) is
integral, then we have c(A, B) = d(A) = d(B).

We will solve the following separation problem.

Terminal Separation

Input: A graph G with a set of terminal pairs T such that the pairs are pairwise
disjoint and every terminal is of degree at most one in G; a terminal separation
(A◦, B◦); and an integer k.
Goal: Find an integral terminal separation (A, B) extending (A◦, B◦) of cost at
most k, or report that no such separation exists.

Lemma 2.2 Given an Edge Bipartization Compression instance (G, k, X ′),
one can in polynomial time compute an equivalent instance (G ′, T , (A◦, B◦), k′)
of Terminal Separation, such that |E(G ′)| = |E(G)| + O(|X ′|), |V (G ′)| =
|V (G)| + O(|X ′|), |T | = |X ′|, A◦ = B◦ = ∅, and k′ = k.

Proof Let G ′ be the graph obtained from G by replacing every edge uv in X ′ with
two new vertices s, t and two pendant edges us, vt . Let T be the set of vertex pairs
{s, t} created this way, A◦ = B◦ = ∅, k′ = k. We show this constructed instance is
equivalent to the original instance.

If the constructed instance is a yes-instance, let A, B be an integral terminal separa-
tion of cost at most k. Take X = E(A, B), and then, for every edge in X incident to a
terminal s, replace this edge with uv, where uv is the edge of X ′ for which the terminal
pair containing s was created.We claim X is a solution to the original instance (clearly
|X | ≤ |E(A, B)| ≤ k). Indeed, let L ′, R′ be a bipartition of G − X ′. We show that
(L ′ ∩ A)∪ (R′ ∩ B), (R′ ∩ A)∪ (L ′ ∩ B) gives a bipartition of G− X . Suppose that, to
the contrary, there is an edge uv in G − X with both endpoints in (L ′ ∩ A) ∪ (R′ ∩ B)

(the case of (R′ ∩ A)∪ (L ′ ∩ B) being symmetrical). Since all edges with one endpoint
in A ∩ V (G) and the other in B ∩ V (G) were deleted by X , we may assume uv is an
edge with both endpoints in L ′ ∩ A (the case of R′ ∩ B being symmetrical).

Since L ′ is one side of a bipartition of G − X ′, uv must be an edge in X ′. Let us, vt
be the corresponding edges to terminals created by the construction. Since both u and
v are in A and exactly one of s, t is in A (as A, B is a terminal separation), one of
us, vt must be an edge in E(A, B). Hence uv was deleted by X ′, a contradiction.

2 The word integral stems from the fact that an integral separation corresponds to a solution to the relaxed
Terminal Separation problem that actually does not use the relaxed value ⊥. In fact, it also corresponds
to an integral solution of an LP formulation underlying the algorithmic results of [21].
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For the other side, if the original instance is a yes-instance, let X be a set of at most k
edges such thatG−X has a bipartition L , R. By taking X to be minimal, we can assert
that every edge in X has both endpoints on one side of this bipartition. Let A contain
all vertices in (L ∩ L ′) ∪ (R ∩ R′), let B contain all vertices of (L ∩ R′) ∪ (R ∩ L ′).
For every edge uv in X , add the corresponding terminal vertices s, t to A and B so
that s is in the same set as u and t is in the other one. Clearly (A, B) is an integral
terminal separation extending (∅,∅), it suffices to show that |EG ′(A, B)| ≤ |X |.

Let e ∈ EG ′(A, B). If neither endpoint of e is a terminal, then let e = uv for
u ∈ (L ∩ L ′) ∪ (R ∩ R′) and v ∈ (L ∩ R′) ∪ (R ∩ L ′). Since all edges with both
endpoints in L ′ were in X ′ and hence replaced by edges to terminals in G ′, it cannot
be that both u and v are in L ′. Similarly, for R′, so let us assume that u ∈ L ′ and
v ∈ R′ (the other case is symmetrical). Then u ∈ (L ∩ L ′) and v ∈ (L ∩ R′), which
means both u and v are on the same side of the (L , R) bipartition of G − X but on
different sides of the (L ′, R′) bipartition of G − X ′. Hence e ∈ X\X ′.

Otherwise, assume that some endpoint of e is a terminal. Recall that we have defined
A and B in such a way that the edge us for a terminal pair {s, t} is never cut. Hence,
let e = vt , and without loss of generality assume that v ∈ (L ∩ L ′) ∪ (R ∩ R′).
(Here we keep the notation that s, t are two terminal with edges us and vt replacing
in the construction an edge uv in X ′.) In particular v ∈ A, so t ∈ B. By construction
of the separation (A, B), it must be that s is in the same side as u and t is on the
other side, so s, u ∈ A. Since u is not a terminal, u, v ∈ (L ∩ L ′) ∪ (R ∩ R′). Hence
uv ∈ X ′ = EG(L ′, L ′) ∪ EG(R′, R′) implies that u and v are on the same side of
the (L ′, R′) partition, thus also on the same side of the (L , R) partition and hence
uv ∈ X ∩ X ′. Note also that of the two edges that replace uv in the construction, only
e is in EG ′(A, B), because s, u ∈ A.

Hence every edge in EG ′(A, B) is either an edge in X\X ′ or an edge to a terminal
uniquely corresponding to an edge in X ∩ X ′, which implies |EG ′(A, B)| ≤ |X |,
concluding the other side of the proof. �


We say that a terminal pair P is resolved in a Terminal Separation instance
(G, T , (A◦, B◦), k) if P ⊆ A◦∪B◦, and unresolved otherwise (i.e., P ⊆ V (G)\(A◦∪
B◦)). Thus, our goal is to design an efficient branching algorithm for Terminal

Separation, with parameters being k, the excess in the cutset k − c(A◦, B◦), and the
number t of unresolved terminal pairs. A precise statement of the result can be found
in Sect. 3, where an appropriate progress measure is defined.

2.5 LP Branching

The starting point in designing an algorithm for Terminal Separation using the
aforementioned parameters is the generic LP branching framework ofWahlström [30].

Observe that one can phrase an instance of Terminal Separation as a Valued
CSP instance, with vertices being variables over the domain {A, B}, edges being soft
(unit cost) equality constraints, terminal pairs being hard (infinite or prohibitive cost)
inequality constraints, while membership in A◦ or B◦ translates to hard unary con-
straints on vertices of A◦ ∪ B◦. Observe that this Valued CSP instance is in fact a
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Unique Label Cover instance over binary alphabet, with additional hard unary
constraints.

In a relaxed instance, we add to the domain the “do not know” value ⊥, and extend
the cost function for an edge (equality) constraint to be 0 for both endpoints valued ⊥,
and 1

2 for exactly one endpoint valued ⊥; the hard inequality constraints on terminal
pairs additionally allows both terminals to be valued ⊥. Observe that now feasible
solutions f : V (G) → {⊥, A, B} to the so-defined instance are in one-to-one cor-
respondence with terminal separations (A, B) = ( f −1(A), f −1(B)), and the cost of
f equals exactly c( f −1(A), f −1(B)). Furthermore, as shown by Wahlström [30], the
cost functions in this relaxation are bisubmodular, which implies the following two
corollaries.

Theorem 2.3 (persistence [30]) Let (G, T , (A◦, B◦), k) be a Terminal Separa-

tion instance, and let (A, B) be a terminal separation in G of minimum cost among
separations that extend (A◦, B◦). Then there exists an integral separation (A∗, B∗)
that has minimum cost among all separations extending (A◦, B◦), with the additional
property that (A∗, B∗) extends (A, B).

We say that a terminal separation (A, B) is maximal if every other separation
extending it has strictly larger cost.

Theorem 2.4 (polynomial-time solvability [17,30])Given aTerminal Separation

instance (G, T , (A◦, B◦), k) with c(A◦, B◦) ≤ k, one can in O(kO(1)m) time find a
maximal terminal separation (A, B) inG that hasminimumcost amongall separations
extending (A◦, B◦).

FromTheorems 2.3 and 2.4 it follows that, whileworking on a Terminal Separa-

tion instance (G, T , (A◦, B◦), k), we can always assume that (A◦, B◦) is a maximal
separation: If that is not the case, we can obtain an extending separation (A, B) via
Theorem 2.4, and set (A◦, B◦) := (A, B); the safeness of the last step is guaranteed
by Theorem 2.3.

We remark here that, in the course of the algorithm, we will often merge sets of
vertices in the processed graph. For a nonempty set X ⊆ V (G), the operation of
merging X into a vertex replaces X with a new vertex x , and replaces every edge
uv ∈ E(X, V (G)\X), u ∈ X , v /∈ X , with an edge xv. That is, in this process we do
not supress multiple edges while identifying some vertices. However, we do supress
loops, as they are irrelevant for the problem. Consequently, we allow the graph G to
have multiple edges, but not loops; we remark that both theorems cited in this section
work perfectly fine in this setting as well.

3 The Structure of the Branching Algorithm

In this section we describe the structure of the branching algorithm for Terminal
Separation. Before we state the main result, we introduce the potential that will
measure the progress made in each branching step.

Let I = (G, T , (A◦, B◦), k) be a Terminal Separation instance, where
(A0, B0) is a maximal terminal separation; we henceforth call such an instance maxi-
mal. We are interested in keeping track of the following partial measures:
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• tI is the number of unresolved terminal pairs;
• νI = k − c(A◦, B◦);
• kI = k.

The O(2kkm)-time algorithm used in [14] can be interpreted in our framework
as an O(2tI kIm)-time algorithm for Terminal Separation, while the generic LP-
branching algorithm for Edge Unique Label Cover of [30] can be interpreted as
anO(4νIm)-time algorithm. As announced in the intro, our main goal is to blend these
two algorithms, by analysing the cases where both these algorithms perform badly.

An important insight is that all these inefficient cases happen when A◦ and B◦
increase their commonboundary. If this is the case, a simple reduction rule is applicable
that also reduces the allowed budget k; in some sense, with this reduction rule the
budget k represents the yet undetermined part of the boundary between A∗ and B∗ in
the final integral solution (A∗, B∗). For this reason, we also include the budget k in
the potential.

Formally, we fix three constants αt = 0.59950, αν = 0.29774, and αk = 1− αt −
αν = 0.10276 and define a potential of an instance I as

μI = αt · tI + αν · νI + αk · kI .

Our main technical result, proved in the remainder of this paper, is the following.

Theorem 3.1 A Terminal Separation instance I can be solved in timeO(cμInm)

for some c < 1.977.

Observe that if I is an instance output by the reduction of Lemma 2.2, then tI =
|X ′| = k + 1, νI = k since A◦ = B◦ = ∅, and kI = k. Consequently, μI < k + 1,
and Theorem 1.1 follows from Theorem 3.1.

The algorithm of Theorem 3.1 follows a typical outline of a recursive branching
algorithm. At every step, the current instance is analyzed, and either it is reduced, or
some two-way branching step is performed. The potential μI is used to measure the
progress of the algorithm and to limit the size of the branching tree.

3.1 Reductions

We use a number of reductions in our algorithm. Every reduction decreases |V (G)| +
|T | + k, and after any application of any reduction we re-run Theorem 2.4 to ensure
that the considered instance is maximal.

The first one is the trivial termination condition.

Reduction 1 (Terminator Reduction) If kI < 0 or νI < 0, then we terminate the
current branch with the conclusion that there is no solution. If (A◦, B◦) is integral,
return it as a solution.

Observe that if all terminals are resolved, then both (A◦, V (G)\A◦) and (V (G)\
B◦, B◦) are integral separations, and one of them is of cost at most c(A◦, B◦). Conse-
quently, since I is maximal, in fact (A◦, B◦) is integral. We infer that if the Terminator
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Reduction does not trigger, then there exists at least one unresolved terminal pair, i.e.,
tI > 0.

We now provide the promised reduction of the boundary between A◦ and B◦.

Reduction 2 (Boundary Reduction) If there exists an edge ab with a ∈ A◦, b ∈ B◦,
delete the edge ab and decrease k by one. If there exist two edges va, vb with a ∈ A◦,
b ∈ B◦, and v /∈ A◦ ∪ B◦, delete both edges va and vb, and decrease k by one.

Lemma 3.2 Let I = (G, T , (A◦, B◦), k) be a maximal Terminal Separation

instance, and assume that the Boundary Reduction have been applied once, giving a
graph G ′. Then I ′ = (G ′, T , (A◦, B◦), k − 1) is a maximal Terminal Separation

instance, equivalent to I. Furthermore, μI ′ = μI − αk .

Proof Observe that whether (A, B) is a terminal separation extending (A◦, B◦) does
not depend on the instance we are looking at: I and I ′ differ only in the edgeset of
the graph and the budget. For such a separation, by c(A, B) we denote its cost in I,
and by c′(A, B) its cost in I ′.

We claim that for any terminal separation (A, B) extending (A◦, B◦) it holds that
c(A, B) = c′(A, B) + 1. The claim is straightforward if an edge ab is deleted. For
the second case, consider subcases depending on where the vertex v lies. If v ∈ A,
then dG(A) = dG ′(A)+ 1 due to missing edge vb, while if v /∈ A, then also dG(A) =
dG ′(A) + 1 due to missing edge va. Symmetrically, dG(B) = dG ′(B) + 1, which
proves the claim. Consequently, the instances I and I ′ are equivalent, and (A◦, B◦)
remains a maximal separation. Furthermore, since c(A◦, B◦) = c′(A◦, B◦) + 1, we
have tI ′ = tI and νI ′ = νI , hence μI ′ = μI − αk . �


It is easy to observe that the Boundary Reduction can be applied exhaustively in
linear time.

In a number of reductions in this section, in a few places in the analysis of different
cases in the branching algorithm, as well as in the reduction rules defined in the next
section, we find a set X ⊆ V (G) of at least two vertices without any terminals, with
at least one vertex of V (G)\(A◦ ∪ B◦), for which we can argue that there exists an
integral solution (A∗, B∗) to I of minimum cost such that X ⊆ A∗ or X ⊆ B∗. In
this case, we identify X into a single vertex (that belongs to A◦ if X ∩ A◦ �= ∅ and to
B◦ if X ∩ B◦ �= ∅), and start from the beginning.

Note that after such reduction (A◦, B◦) may not be a maximal separation if the
contracted set X contains at least one vertex of A◦ ∪ B◦, and we need to apply
Theorem2.4 to extend it to amaximal one.However, note that the operation ofmerging
vertices only shrinks the space of all terminal separations, and thus the cost of (A◦, B◦)
cannot decrease with such a reduction (and, consequently, νI cannot increase).

We now introduce four simple rules. The first one reduces clearly superfluous pieces
of the graph.

Reduction 3 (Pendant Reduction) If there exists a vertex set X ⊆ V (G)\(A◦ ∪ B◦)
that does not contain any terminal and |N (X)| ≤ 1, then delete X from G.

If there exists a vertex set X ⊆ V (G)\(A◦ ∪ B◦) that does not contain any terminal
and |N (X)| = 2, then let λ be the size of the minimum (edge) cut between the two
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vertices of N (X) in G[N [X ]]. If λ ≤ k, then replace X with λ edges between the two
vertices of N (X), and otherwise identify N [X ] into a single vertex.

The safeness of the Pendant Reduction is straightforward: in the first case, for any
integral separation (A, B) of the reduced graph, one can add X to the set A or B that
contains N (X), without increasing the cost of the separation, while in the second case
we can do exactly the same if N (X) belongs to the same side A or B, and otherwise
we can greedily cut G[N [X ]] along the minimum cut between the vertices of N (X).

Observe that an application of a Pendant Reduction does not merge two terminals
and does not spoil the invariant that every terminal in G is of degree at most one.
If |N (X)| ≤ 1, then clearly the deletion of X cannot spoil this property. Otherwise,
if |N (X)| = 2, then λ is at most the degree of any vertex of N (X) in G[N [X ]]; in
particular, if N (X) contains a terminal, then λ ≤ 1 and the vertices of N (X) are not
identified.

This reduction also does not decrease c(A◦, B◦) (and thus does not increase νI ).
This is clear for N (X) = ∅. For |N (X)| = 1 or λ > k, it can bemodelled as identifying
N [X ] into a single vertex. Otherwise, for |N (X)| = 2 and λ ≤ k, it can be modelled
as identifying the sides of a minimum cut in G[N [X ]] between vertices of N (X) onto
the corresponding elements of N (X).

Let us now argue that the Pendant Reduction can be applied efficiently.

Lemma 3.3 One can in O(km) time find a set X on which the Pendant Reduction is
applicable, or correctly conclude that no such set exists.

Proof First, compute an auxiliary graph G ′ from G by adding a clique K on four
vertices, and making K fully adjacent to L := A◦ ∪ B◦ ∪ T . In this manner, the
size of G ′ is bounded linearly in the size of G, while G ′[K ∪ L] is three-connected.
Compute the decomposition into three-connected components [2,29], which can be
done in linear time [15]. It is easy to see that the Pendant Reduction is not applicable
if and only if the decomposition consists of a single bag, and otherwise any leaf bag
of the decomposition different than the bag containing K ∪ L equals N [X ] for some
X to which the Pendant Reduction is applicable. Furthermore, for such a set X with
|N (X)| = 2, one can compute min(λ, k + 1) in timeO(km) usingO(k) rounds of the
Ford–Fulkerson algorithm. �


The next three reduction rules consider some special cases of how terminals can lie
in the graph.

Reduction 4 (Lonely Terminal Reduction) If there exists an unresolved terminal pair
P = {s, t} such that s is an isolated vertex, delete P from T and V (G).

The safeness of the Lonely Terminal Reduction follows from the observation that
in every terminal separation (A, B) of the reduced graph, we can always put t on the
same side as its neighbor (if it exists) and s on the opposite side.

Reduction 5 (Adjacent Terminals Reduction) If there exist two neighboring unre-
solved terminals t1 and t2, then proceed as follows. If they belong to the same terminal
pair, delete both of them from G and from T , and reduce k by one. If they belong to
different terminal pairs, say {s1, t1} and {s2, t2}, then delete both these terminal pairs
from T , delete the vertices t1 and t2 from G, and add an edge s1s2.
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For safeness of the Adjacent Terminals Reduction, first recall that terminals are of
degree one in G, thus {t1, t2} is a connected component of G. If they belong to the
same terminal pair, the edge t1t2 always belongs to the solution cut and can be deleted.
If they belong to different terminal pairs {s1, t1} and {s2, t2}, then the edge t1t2 is cut
by a solution (A∗, B∗) if and only if s1 and s2 are on different sides of the solution,
thus we can just as well account for it by replacing it with an edge s1s2.

Reduction 6 (Common Neighbor Reduction) If there exists an unresolved terminal
pair {s, t} ∈ T , such that s and t share a neighbor a, then delete both terminals from
T and G, and decrease k by one.

For safeness of the Common Neighbor Reduction, note that in any solution, exactly
one edge as or at is cut.

It is straightforward to check in linear time if any of the last three reductions is
applicable, and apply one if this is the case. It follows frommaximality of (A◦, B◦) and
the above safeness arguments that none of these reductions increases νI : any potential
extension (A, B) of (A◦, B◦) in the reduced graph can be translated to an extension in
the original graph, with a cost larger than c(A, B) by exactly the number of times the
budget k has been decreased by the reduction. Consequently, every application of any
of the last three reductions decreases the potential μI by at least αt , as each removes
at least one terminal pair.

The last reduction is the following.

Reduction 7 (MajorityNeighbour Reduction) If there exists two non-terminal vertices
u, v ∈ V (G)\(A◦ ∪ B◦) such that at least half of the edges incident to u have the
second endpoint in v, identify u and v.

The safeness of theMajorityNeighbourReduction is straightforward: in any integral
separation that puts u and v on opposite sides, changing the side of u does not increase
the cost of the separation. Also, it is straightforward to find vertices u, v for which the
Majority Neighbour Reduction applies and execute it in linear time. Note that, since
we require u, v /∈ A◦ ∪ B◦, the considered instance remains maximal.

Twomore reduction rules will be introduced in Sect. 4, where we study sets A ⊇ A◦
with small d(A) − d(A◦).

3.2 Branching Step

In every branching step, we identify two terminal separations (A1, B1) and (A2, B2)

extending (A◦, B◦), and branch into two subcases; in subcase i we replace (A◦, B◦)
with (Ai , Bi ). We always argue the correctness of a branch by showing that there
exists a solution (A∗, B∗) extending (A◦, B◦) of minimum cost, with the additional
property that (A∗, B∗) extends (Ai , Bi ) for some i = 1, 2. In subcase i , we apply
the algorithm of Theorem 2.4 to (G, T , (Ai , Bi ), k) to obtain a maximal separation
(A◦

i , B
◦
i ), and pass the instance Ii = (G, T , (A◦

i , B
◦
i ), k) to a recursive call.

To show the running time bound for a branching step, we analyze how the measure
μI decreases in the subcases, taking into account the reductions performed in the
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subsequent recursive calls. More formally, we say that a branching case fulfills a
branching vector

[t1, ν1, k1; t2, ν2, k2]

if, in subcase i = 1, 2, at least ti terminal pairs become resolved or reduced with one
of the reductions, the cost of the separation (A◦

i , B
◦
i ) grows by at least νi/2, and the

Boundary Reduction is applied at least ki times in the instance (G, T , (A◦
i , B

◦
i ), k).

A branching vector [t1, ν1, k1; t2, ν2, k2] is good if

1.977−αt t1−ανν1/2−αkk1 + 1.977−αt t2−ανν2/2−αkk2 < 1.

In other words, if in subcase i = 1, 2, the potential μI of the instance I decreases
by δi , then we require that 1.977−δ1 + 1.977−δ2 < 1. A standard inductive argument
for branching algorithms show that, if in every case we perform a branching step that
fulfills some good branching vector, the branching tree originating from an instance I
hasO(cμI ) leaves for some c < 1.977 (so that cμI−δ1 + cμI−δ2 ≤ cμI ). To simplify
further exposition, we gather in the next lemma good branching vectors used in the
analysis; the fact that they are good can be checked by direct calculations.

Lemma 3.4 The following branching vectors are good:

[1, 1, 0; 2, 1, 0] [1, 1, 1; 1, 2, 3] [1, 2, 0; 1, 3, 1] [1, 1, 0; 1, 4, 3]
[1, 1, 2; 1, 2, 2] [1, 1, 1; 1, 3, 2] [1, 3, 0; 1, 3, 0] [1, 1, 0; 1, 5, 2]
[1, 2, 1; 1, 2, 2] [1, 1, 1; 1, 4, 1]

Let us stop here to comment that the vectors inLemma3.4 explain our choice of con-
stantsαt ,αν ,αk . The constantαt is sufficiently large tomake the vector [1, 1, 0; 2, 1, 0]
good; intuitively speaking, we are always done when in one branch we manage to
resolve or reduce at least two terminal pairs. The choice of αν and αk represents a very
delicate tradeoff that makes both [1, 1, 1; 1, 2, 3] and [1, 2, 0; 1, 3, 1] good; note that
setting αν = 1− αt and αk = 0 makes the first vector not good, while setting αν = 0
and αk = 1 − αt makes the second vector not good.3 In fact, arguably the possibility
of a tradeoff that makes both the second and the third vector of Lemma 3.4 good at
the same time is one of the critical insights in our work.

3.3 Running Time Bound

In the subsequent sections, we will only argue that

1. every single application of a reduction or a branching step is executed inO(kO(1)m)

time;

3 One can observe that the goodness of all other vectors mentioned in Lemma 3.4, can be easily deduced
from the goodness of the first four vectors, by using the fact that αt ≥ αν ≥ αk and that a branching vector
cannot stop being good if one moves weight from the “heavier” side to the “lighter” one.
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2. every reduction either terminates or reduces k+|T |+ |V (G)| by at least one; note
that this is true for the reductions defined so far;

3. every branching step is correct and fulfills one of the good vectors mentioned in
Lemma 3.4.

Observe that these properties guarantee correctness and the claimed running time of
the algorithm.

In a number of places in the branching algorithm, the algorithm attempts some
branching (A1, B1), (A2, B2), and withdraws this decision if the measure decrease is
too small. A naive implementation of such behaviour would lead to an additional n
factor in the running time bound, as exhaustive application of our reduction rules may
takeO(kO(1)nm) time, only to be later withdrawn. Tomaintain theO(nm) polynomial
factor in our running time bound, we restrict such attempts to only the following
procedure: for i = 1, 2, we apply Theorem 2.4 to obtain a minimum cost extension
(A◦

i , B
◦
i ) of (Ai , Bi ), and report:

1. the number of terminal pairs contained in (A◦
i ∪B◦

i )\(A◦∪B◦), i.e., the immediate
decrease in tI ;

2. the difference c(A◦
i , B

◦
i ) − c(A◦, B◦), i.e., the immediate decrease in νI ;

3. the number of immediately applicable Boundary Reductions, defined as follows:

ρi := |E(A◦
i , B

◦
i )| +

∑

v∈V (G)\(A◦
i ∪B◦

i )

min(|E(v, A◦
i )|, |E(v, B◦

i )|).

Clearly, the aforementioned numbers are computable in O(kO(1)m) time.

4 Low Excess Sets

Let I = (G, T , (A◦, B◦), k) be a maximal Terminal Separation instance. A set
A ⊆ V (G) is an A◦-extension if A◦ ⊆ A ⊆ V (G)\B◦. It is terminal-free if A\A◦
does not contain any terminal. We denote by �(A) := d(A) − d(A◦) the excess
of an A◦-extension A. An A◦-extension A is compact if A\A◦ is connected and
E(A\A◦, A◦) �= ∅.

In this section we consider extensions of small excess, and show that their structure
can be reduced to have a relatively simple picture. While in this section we focus on
supersets of the set A◦, by symmetry the same conclusion holds if we swap the roles
of A◦ and B◦. In our algorithm, we exhaustively apply the reduction rules defined in
this section both for the A-side and B-side of the separation (A◦, B◦).

Before we start, let us first observe that we can efficiently enumerate all maximal
sets of particular constant excess.

Lemma 4.1 For every fixed constant r , one can in O(kO(1)(n +m)) time enumerate
all inclusion-wise maximal compact A◦-extensions of excess at most r .

Proof Our algorithm will in fact enumerate all compact A◦-extensions A of excess at
most r with the property that every compact A◦-extension A′ with A � A′ satisfies
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�(A′) > �(A). The approach closely follows the algorithm for enumerating important
separators (see, e.g., [5, Chapter 8] ).

By the maximality of (A◦, B◦), A◦ is the only such extension of excess 0. We
initiate a queue Q with Q = {A◦}. Iteratively, until Q is not empty, we extract an
extension A from Q, and proceed as follows. For every v ∈ N (A), we compute a set
Av such that E(Av, V (G)\Av) is a minimum cut between A∪ {v} and B◦ ∪ (T \A◦),
or take Av = ⊥ if for such a set d(Av) would be larger than d(A◦) + r . Such a set
Av can be computed using O(k + r) rounds of the Ford–Fulkerson algorithm, and
furthermore it allows us to compute Av being the unique inclusion-wise maximal set
with the required properties.

If Av �= ⊥, we insert Av into the queue Q. Otherwise, if Av = ⊥ for every
v ∈ N (A), then we output A as one of the desired sets. For correctness, observe
that every set A in the queue has excess at most r , and the described procedure uses
the definition of compactness to check if there exists any other extension of excess
at most r being a strict superset of A. For the time bound, observe that whenever a
set Av is inserted into the queue, it holds that d(Av) > d(A), while d(A◦) ≤ 2k
(because of the Terminator Reduction). Hence,O((2k + r)r ) sets are inserted into the
queue. Moreover, the computation for a single set A extracted from the queue takes
O(kO(1)(n + m)) time. �


Wenow proceed to the promised description of reductions. A straightforward corol-
lary of the assumption that I is maximal is the following.

Lemma 4.2 If A is a terminal-free A◦-extension of excess zero or less, then A = A◦.

We now study extensions of excess 1.

Lemma 4.3 If A is a terminal-free A◦-extension of excess 1, then there exists a mini-
mum cost integral terminal separation (A∗, B∗) extending (A◦, B◦), such that (A\A◦)
is either completely contained in A∗ or completely contained in B∗.

Proof Let (A∗, B∗) be a minimum cost integral terminal separation extending
(A◦, B◦).

If (A\A◦) is completely contained in B∗, then (A∗, B∗) proves the claim, so let
us assume the contrary: (A\A◦) ∩ A∗ �= ∅. Then A ∩ A∗ �= A◦. We show that
(A∗ ∪ A, B∗\A) is a minimum cost integral separation, proving the claim.

Indeed, since A is terminal-free, (A∗ ∪ A, B∗\A) is an integral terminal separation.
It suffices to show that it is minimum, that is, d(A∗ ∪ A) ≤ d(A∗). By submodularity,
d(A∗ ∪ A) + d(A∗ ∩ A) ≤ d(A∗) + d(A). Since A ∩ A∗ is a terminal-free A◦-
extension and A ∩ A∗ �= A◦, by Lemma 4.2 we have �(A ∩ A∗) > 0, which means
d(A ∩ A∗) ≥ 1 + d(A◦). By assumption d(A) = 1 + d(A◦). Taking this together,
d(A∗ ∪ A) ≤ d(A∗) + d(A) − d(A∗ ∩ A) ≤ d(A∗), which concludes the proof. �


Lemma 4.3 proves safeness of the following reduction rule.

Reduction 8 (Excess-1 Reduction) If there exists a terminal-free A◦-extension of
excess 1 with |A\A◦| > 1, merge all vertices of A\A◦ into a single vertex.

The next lemma shows that one can apply the Excess-1 Reduction efficiently.

123



934 Algorithmica (2019) 81:917–966

Lemma 4.4 Given a maximal instance I for which none of the previously defined
reduction rules is applicable, one can inO(kO(1)(n +m)) time find a set A for which
the Excess-1 Reduction rule is applicable, or correctly conclude that no such set exists.

Proof Let A be a terminal-free A◦-extension of excess 1. If A\A◦ is disconnected,
then for any connected component C of A\A◦ we have that d(A◦ ∪ C) + d(A\C) =
d(A◦) + d(A), hence either d(A◦ ∪ C) ≤ d(A◦) or d(A\C) ≤ d(A◦), contradicting
the maximality of (A◦, B◦). Thus, A\A◦ is connected. If E(A\A◦, A◦) were empty,
then A\A◦ would be a terminal-free set with d(A\A◦) = 1, and would hence be
deleted by the Pendant Reduction.

Consequently, every terminal-free A◦-extension of excess 1 is compact. We can
enumerate all such inclusion-wise maximal extensions by Lemma 4.1, and apply the
reduction for any such set A with |A\A◦| > 1. �


We can henceforth assume that for every terminal-free A◦-extension A of excess
1, the set A\A◦ is a singleton.

We now move to an analysis of sets of excess 2.

Lemma 4.5 Assume that the Pendant Reduction and Excess-1 Reduction have been
exhaustively applied. If A is a terminal-free A◦-extension of excess 2, then there exists
a partition A\A◦ = D � C1 � C2 � · · · � Cr for some r ≥ 0, such that:

1. there exists a minimum cost integral terminal separation (A∗, B∗) extending
(A◦, B◦), such that one of the following holds:
• (A\A◦) ∩ A∗ = ∅;
• (A\A◦) ∩ A∗ = Ci for some 1 ≤ i ≤ r; or
• A ⊆ A∗.

2. for every 1 ≤ i ≤ r , the sets Ci and E(Ci , A◦) are nonempty, and A◦ ∪ Ci is a
terminal-free A◦-extension of excess 1;

3. if D �= ∅, then for every 1 ≤ i ≤ r the set E(Ci , D) is nonempty and A\A◦ is
connected;

4. if D = ∅, then r = 2;
5. for every 1 ≤ i < j ≤ r , there are no edges between Ci and C j .

Proof Let C ′
1, . . . ,C

′
r be all the inclusion-wise maximal subsets of A that are A◦-

extensions of excess 1. Let Ci = C ′
i\A◦ and let D = A\(A◦ ∪ C1 ∪ · · · ∪ Cr ). We

show the claim is true for these sets. Let 1 ≤ i �= j ≤ r .
The Excess-1 Reduction allows us to assume that Ci is a singleton and hence Ci is

disjoint from C j . Since �(C ′
i ) = �(C ′

j ) = 1 and �(C ′
i ∪C ′

j ) ≥ 2 (by maximality of
C ′
i ), there are no edges between Ci and C j , proving point 5.
If E(Ci , A◦) were empty, then d(Ci ) = 1 and Ci would be deleted by the Pendant

Reduction; this proves point 2. If D �= ∅ but A\A◦ was disconnected, then consider a
component C of A\A◦. Then �(A) = �(A◦ ∪ C) + �(A\C), hence either �(A◦ ∪
C) = �(A\C) = 1, which would contradict that D �= ∅, or one of A◦ ∪ C, A\C has
excess 0, which would contradict Lemma 4.2. Hence A\A◦ is connected and as there
are no edges between Ci and C j , there must be edges between Ci and D, proving
point 3. If D = ∅, then �(A) = ∑r

i=1 �(A◦ ∪ Ci ) = r . Hence r = 2, proving point
4.
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To prove point 1, consider a minimum cost integral terminal separation (A∗, B∗).
Since Ci is a singleton, it is either completely contained in A∗ or disjoint from it. If
A∗∩(A\A◦) is empty or equal to one ofCi , the claim follows. Otherwise, A∗∩(A\A◦)
contains a vertex of D or two of the Ci sets; by their maximality, the excess of A∗ ∩ A
is then at least 2, so d(A∗ ∩ A) ≥ d(A). By submodularity, d(A∗ ∪ A)+d(A∗ ∩ A) ≤
d(A∗) + d(A) and thus d(A∗ ∪ A) ≤ d(A∗). Therefore, since A is terminal-free,
(A∗ ∪ A, B∗\A) is an integral terminal separation, concluding the proof. �


Lemma 4.5 ensures safeness of the following reduction rule.

Reduction 9 (Excess-2 Reduction) If there exists a terminal-free A◦-extension A of
excess 2 such that in the partition D �C1 � · · · �Cr defined by Lemma 4.5, |D| > 1,
then merge D into a single vertex.

We are left with an efficient implementation of this rule.

Lemma 4.6 Given a maximal instance I for which none of the previously defined
reduction rules is applicable, one can inO(kO(1)(n +m)) time find a set A for which
the Excess-2 Reduction is applicable and compute the decomposition of A\A◦ of
Lemma 4.5, or correctly conclude that no such set A exists.

Proof Let A be a terminal-free A◦-extension of excess 2, and let D,C1,C2, . . . ,Cr be
the sets promised by Lemma 4.5 and let |D| > 1. The inapplicability of the Excess-1
Reduction ensures that every set Ci is a singleton, Ci = {ci }.

Let us first deal with the corner case in which r = 0 and E(D, A◦) = ∅. Then, since
A is of excess 2, we have d(D) = 2. However, as D does not contain any terminal,
the Pendant Reduction is applicable to it.

In the remaining cases, Lemma 4.5 guarantees that A is compact. We enumerate
all inclusion-wise maximal compact excess-2 extensions using Lemma 4.1. For every
output extension A, we first identify the set C ⊆ A\A◦ of all vertices v such that
A◦ ∪ {v} is of excess one. By Lemma 4.5, we have D = A\(A◦ ∪C). If |D| > 1, then
we can apply the reduction.

To complete the proof, note that if the Excess-2 Reduction is applicable to some
compact A◦-extension A, then it is also applicable to any compact A◦-extension A′
of excess 2 being a superset of A: the corresponding set D for A is a subset of the
corresponding set D′ for A′. �


The set D of Lemma 4.5 is often a very convenient branching pivot: putting it into
A◦ makes the boundary of A◦ extend by two, while putting it into B◦ triggers a number
of Boundary Reductions. In the next few lemmata we summarize the properties of an
excess-2 set after reductions, and outcomes on branching on the set D.

We start from a slightly more useful presentation of the properties promised by
Lemma 4.5 (Fig. 1).

Lemma 4.7 Assume that no reduction is applicable, and let A be a terminal-free
A◦-extension of excess 2. Then one can in O(kO(1)m) time compute a decomposition
A\A◦ = {d, c1, c2, . . . , cr } for some r ≥ 0 or A\A◦ = {c1, c2} with the following
properties:
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A◦

d

c1 c2 c3
p1

p1 + x1

x1 + 1

A◦

c1 c2

x1

x1 + 1

Fig. 1 Examples of sets of excess 2 after reductions (dotted lines are non-edges)

1. if the vertex d exists, then A is compact and for every 1 ≤ i ≤ r , there are pi
edges dci for some pi ≥ 1; we put p1 = p2 = 0 if the vertex d does not exists;

2. for every 1 ≤ i ≤ r , the set A◦ ∪ {ci } is an A◦-extension of excess 1, the vertex
ci has xi + 1 ≥ 1 edges towards V (G)\(A ∪ B◦) and pi + xi ≥ 1 edges towards
A◦, for some xi ≥ 0;

3. the vertices ci are pairwise nonadjacent;
4. the set A◦ ∪ {d} is an A◦-extension of excess larger than 1.

Proof Most of the enumerated properties are just repetitions of the points of
Lemma 4.5, after each set of the partition has been identified into a single vertex.
Recall that noncompact A◦-extensions of excess 2 are completely reduced by the
Pendant Reduction.

For the count on the number of edges incident to a vertex ci , define pi as claimed and
xi := |E(ci , V (G)\A)|−1; clearly xi ≥ −1. Since A◦∪{ci } is of excess 1, and no two
vertices ci are adjacent, we have |E(ci , A◦)| = pi +xi . Furthermore, note that no edge
may connect ci and B◦, as it would trigger a Boundary Reduction. It remains to refute
the case xi = −1, i.e., E(ci , V (G)\A) = ∅. In this case pi + xi = |E(ci , A◦)| ≥ 0
implies pi ≥ 1, so the vertex d exists. However, the Majority Neighbour Reduction
then applies to ci and d, a contradiction.

If A◦ ∪{d} is an A◦-extension of excess at most 1, then r ≥ 1 as A has excess 2, but
then an edge count shows that A◦ ∪ {d, c1} would be an A◦-extension of nonpositive
excess, a contradiction to the maximality of A◦.

Finally, the decomposition of A\A◦ can be identified by inspecting the edges inci-
dent to every vertex v ∈ A\A◦ to check whether A◦ ∪ {v} is of excess 1 or larger.

�

We now investigate what happens in a branch when we put the vertex d onto the

A-side.

Lemma 4.8 Assume that no reduction is applicable, and let A, A′ be two terminal-free
A◦-extensions of excess 2with A � A′. Then A′\A◦ decomposes as {d, c1, c2, . . . , cr }
for some r ≥ 2, and A\A◦ consists of two vertices ci of this decomposition.

Proof If A′\A◦ = {c1, c2}, then there is no choice for the set A, as A◦ ∪ {ci } is of
excess 1 for i = 1, 2. Hence, A′\A◦ = {d, c1, c2, . . . , cr } for some r ≥ 1; note that
|A′\A◦| ≥ 2 as A◦ � A � A′. A direct edge count using Lemma 4.7 shows that
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for every C ⊆ {c1, c2, . . . , cr } we have �(A◦ ∪ C) = |C | and �(A◦ ∪ C ∪ {d}) ≥
2+ (r − |C |). Hence, the only option to get excess 2 is to have A = A◦ ∪C for some
|C | = 2. �

Lemma 4.9 Assume that no reduction is applicable, and let A be a terminal-free
A◦-extension of excess 2 with A\A◦ = {d, c1, c2, . . . , cr } for some r ≥ 0. If we
furthermore consider a branch (A1, B1) such that d ∈ A1, but A1\A◦ does not contain
any terminal, then

1. if B1 contains at least one vertex ci , then there does not exist anyminimumcost inte-
gral terminal separation (A∗, B∗) extending (A◦, B◦) that also extends (A1, B1);

2. d(A1) ≥ d(A◦) + 2;
3. if d(A1) = d(A◦) + 2, then A1 = A.

Proof Define A′ := A1 ∪ A and B ′ := B1\A; note that A′\A◦ is terminal-free and
(A′, B ′) is a terminal separation as well.

Observe that if (A1, B1) is a terminal separation extending (A◦, B◦) with d ∈ A1
but ci /∈ A1 for some 1 ≤ i ≤ r , then a direct edge count from Lemma 4.7 shows that
d(A1∪{ci }) < d(A1), d(B1\{ci }) ≤ d(B1), hence c(A1∪{ci }, B1\{ci }) < c(A1, B1).
This proves the first point, and shows that d(A′) ≤ d(A1), d(B ′) ≤ d(B1), thus
c(A′, B ′) ≤ c(A1, B1), and the equality holds only if (A′, B ′) = (A1, B1).

Since A ⊆ A′, the Excess-1 Reduction is inapplicable, and �(A) = 2, we have
�(A′) ≥ 2. Consequently, d(A1) ≥ d(A′) ≥ d(A◦) + 2, and d(A1) = d(A◦) + 2
only if d(A1) = d(A′) = d(A◦) + 2. As discussed in the previous paragraph, this
can only happen if A′ = A1 and �(A′) = 2. By Lemma 4.8, this implies A′ = A,
finishing the proof of the lemma. �


In the last lemma we study what happens in a branch when we put the vertex d onto
the B-side (Fig. 2).

Lemma 4.10 Assume that no reduction is applicable, and let A be a terminal-free A◦-
extension of excess 2with A\A◦ = {d, c1, c2, . . . , cr } for some r ≥ 0. Furthermore, if
we consider a branch (A1, B1) such that d ∈ B1, then at least one Boundary Reduction
is immediately triggered. If only one is triggered, then one of the following holds:

1. r = 0, A\A◦ = {d}, and the vertex d is of degree four, with one incident edge hav-
ing second endpoint in A◦ and the remaining three edges having second endpoint
in V (G)\(A ∪ B◦); or

A◦

d

A◦

d

c1

x

x

Fig. 2 The two cases when putting d on the unnatural side triggers only one Boundary Reduction
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2. r = 1, A\A◦ = {d, c1}, the vertex d is of degree three, with one incident edge
being c1d and the remaining two edges having second endpoint in V (G)\A, and
the vertex c1 is of degree 2x + 1 for some x ≥ 1, with one incident edge being
c1d, x incident edges having second endpoint in A◦, and x incident edges having
second endpoint in V (G)\(A ∪ B◦).

Proof In the branch (A1, B1), a Boundary Reduction is immediately triggered for
every edge in E(d, A◦), and every vertex ci triggers min(pi , pi + xi ) = pi Boundary
Reductions. Note that r ≥ 1 or E(D, A◦) �= ∅, as A is compact by Lemma 4.7.
Hence at least one reduction is triggered. If only one reduction is triggered, then
|E(d, A◦)| + ∑r

i=1 pi = 1. In particular r is either 0 or 1.
If r = 0, then |E(d, A◦)| = 1 and the assumption that A is of excess 2 implies that

|E(d, V (G)\A◦)| = 3. No edge incident to d may have a second endpoint in B◦, as it
would trigger the Boundary Reduction together with the edge in E(d, A◦). Thus the
first case of the claim holds.

If r = 1, then |E(d, A◦)| = 0 and p1 = 1. Since c1 has p1 + x1 edges to A◦
and x1 + 1 edges to V (G)\A, the assumption that A is of excess 2 implies that d has
exactly two edges to V (G)\A. No edge incident to c1 can have the second endpoint in
B◦, as otherwise it would trigger the Boundary Reduction with any edge in E(c1, A◦).
Thus the second case of the claim holds. �


5 The Detailed Cases of the Branching Algorithm

In this section we assume we have a maximal instance I = (G, T , (A◦, B◦), k) for
which none of the previously defined reduction rules is applicable. Our goal is to find
a branching step that fulfils a good vector, or a set of vertices to merge (a reduction
step). Recall that when we consider a branching into terminal separations (A1, B1)

and (A2, B2) that extend (A◦, B◦), then ti , νi , ki for i = 1, 2 measure respectively
the number of terminals resolved in branch i , two times the growth of the cost of the
separation in branch i (i.e., 2(c(Ai , Bi ) − c(A◦, B◦))), and the decrease in the budget
k after applying all the reduction rules when recursing into branch i .

Assume that we have identified a branching step into separations (A1, B1) and
(A2, B2) that both extend, but are different than (A◦, B◦). Then, from the maximality
of (A◦, B◦) we infer than ν1, ν2 ≥ 1. Since [1, 1, 0; 2, 1, 0] is a good vector, any
branching step in which in both cases we resolve or reduce at least one terminal pair,
while in at least one case we resolve or reduce at least two terminal pairs, is fine for
our purposes.

5.1 Basic Branching and Reductions

Let T ′ ⊆ T be the set of unresolved terminal pairs (not in A◦∪B◦). For every terminal
pair {s, t} ∈ T ′, we apply the algorithm of Theorem 2.4 twice: once for terminal
separation (A◦ ∪ {s}, B◦ ∪ {t}), and the second time for terminal separation (A◦ ∪
{t}, B◦ ∪ {s}). In this manner we obtain two maximal terminal separations (As, Bt )

and (At , Bs) that extend (A◦ ∪ {s}, B◦ ∪ {t}) and (A◦ ∪ {t}, B◦ ∪ {s}) respectively. Of
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course, the number of unresolved pairs decreases by at least one in both (As, Bt ) and
(At , Bs), due to resolving {s, t}. If the number of unresolved pairs either in (As, Bt ) or
in (At , Bs) decreases by more than one, then, as we argued, performing a branching
step (A1, B1) = (As, Bt ) and (A2, B2) = (At , Bs) leads to the branching vector
[1, 1, 0; 2, 1, 0] or a better one, which is good.We can test inO(kO(1)m) time whether
this holds for any pair {s, t} ∈ T ′, and if so then we pursue the branching step.

Branching step 1 If in either (As, Bt ) or in (At , Bs), more than one terminal pair gets
resolved, then perform branching into (A1, B1) = (As, Bt ) and (A2, B2) = (At , Bs).

Hence, if this branching step cannot be performed, then we assume the following:

Assumption 1 For every pair {s, t} ∈ T ′ in both (As, Bt ) and (At , Bs) only the pair
{s, t} gets resolved.

We now proceed with some structural observations about the instance at hand.

Lemma 5.1 G[As\A◦], G[At\A◦], G[Bs\B◦], G[Bt\B◦] are connected.
Proof Weprove the statement forG[As\A◦], since the other statements are symmetric.
Suppose G[As\A◦] is disconnected, and let C be any of its connected component that
does not contain s. Then C is terminal-free, so by the maximality of (A◦, B◦) we
infer that d(C ∪ A◦) > d(A◦). But then d(As\C) < d(As), which contradicts the
optimality of (As, Bs). �

Lemma 5.2 Let {s, t} ∈ T ′, and let (As, Bt ) and (At , Bs) be any optimum-cost ter-
minal separations extending (A◦ ∪{s}, B◦ ∪{t}) and (A◦ ∪{t}, B◦ ∪{s}), respectively.
Suppose that (As, Bt ) and (At , Bs) do not resolve any terminal pair apart from {s, t}.
Then for any set A with A◦ ∪ {s} ⊆ A ⊆ V (G)\B◦ that has only s among the
terminals of T ′, it holds that �(A) ≥ �(As). Symmetrically, for any set B with
B◦ ∪ {s} ⊆ B ⊆ V (G)\A◦ that has only s among the terminals of T ′, it holds that
�(B) ≥ �(Bs).

Proof We prove only the first claim for the second one is symmetric. Let A be such a
set, and for the sake of contradiction suppose �(A) < �(As). Then d(A) + d(Bt ) <

2c(As, Bt ). However, from posimodularity of cuts it follows that either d(Bt\A) +
d(A) ≤ d(Bt ) + d(A) or d(Bt ) + d(A\Bt ) ≤ d(Bt ) + d(A). Both (A, Bt\A) and
(A\Bt , Bt ) are terminal separations that extend (A◦ ∪ {s}, B◦ ∪ {t}), and one of them
has strictly smaller cost than (As, Bt ). This is a contradiction with the optimality of
(As, Bt ). �


5.1.1 Pushing As and Bs

The problem that we will soon face is that separations (As, Bt ) and (At , Bs) are not
uniquely defined. For instance, there can be some set of vertices Z ⊆ As\A◦ that
could be moved from As to Bt without changing the cost of the separation. We now
make an adjustment of these separations so that we can assume that As , resp. Bs , is
maximal. For this, we need the following technical results.
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Lemma 5.3 Suppose that (As, Bt ) and (A′
s, B

′
t ) are maximal terminal separations of

minimum cost among separations that extend (A◦ ∪ {s}, B◦ ∪ {t}). Suppose further
that they do not resolve any other terminal pair from T ′. Then

(a) d(As) = d(A′
s) and d(Bt ) = d(B ′

t );
(b) (As ∩ A′

s, Bt ∪ B ′
t ) and (As ∪ A′

s, Bt ∩ B ′
t ) are also terminal separations of

minimum cost among separations that extend (A◦ ∪ {s}, B◦ ∪ {t});
(c) As ∪ Bt = A′

s ∪ B ′
t .

Proof (a) Let C = c(As, Bt ) = c(A′
s, B

′
t ) be the minimum cost of a terminal sepa-

ration extending (A◦ ∪ {s}, B◦ ∪ {t}). Suppose w.l.o.g. that d(As) < d(A′
s), then we

have that d(Bt ) > d(B ′
t ). By posimodularity, we have that

d(As\B ′
t ) + d(B ′

t\As) ≤ d(As) + d(B ′
t ) < 2C. (5)

Observe that (As\B ′
t , B

′
t ) is a terminal separation that extends (A◦ ∪ {s}, B◦ ∪ {t}),

and hence
d(As\B ′

t ) + d(B ′
t ) = 2c(As\B ′

t , B
′
t ) ≥ 2C. (6)

Symmetrically, by considering terminal separation (As, B ′
t\As) we obtain that

d(As) + d(B ′
t\As) = 2c(As, B

′
t\As) ≥ 2C. (7)

Thus, from (5), (6), and (7) we obtain that

4C ≤ d(As) + d(B ′
t ) + d(As\B ′

t ) + d(B ′
t\As) < 4C,

which is a contradiction.
(b) Observe that d(As ∩ A′

s) ≥ d(As), because otherwise As could have been replaced
with As ∩ A′

s in separation (As, Bt ). By submodularity of cuts we have that d(As ∩
A′
s) + d(As ∪ A′

s) ≤ d(As) + d(A′
s), and hence d(As ∪ A′

s) ≤ d(A′
s) = d(As). By

posimodularity, we have that

d
(
(As ∪ A′

s)\Bt
) + d

(
Bt\(As ∪ A′

s)
) ≤ d(As ∪ A′

s) + d(Bt )

≤ d(As) + d(Bt ) = 2C (8)

On the other hand, for terminal separation ((As ∪ A′
s)\Bt , Bt ) we have that

d
(
(As ∪ A′

s)\Bt
) + d(Bt ) = 2c

(
(As ∪ A′

s)\Bt , Bt
) ≥ 2C, (9)

and for terminal separation (As ∪ A′
s, Bt\(As ∪ A′

s)) we have that

d(As ∪ A′
s) + d

(
Bt\(As ∪ A′

s)
) = 2c

(
(As ∪ A′

s, Bt )\(As ∪ A′
s)

) ≥ 2C. (10)

Thus, from (8), (9), and (10)

4C ≥ d
(
(As ∪ A′

s)\Bt
) + d(Bt ) + d(As ∪ A′

s) + d
(
Bt\(As ∪ A′

s)
) ≥ 4C,
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which means that all the inequalities above are in fact equalities. In particular:

• d(As ∩ A′
s) = d(As) = d(As ∪ A′

s), and
• c((As ∪ A′

s)\Bt , Bt ) = C .

Symmetric arguments can be used to show that:

• d(Bt ∩ B ′
t ) = d(Bt ) = d(Bt ∪ B ′

t ),
• c((As ∪ A′

s)\B ′
t , B

′
t ) = C ,

• c(As, (Bt ∪ B ′
t )\As) = C , and

• c(A′
s, (Bt ∪ B ′

t )\A′
s) = C .

Therefore, both (As ∩ A′
s, Bt ∪ B ′

t ) and (As ∪ A′
s, Bt ∩ B ′

t ) have cost C .
(c) For the sake of contradiction, assume that As ∪ Bt �= A′

s ∪ B ′
t . Suppose first that

there is an element u ∈ As such that u /∈ A′
s ∪ B ′

t . In the proof of (b) we have showed
that c((As ∪ A′

s)\B ′
t , B

′
t ) = C . Note that ((As ∪ A′

s)\B ′
t , B

′
t ) is a terminal separation

that extends (A′
s, B

′
t ), and moreover its left side is has at least one additional element

u. Since its cost is the same as the cost of (A′
s, B

′
t ), we obtain a contradiction with the

maximality of (A′
s, B

′
t ). �


Lemma 5.4 Let F be the family of all maximal terminal separations (As, Bt ) of
minimum cost among separations that extend (A◦ ∪ {s}, B◦ ∪ {t}). Suppose that all
separations from F resolve only the pair {s, t} among the pairs from T ′. Then there
exists a unique maximal terminal separation (Amax

s , Bmin
t ) such that Amax

s ⊇ As

and Bmin
t ⊆ Bt for each (As, Bt ) ∈ F . Moreover, if A is such that A◦ ∪ {s} ⊆ A,

A ∩ B◦ = ∅, A ∩ ⋃
T ′ ⊆ {s}, but A\Amax

s �= ∅, then d(A) > d(Amax
s ).

Proof We set

(
Amax
s , Bmin

t

)
=

⎛

⎝
⋃

(As ,Bt )∈F
As,

⋂

(As ,Bt )∈F
Bt

⎞

⎠ .

From Lemma 5.3 it follows that (Amax
s , Bmin

t ) ∈ F .
We are left with proving the last statement. Take any such A, and suppose for the

sake of contradiction that d(A) ≤ d(Amax
s ). Let A = Amax

s ∪ A and B = Bmin
t \A.

Observe that (A, B) is a terminal separation that extends (A◦ ∪ {s}, B◦ ∪ {t}). Since
A has at least one more element than Amax

s , from the properties of (Amax
s , Bmin

t ) we
infer that c(A, B) > C , where C is the cost of every separation from F . Observe
that d(Amax

s ∩ A) ≥ d(Amax
s ), because otherwise we would substitute Amax

s with
Amax
s ∩ A in separation (Amax

s , Bmin
t ) and obtain a separation of smaller cost that

extends (A◦ ∪ {s}, B◦ ∪ {t}). Hence, from the submodularity of cuts we infer that
d(A) ≤ d(A), so in particular d(A) ≤ d(Amax

s ).
Now, by posimodularity we obtain that

d
(
A\Bmin

t

)
+ d

(
Bmin
t \A

)
≤ d(A) + d

(
Bmin
t

)
≤ d

(
Amax
s

) + d
(
Bmin
t

)
.

On the other hand, observe that d(A\Bmin
t ) ≥ d(Amax

s ), because otherwise we could
substitute Amax

s with A\Bmin
t in the terminal separation (Amax

s , Bmin
t ) and obtain a
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terminal separation that extends (A◦ ∪{s}, B◦ ∪{t}) and has strictly smaller cost. Thus
we infer that d(Bmin

t \A) ≤ d(Bmin
t ). As Bmin

t \A = Bmin
t \A = B, we conclude that

d(A) ≤ d(Amax
s ), d(B) ≤ d(Bmin

t ), and hence c(A, B) ≤ C . This is a contradiction.
�


Wemodify now separation (As, Bt ) as follows. For every terminal pair {s′, t ′} ∈ T ′
that is different from {s, t}, we verify using Theorem 2.4 whether (As, Bt ) can be
chosen so that it has a minimum possible cost among the separations that extend
(A◦ ∪ {s}, B◦ ∪ {t}), but it also resolves {s′, t ′}. If this is possible, then we pursue
Branching Step 1 with appropriate (As, Bt ). Otherwise, every minimum-cost sepa-
ration extending (A◦ ∪ {s}, B◦ ∪ {t}) resolves only {s, t}, and the assumptions of
Lemma 5.4 are satisfied. Let (Amax

s , Bmin
t ) be the terminal extension whose exis-

tence is asserted by Lemma 5.4. Observe that we can construct (Amax
s , Bmin

t ) in
time O(kO(1)m): we start with any (As, Bt ) given by Theorem 2.4, and observe that
Lemma 5.4 implies that Amax

s is the unique inclusion-wise maximal set containing
As such that E(Amax

s , V (G)\Amax
s ) is a minimum cut between As and B◦ ∪ (T \As);

such a set can be computed using O(k) rounds of the Ford–Fulkerson algorithm.
Hence, we proceed further with the assumption that we have chosen (As, Bt ) to

be (Amax
s , Bmin

t ). We do symmetrically in the second branch, assuming that (At , Bs)

is chosen to be (Amin
t , Bmax

s ), that is, the extension of B that contains terminal s is
chosen to be maximum possible. Hence, by Lemma 5.4, we can from now on use the
following assumption.

Assumption 2 For any set A with A◦ ⊆ A ⊆ V (G)\B◦ that contains only s from the
terminals of T ′ and has at least one vertex outside As , it holds that �(A) > �(As).
Symmetrically, for any set B with B◦ ⊆ B ⊆ V (G)\A◦ that contains only s from the
terminals of T ′ and has at least one vertex outside Bs , it holds that �(B) > �(Bs).

5.1.2 Analyzing As ∩ Bs, As\Bs, and Bs\As

Suppose now that for some pair {s, t} ∈ T ′, we have that |(As ∩ Bs)\{s}| ≥ 2. Then,
by Assumption 1 Z = (As ∩ Bs)\{s} is a terminal-free set. Since pair {s, t} has to be
resolved one way or the other, then by persistence (Theorem 2.3) we infer that there is
some minimum integral terminal separation (A∗, B∗) such that Z ⊆ A∗ or Z ⊆ B∗.
Therefore, it is a safe reduction to merge Z into a single vertex.

Reduction step 2 For every {s, t} ∈ T ′, compute Zs = (As ∩ Bs)\{s} and Zt =
(At ∩ Bt )\{t}. Provided Zs (Zt ) contains more than one vertex, merge it.

We apply this reduction to all terminal pairs from T ′, which takes timeO(kO(1)m).
Hence, using Lemma 5.1 from now on we can assume the following:

Assumption 3 For every pair {s, t} ∈ T ′, either As ∩ Bs = {s} or As ∩ Bs = {s, s′},
where s′ is the only neighbor of s. Moreover, either At ∩ Bt = {t} or At ∩ Bt = {t, t ′},
where t ′ is the only neighbor of t .

As every terminal has degree one, for a pair {s, t} ∈ T ′ we have that d(As) ≤
d(A◦ ∪ {s}) ≤ d(A◦)+ 1, since otherwise replacing As with A◦ ∪ {s} would decrease
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the cost of (As, Bs). On the other hand, we have that d(As) ≥ d(A◦), since otherwise
(As, B◦ ∪ {t}) would be a terminal separation extending (A◦, B◦) of not larger cost,
whichwould contradict themaximality of (A◦, B◦). Then,wehave three possible cases
for (�(As),�(Bs)): (0, 0), (1, 0) and (1, 1); the omitted case (0, 1) is symmetric to
(1, 0). The algorithm behaves differently in each of these cases. Before we proceed to
the description of handling each case separately, we prove some useful observations
first.

Let us now fix one pair {s, t}, and let Ã = As\Bs and B̃ = Bs\As . Observe that
since branching on {s, t} did not resolve any additional terminal pair, then both Ã\A◦
and B̃\B◦ are terminal-free. Hence, by the maximality of (A◦, B◦) we have that

d( Ã) ≥ d(A◦) and d(B̃) ≥ d(B◦), (11)

and the equality holds if and only if Ã = A◦ or B̃ = B◦, respectively. Let R =
V (G)\(As ∪ Bs).

Lemma 5.5 One of the following two cases holds:

• |E(As ∩ Bs, R)| = 1, Ã = A◦, B̃ = B◦, and (�(As),�(Bs)) = (1, 1); or
• |E(As ∩ Bs, R)| = 0, and 2 ≥ �(As) + �(Bs) = �( Ã) + �(B̃) ≥ 0.

Proof By applying posimodularity of cuts to the sets As and Bs , we obtain:

d(As) + d(Bs) = d( Ã) + d(B̃) + 2|E(As ∩ Bs, R)| ≥ d(A◦) + d(B◦)
+ 2|E(As ∩ Bs, R)|. (12)

On the other hand, we have that d(As) ≤ d(A◦) + 1 and d(Bs) ≤ d(B◦) + 1. Hence
we have that |E(As ∩ Bs, R)| ≤ 1 and the claimed case distinction follows from (11)
and (12). �


5.1.3 Decomposing Sets of Excess 2

Finally, wemake a useful observation that will show a generic settingwhenLemma 4.7
can be applied.

Lemma 5.6 Suppose�(As) = 1 and As �= A◦∪{s}. Then As\{s} � A◦ is a terminal-
free excess-2 set, and (As\A◦) \ {s} has a decomposition {d, c1, c2, . . . , cr } given by
Lemma 4.7. Moreover, d = s′ is the unique neighbor of s in G.

Proof The fact that As\{s} is an excess-2 set follows from the assumption that s has
degree exactly 1 (due to the inapplicability of the Lonely Terminal Reduction), and
its unique neighbor s′ does not belong to A◦ ∪ B◦ and does belong to As (because
G[As\A◦] is connected byLemma5.1). Since (As\A◦)\{s} is nonempty and terminal-
free (by Assumption 1), it follows from Lemma 4.7 that it has a decomposition of the
form {c1, c2} or {d, c1, c2, . . . , cr }, where ci -s are pairwise nonadjacent and A◦ ∪ {ci }
are excess-1 sets. Suppose s′ = ci for some i . Then since A◦ ∪ {ci } is an excess-1
set, we would have that A◦ ∪ {ci , s} is an excess-0 set, and hence (A◦ ∪ {ci , s}, Bt )
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would be an extension of (A◦ ∪ {s}, B◦ ∪ {t}) of strictly smaller cost than (As, Bt ),
contradicting the definition of (As, Bt ). Hence (As\A◦) \ {s} has a decomposition of
the form {d, c1, c2, . . . , cr } and s′ = d. �


Wewill need onemore lemma that resolves corner caseswhenwe applyLemma5.6.

Lemma 5.7 Suppose s satisfies the conditions of Lemma 5.6, and let {d =
s′, c1, c2, . . . , cr } be the obtained decomposition of (As\A◦)\{s}. Let t ′ be the unique
neighbor of t . Then s′ �= t ′, and if t ′ = ci for some i ∈ {1, 2, . . . , r}, then there exists an
optimum integral terminal separation (A∗, B∗) that extends (A◦, B◦) and has s ∈ B∗
and t ∈ A∗.

Proof The fact that s′ �= t ′ follows from the inapplicability of the CommonNeighbour
Reduction. Suppose then that t ′ = ci . From Lemma 4.7 it follows that for some pi ≥ 1
and xi ≥ 0, there are pi edges between s′ and ci , pi + xi edges between ci and A◦,
and xi +1 edges between ci and V (G)\As ; one of these xi +1 edges connects ci = t ′
with t .

Take any optimum integral separation (A∗, B∗) extending (A◦, B◦) and suppose
that s ∈ A∗ and t ∈ B∗. We can further assume that s′ ∈ A∗ and t ′ = ci ∈ B∗,
because otherwise switching the sides of s and t would result in an integral separation
of not larger cost that already fulfills the property we aim for. Recall that ci has pi
edges to s′ (which is assigned to A∗), pi + xi edges to A◦, and xi + 1 edges to other
vertices of the graph. Since pi ≥ 1, we see that a strict majority of neighbors of ci are
in A∗. Hence switching the side of ci from A∗ to B∗ strictly decreases the cost of the
separation, a contradiction. �


Lemma 5.7 enables us to perform a reduction step whenever a corner case appears
in the analysis of vertices close to s and t . We choose not to perform this reduction
exhaustively, but rather to execute it on demand when such a case appears during
branching.

5.1.4 Fixing an Edge ss′ or tt ′

In a few cases, we consider an improved branching set, when in one branch we fix
{s′, s} to belong to the left part and t to belong to the right part, whereas in the second
branch we fix vice versa. More precisely, we consider branches (Ass′→A, Bss′→A)

and (Ass′→B, Bss′→B) that are minimum-cost terminal separations extending (A◦ ∪
{s, s′}, B◦ ∪ {t}) and (A◦ ∪ {t}, B◦ ∪ {s, s′}), computed using Theorem 2.4. Observe
that there is some optimum solution that extends one of these branches: If in some
optimum solution the vertices s′ and s were assigned to different sides, then we could
modify this solution by swapping the sides of s and t . After this modification then
solution has no larger cost due to t having degree one, whereas the edge ss′ ceases to
be cut by the solution. This justifies the correctness of this branching step; we shall
henceforth call it branching on {s, t} with fixing the edge ss′. Symmetrically, we can
define branching on {s, t} with fixing the edge t t ′.
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Fig. 3 Case (�(As ), �(Bs )) = (0, 0): a reduction is always immediately applicable. Terminal nodes are
squares, paired with zig–zags. Extensions As and Bs are highlighted with light blue and red, respectively
(Color figure online)

5.2 Case (�(As),�(Bs)) = (0, 0)

We show that this case in fact never happens. From Lemma 5.5 we infer that E(As ∩
Bs, R) = ∅, Ã = A◦, and B̃ = B◦. Hence, As\A◦ = Bs \ B◦ = As ∩ Bs . As we
argued earlier, we can assume that As ∩ Bs = {s} or As ∩ Bs = {s, s′} for s′ being the
only neighbor of s′.

In the first case, since the degree of s is at most one, from E(As ∩ Bs, R) = ∅ and
�(As) = �(Bs) = 0 we can infer that s is an isolated terminal, which should have
been removed by the Lonely Terminal Reduction. This contradicts the assumptions
that no reduction rule is applicable.

In the second case, by E(As ∩ Bs, R) = ∅ and �(As) = �(Bs) = 0, we infer that
|E(s′, A◦)| = |E(s′, B◦)| = x for some x ≥ 0. If x = 0, then s′ should have been
reduced by the Pendant Reduction. On the other hand, if x > 0 then the Boundary
Reductionwould have been triggered on s′. In both cases this is a contradiction (Fig. 3).

5.3 Case (�(As),�(Bs)) = (1, 0)

From Lemma 5.5 we infer that E(As ∩ Bs, R) = ∅ and �( Ã) + �(B̃) = 1. We have
two subcases: either (a) (�( Ã),�(B̃)) = (1, 0), or (b) (�( Ã),�(B̃)) = (0, 1).

5.3.1 Subcase (a): (�( Ã),�(B̃)) = (1, 0)

By the equality condition in (11) we have that B̃ = B◦, while Ã � A◦ is a terminal-
free set of excess 1. By the inapplicability of the Excess-1 Reduction, we infer that
Ã = A◦ ∪ {a} for some nonterminal vertex a.

Set As satisfies the conditions of Lemma 5.6, so we can decompose (As\A◦) \ {s}
into {d, c1, c2, . . . , cr }, where d = s′ is the unique neighbor of s. Since �( Ã) = 1,
we have that Bs � B◦ ∪ {s} and hence by Lemma 5.1 it follows that s′ ∈ Bs . By
Assumption 3we infer that As∩Bs = {s, s′} and thus {a} = Ã\A◦ = {c1, c2, . . . , cr }.
Therefore r = 1 and c1 = a.

Since B̃ = B◦, Bs\B◦ = Bs ∩ As = {s, s′}.
By Lemma 4.7 we have that a has: p edges to s′, x + 1 edges to V (G)\(As ∪ B◦),

p+ x edges to A◦ and no other edges, for some p ≥ 1, x ≥ 0. Since Bs = B◦ ∪{s′, s}
is an excess-0 set and E(s′, R) = ∅, we have that |E(s′, B◦)| = p + |E(s′, A◦)|. In
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Fig. 4 Case (1,0)(a):
(�(As ), �(Bs )) =
(�( Ã), �(B̃)) = (1, 0).
Extensions As , Bs are
highlighted

B◦

A◦

ss

a
p

p

p+ x

x+ 1

particular |E(s′, B◦)| > 0, so since Boundary Reductions do not apply to s′, we have
E(s′, A◦) = ∅ and hence |E(s′, B◦)| = p (Fig. 4).

Consider now case x = 0. Then a has a unique edge aa′ with a′ ∈ R. Consider
first the case when a′ is a terminal, so in particular aa′ is the only edge incident
to a′. If a′ = t , then it is easy to see that (A◦ ∪ {a, t}, B◦ ∪ {s′, s}) would be an
extension of (A◦, B◦) of the same cost, which contradicts the maximality of (A◦, B◦).
However, if a′ belonged to some other pair {a′, a′′} ∈ T ′, then terminal separation
(As ∪ {a′}, Bt ∪ {a′′}) would have the same cost as (As, Bt ), which contradicts the
maximality of (As, Bt ). In either case we obtain a contradiction, which means that a′
is a nonterminal.

We claim that it is a safe reduction to contract the edge aa′; to prove this claim, it
suffices to show that there exists an optimum integral terminal separation extending
(A◦, B◦) where a and a′ belong to the same side. Take any such integral terminal
separation (A∗, B∗), and assume that a and a′ are on opposite sides. Clearly it cannot
happen that a ∈ B∗ and a′ ∈ A∗, because then moving a from B∗ to A∗ would
decrease the cost of the separation. Hence a ∈ A∗ and a′ ∈ B∗. If s′ ∈ B∗, then
moving a from A∗ to B∗ would decrease the cost of the separation, so also s′ ∈ A∗.
Construct a new integral separation (A∗

m, B∗
m) from (A∗, B∗) by moving {a, s′} from

A∗ to B∗. Then the cost of (A∗
m, B∗

m) is not larger than that of (A∗, B∗) (we could
have broken the edge s′s instead of aa′), while both endpoints of aa′ belong to A∗

m .
This reasoning proves the correctness of the following step.

Reduction step 3 Suppose x = 0 and let a′ be the unique neighbor of a in R; then a′
is a non-terminal. Merge a with a′ and restart.

Henceforth we assume that x > 0.We claim that now branching on themembership
of a leads to a good branch. More precisely, we perform the following branching.

Branching step 4 If x ≥ 1, recurse into two branches (Aa→A, Ba→A) and (Aa→B,

Ba→B) that are minimum-cost maximal terminal separations extending (A◦∪{a}, B◦)
and (A◦, B◦ ∪ {a}), respectively.

Of course, (Aa→A, Ba→A) and (Aa→B, Ba→B) are computed using the algorithm
of Theorem 2.4 in time O(kO(1)m). We are left with proving that after applying all
the immediate reductions in each branch, we arrive at a good branching vector. For
X ∈ {A, B}, let ta→X , νa→X , ka→X be the changes of the components of the potential
in respective branches, as we denote them in branching vectors.

Consider first the branch (Aa→A, Ba→A). Then p Boundary Reductions are trig-
gered on vertex s′ (regardless of whether it is added or not to one of the sets
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Aa→A, Ba→A). Hence ka→A ≥ p. Moreover, the terminal pair {s, t} either is already
resolved by (Aa→A, Ba→A) or gets reduced by the Lonely Terminal Reduction after
applying the Boundary Reductions. Hence ta→A ≥ 1. Finally, since (A◦, B◦) was
maximal, we have that νa→A ≥ 1. So the part of the branching vector corresponding
to the branch (Aa→A, Ba→A) is [1, 1, p], or better.

Consider now the second branch (Aa→B, Ba→B). Then at least |E(a, A◦)| = p+x
Boundary Reductions are triggered, hence ka→B ≥ p + x . Since p ≥ 1 and t is of
degree 1, s′ ∈ Ba→B and without loss of generality we can assume s ∈ Ba→B

and t ∈ Aa→B . Hence ta→B ≥ 1. If actually ta→A ≥ 2 or ta→B ≥ 2, then we
arrive at a branching vector [1, 1, p; 2, 1, p] or better, which is good, so assume that
ta→A = ta→B = 1, that is, only the pair {s, t} gets resolved.

Wenowclaim that�(Aa→B) ≥ 1 and�(Ba→B) ≥ 1. The latter claim follows from
Assumption2, since then Ba→B contains only s among the terminals (due to ta→B = 1)
and a ∈ Ba→B\Bs . For the former claim, suppose for the sake of contradiction that
d(Aa→B) = d(A◦). Recall that also d(Bs) = d(B◦), which means that d(Aa→B) +
d(Bs) = c(A◦, B◦). From the posimodularity of cuts it now follows that one of the
terminal separations (Aa→B\Bs, Bs) and (Aa→B, Bs\Aa→B) has cost not larger than
(A◦, B◦),while both of them resolve the terminal pair {s, t}. This is a contradictionwith
the maximality of (A◦, B◦). Hence we infer that �(Aa→B) ≥ 1 and �(Ba→B) ≥ 1,
and so νa→B ≥ 2.

Thus, branching into separations (Aa→A, Ba→A) and (Aa→B, Ba→B) leads to a
branching vector [1, 1, p; 1, 2, p + x] or better. Recalling that p, x > 0, observe that
this branching vector can be not good only if p = x = 1 and �(Ba→B) = 1. Hence,
from now on let us analyze this case.

Since�(Ba→B) = 1, we have that Ba→B\{s} is a terminal-free set of excess 2, and
hence we can apply Lemma 4.7 to it: We have that Ba→B\{s} has a decomposition of
the form {c1, c2} or {d, c1, . . . , cr }. Note that B◦∪{s′} is an excess-1 set, so s′ = ci for
some i . As a ∈ Ba→B , a is adjacent to s′, and ci -s are pairwise non-adjacent, we must
have that a = d and we are dealing with a decomposition of the form {d, c1, . . . , cr }.
Observe that B◦ ∪ {a, s′} is a B◦-extension of excess at least 1 + x + 1 = 3; hence
Ba→B � B◦ ∪ {a, s′, s}, and in particular r > 1. Hence there exists some vertex
c j �= ci = s′. By Lemma 4.7 we have that c j is adjacent both to B◦ and to a.
Hence, in the branch (Aa→A, Ba→A) at least one Boundary Reduction is applied to
c j , regardless whether c j is assigned to Aa→A, or Ba→A, or neither of these sets. We
did not include this Boundary Reduction in the previous calculations; this shows that
we in fact pursue a branch with a branching vector [1, 1, 2; 1, 2, 2] or better, which is
a good branching vector.

5.3.2 Subcase (b): (�( Ã),�(B̃)) = (0, 1)

By the equality condition in (11) we have that Ã = A◦, while B̃ � B◦ is a terminal-
free set of excess 1. By the inapplicability of the Excess-1 Reduction, we infer that
B̃ = B◦ ∪ {b} for some nonterminal vertex b. In particular Bs � B◦ ∪ {s}, so by
Lemma 5.1 the unique neighbor s′ of s belongs to Bs . Since �(Bs) = 0, we have that
Bs\{s} is a terminal-free set of excess 1, so it consists of a single vertex. However,
this set already contains b. Hence we infer that b = s′ is the unique neighbor of s,
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Fig. 5 Case (1,0)(b): (�( Ã), �(B̃)) = (0, 1). This gives rise to an antenna, which has to be analyzed
together with the other terminal. The right side shows an antenna with natural side A◦; note the definition
does not mention As , Bs , it only relies on the behaviour of extensions containing s or s′

B̃ = {s′} ∪ B◦, Bs = {s, s′} ∪ B◦. In particular s′ /∈ As , so by Lemma 5.1 it follows
that As = A◦ ∪ {s}.

Let x = |E(s′, B◦)|. Since �(Bs) = 0, we also have x = |E(s′, V (G)\Bs)|. If
x = 0 then s′ would be only adjacent to s and thus reducible by the Pendant Reduction.
Hence, x > 0. In particular, we infer that E(s′, A◦) = ∅, since otherwise the Boundary
Reduction could be applied to s′.

Let us now examine two possible branching steps. Firstly, consider just branch-
ing into two branches (As, Bt ) and (At , Bs). In both cases, only one terminal pair
{s, t} gets resolved. In branch (At , Bs), when s is assigned to B, we pessimistically
have no Boundary Reduction and no increase in the cost of the separation. In branch
(As, Bt ), however, when s is assigned to A, we have that�(As) = 1 and oneBoundary
Reduction is triggered on vertex s′ due to having both an edge to s and to B◦.

We now investigate the components of the branching vector when branching on
{s, t} with fixing ss′. If in one of the branches at least one more terminal pair gets
resolved, then as argued in the beginning of this section we can just pursue the branch-
ing step, because it leads to a good branching vector. Hence, assume from now on
that in both branches only the pair {s, t} gets resolved. Since As = {s} ∪ A◦ and
Ass′→A contains only s among the terminals of T ′, by Assumption 2 we have that
�(Ass′→A) ≥ 2. Also, at least one Boundary Reduction is triggered on an edge
between s′ and B◦. In branch (Ass′→B, Bss′→B), again we pessimistically have no
Boundary Reduction and no increase in the cost of the separation (Fig. 5).

A terminal s with the behaviour as described above will be actually the most prob-
lematic case for our branching algorithm. Let us define this setting formally.

Definition 5.8 A terminal s is called an antenna if the following conditions hold:

• The only neighbor s′ of s is a nonterminal, has x > 0 edges to one of the sets A◦
or B◦, no edge to the second one, and x edges to V (G)\(A◦ ∪ B◦ ∪ {s}). The side
S ∈ {A◦, B◦} to which s′ is adjacent is called the natural side of s, and the second
one is called the unnatural side of s.

• Let S and S be the natural and unnatural side of s, respectively. Then
– For any X with S ∪ {s, s′} � X ⊆ V (G)\S that contains only s among the
terminals from T ′, it holds that �(X) ≥ 1.

– For any Y with S ∪ {s} ⊆ Y ⊆ V (G)\S that contains only s among the
terminals from T ′, it holds that �(Y ) ≥ 1. If moreover Y contains at least one
more vertex than S ∪ {s}, then �(Y ) ≥ 2.
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The discussion above together with Lemmas 5.2 and Assumption 2 shows that in
this case s is an antenna with natural side B◦. Obviously, in the symmetric subcase
when (�(As),�(Bs)) = (0, 1) and (�( Ã),�(B̃)) = (1, 0) we obtain that s is an
antenna with natural side A◦.

The idea now is not to perform any branching step on an antenna, but rather to
branch on the situation around the second terminal t , i.e., swap the roles of t and s
and restart the analysis. In other words, we will show that if the analysis of the second
terminal t does not reveal that it is an antenna [it conforms to cases (0, 0), (1, 0)a, or
(1, 1)], then a branching step leading to a good branching vector can be found on that
side. We will be thus left with the case when both s and t are antennas, which we aim
to resolve now by exposing a branching strategy leading to a good branching vector.

Therefore, assume that s and t are both antennas, and let s′ and t ′ be their unique
neighbors, respectively. By the inapplicability of the Common Neighbor Reduction,
s′ �= t ′. First, suppose that s and t have different natural sides, say s has natural side A◦
and t has natural side B◦. However, then (A◦ ∪{s, s′}, B◦ ∪{t, t ′})would be a terminal
separation that has the same cost as (A◦, B◦), which contradicts the maximality of
(A◦, B◦).

Hence, assume that s and t have the same natural side. W.l.o.g. suppose that it is
B◦. Let x = |E(s′, B◦)| and y = |E(t ′, B◦)|; recall that x, y ≥ 1. Consider two
possible branching steps: we can branch on {s, t} with fixing ss′ or with fixing t t ′.
Consider first fixing edge ss′, and let (Ass′→A, Bss′→A) and (Ass′→B, Bss′→B) be
the branches. By the definition of the antenna we have that �(Ass′→A) ≥ 2 and
�(Ass′→B) ≥ 1. Also, in branch (Ass′→A, Bss′→A) we have at least x Boundary
Reductions triggered on edges incident to s′, whereas in branch (Ass′→B, Bss′→B)we
have at least one Boundary Reduction triggered edges incident to t ′. Thus we obtain
a branching vector [1, 2, x; 1, 1, 1] or better, and a symmetric reasoning for fixing t t ′
leads to branching vector [1, 1, 1; 1, 2, y], or better. Note that one of these vectors is
good if max(x, y) ≥ 3. Furthermore, such a branching also leads to a good vector if
s′ or t ′ is adjacent to some terminal other than s or t , respectively, as then in at least
one branch a second terminal pair would be resolved. Hence, if this is the case, we
pursue the respective branching step.

Branching step 5 If max(x, y) ≥ 3, or there is a terminal in T ′ different than s or t
adjacent to s′ or t ′, then pursue branching on {s, t} with fixing the respective edge ss′
or t t ′.

From now on we assume that x, y ≤ 2 and that no other terminal than s and t is
adjacent to s′ nor t ′ (Fig. 6).

Consider now the case when there is a vertex a such that all edges of
E(s′, V (G)\(B◦ ∪ {s})) have a as the endpoint different than s′. This encompasses
the cases when x = 1 and when x = 2 but the considered edges connecting s′ with
V (G)\(A◦ ∪ {s}) have the same second endpoint. We claim that then it is a safe
reduction to merge a and s′. To prove this claim, we need to show that there exists an
optimum integral terminal separation (A∗, B∗) extending (A◦, B◦)where a and s′ are
on the same side. Take any such integral terminal separation (A∗, B∗), and assume
that a and s′ are on opposite sides. Clearly it cannot happen that a ∈ B∗ and s′ ∈ A∗,
because then moving s′ from A∗ to B∗ would decrease the cost of the separation.
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Fig. 6 Case (1,0)(b) on both s
and t , where furthermore the
antennas have the same natural
side
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Hence a ∈ A∗ and s′ ∈ B∗. This implies that s ∈ B∗, since otherwise we could
improve the cost of the separation by moving s′ from B∗ to A∗. Therefore t ∈ A∗.
Consider modifying (A∗, B∗) into (A∗

m, B∗
m) by

• moving s′ and s from B∗ to A∗, and
• moving t and t ′ from A∗ to B∗, provided t ′ was not already included in B∗.

It is easy to see that (A∗
m, B∗

m) is still an integral terminal separation extending (A◦, B◦)
and its cost is no larger than that of (A∗, B∗). Hence, it is optimum as well. However,
in (A∗

m, B∗
m) it holds that s′ and a are on the same side.

This reasoning and its symmetric version for t ′ imply the correctness of the follow-
ing reduction step. Note that a is not a terminal, as we have already excluded this case
in the previous branching step.

Reduction step 6 If |N (s′)\(B◦ ∪{s})| = 1, then merge s′ with its unique neighbor in
V (G)\(B◦ ∪ {s}) and restart. If |N (t ′)\(B◦ ∪ {t})| = 1, then merge t ′ with its unique
neighbor in V (G)\(B◦ ∪ {t}) and restart.

We are left with the case when x = y = 2 and both s′ and t ′ have two neighbors
outside B◦ ∪ {s, t}; these neighbors will be called external. We claim that then just
pursuing branching on {s, t} with fixed ss′ leads to a good branching vector.

Branching step 7 If x = y = 2 and |N (s′)\(B◦ ∪ {s})| = |N (t ′)\(B◦ ∪ {t})| = 2,
then pursue branching on {s, t} with fixing ss′.

Let the branches be (Ass′→A, Bss′→A) and (Ass′→B, Bss′→B). Recall that
�(Ass′→A) ≥ 2. If actually �(Ass′→A) ≥ 3, then we would already have a good
branching vector [1, 3, 2; 1, 1, 1] or better, so assume henceforth that�(Ass′→A) = 2.
Consider now set A′ = Ass′→A\{s, s′}. If A′ did not contain both external neighbors
of s′, then a simple edge count shows that A′ would be a terminal-free set of excess
at most −2 (if it contains no external neighbor of s′) or 0 (if it contains one external
neighbor of s′). In both cases this is a contradiction with the maximality of (A◦, B◦).
Hence, A′ contains both external neighbors of s′, and A′ is a terminal-free set of
excess 2. By Lemma 4.7, we can decompose A′ as {c1, c2} or {d, c1, . . . , cr }. Since s′
has two different neighbors in A′, at least one of them is ci for some i . However, by
Lemma 4.7 each ci is adjacent to A◦, and hence in branch (Ass′→B, Bss′→B) at least
one Boundary Reduction is triggered on vertex ci (regardless whether this vertex is
assigned to Ass′→B , or to Bss′→B , or to neither of these sets). In our earlier calculations
we did not account for this Boundary Reduction, so in fact we obtain branching vector
[1, 2, 2; 1, 1, 2] or better, which is a good branching vector.
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5.4 Case (�(As),�(Bs)) = (1, 1)

By Lemma 5.5, we have three non-symmetric subcases:

(a) |E(As ∩ Bs, R)| = 1, Ã = A◦, B̃ = B◦;
(b) E(As ∩ Bs, R) = ∅, �( Ã) = �(B̃) = 1;
(c) E(As ∩ Bs, R) = ∅, �( Ã) = 0, �(B̃) = 2.

The case when E(As ∩ Bs, R) = ∅, �( Ã) = 2, �(B̃) = 0, is symmetric to case (c).
The algorithm proceeds as follows: It investigates every terminal pair {s, t} ∈ T ′,

and investigates the case given by this terminal pair when considered as {s, t} (i.e.,
looking from the side of s), and when considered as {t, s} (i.e., looking from the side of
t). If in any of these checks, for any terminal pair, case (0, 0) or (1, 0)(a) is discovered,
the algorithm pursues the respective Reduction Step or Branching Step, as described
in the previous sections. Otherwise, we can assume the following:

Assumption 4 Every terminal of T ′ is either an antenna, or investigating the basic
branch of the respective terminal pair from its side yields case (1, 1) (has type (1,1)).

In the following we will use this property heavily in order to be able to reason about
the total increase in the cost of the separation, also on the side of the second terminal
from the pair we are currently investigating.

5.4.1 Case (a): |E(As ∩ Bs, R)| = 1, Ã = A◦, B̃ = B◦

Let Z = As ∩ Bs = As\A◦ = Bs \ B◦. By Assumption 3, we have that Z = {s} or
Z = {s, s′}, where s′ is the unique neighbor of s.

Suppose first that Z = {s, s′}. Let x = |E(s′, A◦)| and y = |E(s′, B◦)|. Since
|E(s′, R)| = |E(Z , R)| = 1 and both As and Bs are excess-1 sets, we infer that
x = y. Consequently it must hold that x = y = 0, because otherwise the Boundary
Reduction would apply to s′. Thus, s′ is a vertex of degree 2 with one neighbor r in
R and the second being s. Then the Pendant Reduction would apply to X = {s′}, a
contradiction.

Therefore, we have that Z = {s}. Let s′ be the unique neighbor of s. We pur-
sue branching on the pair {s, t} with fixing edge ss′, i.e., branch into two subcases
(Ass′→A, Bss′→A) and (Ass′→B, Bss′→B) that are minimum-cost terminal separations
extending (A◦ ∪ {s, s′}, B◦ ∪ {t}) and (A◦ ∪ {t}, B◦ ∪ {s, s′}), respectively.
Branching step 8 Pursue branching on {s, t} with fixing ss′.

Obviously, as explained in the beginning of this section, if any of the resulting
branches resolves onemore terminal pair, then the branching vector is good. Therefore,
suppose that in both branches only the pair {s, t} gets resolved. By Assumption 2, we
have that �(Ass′→A) ≥ 2 and �(Bss′→B) ≥ 2. By Assumption 4, terminal t is
either of type (1, 1) or is an antenna. In the former case, by Lemma 5.2 we have
that �(Bss′→A) ≥ 1 and �(Ass′→B) ≥ 1. Hence we arrive at branching vector
[1, 3, 0; 1, 3, 0] or better, which is a good branching vector. In the latter case, by the
definition of an antenna we have that �(Bss′→A) ≥ 1 or �(Ass′→B) ≥ 1, depending
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Fig. 7 Case (1,1)(b): �(Bs ) =
�(As ) = �( Ã) = �(B̃) = 1.
Note the edges counted in x + 1
and y + 1 may both include a
common edge between a and b
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on whether A◦ or B◦ is natural for s. Also, in the same branch where respective
inequality holds, one Boundary Reduction gets applied on the unique neighbor of
t . Thus we arrive at branching vector [1, 2, 0; 1, 3, 1], or [1, 3, 1; 1, 2, 0] or better
(depending on which side is natural for t), which is a good branching vector.

5.4.2 Case (b): E(As ∩ Bs, R) = ∅, �( Ã) = �(B̃) = 1

Since Ã and B̃ are terminal-free sets of excess 1, by the inapplicability of the Excess-1
Reduction we infer that Ã = A◦ ∪{a} and B̃ = B◦ ∪{b} for some distinct nonterminal
vertices a, b. In particular, both As\A◦ and Bs\B◦ contain at least one more vertex
than s. Hence, by Lemma 5.1 we infer that if s′ is the unique neighbor of s, then
s′ ∈ As and s′ ∈ Bs . From Assumption 3 it follows that As ∩ Bs = {s, s′}. Hence
As\A◦ = {a, s, s′} and Bs\B◦ = {b, s, s′}.

Since �(As) = 1 and As �= A◦ ∪ {s}, we can apply Lemma 5.6 to it and infer
that As\{s} has a decomposition {d, c1} with s′ = d and c1 = a. Consequently,
by Lemma 4.7 we infer that for some p ≥ 1 and x ≥ 0, we have |E(s′, a)| = p,
|E(a, A◦)| = p+ x , and |E(a, V (G)\As)| = x +1. Also, there is no edge between a
and B◦, because then the Boundary Reduction would be applicable to a. A symmetric
reasoning shows that for some q ≥ 1 and y ≥ 0, we have |E(s′, b)| = q, |E(b, B◦)| =
q + y, |E(b, V (G)\Bs)| = y + 1, and there is no edge between b and A◦.

Vertex s′ cannot be connected both to A◦ and to B◦, because then the Boundary
Reduction would be applicable to it. Hence, w.l.o.g. assume that E(s′, A◦) = ∅. Let
q ′ = |E(s′, B◦)|. Since E(As ∩ Bs, R) = ∅ and both As and A◦ ∪ {a} are sets of
excess 1, we infer that p = q + q ′ (Fig. 7).

For the sake of further argumentation, we now resolve the case when t ′ = a
or t ′ = b, where t ′ is the unique neighbor of t . Then, Lemma 5.7 and its symmetric
variant imply that the pair {s, t} can be assigned greedily.More precisely, the following
reduction step is correct.

Reduction step 9 If t ′ = a then assign s to the B-side and t to the A-side, i.e., proceed
with instance (At , Bs). If t ′ = b then assign s to the A-side and t to the B-side, i.e.,
proceed with instance (As, Bt ).

Henceforth we assume that t ′ �= a and t ′ �= b. Since As = {a, s, s′} and Bs =
{b, s, s′}, by the inpplicability of Common Neighbor Reduction we infer that t ′ /∈ As

and t ′ /∈ Bs .
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The crucial observation now is that we can fix both edges ss′ and t t ′ at the same
time.

Lemma 5.9 There exists an optimum integral terminal separation (A∗, B∗) where
either {s, s′} ⊆ A∗ and {t, t ′} ⊆ B∗, or {s, s′} ⊆ B∗ and {t, t ′} ⊆ A∗.

Proof Let us take any optimum integral terminal separation (A∗, B∗). If the condition
of the lemma is not satisfied, then swapping the sides of s and t does not change the
cost of the separation. Let us then assume that the edge t t ′ is not cut in the solution.
Hence, without loss of generality we assume that s′, t, t ′ ∈ B∗ and s ∈ A∗; the rest
of the reasoning will be independent of the choice we made earlier that there are no
edges between s and A◦, so we are indeed not losing generality here.

Consider A = A∗ ∪ As . By the submodularity of cuts we have that

d(A∗ ∩ As) + d(A) ≤ d(A∗) + d(As).

However, we have that d(As) ≤ d(A∗ ∩ As) because otherwise we would be able to
replace As with A∗∩As in separation (As, Bt ) thus decreasing its costwhile preserving
the fact that it extends (A◦∪{s}, B◦∪{t}). Hence,we infer that d(A∗) ≥ d(A). Observe
that since As\(A◦∪{s}) is terminal-free, then (A, V (G)\A) is also an integral terminal
separation, and its cost is d(A) ≤ d(A∗) = c(A∗, B∗). Hence, (A, V (G)\A) is also
an optimum integral terminal separation. Since s′ ∈ As and t ′ /∈ As , we infer that
edges ss′ and t t ′ are not cut in (A, V (G)\A), as was requested. �


Lemma 5.9 justifies the correctness of branching on {s, t}with both ss′ and t t ′ fixed.
More precisely, we branch into separations (Ass′→A, Bss′→A) and (Ass′→B, Bss′→B)

that are minimum-cost terminal separations extending (A◦ ∪ {s, s′}, B◦ ∪ {t, t}) and
(A◦ ∪ {t, t ′}, B◦ ∪ {s, s′}), computed using Theorem 2.4.

Branching step 10 Pursue branching on {s, t} with fixing both ss′ and t t ′.

As we argued at the beginning of this section, if in any of these branches at least
one more terminal pair gets resolved, then we arrive at a good branching vector; hence
assume that this is not the case.

By Lemma 5.2 we have that �(Ass′→A) ≥ 1 and �(Bss′→B) ≥ 1. Also, in both
branches the Boundary Reduction will be applied at least p times: either p times on a
(provided s′ is assigned to the B-side), or q times on b and q ′ times on edges between
s′ and B◦ (provided s′ is assigned to the A-side).

We now calculate the branching vectors when performing this branching.
Suppose first that t is an antenna, then by the definition of the antenna we have that

�(Ass′→B) ≥ 2 or �(Bss′→A) ≥ 2, depending whether B◦ or A◦ is the natural side
of t . Moreover, in the same branch, one Boundary Reduction is triggered on an edge
between t ′ and the natural side of t in the branch. By t ′ /∈ As ∪ Bs , we know that
this Boundary Reduction was not accounted for in the previous calculations. Hence,
we obtain branching vector [1, 1, p; 1, 3, p + 1], or [1, 3, p + 1; 1, 1, p], or better,
depending on the natural side of t . Since p ≥ 1, these branching vectors are good.

Suppose now that t is of type (1, 1), and moreover that investigation of its situation
also leads to the same case (b). Thenwe have that�(Bss′→A) ≥ 1 and�(Ass′→B) ≥ 1
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by Lemma 5.2. Moreover, in both of the branches, at least one Boundary Reduction is
triggered that reduces some edge incident to t ′. It is easy to see that the applicability
of this Boundary Reduction could not be spoiled by the application of the p Boundary
Reductions on the side of s, because t ′ /∈ As ∪ Bs and s′ and t ′ are assigned to
different sides. Thus, we arrive at branching vector [1, 2, p + 1; 1, 2, p + 1], which
is [1, 2, 2; 1, 2, 2] or better, and hence good.

Finally, we are left with the case when t is of type (1, 1), and the investigation of
its situation also leads to case (c). Similarly as in the previous paragraph, we have that
�(Bss′→A) ≥ 1 and �(Ass′→B) ≥ 1. Moreover, as we shall see in the next section,
in at least one branch, one additional Boundary Reduction will be triggered that will
reduce an edge incident to t ′. Moreover, the applicability of this Boundary Reduction
will not be spoiled by the application of the previous p Boundary Reductions on the
side of s, for the same reason as in the previous paragraph; that is, t ′ /∈ As ∪ Bs

and s′ and t ′ are assigned to different sides. Hence we arrive at branching vector
[1, 2, p + 1; 1, 2, p], or [1, 2, p; 1, 2, p + 1], or better. All these vectors are good for
p > 0.

5.4.3 Case (c): E(As ∩ Bs, R) = ∅, Ã = A◦, �(B̃) = 2

Since �(Bs) = 1, we have that Bs\{s} is a terminal-free extension of B◦ of excess
2 and we can apply Lemma 5.6 to decompose it as {d, c1, c2, . . . , cr }, where d = s′
is the unique neighbor of s. Let pi = |E(ci , s′)|, for i = 1, 2, . . . , r . Recalling
Lemma 4.10, let σ = |E(s′, B◦)| + ∑r

i=1 pi = |E(s′, {c1, . . . , cr } ∪ B◦)| be the
number of Boundary Reductions that are immediately triggered within Bs\{s} in any
branch when s′ is assigned to the A-side. By Lemma 4.10 we have that σ > 0. This
justifies the claim that was left in our analysis of Case (1, 1)b, where we argued for
the applicability of one additional Boundary Reduction.

Before we proceed, let us exclude the corner case when t ′ = ci for some i ∈
{1, 2, . . . , r}, where t ′ is the unique neighbor of t . Lemma 5.7 justifies the correctness
of the following reduction step.

Reduction step 11 If t ′ = ci for some i ∈ {1, 2, . . . , r}, then assign s to the A-side
and t to the B-side, i.e., proceed with instance (As, Bt ).

Since t ′ �= s′ by the inapplicability of theCommonNeighbor Reduction, henceforth
we can assume that t ′ /∈ Bs .

Since Ã = A◦, by Assumption 3 we have two cases: either As\A◦ = {s, s′} or
As\A◦ = {s}.
Subcase (c.i) As\A◦ = {s, s′}. Let p = |E(s′, A◦)|. Since E(As ∩Bs, R) = ∅ and As

has excess 1, we infer that there are p+ 1 edges from s′ to B̃ = {c1, c2, . . . , cr }∪ B◦,
and hence σ = p + 1. Observe that p ≥ 1, because if p = 0 the s′ would be adjacent
only to s and to a vertex in B̃, and hence the Pendant Reduction would be applicable
to {s′}. Hence in this case σ ≥ 2 (Fig. 8).

Having this structure, it is natural to make the following branching.

Branching step 12 If As\A◦ = {s, s′}, then pursue branching on {s, t}with fixing ss′.
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Fig. 8 Case (1,1)(c.i):
Ã = A◦, �(B̃) = 1, As ∩ Bs =
{s, s′}. A careful reader might
notice that since the excess of
Bs is 1, an edge count implies
r = 2
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Let (Ass′→A, Bss′→A) and (Ass′→B, Bss′→B) be the respective branches, i.e.,
minimum-cost maximal terminal separations extending (A◦ ∪ {s, s′}, B◦ ∪ {t}) and
(A◦ ∪ {t}, B◦ ∪ {s, s′}), respectively. Of course, if in any of these branches one more
terminal pair got resolved, then we have a good branching vector. Assume therefore
that this is not the case. In branch (Ass′→A, Bss′→A) from Lemma 5.2 we have that
�(A◦ ∪ {s, s′}) ≥ 1 and σ ≥ 2 Boundary Reductions are triggered within Bs\{s}.
In branch (Ass′→B, Bss′→B) we again have that �(B◦ ∪ {s, s′}) ≥ 1, and p ≥ 1
Boundary Reduction are triggered for edges between s′ and A◦.

We now calculate the obtained branching vector depending on whether t is an
antenna or is of type (1, 1).

If t is an antenna with natural side A◦, then in branch (Ass′→A, Bss′→A) we have
�(Bss′→A) ≥ 1 and oneBoundaryReduction is triggered on edges incident to t ′. Since
t ′ /∈ Bs , it is easy to see that the execution of the σ previous Boundary Reductions on
the side of s could not spoil the applicability of this Boundary Reduction. In branch
(Ass′→B, Bss′→B), we do not account for any gain on the side of t . Thus we arrive at
branching vector [1, 2, 1 + σ ; 1, 1, p], which is [1, 2, 3; 1, 1, 1] or better, and hence
good.

If t is an antenna with natural side B◦, then in branch (Ass′→A, Bss′→A) we do not
account for any gain on the side of t . However, in branch (Ass′→B, Bss′→B) we have
that �(Ass′→B) ≥ 1 and one Boundary Reduction is triggered on edges incident to
t ′. Since t ′ �= s′, again it is easy to see that the execution of the p previous Boundary
Reductions on the side of s could not spoil the applicability of thisBoundaryReduction.
Thus we arrive at branching vector [1, 2, σ ; 1, 1, 1 + p], which is [1, 2, 2; 1, 1, 2] or
better, and hence good.

Finally, suppose t is of type (1, 1). Then byLemma5.2we infer that�(Bss′→A) ≥ 1
and �(Ass′→B) ≥ 1. Hence we have a branching vector [1, 2, σ ; 1, 2, p] or better,
which is good because σ ≥ 2 and p ≥ 1.

Subcase (c.ii) As\A◦ = {s}. We again investigate the branch on {s, t} with fixing ss′;
for nowwe do not state that we indeed perform it, because its execution will take place
only if the progresswill be large enough. Let (Ass′→A, Bss′→A) and (Ass′→B, Bss′→B)

be the respective branches, i.e.,minimum-costmaximal terminal separations extending
(A◦ ∪{s, s′}, B◦ ∪{t}) and (A◦ ∪{t}, B◦ ∪{s, s′}), respectively. Of course, if in any of
these branches an additional terminal pair gets resolved, then we already have a good
branching vector, so assume henceforth that this is not the case. Since As = A◦ ∪ {s},
by Assumption 2 we infer that �(Ass′→A) > �(As) = 1, because in Ass′→A at
least one more vertex (namely s′) is assigned to the A-side. As before, in branch
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Fig. 9 Case (1,1)(c.ii): Ã =
A◦, �(B̃) = 1, As ∩ Bs = {s}
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(Ass′→A, Bss′→A) we have that σ ≥ 1 Boundary Reductions are triggered inside Bs .
In branch (Ass′→B, Bss′→B), by Lemma 5.2 we have that �(Bss′→B) ≥ 1, and we do
not account for any Boundary Reductions (Fig. 9).

Let us now investigate what happens in respective branches on the side of terminal
t , depending on the type of t . Suppose first that t is of type (1, 1). Then, by Lemma 5.2
it follows that �(Bss′→A) ≥ 1 and �(Ass′→B) ≥ 1, and hence together with the
account of the progress on the side of s, we obtain a branching vector [1, 3, σ ; 1, 2, 0]
or better, which is good because σ ≥ 1.

We are left with the case when t is an antenna, where it can be easily verified that
the reasoning as above does not lead to a good branching vector without any deeper
analysis. We distinguish two subsubcases, depending on the natural side of t .

Subsubcase (c.ii.A) the natural side of t is A◦. Let t ′ be the unique neighbor of t .
Since t is an antenna, there are x edges from t ′ to A◦ and x edges from t ′ to V (G),
for some x ≥ 1.

We now introduce a new type of a branching step that we shall call skewed
branching. Namely, we will branch into separations (Ant, Bnt) and (Aunt, Bunt)

that are minimum-cost terminal separations extending (A◦ ∪ {t}, B◦ ∪ {s}) and
(A◦ ∪ {s, s′}, B◦ ∪ {t, t ′}), respectively. It is easy to see that this branching step is
correct, because there is always an optimum integral separation (A∗, B∗) extending
(A◦, B◦) where (1) s ∈ B∗ and t ∈ A∗, or (2) {s, s′} ∈ A∗ and {t, t ′} ∈ B∗. Namely,
if neither the first nor the second property is satisfied, then swapping the sides of s
and t does not increase the cost of the separation (because the second property is not
satisfied), but it makes the first property satisfied.

The reader should think of the skewed branching in the following way. For terminal
t , the side A◦ is the natural side to be assigned to, whereas for s it is B◦ that is more
natural. More precisely, in the branch where we have such assignment, we are not
able to reason about any Boundary Reductions being triggered. We do, however, hope
for a large decrease in the potential in the opposite branch, where both terminals are
assigned to their unnatural sides. Therefore, in this unnatural branch we fix both edges
ss′ and t t ′ to maximize the progress measured in the potential function, while in the
natural branch we do not fix anything, because this would not lead to any profit in the
analysis.

Let us now calculate the branching vector that we obtain when we perform the
described skewed branching; of course we assume that no other terminal pair gets
resolved in either of the branches, because then we immediately obtain a good
branching vector. In branch (Ant, Bnt), by Lemma 5.2 we have that �(Ant) ≥ 0
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and �(Bnt) ≥ 1, and we do not account for any applications of the Boundary Reduc-
tion. In branch (Aunt, Bunt), however, we have�(Aunt) ≥ 2 by Assumption 2, because
As = A◦ ∪ {s}, and �(Bunt) ≥ 2, by the definition of an antenna and the fact that
B◦ is the unnatural side of t . Moreover, in this branch x ≥ 1 Boundary Reductions
are applicable to the edges between t ′ and A◦ and σ ≥ 1 Boundary Reductions are
applicable within Bs . Since t ′ /∈ Bs , these applications do not interfere with each other.
Thus, we arrive at a branching vector [1, 1, 0; 1, 4, x + σ ], or better. This branching
vector is good unless x = σ = 1. Also, even if x = σ = 1 but �(Bunt) ≥ 3, then this
leads to branching vector [1, 1, 0; 1, 5, 2] or better, which is good. Thus, we can state
the following branching step.

Branching step 13 Unless x = σ = 1 and �(Bunt) = 2, pursue skewed branching
into separations (Ant, Bnt) and (Aunt, Bunt).

Henceforth we assume that x = σ = 1 and �(Bunt) = 2. Therefore, the degree
of t ′ in G is equal to 3, and it is adjacent to t , one vertex in A◦, and one vertex in
V (G)\(A◦ ∪ B◦) that shall be whence called v.

Consider now the branch (Aunt, Bunt), and suppose there is some optimum terminal
separation (A∗, B∗) extending (A◦, B◦) that conforms to this branch, i.e., it also
extends (Aunt, Bunt). Suppose that v ∈ A∗. Then this is clearly a contradiction with
the optimality of (A∗, B∗), because t ′ has 2 neighbors in A∗ and 1 in B∗, so moving
it from B∗ to A∗ would decrease the cost of the separation. Hence we can assign
v greedily to the B-side. More precisely, instead of (Aunt, Bunt) we will from now
on consider terminal separation (Aext

unt, B
ext
unt) defined as the minimum-cost terminal

separation extending (A◦ ∪ {s, s′}, B◦ ∪ {t, t ′, v}). In case s′ = v, the reasoning above
shows that the branch where {s, s′} is assigned to the A-side and {t, t ′} is assigned to
the B-side cannot lead to an optimum solution, so we can greedily pursue the branch
where s and t are assigned to respective natural sides.

Reduction step 14 If v = s′, then recurse into terminal separation (At , Bs).

Hence, from now on we assume that v �= s′ and we branch into (Ant, Bnt) and
(Aext

unt, B
ext
unt), where the latter is defined as above. As usual, we assume that (Aext

unt, B
ext
unt)

does not resolve any new terminal pair, because then we would have a good branch-
ing vector. The same reasoning as for (Aunt, Bunt) shows that �(Aext

unt) ≥ 2 and
�(Bext

unt) ≥ 2. As before, if we had that �(Bext
unt) ≥ 3, then branching into (Ant, Bnt)

and (Aext
unt, B

ext
unt) would lead to a branching vector [1, 1, 0; 1, 5, 2] or better. Hence,

we can again assume that �(Bext
unt) = 2.

Therefore, a straightforward edge count shows that Bq = Bext
unt\{t, t ′} is a terminal-

free B◦-extension of excess 2. Hence, we can apply Lemma 4.7 to decompose it. By
the inapplicability of the Excess-2 Reduction, we have that Bq\B◦ has a decomposi-
tion of the form {c1, c2} or {d, c1, . . . , cr } (from now on we drop the earlier notation
for the decomposition of Bs\(B◦ ∪ {s}), and use the notation d, c1, . . . , cr for the
decomposition of Bq\B◦). Suppose first that v = ci for some i . Then this is a con-
tradiction with the optimality of (Aext

unt, B
ext
unt), because then {t, t ′, ci } would be a set of

excess 1, so replacing Bext
unt with it would decrease the cost of separation (Aext

unt, B
ext
unt).

Therefore, Bq has a decomposition of the form {d, c1, . . . , cr } where v = d.
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Fig. 10 Case (1,1)(c.ii.A),
where furthermore x = σ = 1
and �(Bunt) = 2. The set
Bq = Bext

unt\{t, t ′} of excess 2 is
highlighted in red (Color figure
online)

A◦
s

s t

t
v

c1 c2 c3

By Lemma 4.7, we have that |E(v, ci )| = pi , |E(ci , B◦)| = pi + xi and
|E(ci , V (G)\Bq)| = xi + 1, for some integers pi ≥ 1 and xi ≥ 0. Let σ2 =
|E(v, B◦)| + ∑r

i=1 pi be the number of Boundary Reductions triggered within Bq

when the vertex v is assigned to the A-side. By Lemma 4.10, σ2 ≥ 1.
Before we proceed, we need to resolve a corner case when s′ ∈ Bq . We claim that

then it is safe to greedily assign t to the A-side and s to the B-side.

Reduction step 15 If s′ ∈ Bq , then recurse with terminal separation (At , Bs).

To argue the correctness of this reduction step, we need to prove that there exists
an optimum terminal separation extending (A◦, B◦) where s is assigned to the B-side
and t is assigned to the A-side. Let us take any optimum terminal separation (A∗, B∗)
that satisfies point 1 of Lemma 4.5. Assume s ∈ A∗ and t ∈ B∗, as otherwise we are
done. We can further assume that s′ ∈ A∗ and t ′ ∈ B∗, because otherwise switching
the sides of s and t would not increase the cost of the separation, however it would
make it satisfy the condition we seek. Suppose first that s′ = v; then we have an
immediate contradiction, because moving t ′ from A∗ to B∗ would decrease the cost.
Suppose then that s′ = ci for some i = {1, 2, . . . , r}. Since (A∗, B∗) satisfies point 1
of Lemma 4.5, we infer that B∗ ∩ Bq = B◦ or B∗ ∩ Bq = B◦ ∪{c j } for some j �= i . In
particular, v ∈ A∗. This is, however, a contradiction, because moving t ′ from B∗ to A∗
would decrease the cost of the separation. This justifies the correctness of Reduction
Step 15.

Whence we assume that s′ /∈ Bq (Fig. 10).
We will now branch on vertex v. More precisely, we recurse into branches

(Av→A, Bv→A) and (Av→B, Bv→B), defined as minimum-cost terminal separations
extending (A◦ ∪ {v}, B◦) and (A◦, B◦ ∪ {v}), respectively.
Branching step 16 Pursue branching on v, that is, recurse into branches (Av→A,

Bv→A) and (Av→B, Bv→B).

The remainder of the description of this subcase is devoted to proving that the
execution of this branching step leads to a good branching vector.

Consider first branch (Av→A, Bv→A). By the optimality of (Av→A, Bv→A)we infer
that t ′ ∈ Av→A, because otherwise assigning it to Av→A, or moving from Bv→A to
Av→A, would decrease the cost of the separation. Also, we can assume that t ∈ Av→A

and s ∈ Bv→A for the following reason. If this terminal pair was not resolved in
(Av→A, Bv→A), then assigning t to the A-side and s to the B-side would not increase
the cost of the separation while extending (Av→A, Bv→A), a contradiction with the
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maximality of (Av→A, Bv→A). However, if t ∈ Bv→A and s ∈ Av→A, then we can
modify separation (Av→A, Bv→A) by switching the sides of s and t , and because
t ′ ∈ Av→A, then this modification does not increase the cost.

Hence, in branch (Av→A, Bv→A) the terminal pair {s, t} gets resolved. Since
{v, t, t ′} ⊆ Av→A and {s} ⊆ Bv→A, by Lemma 5.2 and the definition of an antenna
we obtain that �(Av→A) ≥ 1 and �(Bv→A) ≥ 1. Notice also that at least σ2 ≥ 1
Boundary Reductions are triggered within Bq .

Consider the second branch (Av→B, Bv→B). In it, one Boundary Reduction is
triggered on the edges incident to t ′, and the terminal pair {s, t} is either resolved by
this branch or is immediately removed by the Lonely Terminal Reduction (possibly
preceded by the Pendant Reduction that removes t ′). Hence, {s, t} also gets resolved
in this branch.

From now on, we assume that neither of the considered branches resolves any
terminal pair other than {s, t}, because then, as argued at the beginning of this section,
wewould immediately achieve a good branching vector.With this assumption inmind,
we now claim that �(Bv→B) ≥ 2.

Claim 5.10 �(Bv→B) ≥ 2.

Proof If Bv→B is a terminal-free extension of B◦, then this follows from Lemma 4.9.
We have two cases left to investigate: either t ∈ Bv→B or s ∈ Bv→B .

In the first case, since v ∈ Bv→B by the optimality of (Av→B, Bv→B) it follows
that also t ′ ∈ Bv→B . But then if Bv→B was an extension of excess at most 1, then
Bv→B\{t, t ′} would be a terminal-free extension of excess at most 1, a contradiction
with Lemma 4.9.

In the second case, assume for the sake of contradiction that �(Bv→B) = 1 (it
cannot happen that �(Bv→B) = 0, because then (A◦ ∪ {t, t ′}, Bv→B) would be
an extension of (A◦, B◦) of the same cost, a contradiction with the maximality of
(A◦, B◦)). Then Bv→B\{s} is a terminal-free set of excess 2. Since v ∈ Bv→B , by the
optimality of (Av→B, Bv→B) we obtain that ci ∈ Bv→B for each i ∈ {1, 2, . . . , r}, so
Bq ⊆ Bv→B\{s}.

On the other hand, s′ ∈ Bv→B because G[Bv→B\B◦] is connected by the same
reasoning as in Lemma 5.1. But we are currently working with the assumption that
s′ /∈ Bq , so Bq is a strict subset of Bv→B\{s}.

Thus, we obtain a contradictionwith Lemma 4.8. Indeed, from this lemma it follows
that Bq consists of two vertices that are adjacent to B◦ and each of them forms an
excess-1 extension of B◦, but we know that v ∈ Bq is the vertex d of the decomposition
of Bq and by Lemma 4.7, �(B◦ ∪ {v}) > 1. �


We conclude that the considered branching leads to branching vector [1, 2, σ2;
1, 2, 1], or better. This vector is good unless σ2 = 1. Also, if in fact �(Av→A) ≥ 3,
then we also arrive at a good branching vector [1, 3, 1; 1, 2, 1], or better. Hence, from
now on assume that σ2 = 1 and �(Av→A) = 2.

If �(Av→A) = 2, then Av→A\{t, t ′} is a terminal-free extension of A◦ of excess
2. Let us apply Lemma 4.7 to it. Regardless of the form of the decomposition,
from Lemma 4.10 we infer that in the branch (Av→B, Bv→B) at least one Boundary
Reduction will be triggered within Av→A\{t, t ′}. This Boundary Reduction is applied

123



960 Algorithmica (2019) 81:917–966

independently of the Boundary Reduction triggered on edges incident to t ′ that we
previously counted in branch (Av→B, Bv→B). This gives one additional Boundary
Reduction that we did not account for previously, which leads to a good branching
vector [1, 2, 1; 1, 2, 2], or better.
Subsubcase (c.ii.B) the natural side of t is B◦. Recall that we investigated the branch
(Ass′→A, Bss′→A) and (Ass′→B, Bss′→B), and we concluded that �(Ass′→A) ≥ 2,
�(Bss′→B) ≥ 1, and σ ≥ 1 Boundary Reductions are triggered inside Bs in branch
(Ass′→A, Bss′→A). From the definition of an antenna we have that �(Ass′→B) ≥
1 and one Boundary Reduction is triggered on edges incident to t ′ in branch
(Ass′→B, Bss′→B), when t is assigned to the A-side. This gives us branching vector
[1, 2, σ ; 1, 2, 1] or better, which is good unless σ = 1. Also, note that this branching is
good if s′ is adjacent to a second terminal different than s: due to inapplicability of the
Common Neighbor Reduction, this terminal would belong to a second terminal pair
that would get resolved in the branching. This justifies the execution of the following
branching step.

Branching step 17 If σ > 1 or s′ is adjacent to a second terminal different than s,
then recurse into branches (Ass′→A, Bss′→A) and (Ass′→B, Bss′→B).

Recall that from Lemma 5.6 we obtained a decomposition {d, c1, c2, . . . , cr } of
(Bs\{s}) \ B◦, where d = s′ is the unique neighbor of s. By Lemma 4.10, if σ = 1
then we have two cases:

• either r = 0 and s′ has degree 4: one edge to B◦, one edge to s, and two edges to
V (G)\(B◦ ∪ {s});

• or r = 1 and s′ has degree 3: one edge to c1, one edge to s, and one edge to
V (G)\(B◦ ∪ {s, c1}). Moreover, c1 is incident exactly on the following edges: 1
edge to s′, x edges to B◦ and x edges to V (G)\B◦ ∪ ({s, s′}), for some x ≥ 1.

Let y = |E(t ′, B◦)|; then y ≥ 1. We now investigate the cases separately.

Subsubsubcase (c.ii.B.1) r = 0. We first investigate the possibility of branch-
ing on {s, t} with fixing t t ′. That is, we examine branches (Att ′→B, Btt ′→B) and
(Att ′→A, Btt ′→A) that areminimum-costmaximal extensions of (A◦∪{s}, B◦∪{t, t ′})
and (A◦ ∪ {t, t ′}, B◦ ∪ {s}), respectively. Of course if any of these branches resolves
some terminal pair other than {s, t}, then we obtain a good branching vector. Hence,
assume this is not the case.

Consider the first branch (Att ′→B, Btt ′→B). By Lemma 5.2 we have that
�(Att ′→B) ≥ 1. Also, one Boundary Reduction is triggered on edges incident to
s′.

Consider the second branch (Att ′→A, Btt ′→A). By the definition of an antenna, we
have that �(Att ′→A) ≥ 2 and by Lemma 5.2 we have that �(Btt ′→A) ≥ 1. Also, y
Boundary Reductions are triggered on edges between t ′ and B◦ in this branch.

This leads to a branching vector [1, 1, 1; 1, 3, y] or better, which is good unless
y = 1. This justifies executing the following step (Fig. 11).

Branching step 18 If y > 1, then recurse into branches (Att ′→B, Btt ′→B) and
(Att ′→A, Btt ′→A) (Fig. 12).

123



Algorithmica (2019) 81:917–966 961

Fig. 11 Case (1,1)(c.ii.B.1),
where furthermore s′ is a
neighbor of t ′

A◦
s

w = s

t

t

Fig. 12 Case (1,1)(c.ii.B.1),
where furthermore w �= s′ and
�(Aextt t ′→A) = 2. The set

Aq = Aextt t ′→A\{t, t ′} of excess
2 is highlighted in blue (Color
figure online)

B◦

s
s t t

w

c1 c2 c3

From now on we assume that y = 1, and, consequently, we have that t ′ has degree
3: it neighbors t , one vertex in B◦, and one vertex w outside B◦ ∪ {t}.

We now resolve the corner case when w = s′. Then t ′ is adjacent to t , s′ and one
vertex in B◦, whereas s′ is adjacent to s, t ′, one vertex in B◦, and one vertex outside
B◦ ∪ {s, s′, t, t ′}. We claim that we can assign greedily s to the A-side and t to the
B-side. To argue this, take any minimum-cost integral terminal separation (A∗, B∗)
extending (A◦, B◦), and assume that s ∈ B∗ and t ∈ A∗. We can further assume that
s′ ∈ B∗ and t ′ ∈ A∗, because otherwise switching the sides of s and t produces an
integral terminal separation of no larger cost where s and t are on the sides we aimed
for. But then t ′ has two neighbors in B∗ and one in A∗, which is a contradiction with
the optimality of (A∗, B∗) —moving t ′ from A∗ to B∗ would decrease the cost. This
justifies the correctness of the following step.

Reduction step 19 If w = s′, then recurse into branch (As, Bt ).

From now on, we assume that w �= s′.
Suppose now that |E(w, A◦)| > 0. Then in branch (Att ′→B, Btt ′→B) one additional

Boundary Reduction is triggered on edges incident tow. Sincew �= s′, the application
of this Boundary Reduction cannot spoil the applicability of the Boundary Reduction
on edges incident to s′ that we counted in the same branch. This results in branching
vector [1, 1, 2; 1, 3, 1] or better, which is good, so we can do the following.

Branching step 20 If |E(w, A◦)| > 0, then recurse into branches (Att ′→B, Btt ′→B)

and (Att ′→A, Btt ′→A).

Henceforth we assume that E(w, A◦) = ∅.
As inCase (c.ii.A),we argue that in branch (Att ′→A, Btt ′→A)wecan greedily assign

w to the A-side. More precisely, instead of (Att ′→A, Btt ′→A) we will from now on
consider terminal separation (Aext

t t ′→A, Bext
t t ′→A) defined as the minimum-cost terminal

separation extending (A◦ ∪{t, t ′, w}, B◦ ∪{s}). The argumentation for the correctness
of this step is as before: Suppose there is some optimum terminal separation (A∗, B∗)
extending (A◦, B◦) that conforms to this branch, i.e., it also extends (Att ′→A, Btt ′→A).
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Suppose that w ∈ B∗. Then this is clearly a contradiction with the optimality of
(A∗, B∗), because t ′ has 2 neighbors in B∗ and 1 in A∗, so moving it from A∗ to B∗
would decrease the cost of the separation.

As usual, (Aext
t t ′→A, Bext

t t ′→A) resolving an additional terminal pair would immedi-
ately lead to a good branching vector when branching into (Att ′→B, Btt ′→B) and
(Aext

t t ′→A, Bext
t t ′→A), so assume this is not the case.

In branch (Aext
t t ′→A, Bext

t t ′→A), by the definition of an antenna, we have that
�(Aext

t t ′→A) ≥ 2 and by Lemma 5.2 we have that �(Bext
t t ′→A) ≥ 1. Also, a Bound-

ary Reduction is triggered on the edge between t ′ and B◦ in this branch. Observe
that if we in fact had that �(Aext

t t ′→A) ≥ 3, then branching into (Att ′→B, Btt ′→B) and
(Aext

t t ′→A, Bext
t t ′→A) results in branching vector [1, 1, 1; 1, 4, 1] or better, which is good.

This justifies the execution of the following.

Branching step 21 If �(Aext
t t ′→A) ≥ 3, then recurse into branches (Att ′→B, Btt ′→B)

and (Aext
t t ′→A, Bext

t t ′→A).

Fromnowonwe assume that�(Aext
t t ′→A) = 2. Thismeans that Aq = Aext

t t ′→A\{t, t ′}
is a terminal-free extension of A◦ of excess 2, and moreover w ∈ Aq . Hence, we
can apply Lemma 4.7 to Aq and obtain a decomposition of the form {c1, c2, } or
{d, c1, . . . , cr } (we now drop the notation for the decomposition of Bs , and use it for
the decomposition of Aq instead). By Lemma 4.7, each ci is connected with A◦ via
at least one edge, but we assumed that there is no edge between w and A◦. Hence the
decomposition has the form {d, c1, . . . , cr } and d = w. By Lemma 4.10, at least one
Boundary Reduction is triggered within Aq in any branch where w is assigned to B.

We will pursue branching on vertex w. More precisely, we consider recursing into
branches (Aw→A, Bw→A) and (Aw→B, Bw→B), defined as minimum-cost terminal
separations extending (A◦ ∪ {w}, B◦) and (A◦, B◦ ∪ {w}), respectively.
Branching step 22 Pursue branching on w, that is, recurse into branches (Aw→A,

Bw→A) and (Aw→B, Bw→B).

The remainder of this case is devoted to arguing that this branching step leads to a
good branching vector.

Consider branch (Aw→A, Bw→A). Then a Boundary Reduction is triggered on
edges incident to t ′, and consequently the pair {s, t} either gets resolved in this branch,
or is removed by an application of the Lonely Terminal Reduction (possibly preceded
by the Pendant Reduction that removes t ′). Hence, at least the terminal pair {s, t} gets
resolved or removed in this branch.

In branch (Aw→B, Bw→B) we have that t ′ ∈ Bw→B due to the optimality of
(Aw→B, Bw→B). Moreover, we can assume that t ∈ Bw→B and s ∈ Aw→B for
the following reason. If this terminal pair was not resolved in (Aw→B, Bw→B), then
assigning t to the B-side and s to the A-side would not increase the cost of the
separation while extending (Aw→B, Bw→B), a contradiction with the maximality of
(Aw→B, Bw→B). However, if t ∈ Aw→B and s ∈ Bw→B , then we can modify sep-
aration (Aw→B, Bw→B) by switching the sides of s and t , and because t ′ ∈ Bw→B ,
then this modification does not increase the cost.

Hence, in both branches, the terminal pair {s, t} gets eventually removed. Suppose
then that neither (Aw→A, Bw→A) nor (Aw→B, Bw→B) resolves another terminal pair,
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because otherwise we would immediately have a good branching vector. We continue
the calculation of the obtained branching vector with this assumption. First, we need
an analogue of Claim 5.10, whose proof is very similar.

Claim 5.11 �(Aw→A) ≥ 2.

Proof If Aw→A is a terminal-free extension of A◦, then this follows from Lemma 4.9.
We have two cases left to investigate: either t ∈ Aw→A or s ∈ Aw→A.

In the first case, since w ∈ Aw→A by the optimality of (Aw→A, Bw→A) it follows
that also t ′ ∈ Aw→A. But then if Aw→A was an extension of excess at most 1, then
Aw→A\{t, t ′} would be a terminal-free extension of excess at most 1, a contradiction
with Lemma 4.9.

In the second case, assume for the sake of contradiction that �(Aw→A) = 1 (it
cannot happen that �(Aw→A) = 0, because then (Aw→A, B◦ ∪ {t, t ′}, ) would be
an extension of (A◦, B◦) of the same cost, a contradiction with the maximality of
(A◦, B◦)). Then Aw→A\{s} is a terminal-free set of excess 2 that contains w. Since
w ∈ Aw→A, by the optimality of (Aw→A, Bw→A)we obtain that ci ∈ Aw→A for each
i ∈ {1, 2, . . . , r}, so Aq ⊆ Aw→A\{s}.

On the other hand, s′ ∈ Aw→A because G[Aw→A\A◦] is connected by the same
reasoning as in the proof of Lemma 5.1. However, observe that s′ /∈ Aq . Indeed,
we are working with the assumption that s′ �= w, and moreover s′ �= ci for each
i = 1, 2, . . . , r because otherwise the Boundary Reduction would apply to s′. Hence
Aq is a strict subset of Aw→A\{s}.

Thus, we obtain a contradictionwith Lemma 4.8. Indeed, from this lemma it follows
that Aq consists of two vertices that are adjacent to A◦, but we know that w ∈ Aq and
E(w, A◦) = ∅. �


Observe that in branch (Aw→A, Bw→A) we also have one Boundary Reduction
triggered on the edges incident to t ′.

On the other hand, in branch (Aw→B, Bw→B) we have �(Aw→B) ≥ 1 by
Lemma 5.2 because s ∈ Aw→B . Also, �(Bw→B) ≥ 1 by the definition of an antenna
and the fact that {w, t, t ′} ⊆ Bw→B . Finally, one Boundary Reduction is triggered on
edges incident to s′ and one Boundary Reduction is triggered within Aq . Since s′ �= w,
the application of one of these reductions cannot spoil the applicability of the other.

Thus we obtain branching vector [1, 2, 1; 1, 2, 2] or better, which is a good branch-
ing vector.

Subsubsubcase (c.ii.B.2) r = 1. Recall that s′ has degree 3 and has one edge to c1,
one edge to s, and one edge to V (G)\(B◦ ∪ {s, c1}), whereas c1 has x edges to B◦
and x edges to V (G)\(B◦ ∪ {s, c1}), for some x ≥ 1. Let v be the neighbor of s′ other
than c1 and s.

First, note that v is not a terminal, as we have already excluded the case when s′ is
adjacent to a second terminal different than s.

We claim that there is an optimum integral terminal separation (A∗, B∗) extending
(A◦, B◦) where vertices s′ and v are assigned to the same side. Take any optimum
integral separation (A∗, B∗) and suppose that s′ and v are assigned to different sides.

Assume first that s′ ∈ A∗ and v ∈ B∗. Then s ∈ A∗ and c1 ∈ A∗ because otherwise
moving s′ from A∗ to B∗ would decrease the cost of the separation. Hence t ∈ B∗,
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and again by the optimality of (A∗, B∗)we have t ′ ∈ B∗. Consider a modified integral
terminal separation (A∗

m, B∗
m) obtained from (A∗, B∗) by moving {c1, s′} from the

A-side to the B-side. Recall that c1 has x edges to B◦ and x edges going outside of
B◦ ∪ {c1, s′}. Then it is easy to see that the cost of (A∗

m, B∗
m) is not larger than the cost

of (A∗, B∗), whereas s′ and v are both assigned to the B-side.
Assume second that s′ ∈ B∗ and v ∈ A∗. Similarly as before, by the optimality

of (A∗, B∗) we have that s ∈ B∗ and c1 ∈ B∗. Consequently, t ∈ A∗. If we had that
t ′ ∈ B∗, thenmoving t from A∗ to B∗ and {s, s′} from B∗ to A∗ would strictly decrease
the cost of the separation, a contradiction with the optimality of (A∗, B∗). Hence we
have that t ′ ∈ A∗. Consider a modified integral terminal separation (A∗

m, B∗
m) obtained

from (A∗, B∗) bymoving {s, s′} from the B-side to the A-side, andmoving {t, t ′} from
the A-side to the B-side. Recall that t ′ has y edges going to B◦ and y edges going
outside of B◦ ∪ {t, t ′}. Hence it is easy to see that the cost of (A∗

m, B∗
m) is not larger

than the cost of (A∗, B∗), whereas s′ and v are both assigned to the A-side.
This justifies the execution of the following reduction in this case.

Reduction step 23 Merge s′ and v.

As the case study is exhaustive, this finishes the description of the branching algo-
rithm. We hope that the reader shares the joy of the writer after getting to this line.

6 Conclusions

In this work we have developed an algorithm for Edge Bipartization that has
running time O(1.977k · nm), which is the first one to achieve a dependence on the
parameter better than 2k . Our result shows that in the case of Edge Bipartization the
constant 2 in the base of the exponent is not the ultimate answer, as is conjectured for
CNF- SAT. Also, it improves some recent works where the FPT algorithm for Edge
Bipartization is used as a black-box [20]. However, our work leaves a number of
open questions that we would like to highlight.

• Reducing the dependence on the parameter from 2k to 1.977k can be only con-
sidered a “proof of concept” that such an improvement is possible. Even though
we believe that it is an important step in understanding the optimal parameterized
complexity of graph separation problems,we put forward the question of designing
a reasonably simple algorithm with the running time dependence on the parameter
substantially better than 2k . Last but not least, it is also interesting whether the
dependence of the running time on the input size can be improved fromO(nm) to
linear.

• There is a simple reduction that reduces back Terminal Separation to Edge

Bipartizationwithout changing the size of the cutset.4 Given a Terminal Sep-

aration instance: (G, T , (A◦, B◦), k):
1. subdivide once every edge of G;
2. add a new terminal pair (a0, b0), connect a0 to every vertex of A◦ with k + 1

parallel edges, and connect b0 to every vertex of B◦ with k + 1 parallel edges;

4 We thank an anonymous reviewer for suggesting this reduction.
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3. for every terminal pair (s, t), including (a0, b0), connect s and t with k + 1
parallel edges.

Recall that our approach can be summarized as follows: having observed that Ter-
minal Separation admits a simple O	(2|T |)-time algorithm and an O	(4k)-time
algorithm using the CSP-guided technique of Wahlström [30], we develop an algo-
rithm for a joint parameterization (|T |, k) that for |T | = k + 1 achieves running time
O	(1.977k). The aforementioned reduction yields an O	(1.977k)-time algorithm for
Terminal Separation. The remaining question is: can Terminal Separation

be solved in time O	(c|T |) for some c < 2? Maybe one can prove matching lower
bounds under the StrongExponential TimeHypothesis (SETH), or under the Set Cover
Conjecture (SeCoCo) [3]?

• Finally, we would like to reiterate two related open questions.
– The currently fastest algorithm for OCT runs in time O	(2.3146k) [25]. It is
reasonable to expect that this base of the exponent is an artifact of the technique.
Is it possible to design an algorithm with running time simply O	(2k)?

– In their work, Cygan et al. [9] presented an algorithm for Node Multiway

Cut with running time O	(2k), based on the idea of LP-guided branching. Is
it possible to obtain an algorithm with running time O	(ck) for some c < 2?
As shown by Cao et al. [1], this is indeed the case for the edge deletion variant.
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