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Abstract Given two graphs G and H , we define v-coverH (G) (resp. e-coverH (G))
as the minimum number of vertices (resp. edges) whose removal from G produces a
graph without any minor isomorphic to H . Also v-packH (G) (resp. e-packH (G)) is
the maximum number of vertex- (resp. edge-) disjoint subgraphs of G that contain a
minor isomorphic to H . We denote by θr the graph with two vertices and r parallel
edges between them. When H = θr , the parameters v-coverH , e-coverH , v-packH ,
and e-packH areNP-hard to compute (for sufficiently big values of r ). Drawing upon
combinatorial results in Chatzidimitriou et al. (Minors in graphs of large θr -girth,
2015, arXiv:1510.03041), we give an algorithmic proof that if v-packθr

(G) ≤ k,
then v-coverθr (G) = O(k log k), and similarly for e-packθr

and e-coverθr . In other
words, the class of graphs containing θr as a minor has the vertex/edge Erdős–Pósa
property, for every positive integer r . Using the algorithmic machinery of our proofs
we introduce a unified approach for the design of an O(logOPT)-approximation algo-
rithm for v-packθr

, v-coverθr , e-packθr
, and e-coverθr that runs in O(n · log(n) ·m)

steps. Also, we derive several new Erdős–Pósa-type results from the techniques that
we introduce.
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1 Introduction

All graphs in this paper are undirected, do not have loops but theymay containmultiple
edges. We denote by θr the graph containing two vertices x and y connected by r
parallel edges between x and y. Given a graph class C and a graph G, we call C-
subgraph of G any subgraph of G that is isomorphic to some graph in C. All along
this paper, when giving the running time of an algorithm with input some graph G,
we agree that n = |V (G)| and m = |E(G)|.

Packings and Coverings Paul Erdős and Lajos Pósa, proved in 1965 [12] that there is a
function f : N → N such that for each positive integer k, every graph either contains k
vertex-disjoint cycles or it contains f (k) vertices that intersect every cycle inG. More-
over, they proved that the “gap” of thismin-max relation is f (k) = O(k ·log k) and that
this gap is optimal. This result initiated an interesting line of research on the duality
between coverings and packings of combinatorial objects. To formulate this duality,
given a class C of connected graphs, we define v-coverC(G) (resp. e-coverC(G)) as
the minimum cardinality of a set S of vertices (resp. edges) such that each C-subgraph
of G contains some element of S. Also, we define v-packC(G) (resp. e-packC(G))
as the maximum number of vertex- (resp. edge-) disjoint C-subgraphs of G.

We say that C has the vertex Erdős–Pósa property (resp. the edge Erdős–Pósa
property) if there is a function f : N → N, called gap function, such that, for every
graph G, v-coverC(G) ≤ f (v-packC(G)) (resp. e-coverC(G) ≤ f (e-packC(G))).
Using this terminology, the original result of Erdős and Pósa says that the set of
all cycles has the vertex Erdős–Pósa property with gap O(k · log k). The general
question in this branch of Graph Theory is to detect instantiations of C which have
the vertex/edge Erdős–Pósa property (in short, v/e-EP-property) and when this is the
case, minimize the gap function f . Several theorems of this type have been proved
concerning different instantiations of C such as odd cycles [24,30], long cycles [2],
and graphs containing cliques as minors [10] (see also [18,22,34] for results on more
general combinatorial structures and [32,33] for surveys).

A general class that is known to have the v-EP-property is the class CH of the graphs
that contain some fixed planar graph H as aminor.1 This fact was proven by Robertson
and Seymour in [35] and the best known general gap is f (k) = O(k · logO(1) k) due
to the results of [8]—see also [14,15,17] for better gaps for particular instantiations of
H . Moreover, the planarity of H appears to be the right dichotomy, as for non-planar
H ’s, CH does not satisfy the v-EP-property. Besides the near-optimality of the general
upper bound of [8], it is open whether the lower bound Ω(k · log k) can be matched
for the general gap function, while this is indeed the case when H = θr [14].

The question about classes that have the e-EP-property has also attracted some
attention (see [2]). According to [9, Exercise 23 of Chapter 7], the original proof
of Erdős and Pósa implies that cycles have the e-EP-property with gap O(k · log k).

1 A graph H is a minor of a graph G if it can be obtained from some subgraph of G by contracting edges.
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Moreover, as proved in [31], the class Cθr has thee-EP-propertywith the (non-optimal)
gap f (k) = O(k2 · logO(1) k). Interestingly, not much more is known on the graphs H
for which CH has the e-EP-property and is tempting to conjecture that the planarity
of H provides again the right dichotomy. Other graph classes that are known to have
the e-EP-property are rooted cycles [29] (here the cycles to be covered and packed are
required to intersect some particular set of terminals of G) and odd cycles for the case
where G is a 4-edge connected graph [23], a planar graph [26], or a graph embeddable
in an orientable surface [24].

Approximation Algorithms The above defined four graph parameters are already
quite general when C:=CH . From the algorithmic point of view, the computation
of x-packCH

(for x ∈ {v,e}) corresponds to the general family of graph pack-
ing problems, while the computation of x-coverCH belongs to the general family
of graph modification problems where the modification operation is the removal of
vertices/edges (depending onwhether x = v or x = e). Interestingly, particular instan-
tiations of H = θr generate known, well studied, NP-hard problems. For instance,
asking whether v-coverCθr

≤ k generates Vertex Cover for r = 1, Feedback
Vertex Set for r = 2, and Diamond Hitting Set for r = 3 [13,16]. Moreover,
asking whether x-packCθ2

(G) ≥ k corresponds to Vertex Cycle Packing [5,25]

and Edge Cycle Packing [6,27] when x = v and x = e, respectively. Finally,
asking whether |E(G)|−e-coverCθ3

(G) ≤ k corresponds to theMaximum Cactus

Subgraph.2 All parameters keep being NP-complete to compute because the afore-
mentioned base cases can be reduced to the general one by replacing each edge by
one of multiplicity r − 1.

From the approximation point of view, it was proven in [16] that, when H is a
planar graph, there is a randomized polynomial O(1)-approximation algorithm for
v-coverH . For the cases of v-coverCθr

and v-packCθr
, O(log n)-approximations are

known for every r ≥ 1 because of [21] (see also [36]). Moreover, v-coverCθr
admits a

deterministic 9-approximation [13]. Also, about e-packCθr
(G) it is known, from [28],

that there is a polynomial O(
√
log n)-approximation algorithm for the case where r =

2. Notice also that for r = 1, it is trivial to compute e-coverCθr
(G) in polynomial time.

However, to our knowledge, nothing is knownabout the computation ofe-coverCθr
(G)

for r ≥ 3.

Our Results In this paper we introduce a unified approach for the study of the com-
binatorial interconnections and the approximability of the parameters v-coverCθr

,
e-coverCθr

, v-packCθr
, and e-packCθr

. Our main combinatorial result is the follow-
ing.

Theorem 1 For every r ∈ N≥2 and every x ∈ {v,e} the graph class Cθr has the
x-EP-property with (optimal) gap function f (k) = O(k · log k).

2 TheMaximum Cactus Subgraph problem asks, given a graphG and an integer k, whetherG contains
a subgraph with k edges where no two cycles share an edge. It is easy to reduce to this problem theVertex
Cycle Packing problem on cubic graphs which, in turn, can be proved to be NP-complete using a simple
variant of the NP-completeness proof of Exact Cover by 2- Sets [19].
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Our proof is unified and treats simultaneously the covering and the packing param-
eters for both the vertex and the edge cases. This verifies the optimal combinatorial
bound for the case where x = v [14] and optimally improves the previous bound
in [31] for the case where x = e. Based on the proof of Theorem 1, we prove the
following algorithmic result.

Theorem 2 For every r ∈ N≥2 and everyx ∈ {v,e}, there is an algorithm that, given a
graph G, outputs an O(logOPT)-approximation of x-coverCθr

(G) and x-packCθr
(G)

in O(n · log(n) · m) steps when x = v and in O(m2 log n) steps when x = e.

Theorem 2 improves the results in [21] for the cases of v-coverCθr
and v-packCθr

and, to our knowledge, is the first approximation algorithm for e-coverCθr
and

e-packCθr
for r ≥ 3. We were also able to derive the following Erdős–Pósa-type

result with linear gap on graphs of bounded tree-partition width (the definition of this
width parameter is given in Sect. 2.2).

Theorem 3 Let t ∈ N. For every x ∈ {v,e}, the following holds: if H is a finite
collection of connected graphs and G is a graph of tree-partition width at most t , then
x-coverH(G) ≤ α · x-packH(G), where α is a constant which depends only on t
and H.

Let θr,r ′ (for some r, r ′ ∈ N≥1) denote the graph obtained by taking the disjoint
union of θr and θr ′ and identifying one vertex of θr with one of θr ′ . Another con-
sequence of our results is that, for every r, r ′ ∈ N≥1, the class Cθr,r ′ has the edge
Erdős–Pósa property.

Theorem 4 For every r, r ′ ∈ N, there is a function f r,r
′

1 : N≥1 → N≥1 such that for
every simple graph G where k = e-packCθr,r ′

(G), it holds that e-coverCθr,r ′
(G) ≤

f r,r
′

1 (k).

Our Techniques Our proofs are based on the notion of partitioned protrusion that,
roughly, is a tree-structured subgraph of G with small boundary to the rest of G (see
Sect. 2.2 for the precise definition). Partitioned protrusionswere essentially introduced
in [7] by the name edge-protrusions and can be seen as the edge-analogue of the notion
of protrusions introduced in [4] (see also [3]). Our approach makes strong use of the
main result of [7], that is equivalently stated as Proposition 1 in this paper. According
to this result, there exists a polynomial algorithm that, given a graphG and an integer k
as an input, outputs one of the following: (1) a collection of k edge/vertex disjoint Cθr -
subgraphs of G, (2) a Cθr -subgraph J with O(log k) edges, or (3) a large partitioned
protrusion of G.

Our approximation algorithm does the following for each k ≤ |V (G)|. If the first
case of the above combinatorial result applies on G, we can safely output a packing of
k Cθr -subgraphs in G. In the second case, we make some progress as we may remove
the vertices/edges of J from G and then set k:=k − 1. In order to deal with the third
case, we prove that in a graphG with a sufficiently large partitioned protrusion, we can
either find some Cθr -subgraph with O(log k) edges (which is the same as in the second
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case), or we can replace it by a smaller graph where both x-coverH and x-packH
remain invariant (Lemma 1). The proof that such a reduction is possible is given in
Sect. 3 and is based on a suitable dynamic programming encoding of partial packings
and coverings that is designed to work on partitioned protrusions.

Notice that the “essential step” in the above procedure is the second case that
reduces the packing number of the current graph by 1 to the price of reducing the
covering number by O(log k). This is the main argument that supports the claimed
O(logOPT)-approximation algorithm (Theorem 2) and the corresponding Erdős–
Pósa relations in Theorem 1. Finally, Theorem 3 is a combinatorial implication of
Lemma 1 and Theorem 4 follows by combining Theorem 3 with the results of Ding
and Oporowski in [11].

Organization of the Paper In Sect. 2 we provide all concepts and notation that we use
in our proofs. Section 3 contains the proof of Lemma 1, which is the main technical
part of the paper. The presentation and analysis of our approximation algorithm is
done in Sect. 4, where Theorem 1 and Theorem 2 are proven. Section 5 contains the
proofs of Theorem 3 and Theorem 4. Finally, we summarize our results and provide
several directions for further research in Sect. 6.

2 Preliminaries

2.1 Basic Definitions

Let t = (x1, . . . , xl) ∈ N
l and χ,ψ : N → N. We say that χ(n) = Ot(ψ(n)) if there

exists a computable function φ : Nl → N such that χ(n) = O(φ(t) ·ψ(n)). For every
i, j ∈ N, we denote by �i, j� the interval of {i, . . . , j}.

Graphs All graphs in this paper are undirected, loopless, and may have multiple
edges. For this reason, a graph G is represented by a pair (V, E) where V is its
vertex set, denoted by V (G) and E is its edge multi-set, denoted by E(G). The
edge-multiplicity of an edge of G is the number of times it appears in E(G). We set
n(G) = |V (G)| and m(G) = |E(G)|. If H is a finite collection of connected graphs,
we set n(H) = ∑

H∈H n(H), m(H) = ∑
H∈H m(H), and ∪∪∪∪∪∪∪∪∪H = ⋃

G∈H G. The
degree of a vertex is the number of vertices adjacent to it. We denote by δ(G) the
minimum degree of G.

Let x ∈ {v,e} where, in the rest of this paper, v will be interpreted as “vertex”
and e will be interpreted as “edge”. Given a graph G, we denote by Ax(G) the set of
vertices or edges of G depending on whether x = v or x = e, respectively.

Given a graph H and a graph J that are both subgraphs of the same graph G, we
define the subgraph H ∩G J of G as the graph (V (H) ∩ V (J ), E(H) ∩ E(J )).

Given a graph G and a set S ⊆ V (G), such that all vertices of S have degree 2
in G, we define diss(G, S) as the graph obtained from G after we dissolve in it all
vertices in S, i.e., replace each maximal path whose internal vertices are in S with an
edge whose endpoints are the endpoints of the path.
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A rooted tree is a pair (T, s) where T is a tree and s ∈ V (T ) is a distinguished
vertex called the root of T . If v ∈ V (T ), a vertex u ∈ V (T ) is a descendant of v in
(T, s) if v lies on the (unique) path from u to s. Note that v is a descendant of itself.
We denote by children(T,s)(v) the set of children of v, which are the vertices that are
both neighbors and descendants of v.

Given a graph G and an edge e = (u, v) ∈ E(G), the subdivision of e is defined
as the operation of removing e and adding a new vertex w and the edges (w, u) and
(w, v). A graph H is called a subdivision of G, if it can be obtained by performing a
series of subdivisions in G.

Minors and Topological Minors Given two graphs G and H , we say that H is aminor
of G if there exits some function φ : V (H) → 2V (G) such that

– for every v ∈ V (H), G[φ(v)] is connected;
– for every two distinct v, u ∈ V (H), φ(v) ∩ φ(u) = ∅; and
– for every edge e = {v, u} ∈ E(H) of multiplicity l, there are at least l edges in G
with one endpoint in φ(v) and the other in φ(u).

We say that H is a topological minor of G if there exits some collection P of paths in
G and an injection φ : V (H) → V (G) such that

– no path in P has an internal vertex that belongs to some other path in P;
– φ(V (H)) is the set of endpoints of the paths in P; and
– for every two distinct v, u ∈ V (H), {v, u} is an edge of H of multiplicity l if and
only if there are l paths in P between φ(v) and φ(u).

Given a graph H , we define by ex(H) the set of all topologically-minor minimal
graphs that contain H as a minor. Notice that the size of ex(H) is upper-bounded by
some function of m(H) and that H is a minor of G if it contains a member of ex(H)

as a topological minor. An H -minor model of G is any minimal subgraph of G that
contains a member of ex(H) as a topological minor.

Subdivisions The subdivision of an edge {u, v} of a graph is the operation that intro-
duces a new vertex w to the graph adjacent to u and v and deletes the edge. A graph G
is a subdivision of H if it can be obtained from H by repeteadly subdividing edges. If
G is a graph andH is a finite collection of connected graphs, anH-subdivision of G is
a subgraphM ofG that is a subdivision of a graph, denoted by M̂ , that is isomorphic to
a member ofH. Clearly, the vertices of M̂ are vertices ofG and its edges correspond to
paths in G between their endpoints such that internal vertices of a path do not appear
in any other path. We refer to the vertices of M̂ in G as the branch vertices of the
H-subdivision M , whereas internal vertices of the paths between branch vertices will
be called subdivision vertices of M . Note that we are here dealing with what is some-
times called a topological minor model. A graph which contains noH-subdivision is
said to beH-free. Notice that G has anH-subdivision iff G contains a graph ofH as
a topological minor.

Packings and Coverings An x-H-packing of size k of a graph G is a collection P of
k pairwise x-disjoint H-subdivisions of G. Given an x ∈ {v,e}, we define P≥k

x,H(G)
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as the set of all x-H-packings of G of size at least k. An x-H-covering of a graph G
is a set C ⊆ Ax(G) such that G\C does not contain any H-subdivision. We define
C≤k
x,H(G) as the set of all x-H-coverings of G of size at most k. We finally define

x-coverH(G) = min
{
k | C≤k

x,H(G) �= ∅
}

and

x−packH(G) = max
{
k | P≥k

x,H(G) �= ∅
}

.

These numbers are well-defined:G always has a packing of size 0 (the empty packing)
and a covering of size |Ax(G)| (which contains all vertices/edges of G). It is easy to
observe that, for every graph G and every finite collection of connected graphsH, the
following inequalities hold:

v−coverH(G) ≤ e−coverH(G), v−packH(G) ≤ e−packH(G),

v−packH(G) ≤ v−coverH(G), e−packH(G) ≤ e−coverH(G).

Notice that the definition of these invariants differs from that given in the introduction.

2.2 Boundaried Graphs

Informally, a boundaried graph will be used to represent a graph that has been obtained
by “dissecting” a larger graph along some of its edges, where the boundary vertices
correspond to edges that have been cut.

Boundaried Graphs A boundaried graph G = (G, B, λ) is a triple consisting of a
graph G, where B is a set of vertices of degree one (called boundary) and λ is a
bijection from B to a subset of N≥1. The edges with at least one endpoint in B are
called boundary edges. We define Es(G) as the subset of E(G) of boundary edges.
We stress that instead of N≥1 we could choose any other set of symbols to label the
vertices of B. We denote the set of labels of G by Λ(G) = λ(B). Given a finite
collection of connected graphsH, we say that a boundaried graphG isH-free if G\B
isH-free.

Two boundaried graphs G1 and G2 are compatible if Λ(G1) = Λ(G2). Let now
G1 = (G1, B1, λ1) and G2 = (G2, B2, λ2) be two compatible boundaried graphs.
We define the graph G1⊕G2 as the non-boundaried graph obtained by first taking
the disjoint union of G1 and G2, then, for every i ∈ Λ(G1), identifying λ−1

1 (i) with
λ−1
2 (i), and finally dissolving all resulting identified vertices. Suppose that e is an

edge of G = G1⊕G2 that was created after dissolving the vertex resulting from the
identification of a vertex v1 in B1 and a vertex v2 in B2 and that ei is the boundary
edge of Gi that has vi as endpoint, for i = 1, 2.
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Fig. 1 Gluing graphs together: G = G1 ⊕ G2

W

5

3 6

GS

5

3

6

GSc

Fig. 2 Cutting a graph: (GS ,GSc ) is an S-splitting of W , where S consists of all the white vertices

Figure 1 shows the result of the operation ⊕ on two graphs. Boundaries are drawn
in gray and their labels are written next to them. The graphsG1 andG2 on this picture
are compatible as Λ(G1) = Λ(G2) = {0, 1, 2, 3}.

For every t ∈ N≥1, we denote by Bt all boundaried graphs whose boundary is
labeled by numbers in �1, t�. Given a boundaried graph G = (G, B, λ) and a subset
S of V (G) such that all vertices in S have degree 2 in G, we define diss(G, S) as the
graph Ĝ = (Ĝ, B, λ) where Ĝ = diss(G, S).

Let W be a graph and S be a non-empty subset of V (W ). An S-splitting of W
is a pair (GS,GSc) consisting of two boundaried graphs GS = (GS, BS, λS) and
GSc = (GSc , BSc , λSc) that can be obtained as follows: First, let W+ be the graph
obtained by subdividing in W every edge with one endpoint in S and the other in
V (W )\S and let B be the set of created vertices. Let λ be any bijection from B to
a subset of N≥1. Then GS = W+[S ∪ B], GSc = W+\S, BS = BSc = B, and
λS = λSc = λ. Notice that there are infinite such pairs, depending on the numbers
that will be assigned to the boundaries of GS and GSc . Moreover, keep in mind that
all the boundary edges of GS are non-loop edges with exactly one endpoint in B and
the same holds for the boundary edges of GSc . An example of a splitting is given in
Fig. 2, where boundaries are depicted by gray vertices.
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We say that G′ = (G ′, B ′, λ′) is a boundaried subgraph of G = (G, B, λ) if G ′ is
a subgraph of G, B ′ ⊆ B ∩ V (G ′) and λ′ = λ|B′ . On the other hand, G is a subgraph
of a (non-boundaried) graph H if G = HS for some S-splitting (HS,HSc), where
S ⊆ V (H).

If H is a graph, G is a subgraph of H , and F = (F, B, λ) is a boundaried subgraph
of H , we define G ∩H F as follows. Let S = V (G) ∩ (V (F)\B) and let G+ be the
graph obtained by subdividing once every edge ofG that has one endpoint in S and the
other in V (G)\S. We call B ′ the set of created vertices and letG ′ = G+[S∪B ′]. Then
G ′ is a subgraph of F where B ′ ⊆ B. For every v ∈ B ′, we set λ′(v) = λ(v), which
is allowed according to the previous remark. Then G ∩H F = (G ′, B ′, λ′). Observe
that G ∩H F is part of an S-splitting of G (but not necessarily of H ).

Given two boundaried graphs G′ = (G ′, B ′, λ′) and G = (G, B, λ), we say that
they are isomorphic if there is an isomorphism fromG ′ toG that respects the labelings
of B and B ′, i.e., maps every vertex x ∈ B ′ to λ−1(λ′(x)) ∈ B. Given a boundaried
graph G = (G, B, λ), we denote n(G) = n(G) − |B| and m(G) = m(G).

Given a boundaried graph G = (G, B, λ) and an x ∈ {v,e}, we set Ax(G) =
V (G)\B or Ax(G) = E(G), depending on whether x = v or x = e.

Partial Structures LetH be a family of graphs. A boundaried subgraph J of a bound-
aried graph G is a partial H-subdivision if there is a boundaried graph H which is
compatible with G and a boundaried subgraph J′ of H which is compatible with J
such that J ⊕ J′ is an H-subdivision of G ⊕ H. Intuitively, this means that J can be
extended into an H-subdivision in some larger graph. In this case, the H-subdivision
J ⊕ J′ is said to be an extension of J.

Similarly, for every p ∈ N≥1, a collection of boundaried subgraphs J =
{J1, . . . , Jp} of a graph G is a partial x-H-packing if there is a boundaried graph
H which is compatible withG and a collection of boundaried subgraphs {J′

1, . . . , J
′
p}

of H such that {J1 ⊕ J′
1, . . . , Jp ⊕ J′

p} is an x-H-packing of G ⊕ H. The obtained
packing is said to be an extension of the partial packing J . A partial packing isH-free
if none of its members (the boundaried graphs {J1, . . . , Jp}) has an H-subdivision.
Observe that if the graphs in H are connected, then every partial subdivision of an
H-free partial x-H-packing in G must contain at least one boundary vertex of G.

Partitions and Protrusions A rooted tree-partition of a graph G is a triple D =
(X , T, s) where (T, s) is a rooted tree and X = {Xt }t∈V (T ) is a partition of V (G)

where either n(T ) = 1 or for every {x, y} ∈ E(G), there exists an edge {t, t ′} ∈ E(T )

such that {x, y} ⊆ Xt ∪ Xt ′ (see also [11,20,37]). Given an edge f = {t, t ′} ∈ E(T ),
we define E f as the set of edges of G with one endpoint in Xt and the other in Xt ′ .
Notice that all edges in E f are non-loop edges. The width of D is defined as

max{|Xt |t∈V (T )} ∪ {|E f | f ∈E(T )}.

The tree-partition width of G is the minimum width over all tree-partitions of G and
will be denoted by tpw(G). The elements of X are called bags.

In order to decompose graphs along edge cuts, we introduce the following edge-
counterpart of the notion of (vertex-)protrusion introduced in [3,4].
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Xs

s

Xu

u

B

Gu

G

W

Du

D

Fig. 3 The partitioned protrusion Pu = (Gu ,Du) as a substructure of (G,D). White circles represent
bags of the rooted tree-partitions. Only the edges between B and Xs are depicted

Given a rooted tree-partitionD = (X , T, s) of G and a vertex i ∈ V (T ), we define
Ti as the subtree of T induced by the descendants of i (including i) and

Vi =
⋃

h∈V (Ti )

Xh, and Gi = G[Vi ].

Let W be a graph and t ∈ N≥1. A pair P = (G,D) is a t-partitioned protrusion of
W if there exists an S ⊆ V (W ) such that

– G = (G, B, λ) is a boundaried graph where G ∈ Bt and G = GS for some
S-splitting (GS,GSc) of W and

– D = (X , T, s) is a rooted tree-partition of G\B of width at most t , where Xs are
the neighbors in G of the vertices in B.

We say that a t-partitioned protrusion (G,D) (with D = ({Xu}u∈V (T ), T, s)) of a
graph W isH-free if G isH-free. Recall that in the rooted tree-partition D, for every
u ∈ V (T ), we denote by Vu the union of the bags indexed by descendants of u
(including u). For every vertex u ∈ V (T ), we define the t-partitioned protrusion Pu

of W as a pair Pu = (Gu,Du), where Du = ({Xv}v∈VTu , Tu, u) and Gu is defined
as GVu for some Vu-splitting (GVu ,GV c

u
) of W . Informally speaking, the rooted tree-

partition Du is the part of D corresponding to the subgraph of G induced by vertices
in the bags that are descendants of u. Figure 3 provides an example of partitioned
protrusions. We choose the labeling function of Gs so that it is the same as the one
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H = {K4,K2,3}

F G

Fig. 4 A member of P≥1
e,H(F ⊕ G). Branch vertices are circled

Fig. 5 A partial subdivision
from the packing of Fig. 4.
Branch vertices are circled

J

of G, i.e., Gs = G. Notice that the labelings of all other Gu’s are arbitrary. For every
u ∈ V (T ) we define

Gu = {Gl | l ∈ children(T,s)(u)}.

2.3 Encodings, Signatures, and Folios

In this section we introduce tools that we will use to sort boundaried graphs depending
on the subdivisions that are realizable inside.

Encodings Let H be a family of graphs, let t ∈ N≥1, and let x ∈ {v,e}. Recall that
if M is an H-subdivision in G, we denote by M̂ a graph isomorphic to some graph
of H such that M is a subdivision of M̂ (see Sect. 2.1). If G = (G, B, λ) ∈ Bt is a
boundaried graph and S ⊆ Ax(G), we define μx

H(G, S) as the collection of all sets
{(J1, L1), . . . , (Jσ , Lσ )} such that

(i) {J1, . . . , Jσ } is a partial x-H-packing of G\S of size σ and
(ii) Li = V (M̂i ) ∩ V (G), where Mi is an extension of Ji, for every i ∈ �1, σ �.
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Fig. 6 The compression of the
partial packing of Fig. 5:
Ĵ = κ(J, L)

Ĵ

In other words, Li contains branch vertices of the partial subdivision Ji for every
i ∈ �1, σ � (see Figs. 4, 5). The set μx

H(G, S) encodes all different restrictions inG of
partial x-H-packings that avoid the set S. Given a boundaried graph G = (G, B, λ)

and a set L ⊆ V (G) such that every vertex of V (G)\L has degree 2 in G, we
define κ(G, L) as the boundaried graph obtained from G by dissolving every vertex
of V (G)\L , i.e., κ(G, L) = (diss(G, V (G)\L), B, λ). In the definition of κ we
assume that the boundary vertices of κ(G, L) remain the same as inG while the other
vertices are treated as new vertices (see Fig. 6).

This allows us to introduce the following notation aimed at representing, intuitively,
the essential part of each partial packing.

μ̂x
H(G, S) = {Ĵ = {Ĵ1, . . . , Ĵσ } = {κ(J1, L1), . . . , κ(Jσ , Lσ )} |

{(J1, L1), . . . , (Jσ , Lσ )} ∈ μH(G, S)}.

Isomorphisms IfG = (G, B, λ) andG′ = (G ′, B ′, λ′) are two compatible boundaried
graphs in Bt , S ∈ V (G), and S′ ∈ V (G ′), we say that a member Ĵ of μ̂x

H(G, S) and

a member Ĵ ′ of μ̂x
H(G′, S′) are isomorphic if there is a bijection between them such

that paired elements are isomorphic. We also say that μ̂x
H(G, S) and μ̂x

H(G′, S′)
are isomorphic if there is a bijection between them such that paired elements are
isomorphic.

We now come to the point where we can define, for every boundaried graph, a
signature encoding all the possible partial packings that can be realized in this graph.

Signatures and Folios For every y ∈ N, we set

sigxH(G, y) = {μ̂x
H(G, S), S ⊆ Ax(G), |S| = y}

and, given two compatible t-boundaried graphs G and G′ and a y ∈ N, we say that
sigxH(G, y) and sigxH(G′, y) are isomorphic if there is a bijection between them such
that paired elements are isomorphic.

Finally, for ρ ∈ N, we set

folioH,ρ(G) = (sigvH(G, 0), . . . , sigvH(G, ρ), sigeH(G, 0), . . . , sigeH(G, ρ)).
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Given two t-boundaried graphsG andG′, a ρ ∈ N, and a finite collection of connected
graphs H, we say that G �H,ρ G′ if G and G′ are compatible, neither G nor G′
contains an H-subdivision, and the elements of folioH,ρ(G) and folioH,ρ(G′) are
position-wise isomorphic.

3 The Reduction

The purpose of this section is to prove the following lemma.

Lemma 1 There exists a function f2 : N2 → N and an algorithm that, given a pos-
itive integer t , a finite collection H of connected graphs where h = m(H), and a
t-partitioned protrusion P = (G, (X , T, s)) of a graph W with n(G) > f2(h, t),
outputs either

– an H-subdivision of W with at most f2(h, t) edges or
– a graph W ′ such that

x-packH(W ′) = x-packH(W ),

x-coverH(W ′) = x-coverH(W ), and

n(W ′) < n(W ).

Furthermore, this algorithm runs in time Ot,h(n(T )). Moreover, this algorithm can
be enhanced so that given a x-H-packing (resp. x-H-covering) in W ′ then it outputs
a same size x-H-packing (resp. x-H-covering) in W.

In other words we can, in linear time, either find a small H-subdivision, or reduce
the graph to a smaller one where the parameters of packing and covering stay the same.
The main lines of the proof are the following. We consider the equivalence relation
�H,t on H-free t-partitioned protrusions. Informally, �H,t relates the partitioned
protrusions in which the same partial packings are realizable. The first step is to show
that this relation has a finite number of equivalence classes. Recall that each vertex i
of the tree T of the partitioned protrusion P defines a partitioned protrusion Pi . We
then show that if T is too large (i.e. it has a long path or a vertex of large degree),
then for several vertices, such partitioned protrusions belong to the same equivalence
class of �H,t . We finally show that in this case, some of these vertices can be deleted
without changing the packing and covering numbers.

Before giving the proof of Lemma 1, we need to prove several intermediate results.
In the sequel, unless stated otherwise, we assume that x ∈ {v,e}, t ∈ N≥1 and that
H is a finite collection of connected graphs. We set h = m(H). Recall that, for a
t-partitioned protrusion (G, (X , T, s)) of a graphW , and v ∈ V (T ), we denote by Gv

the set of all boundaried graphs of the form GVu , for some Vu-splitting (GVu ,GV c
u
)

of W , where u is a child of v. Informally, these are the boundaried graphs induced by
the bags of the subtrees of T rooted at the children of v.

Lemma 2 There are two functions f3 : N2 → N and f4 : N2 → N such that, for every
graph W and every t-partitioned protrusion (G, (X , T, s)) of W, if P is an H-free
partial x-H-packing in G then:
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(a) The partial subdivisions of graphs in H that are contained in P have in total at
most f3(h, t) branch vertices.

(b) P intersects at most f4(h, t) graphs of Gs .

Proof Proof of (a) First, note that anyH-free partial x-H-packing inG has cardinality
at most t, because each partial subdivision it contains must use a boundary edge
of G, and two distinct subdivisions of the same packing are (at least) edge-disjoint.
Also, each of these partial subdivisions contains at most maxH∈H n(H) ≤ h branch
vertices. Consequently, for every H-free partial x-H-packing in G, the number of
branch vertices of graphs of H it induces in G is at most t · h. Hence the function
f3(h, t):=t ·h upper-bounds the amount of branch vertices eachH-free partial packing
can contain.
Proof of (b) Let ζ be the maximum multiplicity of an edge in a graph of H. Because
of (a), every H-free partial x-H-packing P in G has at most f3(h, t) branch vertices
of graphs of H, so at most f3(h, t) graphs of Gs may contain such vertices. Besides,
P might also contain paths free of branch vertices linking pairs of branch vertices.
Since there are at most ( f3(h, t))2 such pairs and no pair will need to be connected
with more than ζ ≤ h distinct paths, it follows that at most ( f3(h, t))2 · h graphs
of Gs contain vertices from these paths. Therefore, every H-free partial x-H-packing
intersects at most f3(h, t) + ( f3(h, t))2 · h=: f4(h, t) graphs of Gs . ��
Lemma 3 There is a function f5 : N2 → N such that the image of the function μ̂x

H,
when its domain is restricted to

{(G, S), G isH-free and S ⊆ Ax(G)},

has size upper-bounded by f5(h, t).

Proof LetG be anH-free t-boundaried graph and let S ⊆ Ax(G). From Lemma 2(a),
everyH-free partial x-H-packing inG contains at most f3(h, t) branch vertices. This
partial packing can in addition use at most t boundary vertices. Let Ch,t be the class
of all (≤ t)-boundaried graphs on at most f3(h, t) + t vertices. Clearly the size of
this class is a function depending on h and t only. Recall that the elements of the set
μ̂x
H(G, S) are obtained from partial x-H-packings by dissolving internal vertices of

the paths linking branch vertices, hence every element of μ̂x
H(G, S) is a t-boundaried

graph ofBt having atmost f3(h, t)+t vertices. Therefore, for anyH-free t-boundaried
graph G and subset S ⊆ Ax(G), we have μ̂x

H(G, S) ⊆ Ch,t . As a consequence, the
image of the function μ̂x

H when restricted toH-free t-boundaried graphsG ∈ Bt (and
subsets S ⊆ Ax(G)) is a subset of the power set of Ch,t , so its size is upper-bounded
by a function (which we call f5) that depends only on h and t . ��
Corollary 1 There is a function f6 : N2 → N such that the relation �H,t partitions
H-free t-boundaried graphs into at most f6(h, t) equivalence classes.

The following lemma follows directly from the definition of μ̂x
H.
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Lemma 4 Let F,G ∈ Bt be two compatible t-boundaried graphs and let k ∈ N. Then
we have:

P≥k
x,H(F ⊕ G) �= ∅ ⇐⇒ ∃Ĵ ∈ μ̂x

H(G,∅), P≥k
x,H(F ⊕∪∪∪∪∪∪∪∪∪Ĵ ) �= ∅.

The choice of the definition of the relation � is justified by the following lemma.
Roughly speaking, it states that we can replace a t-partitioned protrusion of a graph
with any other�H,t -equivalent t-partitioned protrusionwithout changing the covering
andpacking number of the graph. The reduction algorithm thatwegive after this lemma
relies on this powerful property.

Lemma 5 (Protrusion replacement) Let F,G,G′ ∈ Bt be three compatible bound-
aried graphs such that G �H,t G′. For every k ∈ N, we have:

(i) P≥k
x,H(F ⊕ G) �= ∅ ⇐⇒ P≥k

x,H(F ⊕ G′) �= ∅ and

(ii) C≤k
x,H(F ⊕ G) �= ∅ ⇐⇒ C≤k

x,H(F ⊕ G′) �= ∅.

Proof Notice that, by definition of �,t , the boundaried graphs G and G′ areH-free.
Proof of item (i), “⇒”. Let M be an x-H-packing of size at least k in F ⊕ G, whose
set of branch vertices is L . We define

JF = (∪∪∪∪∪∪∪∪∪M) ∩F⊕G F,

JG = (∪∪∪∪∪∪∪∪∪M) ∩F⊕G G, and

ĴG =
⋃

M∈M
κ(M ∩F⊕G G, L ∩ V (G)).

Note that ĴG ∈ μ̂x
H(G,∅) and that F ⊕ ĴG has an x-H-packing of size at least k

(cf. Lemma 4). By definition of �, there is a bijection ψ between μ̂x
H(G,∅) and

μ̂x
H(G′,∅). Let Ĵ′

G be the image of ĴG by ψ. Since Ĵ′
G and ĴG are isomorphic, F⊕ Ĵ′

G
also has an x-H-packing of size at least k. By Lemma 4, this implies that such a
packing exists in F ⊕ G′ as well. The direction “⇐” is symmetric as G and G′ play
the same role.
Proof of item (ii), “⇒”. Let C ⊆ Ax(F ⊕ G) be a minimum x-H-covering of F ⊕ G
of size at most k. Let S = C ∩ Ax(G). Since we assume thatG isH-free and that C is
minimum, we can also assume that |S| ≤ t (otherwise we could get a smaller covering
by taking the t boundary vertices/edges of G). By our assumption that G �H,t G′,
there is an isomorphism between sigxH(G, |S|) and sigxH(G′, |S|). Let S′ ⊆ Ax(G′)
be a set such that μ̂x

H(G, S) is sent to μ̂x
H(G′, S′) by this isomorphism. Then observe

that every partial packingJ ′ ofG′\S′, such that (F\C)⊕(∪∪∪∪∪∪∪∪∪J ′) has anH-subdivision,
can be translated into a partial packing J of G\S such that (F\C) ⊕ (∪∪∪∪∪∪∪∪∪J ) also has
such a subdivision, in the same way as in the proof of item (i) above. As C is a cover,
this would lead to contradiction. Therefore μx

H(G, S) does not contain such a partial
packing. As a consequence, (C ∩ Ax(F)) ∪ S′ is a covering of F⊕G′ of size at most
k. As in the previous case, the proof of direction “⇐” comes from the symmetry in
the statement. ��
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Lemma 5 can be rewritten as follows.

Corollary 2 Under the assumptions of Lemma 5, we have x-pack(F ⊕ G) =
x-pack(F ⊕ G′) and x-cover(F ⊕ G) = x-cover(F ⊕ G′).

Recall that f6(h, t) denotes the number of equivalence classes of �H,t among
boundaried graphs of Bt . For every h, t ∈ N, let

f7(h, t) = f6(h, t) · f4(h, t) and f2(h, t) = 2ht3 · ( f3(h, t)) f6(h,t)+1 .

Let us give some intuition about these definitions. The first remark is an application
of the pigeonhole principle.

Observation 1 In a collection of more than f3(h, t)H-free boundaried graphs of Bt ,
there is one that is equivalent (w.r.t. �H,t ) to f4(h, t) other graphs of the collection.

Observation 2 If (T, s,X ) is a rooted tree-partition of a graph G with the following
properties:

– (T,X ) has width at most t;
– T has height at most f6(h, t); and
– T has degree at most f3(h, t) + 1,

then G has at most f2(h, t) vertices, and every H-subdivision of G has at most
f2(h, t) edges.

Proof The above assumptions imply that T has at most ( f3(h, t)) f6(h,t)+1 vertices.
Every bag of (T,X ) contains at most t vertices of G, therefore G has at most
( f3(h, t)) f6(h,t)+1 · t ≤ f2(h, t) vertices. Also, every bag induces a subgraph with
at most t (t − 1)/2 multiedges (i.e. without counting multiplicities), and for every
edge f of T we have |E f | ≤ t , hence every bag contributes for at most t2 + t
multiedges. Therefore G has at most (t + t2) ( f3(h, t)) f6(h,t)+1 multiedges. Now,
observe that an edge of G is used at most h times by an H-subdivision (if it is a
multiple edge), since every path connecting two branch vertices of a subdivision uses
a given edge at most once. We deduce that an H-subdivision of G contains at most
h · (t + t2) ( f3(h, t)) f6(h,t)+1 ≤ f2(h, t) edges. ��

The two next lemmas are themain tools used in the proof of Lemma 1. Under differ-
ent conditions, they provide either a small subdivision, or a reduced graph. Lemma 6
considers the case where a vertex of T has high degree, whereas Lemma 7 deals with
the situation where T has a long path.

Lemma 6 Let P = (G, (X , T, s)) be a t-partitioned protrusion of a graph W, and
let u ∈ V (T ) be a vertex with more than f3(h, t) children such that for every v ∈
children(T,s)(u), we have m(Gv) ≤ f6(h, t). Then, either

123



1346 Algorithmica (2018) 80:1330–1356

– W contains an H-subdivision M with at most f6(h, t) edges or
– there exists a graph W ′ such that

x-packH(W ′) = x-packH(W ),

x-coverH(W ′) = x-coverH(W ), and

n(W ′) < n(W ).

Moreover, there is an algorithm that, given such P,W, and u, returns either M or W ′
as above in Oh,t (1) steps.

Proof As u hasmore than f3(h, t) children, it contains a collection of d = f4(h, t)+1
children v1, . . . , vd , such that Gv1 �H,t Gvi for every i ∈ �2, d� (by Observation 1).
Let us now assume that Gu isH-free. Since every x-H-packing of W will intersect at
most f4(h, t) bags of children of u (by Lemma 2(b)), we can safely delete one of the
f4(h, t) + 1 equivalent subgraphs mentioned above. We use the following algorithm
in order to find such a bag to delete or a smallH-subdivision.

1. Let A be an array of f6(h, t) counters initialized to 0, each corresponding to a
distinct equivalence class of �H,t ;

2. Pick a vertex v ∈ children(T,s)(u) that has not been considered yet;
3. If Gv contains an H-subdivision M, then returnM and exit;
4. Otherwise, increment the counter of A corresponding to the equivalence class of

Gu by one;
5. If this counter reaches d + 1, return v, otherwise go back to Line 2.

Notice that the subdivision returned in Line 3 has size at most t · f6(h, t) (as we
assume that m(Gv) ≤ f6(h, t)) and that the vertex returned in Line 5 has the desired
property. By Corollary 1, the relation �H,t has at most f6(h, t) equivalence classes,
thus the main loop will be run at most f6(h, t) · f4(h, t) + 1 times (by the pigeonhole
principle). Eventually, Lines 3 and 4 can be performed in Oh,t (1)-time given that Gv

has size bounded by a function of h and t .
In the end, we returnW ′ = W\V (Gv) if the algorithm outputs v andM otherwise.

��
Lemma 7 There is an algorithm that, given a t-partitioned protrusion P =
(G, (X , T, s)) of a graph W and a vertex u ∈ V (T ) such that

– u has height exactly f6(h, t) in (T, s),
– the graph of Gu isH-free, and
– Tu has maximum degree at most f3(h, t),

outputs a graph W ′ such that

x-packH(W ′) = x-packH(W ),

x-coverH(W ′) = x-coverH(W ), and

n(W ′) < n(W ).

Moreover, this algorithm runs in Oh,t (1)-time.

123



Algorithmica (2018) 80:1330–1356 1347

Proof As in the proof of Observation 2, we use the fact that every H-subdivision of
Gu uses every (multi)edge at most h times. A consequence is that the boundaried
subgraph of Gu obtained by setting the multiplicity of every edge e to the minimum
of h and the multiplicity of e contains an H-subdivision iff Gu does. As the number
of vertices and edges of this subgraph is bounded by a function of h and t , we can
therefore check in Oh,t (1)-time if Gu contains an H-subdivision. If one is found, it
has at most f2(h, t) edges (Observation 2) and we are done.

Let us now consider the case whereGu isH-free. By definition of the vertex u, there
is a path of f6(h, t) + 1 vertices from a leaf of Tu to u. Let us arbitrarily choose, for
every vertex v of this path, a Vv-splitting (GGv ,GGc

v
) of G. By definition of f6(h, t)

(the number of equivalence classes in �H,t in Bt ), there are two distinct vertices v,w

on this path such that Gv �H,t Gw. As mentioned above, the number edges of Gu

is bounded by a function of h and t , hence finding these two vertices can be done
in Oh,t (1)-time. Let us assume without loss of generality that w is a descendant of
v. Let H be the boundaried graph such that W = H ⊕ GGv and let W ′ = H ⊕
GGw . By Corollary 2, we have x-packH(W ′) = x-packH(W ) and x-coverH(W ′) =
x-coverH(W ). Furthermore, the graph W ′ is clearly smaller than W . ��

We are now ready to prove Lemma 1.

Proof of Lemma 1 Observe that since n(G) > f2(h, t) and each bag of (X , T, s)
contains at most t vertices, we have

n(T ) > f2(h, t)/t = ( f6(h, t) · f4(h, t)) f6(h,t) .

Therefore, T has either diameter more than f6(h, t) or a vertex of degree more than
f6(h, t) · f4(h, t).
Let us consider the following procedure.

1. By a DFS on (T, s), compute the height of each vertex of T and find (if it exists)
a vertex v of degree more than f3(h, t) + 1 and height at most f6(h, t) − 1 that
has minimum height.

2. If such a vertex v is found, then apply the algorithm of Lemma 6 on P and v, and
return the obtained result.

3. Otherwise, find a vertex u of height exactly f6(h, t) in (T, s) and then apply the
algorithm of Lemma 7 on P and (Tu, u) and return the obtained result.

Observe that since n(G) > f2(h, t), Observation 2 implies that either T has diameter
more than f6(h, t), or it contains a vertex of degree more than f3(h, t)+1. Therefore,
the vertex u of line 3 always exists in the case where no vertex of high degree is found
in line 1. The correctness of this algorithm follows from Lemmas 6 and 7. The DFS
done in the first step takes time O(n(T )) and the rest of the algorithm takes time
Oh,t (1) according to the aforementioned lemmata.

The fact that a x-H-packing ofW ′ can be lifted to an equal size x-H-packing ofW
follows easily when Lemma 6 is applied, as then W ′ is a subgraph of W . In the case
that Lemma 7 is applied, the new x-H-packing is obtained because of Corollary 2 and
the supporting protrusion replacement Lemma 5, whose proof indicates which part of
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the x-H-packing of W ′ should be replaced with what in order to obtain an equal size
x-H-packing of W . ��

4 From the Erdős–Pósa Property to Approximation

For the purposes of this section we define Θr = ex(θr ). We need the following that is
one of the main results in [7, Theorem 3.2].

Proposition 1 There is an algorithm that, with input three positive integers r ≥
2, w, z and a connected m-edge graph W, where m ≥ z > r ≥ 2, outputs one of
the following:

– a Θr -subdivision of W with at most z edges,
– a (2r − 2)-partitioned protrusion (G,D) of W, where G = (G, B, λ) and such
that G is a connected graph and n(G) > w, or

– an H-minor model of W for some graph H with δ(H) ≥ 1
r−12

z−5r
4r(2w+1) ,

in Or (m) steps.

4.1 A Lemma on Reduce or Progress

The proof of the next lemma combines Proposition 1 and Lemma 1.

Lemma 8 (Reduce or progress) There is an algorithm that, with input x ∈ {v,e},
r ∈ N≥2, k ∈ N and an n-vertex graph W, outputs one of the following:

– a Θr -subdivision of W with at most Or (log k) edges;
– a graph W ′ where

x-coverH(W ′) = x-coverH(W ),

x-packH(W ′) = x-packH(W ), and

n(W ′) < n(W ); or

– an H-minor model in W, for some graph H with δ(H) ≥ k(r + 1),

in Or (m) steps. Moreover, this algorithm can be enhanced so that, when the second
case applies, given a x-H-packing (resp. x-H-covering) in W ′ then it outputs a same
size x-H-packing (resp. x-H-covering) in W.

Proof We set t = 2r − 2, w = f2(h, t), z = 2r(w − 1) log(k(r + 1)(r − 1)) + 5r ,
and h = m(Θr ). Observe that z = Or (log k) and h, t, w = Or (1). Also observe that

our choice for variable z ensures that 2
z−5r

2r(w−1) /(r − 1) = k(r + 1).
By applying the algorithm of Proposition 1 to r, w, z, and W , we obtain

in Or (m(W ))-time either:

– a Θr -subdivision in W of at most z edges (first case),
– a (2r − 2)-edge-protrusion Y of W with extension > w (second case), or
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– an H -minor model M inW , for some graph H with δ(H) ≥ k(r +1) (third case).

In the first case, we return the obtained Θr -subdivision. In the second case,
by applying the algorithm of Lemma 1 on Y , we get in O(n(W ))-time either a
Θr -subdivision of W on at most w = Or (1) vertices, or a graph W ′ where, for
x ∈ {v,e}, x-coverH(W ′) = x-coverH(W ), x-packH(W ′) = x-packH(W ) and
n(W ′) < n(W ). In the third case, we return the minor model M .

In each of the above cases, we get after O(m) steps either a minor model of a graph
with minimum degree more than k(r+1), aΘr -subdivision inW with at most z edges,
or an equivalent graph of smaller size. ��

It might not be clear yet to what purpose the minor model of a graph of degree more
than k(r + 1) output by the algorithm of Lemma 8 can be used. An answer is given
by the following lemmata, which state that such a graph contains a packing of at least
k minor models of Θr . These lemmata will be used in the design of the appoximation
algorithms in Sect. 4.2.

Lemma 9 There is an algorithm that, given k, r ∈ N≥1 and a graph G with δ(G) ≥
kr , returns a member of P≥k

e,Θr
(G) in G in O(m) steps.

Proof Starting from any vertex u, we grow a maximal path P in G by iteratively
adding to P a vertex that is adjacent to the previously added vertex but does not
belong to P . Since δ(G) ≥ kr , any such path will have length at least kr + 1. At
the end, all the neighbors of the last vertex v of P belong to P (otherwise P could
be extended). Since v has degree at least kr , v has at least kr neighbors in P . Let
w0, . . . , wkr−1 be an enumeration of the kr first neighbors of v in the order given by
P , starting from u. For every i ∈ �0, k − 1�, let Si be the subgraph of G induced by v

and the subpath of P starting at wir and ending at w(i+1)r−1. Observe that for every
i ∈ �0, k − 1�, Si contains a Θr -subdivision and that the intersection of every pair of
graphs from {Si }i∈�0,k−1� is {v}. Hence P contains a member of P≥k

e,Θr
(G), as desired.

Every edge of G is considered at most once in this algorithm, yielding to a running
time of O(m) steps. ��
Corollary 3 There is an algorithm that, given r ∈ N≥1 and a graph G with δ(G) ≥ r ,
returns a Θr -subdivision in G in O(m)-steps.

Observe that the previous lemma only deals with edge-disjoint packings. An ana-
logue of Lemma 9 for vertex-disjoint packings can be proved using Proposition 2, to
the price of a worse time complexity.

Proposition 2 (Theorem 12 of [1]) Given k, r ∈ N≥1 and an input graph G such
that δ(G) ≥ k(r + 1) − 1, a partition (V1, . . . , Vk) of V (G) satisfying ∀i ∈
�1, k�, δ(G[Vi ]) ≥ r can be found in O(nc) steps for some c ∈ N.

Lemma 10 There is an algorithm that, given k, r ∈ N≥1 and a graph G with δ(G) ≥
k(r+1)−1, outputs a member ofP≥k

v,Θr
(G) in O(nc+m) steps, where c is the constant

of Proposition 2.

Proof After applying the algorithm of Proposition 2 on G to obtain in O(nc)-time k
graphsG[V1], . . . ,G[Vk], we extract aΘr -subdivision from each of themusingCorol-
lary 3. ��
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4.2 Approximation Algorithms

As Θr -subdivisions are exactly the subgraph minimal graphs that contain Θr as a
minor, a graph has aΘr -x-packing of size k iff it contains k x-disjoint subgraphs, each
containing θr as a minor. Therefore, Theorem 1 is a direct combinatorial consequence
of the following.

Theorem 5 There is a function f8 : N → N and an algorithm that, with input x ∈
{v,e}, r ∈ N≥2, k ∈ N, and an n-vertex graph W, outputs either a x-Θr -packing of
W of size k or an x-Θr -covering of W of size at most f8(r) · k · log k. Moreover, this
algorithm runs in O(m2) steps if x = e and in Or (nc + n · m) steps if x = v, where
c is the constant from Proposition 2.

Proof Let f8(r) : N → N be a function such that each Θr -subdivision output by
the algorithm of Lemma 8 has size at most f8(r) · log k. We consider the following
procedure.

1. G:=W ; P:=∅;
2. Apply the algorithm of Lemma 8 on (x, r, k,G):

Progress: if the output is a Θr -subdivision M , let G:=G\Ax(M) and P = P ∪
{M};

Win: if the output is a H -minor model M in W for some graph H with
δ(H) ≥ k(r + 1), apply the algorithm of Lemma 9 (if x = e) or the
one of Lemma 10 (if x = v) to H to obtain a member of P≥k

x,Θr
(H).

Using M , translate this packing into a member of P≥k
x,Θr

(W ) and return
this new packing;

Reduce: otherwise, the output is a graph G ′. Then let G:=G ′.
3. If |P| = k then return P which is a member of P≥k

x,Θr
(W );

4. If n(W ) = 0 then return P which is in this case a member of C≤ f8(r) log k
x,Θr

(W );
5. Otherwise, go back to Line 2.

This algorithm clearly returns the desired result. Furthermore, the loop is executed
at most |Ax(W )| times (as an element of Ax(W ) is deleted each time we reach the
Progress case) and each call to the algorithm of Lemma 8 takes O(m(W )) steps.When
the algorithm reaches the “Win” case (which can happen at most once), the calls to
the algorithm of Lemma 9 (if x = e) or the one of Lemma 10 (if x = v), respectively,
take O(m(H)) and O ((n(H))c) steps. Therefore, in total, this algorithm terminates
in O(m2) steps if x = e and in O (nc + n · m) steps if x = v. ��

Observe that if the algorithm of Theorem 5 reaches the “Win” case, then the input
graph is known to contain an x-Θr -packing of size at least k. As a consequence, if we
are only interested in the existence of a packing or covering, the call to the algorithm
of Lemmas 9 or 10 is not necessary.

Corollary 4 There is an algorithm that, with input x ∈ {v,e}, r ∈ N≥2, k ∈ N, and
a graph W, outputs 0 only if W has an x-Θr -packing of size k or 1 only if W has
an x-Θr -covering of size at most f8(r) · k · log k. Furthermore this algorithm runs in
Or (n · m) steps when x = v and in Or (m2) steps when x = e.
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We now conclude this section with the proof of Theorem 2. For the same reason
as in the proof of Theorem 1 at the beginning of this section, we can deal with Θr -
subdivisions instead of dealing with subgraphs that contain θr as a minor.

Proof of Theorem 2 Let us call A the algorithm of Corollary 4. Let k0 ∈ �1, n(W )� be
an integer such that A(x, r, k0,W ) = 1 and A(x, r, k0 − 1,W ) = 0, and let us show
that the value f8(r) ·k0 log k0 is an O(log OPT )-approximation of x-packΘr

(W ) and
coverΘr (W ).

First, notice that for every k > x-packΘr
(W ), the value returned by A(x, r, k, W )

is 1. Symmetrically, for every k such that f8(r) · k log k < x-coverΘr (W ), the value
of A(x, r, k,W ) is 0. Therefore, the value k0 is such that:

k0 − 1 ≤ x-packΘr
(W ) and

x-coverΘr (W ) ≤ f8(r) · k0 log k0.

As every minimal covering must contain at least one vertex or edge (depending on
whether x = v or x = e) of each element (i.e. subdivision) of a maximal packing
x-packΘr

(W ) ≤ x-coverΘr (W ), we have the following two equations:

x-packΘr
(W ) ≤ f8(r) · k0 log k0 ≤ (x-packΘr

(W ) + 1) log(x-packΘr
(W ) + 1)

(1)

x-coverΘr (W ) ≤ f8(r) · k0 log k0 ≤ (x-coverΘr (W ) + 1) log(x-coverΘr (W ) + 1).
(2)

Dividing (1) by x-packΘr
(W ) and (2) by coverΘr (W ), we get:

1 ≤ k0 log k0
x-packΘr

(W )
≤ log(x-packΘr

(W ) + 1) + log x-packΘr
(W )

x-packΘr
(W )

= O(log(x-packΘr
(W ))), and

1 ≤ k0 log k0
x-coverΘr (W )

≤ log(x-coverΘr (W ) + 1) + log x-coverΘr (W )

x-coverΘr (W )

= O(log(x-coverΘr (W ))).

Therefore the value k0 log k0 is both an O(log OPT )-approximation of x-packΘr

(W ) and coverΘr (W ). The value k0 can be found by performing a binary search in
the interval �1, n�, with O(log n) calls to Algorithm A. Hence, our approximation
algorithm runs in O(n · log(n) · m) steps when x = v and in O(m2 · log(n)) steps
when x = e. ��

5 Erdős–Pósa Property and Tree-Partition Width

Using themachinery introduced in Sect. 3, we are able to prove a slightly more general
version of Theorem 3.

Theorem 6 Let t ∈ N. For every x ∈ {v,e}, the following holds: if H is a finite
collection of connected graphs and G is a graph of tree-partition width at most t , then
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x-coverH(G) ≤ α · x-packH(G), where α is a constant which depends only on t
and H.

Proof Let k = x-packH(G). This proof is similar to that of Theorem 5 (progress
or reduce). We start with P:=∅ and G0:=G and repeatedly apply Lemma 1 to Gi ,
which provides the existence of either a smaller graph Gi+1 with the same parame-
ters x-coverH and x-packH (reduce), or that of an H-subdivision M with at most
f2(h, t) edges, in which case we set Gi+1:=Gi\Ax(M) and P:=P ∪ {M} (progress)
and continue. Notice that while the algorithm of Lemma 1 requires a t-partitioned
protrusion, it is enough here to know that such a partitioned protrusion exists as we do
not actually run the algorithm. This is the case because the considered graphs are sub-
graph ofG, which has tree-partition width at most t , so we can consider a t-partitioned
protrusion containing the whole graph. We stop this process when the current graph
has at most f2(h, t) vertices. Let G j be this graph. In the end, P contains at most k
H-subdivisions. Therefore, C :=∪∪∪∪∪∪∪∪∪ Ax(P) ∪ Ax(G j ) is an x-H-covering of G of size
(k + 1) · f2(h, t), as required. ��

Theorem 3 can be obtained from Theorem 6 by considering packing and covering
of the graphs in

⋃
H∈H ex(H), where H is the family of graphs mentioned in the

statement of Theorem 3.
We define Θr,r ′ = ex(θr,r ′). The rest of this section is devoted to the proof of The-

orem 4. Prior to this, we need to introduce a result of Ding et al. [11].
Tree-partitionwidth has been studied in [11,20,37]. In particular, the authors of [11]

characterized the classes of graphs of bounded tree-partitionwidth in terms of excluded
topological minors. The statement of this result requires additional definitions.

Walls, Fans, Paths, and Stars The n-wall is the graph with vertex set �1, n� and whose
edge set is:

{{(i, j), (i, j + 1)}, 1 ≤ i, j ≤ n}
∪ {{(2i − 1, 2 j + 1), (2i, 2 j + 1)}, 1 < 2i ≤ n and 1 ≤ 2 j + 1 ≤ n}
∪ {{(2i, 2 j), (2i + 1, 2 j)}, 1 ≤ 2i < n and 1 ≤ 2 j ≤ n} .

The 7-wall is depicted in Fig. 7. The n-fan is the graph obtained by adding a dominating
vertex to a path on n vertices. A collection of paths is said to be independent if two
paths of the collection never share interior vertices. The n-star is the graph obtained
by replacing every edge of K1,n with n independent paths of two edges. The n-path
is the graph obtained by replacing every edge of an n-edge path with n independent
paths of two edges. Examples of these graphs are depicted in Fig. 7. The wall number
(resp. fan number, star number, and path number) of a graphG is defined as the largest
integer k such that G contains a minor model of a k-wall (resp. of a k-fan, of a k-star,
of a k-path), or infinity is no such integer exists. Let γ (G) denote the maximum of the
wall number, fan number, star number, and path number of a graph G.

We need the following result.

Proposition 3 [11] There is a function f9 : N → N such that every graph G satisfies
tpw(G) ≤ f9(γ (G)).
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7-fan

4-star

7-wall

4-path

Fig. 7 Unavoidable patterns of graphs of large tree-partition width

In other words, for every integer k, every graph of large enough tree-partition width
contains a minor model of one of the following graphs: the k-wall, the k-fan, the
k-path, or the k-star.

Notice that for every r, r ′ ∈ N, r ′ ≤ r , the graph θr,r ′ is a minor of the following
graphs: the r -path, the r -star, the (r + r ′ + 1)-fan, and the r -wall (for r ≥ 6). Hence,
every graph of large enough tree-partition width contains aΘr,r ′ -subdivision. This can
easily be generalized to edge-disjoint packings, as follows.

Lemma 11 For every r, r ′ ∈ N, r ′ ≤ r , and every k ∈ N≥1, every graph G satisfying
γ (G) ≥ k(r + r ′ + 2) − 1 contains an e-Θr,r ′ -packing of size k.

Using Proposition 3, we get the following corollary.

Corollary 5 For every r, r ′ ∈ N, r ′ ≤ r , and every k ∈ N≥1, every graph G satisfying
tpw(G) ≥ f9(k(r + r ′ + 2) − 1) contains an e-Θr,r ′ -packing of size k.

We are now able to give the proof of Theorem 4. As in the proof of Theorem 1
at the beginning of Sect. 4.2, we can consider Θr,r ′ -subdivisions instead of sugraphs
containing θr,r ′ as a minor.

Proof of Theorem 4 According to Corollary 5, for every k ∈ N, there is a number tk
such that every graphG with e-coverΘr,r ′ (G) = k satisfies tpw(G) ≤ tk . Indeed, such
a graph does not contain a packing of k + 1 Θr,r ′ -subdivisions. Then by Theorem 3
the value e-coverΘr,r ′ (G) is bounded above by f2(h, tk) · e-packΘr,r ′ (G), and this
concludes the proof. ��
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6 Concluding Remarks

The main algorithmic contribution of this paper is a log(OPT)-approximation algo-
rithm for the parameters v-packθr

, v-coverθr , e-packθr
, and e-coverθr , for every

positive integer r . This improves the results of [21] in the case of vertex packings and
coverings and is the first approximation algorithm for the parameters e-packθr

and
e-coverθr for general r . Our proof uses a reduction technique of independent interest,
which is not specific to the graph θr and can be used for any other (classes of) graphs.

On the combinatorial side, we optimally improved the gap of the edge-Erdős–Pósa
property of minor models of θr for every r . Also, we were able to show that every class
of graphs has the (edge and vertex) Erdős–Pósa property in graphs of bounded tree-
partition width, with linear gap. An other outcome of this work is that minor models
of θr,r ′ have the edge-Erdős–Pósa. Recall that prior to this work, the only graphs for
which this was known were θr ’s.

As mentioned in [31], the planarity of a graph H is a necessary condition for the
minor models of H to have the edge-Erdős–Pósa property. However, little is known on
which planar graphs have this property and with which gap. This is the first direction
of research that we want to highlight here. Also, the question of an approximation
algorithm can be asked for packing and covering the minor models of different graphs.
It was proved in [8] that the gap of the vertex-Erdős–Pósa property of minor models of
every planar graph is O(k polylog k). It would be interesting to check if these results
can be used to derive a polylog(OPT)-approximation for vertex packing and covering
minor models of any planar graph.

Notice that all our results are strongly exploiting Lemma 1 that holds for every
finite collection H of connected graphs. Actually, what is missing in order to have
an overall generalization of all of our results, is an extension of Proposition 1 where
Θr is replaced by any finite collection H of connected planar graphs. This is an an
interesting combinatorial problem even for particular instantiations of H.
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