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Abstract Knapsack median is a generalization of the classic k-median problem in
which we replace the cardinality constraint with a knapsack constraint. It is currently
known to be 32-approximable. We improve on the best known algorithms in several
ways, including adding randomization and applying sparsification as a preprocessing
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step. The latter improvement produces the first LP for this problem with bounded
integrality gap. The new algorithm obtains an approximation factor of 17.46. We also
give a 3.05 approximation with small budget violation.

Keywords Approximation algorithm · Combinatorial optimization · Randomized
algorithm · Facility-location problems

1 Introduction

k-median is a classic problem in combinatorial optimization. Herein, we are given
a set of clients C, facilities F , and a symmetric distance metric c on C ∪ F . The
goal is to open k facilities such that we minimize the total connection cost (distance to
nearest open facility) of all clients. A natural generalization of k-median is knapsack
median (KM), in which we assign nonnegative weight wi to each facility i ∈ F , and
instead of opening k facilities, we require that the sum of the open facility weights be
within some budget B.

While KM is not known to be harder than k-median, it has thus far proved more
difficult to approximate. k-median was first approximated within constant factor 62

3
in 1999 [2], with a series of improvements leading to the current best-known factor
of 2.674 [1]1. KM was first studied in 2011 by Krishnaswamy et. al. [6], who gave a
bicriteria 16+ ε approximation which slightly violated the budget. Then Kumar gave
the first true constant factor approximation for KMwith factor 2700 [7], subsequently
reduced to 34 by Charikar and Li [3] and then to 32 by Swamy [10].

This paper’s algorithm has a flow similar to Swamy’s: we first get a half-integral
solution (except for a few ‘bad’ facilities), and then create pairs of half-facilities,
opening one facility in each pair. By making several improvements, we reduce the
approximation ratio to 17.46. The first improvement is a simple modification to the
pairing process so that every half-facility is guaranteed either itself or its closest
neighbor to be open (versus having to go through two ‘jumps’ to get to an open
facility). The second improvement is to randomly sample the half-integral solution,
and condition on the probability that any given facility is ‘bad’. The algorithm can be
derandomized with linear loss in the runtime.

The third improvement deals with the bad facilities which inevitabley arise due
to the knapsack constraint. All previous algorithms used Kumar’s bound from [7] to
bound the cost of nearby clients when bad facilities must be closed. However, we show
that by using a sparsification technique similar in spirit to - but distinct from - that
used in [8], we can focus on a subinstance in which the connection costs of clients are
guaranteed to be evenly distributed throughout the instance. This allows for a much
stronger bound than Kumar’s, and also results in an LP with bounded integrality gap,
unlike previous algorithms.

Another alternative is to just open the few bad facilities and violate the budget
by some small amount, as Krishnaswamy et. al. did when first introducing KM. By
preprocessing, we can ensure this violates the budget by at most εB. We show that

1 The paper claims 2.611, but a very recent correction changes this to 2.674.
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the bi-point solution based method from [8] can be adapted for KM using this budget-
violating technique to get a 3.05 approximation.

1.1 Preliminaries

Let n = |F | + |C| be the size of the instance. For the ease of analysis, we assume
that each client has unit demand. (Indeed, our algorithm easily extends to the general
case.) For a client j , the connection cost of j , denoted as cost ( j), is the distance from
j to the nearest open facility in our solution. The goal is to open a subset S ⊆ F
of facilities such that the total connection cost is minimized, subject to the knapsack
constraint

∑
i∈S wi ≤ B.

The natural LP relaxation of this problem is as follows.

minimize
∑

i∈F , j∈C
ci j xi j

subject to
∑

i∈F
xi j = 1 ∀ j ∈ C

xi j ≤ yi ∀i ∈ F , j ∈ C
∑

i∈F
wi yi ≤ B

0 ≤ xi j , yi ≤ 1 ∀i ∈ F , j ∈ C

In this LP, xi j and yi are indicator variables for the event client j is connected to
facility i and facility i is open, respectively. The first constraint guarantees that each
client is connected to some facility. The second constraint says that client j can only
connect to facility i if it is open. The third one is the knapsack constraint.

In this paper, given a KM instance I = (B,F , C, c, w), let OPTI and OPT f

be the cost of an optimal integral solution and the optimal value of the LP relax-
ation, respectively. Suppose S ⊆ F is a solution to I, let cost I(S) denote cost
of S. Let (x, y) denote the optimal (fractional) solution of the LP relaxation. Let
C j := ∑

i∈F ci j xi j be the fractional connection cost of j . Given S ⊆ F and a vector
v ∈ R

|F |, let v(S) := ∑
i∈S vi . From now on, let us fix any optimal integral solution

of the instance for the analysis.

2 An Improved Approximation Algorithm for Knapsack Median

2.1 Kumar’s Bound

The main technical difficulty of KM is related to the unbounded integrality gap of the
LP relaxation. It is known that this gap remains unbounded even when we strengthen
the LP with knapsack cover inequalities [6]. All previous constant-factor approxi-
mation algorithms for KM rely on Kumar’s bound from [7] to get around the gap.
Specifically, Kumar’s bound is useful to bound the connection cost of a group of
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clients via some cluster center in terms of OPTI instead of OPT f . We now review
this bound, and will improve it later.

Lemma 1 For each client j , we can compute (in polynomial time) an upper-bound
U j on the connection cost of j in the optimal integral solution (i.e. cost ( j) ≤ Uj )
such that

∑

j ′∈C
max{0,Uj − c j j ′ } ≤ OPTI .

Proof We first guess OPTI by enumerating the powers of (1 + ε) for some small
constant ε > 0. (We lose a factor of (1+ ε) in the approximation ratio and a factor of
O(log n/ε) in the runtime.) Now fix any optimal solution and assume that j connects
to i and j ′ connects to i ′. Then, by triangle inequality,

cost ( j) = ci j ≤ ci ′ j ≤ c j j ′ + ci ′ j ′ = c j j ′ + cost ( j ′),

or equivalently,

cost ( j ′) ≥ cost ( j) − c j j ′ .

Taking the sum over all j ′ 	= j , we have

OPTI ≥
∑

j ′ 	= j

max{0, cost ( j) − c j j ′ }.

Then we can simply take Uj such that

OPTI =
∑

j ′∈C
max{0,Uj − c j j ′ }.

(Observe that the RHS is a linear function of Uj ). 
�
We can slightly strengthen the LP relaxation by adding the constraints: xi j = 0

for all ci j > Uj . (Unfortunately, the integrality gap is still unbounded after this step.)
Thus we may assume that (x, y) satisfies all these constraints.

Lemma 2 (Kumar’s bound) Let S be a set of clients and s ∈ S, where c js ≤ βC j

for all j ∈ S and some constant β ≥ 1, then

|S|Us ≤ OPTI + β
∑

j∈S
C j .

Proof

|S|Us =
∑

j∈S
Us =

∑

j∈S
(Us − c js) +

∑

j∈S
c js ≤ OPTI + β

∑

j∈S
C j ,
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where we use the property of Us from Lemma 1 for the last inequality. 
�
This bound allows one to bound the cost of clients which rely on the bad facility.

2.2 Sparse Instances

Kumar’s bound can only be tight when the connection cost in the optimal solution is
highly concentrated around a single client. However, if this were the case, we could
guess the client for which this occurs, along with its optimal facility, which would give
us a large advantage. On the other hand, if the connection cost is evenly distributed,
we can greatly strengthen Kumar’s bound. This is the idea behind our definition of
sparse instances below.

Let CBall( j, r) := {k ∈ C : c jk ≤ r} denote the set of clients within radius of r
from client j . Let λ j be the connection cost of j in the optimal integral solution. Also,
let i( j) denote the facility serving j in the optimal solution.

Definition 1 Given some constants 0 < δ, ε < 1, we say that a knapsack median
instance I = (B,F , C, c, w) is (δ, ε)-sparse if, for all j ∈ C,

∑

k∈CBall( j,δλ j )

(λ j − c jk) ≤ εOPTI .

We will show that the integrality gap is bounded on these sparse instances. We also
give a polynomial-time algorithm to sparsify anyknapsackmedian instance.Moreover,
the solution of a sparse instance can be used as a solution of the original instance with
only a small loss in the total cost.

Lemma 3 Given some knapsack median instance I0 = (B,F , C0, c, w) and 0 <

δ, ε < 1, there is an efficient algorithm that outputs O(n2/ε) pairs of (I,F ′), where
I = (B,F , C, c, w) is a new instance with C ⊆ C0, and F ′ ⊆ F is a partial solution
of I, such that at least one of these instances is (δ, ε)-sparse.

Proof Fix any optimal integral solution of I0. Consider the following algorithm that
transformI0 into a sparse instance,assuming for now thatwe know its optimal solution:

– Initially, C := C0.
– While the instance (B,F , C, c, w) is not sparse, i.e. there exists a “bad” client j
such that

∑
k∈CBall( j,δλ j )

(λ j −c jk) > εOPTI , remove all clients in CBall( j, δλ j )

from C.
Note that this algorithm will terminate after at most 1/ε iterations: for each k ∈
CBall( j, δλ j ) and its serving facility i(k) in the optimal solution, we have c ji(k) ≤
c jk + λk , which implies

∑

k∈CBall( j,δλ j )

λk ≥
∑

k∈CBall( j,δλ j )

(c ji(k) − c jk) ≥
∑

k∈CBall( j,δλ j )

(λ j − c jk) > εOPTI ,

and there can be at most 1/ε such balls.
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Now,while we do not knowwhich client j is “bad” andwhich facility i serves client
j in the optimal solution, we can still guess these pairs in O(n2) time in each iteration.
Specifically, wewill guess the number of iterations that the above algorithm terminates
and the pair ( j, i( j)) in each iteration. There are at most O(n2/ε) possible cases and
we will generate all of these new instances. Finally, we include all the facilities i( j)
during the process into the set F ′ of the corresponding instance. 
�

The following theorem says that if we have an approximate solution to a sparse
instance, then its cost on the original instance can be blown up by a small constant
factor.

Theorem 1 Let I = (B,F , C, c, w) be a (δ, ε)-sparse instance obtained from
I0 = (B,F , C0, c, w) (by the procedure in the proof of Lemma 3) and F ′ be the
corresponding partial solution. If S ⊇ F ′ is any approximate solution to I (including
those open facilities in F ′) such that

cost I(S) ≤ αOPTI ,

then

cost I0(S) ≤ max

{
1 + δ

1 − δ
, α

}

OPTI0 .

Note that our notion of sparsity differs from that of Li and Svensson in several ways.
It is client-centric, and removes clients instead of facilities from the instance. On
the negative side, removed clients’ costs blow up by 1+δ

1−δ
, so our final approximation

cannot guarantee better.

Proof (Theorem 1) For any k ∈ C0 \ C, let CBall( j, δλ j ) be the ball containing k that
was removed from C0 in the preprocessing phase in Lemma 3. Recall that i( j) is the
facility serving j in the optimal solution. We have

λk ≥ λ j − c jk ≥ (1 − δ)λ j ,

which implies,

cki( j) ≤ c jk + λ j ≤ (1 + δ)λ j ≤ 1 + δ

1 − δ
λk .

Then, by connecting all k ∈ C0 \ C to the corresponding facility i( j) (which is guar-
anteed to be open because i( j) ∈ F ′), we get

cost I0(S) =
∑

k∈C0\C
cost (k) +

∑

k∈C
cost (k)

≤ 1 + δ

1 − δ

∑

k∈C0\C
λk + αOPTI
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≤ 1 + δ

1 − δ

∑

k∈C0\C
λk + α

∑

k∈C
λk

≤ max

{
1 + δ

1 − δ
, α

}

OPTI0 . 
�
From now on, assume that we are given some arbitrary knapsack median instance

I0 = (B,F , C0, c, w). We will transform I0 into a (δ, ε)-sparse instance I and use
Theorem 1 to bound the real cost at the end.

2.3 Improving Kumar’s Bound and Modifying the LP Relaxation

We will show how to improve Kumar’s bound in sparse instances. Recall that, for all
j ∈ C, we have

∑

k∈CBall( j,δλ j )

(λ j − c jk) ≤ εOPTI .

Then, as before, we can guess OPTI and take the maximum Uj such that

∑

k∈CBall( j,δUj )

(Uj − c jk) ≤ εOPTI .

(Observe that the LHS is an increasing function of Uj .) Now the constraints xi j = 0
for all i ∈ F , j ∈ C : ci j > Uj are valid and we can add these into the LP.We also add
the following constraints: yi = 1 for all facilities i ∈ F ′. From now on, assume that
(x, y) is an optimal solution of this new LP, satisfying all the mentioned constraints.

Lemma 4 Let s be any client in sparse instance I and S be a set of clients such that
c js ≤ βC j for all j ∈ S and some constant β ≥ 1. Then

|S|Us ≤ εOPTI + β

δ

∑

j∈S
C j .

Proof Consider the following two cases.

– For clients j ∈ S ′ = S ∩ CBall(s, δUs), by definition of sparsity, we have

|S ′|Us =
∑

j∈S ′
(Us − c js) +

∑

j∈S ′
c js

≤ εOPTI + β
∑

j∈S ′
C j .
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– For clients j ∈ S ′′ = S \ CBall(s, δUs), we have βC j ≥ c js ≥ δUs and we get
an alternative bound Us ≤ β

δ
C j . Thus,

|S ′′|Us =
∑

j∈S ′′
Us ≤

∑

j∈S ′′

β

δ
C j .

The lemma follows by taking the sum of these two cases. 
�

2.4 Filtering Phase

Wewill apply the standard filtering method for facility-location problems (see [3,10]).
Basically, we choose a subset C′ ⊆ C such that clients in C′ are far from each other.
After assigning each facility to the closest client in C′, it is possible to lower-bound
the opening volume of each cluster. Each client in C′ is called a cluster center.

Filtering algorithm Initialize C′ := C. For each client j ∈ C′ in increasing order of
C j , we remove all other clients j ′ such that c j j ′ ≤ 4C j ′ = 4max{C j ′,C j } from C′.

For each j ∈ C′, define Fj = {i ∈ F : ci j = mink∈C′ cik}, breaking ties arbitrarily.
Let F ′

j = {i ∈ Fj : ci j ≤ 2C j } and γ j = mini /∈Fj ci j . Then define G j = {i ∈ Fj :
ci j ≤ γ j }. We also reassign yi := xi j for i ∈ G j and yi := 0 otherwise. For j ∈ C′,
let Mj be the set containing j and all clients removed by j in the filtering process.

We note that the solution (x, y) may not be feasible to the LP anymore after the
reassignment step. For the rest of the paper, we will focus on rounding y into an
integral vector. One important property is that the knapsack constraint still holds. In
other words, the new sum

∑
i∈F wi yi is still at most the budget B. This is due to the

fact that xi j ≤ yi . The opening variables only decrease after this step; and hence, the
knapsack constraint will be preserved.

Lemma 5 We have the following properties:

– All sets G j are disjoint,
– 1/2 ≤ y(F ′

j ) and y(G j ) ≤ 1 for all j ∈ C′.
– F ′

j ⊆ G j for all j ∈ C′.

Proof For the first claim, observe that all Fj ’s are disjoint and G j ⊆ Fj by definition.
Also, if

∑
i∈F ′

j
yi = ∑

i∈F ′
j
xi j < 1/2, then

∑
i∈F\F ′

j
xi j > 1/2. Since the radius of

F ′
j is 2C j , this means that C j > (1/2)(2C j ) = C j , which is a contradiction. Since

we reassign yi := xi j for all i ∈ G j , the volume y(G j ) is now at most 1. Finally, we
have 2C j ≤ γ j . Otherwise, let i /∈ Fj be the facility such that γ j = ci j . Observe that
facility i is claimed by another cluster center, say j ′, because ci j ′ ≤ ci j ≤ 2C j . This
implies that c j j ′ ≤ ci j + ci j ′ ≤ 4C j , which is a contradiction. 
�

It is clear that for all j, j ′ ∈ C′, c j j ′ ≥ 4max{C j ′,C j }.Moreover, for each j ∈ C\C′,
we can find j ′ ∈ C′, where j ′ causes the removal of j , or, in other words,C j ′ ≤ C j and
c j j ′ ≤ 4C j . Assuming that we have a solution S for the instance I ′ = (B,F , C′, c, w)

where each client j in C′ has demand d j = |Mj | (i.e. there are |Mj | copies of j), we
can transform it into a solution for I as follows. Each client j ∈ C\C′ will be served by
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the facility of j ′ that removed j . Then cost ( j) = c j j ′ + cost ( j ′) ≤ cost ( j ′) + 4C j .
Therefore,

cost I(S) =
∑

j∈C′
cost ( j) +

∑

j∈C\C′
cost ( j)

≤
∑

j∈C′
cost ( j) +

∑

j∈C\C′
( cost ( j ′( j)) + 4C j )

≤ cost I ′(S) + 4OPT f .

where, in the second line, j ′( j) is the center in C′ that removed j .

2.5 A Basic (23.09 + ε)-Approximation Algorithm

In this section, we describe a simple randomized (23.09+ε)-approximation algorithm.
In the next section, we will derandomize it and give more insights to further improve
the approximation ratio to 17.46 + ε.

High-level ideas We reuse Swamy’s idea from [10] to first obtain an almost half
integral solution ŷ. This solution ŷ has a very nice structure. For example, each client
j only (fractionally) connects to at most 2 facilities, and there is at least a half-opened
facility in each G j . We shall refer to this set of 2 facilities as a bundle. In [10], the
author applies a standard clustering process to get disjoint bundles and round ŷ by
opening at least one facility per bundle. The drawback of this method is that we have to
pay extra cost for bundles removed in the clustering step. In fact, it is possible to open at
least one facility per bundle without filtering out any bundle. The idea here is inspired
by the work of Charikar et. al [2]. In addition, instead of picking ŷ deterministically,
sampling such a half integral extreme point will be very helpful for the analysis.

We consider the following polytope.

P = {v ∈ [0, 1]|F | : v(F ′
j ) ≥ 1/2, v(G j ) ≤ 1, ∀ j ∈ C′;

∑

i∈F
wivi ≤ B}.

Lemma 6 ([10]) Any extreme point ofP is almost half-integral: there exists at most 1
cluster center s ∈ C′ such that Gs contains variables /∈ {0, 1

2 , 1}. We call s a fractional
client.

Notice by Lemma 5 that y ∈ P . By Carathéodory’s theorem, y is a convex com-
bination of at most t = |F | + 1 extreme points of P . Moreover, there is an efficient
algorithm based on the ellipsoid method to find such a decomposition (e.g., see [9]).
We apply this algorithm to get extreme points y(1), y(2), . . . , y(t) ∈ P and coefficients
0 ≤ p1, . . . , pt ≤ 1,

∑t
i=1 pi = 1, such that

y = p1y
(1) + p2y

(2) + . . . + pt y
(t).

This representation defines a distribution on t extreme points ofP . Let Y ∈ [0, 1]F
be a randomvectorwhere Pr[Y = y(i)] = pi for i = 1, . . . , t . Observe thatY is almost
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half-integral. Let s be the fractional client in Y . (We assume that s exists; otherwise,
the cost will only be smaller.)
Defining primary and secondary facilities For each j ∈ C′,
– If j 	= s, let i1( j) be any half-integral facility in F ′

j (i.e.Yi1( j) = 1/2; such a facility
exists because Y (F ′

j ) ≥ 1/2). Else ( j = s), let i1( j) be the smallest-weight facility
in F ′

j with Yi1( j) > 0.
– If Y (i1( j)) = 1, let i2( j) = i1( j).
– IfY (G j ) < 1, then letσ( j) be the nearest client to j inC′. Define i2( j) = i1(σ ( j)).
– If Y (G j ) = 1, then

– If j 	= s, let i2( j) be the other half-integral facility in G j .
– Else ( j = s), let i2( j) be the smallest-weight facility in G j with Yi2( j) > 0. If
there are ties and i1( j) is among these facilities then we let i2( j) = i1( j).

– Wecall i1( j), i2( j) the primary facility and the secondary facility of j , respectively.

Constructing the neighborhood graph Initially, construct the directed graph G on
clients in C′ such that there is an edge j → σ( j) for each j ∈ C′ : Y (G j ) < 1. Note
that all vertices in G have outdegree ≤ 1. If Y (G j ) = 1, then vertex j has no outgoing
edge. In this case, we replace j by the edge i1( j) → i2( j), instead. Finally, we relabel
all other nodes in G by its primary facility. Now we can think of each client j ∈ C′ as
an edge from i1( j) to i2( j) in G.
Lemma 7 Without loss of generality, we can assume that all cycles of G (if any) are
of size 2. This means that G is bipartite.

Proof Since the maximum outdegree is equal to 1, each (weakly) connected compo-
nent of G has at most 1 cycle. Consider any cycle j → σ( j) → σ 2( j) → . . . →
σ k( j) → j . Then it is easy to see that c jσ( j) = cσ k ( j) j . The argument holds for any
j in the cycle, and all edges on the cycle have the same length. Then we can simply
redefine σ(σ k( j)) := σ k−1( j) and get a cycle of size 2 instead. We can also change
the secondary of the client corresponding to the edge (σ k( j), j) into σ k−1( j) because
they are both at the same distance from it. 
�

We are now ready to describe the main algorithm.

Algorithm 1 Round(Y )
1: Construct the neighborhood graph G based on Y
2: Let C1,C2 be independent sets which partition G.
3: Let W1,W2 be the total weight of the facilities in C1,C2 respectively.
4: if W1 ≤ W2 then
5: return C1
6: else
7: return C2

Theorem 2 Algorithm 2 returns a feasible solution S where

E[ cost I0(S)] ≤ max

{
1 + δ

1 − δ
, 10 + 12/δ + 3ε

}

OPTI0 .
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Algorithm 2 BasicAlgorithm(δ, ε, I0)
1: Generate O(n2/ε) pairs (I,F ′) using the algorithm in the proof of Lemma 3.
2: S ← ∅
3: for each pair (I,F ′) do
4: Let (x, y) be the optimal solution of the modified LP relaxation in Section 2.3.
5: Apply the filtering algorithm to get I′.
6: Use F ,C′ to define the polytope P .
7: Sample a random extreme point Y of P as described above.
8: Let S ′ ←Round(Y )
9: If S ′ is feasible and its cost is smaller than the cost of S then S ← S ′.
10: return S

In particular, the approximation ratio is at most (23.087 + 3ε) when setting
δ := 0.916966.

Proof Assume I is the sparse instance obtained from I0. We will give a proof of
feasibility and a cost analysis. Recall that s is the center where we may have fractional
values Yi with i ∈ Gs .
Feasibility

– For all centers j ∈ C′ with Y (G j ) < 1, we have

wi1( j) ≤ 2
∑

i∈G j

Yiwi .

Note that this is true for j 	= s because Yi1( j) = 1/2. Otherwise, j = s, by
definition, wi1( j) is the smallest weight in the set F ′

s which has volume at least
1/2. Thus, wi1( j) ≤ 2

∑
i∈F ′

s
Yiwi ≤ 2

∑
i∈G j

Yiwi .

– For all centers j ∈ C′ with Y (G j ) = 1, we have

wi1( j) + wi2( j) ≤ 2
∑

i∈G j

Yiwi .

The equality happens when j 	= s. Otherwise, j = s, we consider the following
2 cases
– If i1(s) = i2(s) the inequality follows becausewi1( j) = wi2( j) ≤ ∑

i∈G j
Yiwi .

– Else, we have i2(s) ∈ G j \ F ′
j by definition of i2(s). Since wi1(s) ≥ wi2(s) and

Y (F ′
s) ≥ 1/2,

1

2
wi1(s) + 1

2
wi2(s) ≤ Y (F ′

s)wi1(s) + (1 − Y (F ′
s))wi2(s)

≤
∑

i∈F ′
j

Yiwi +
∑

i∈G j\F ′
j

Yiwi =
∑

i∈G j

Yiwi .

Recall that each center j ∈ C′ is accounted for either one vertex i1( j)ofG ifY (G j ) < 1
or two vertices i1( j), i2( j) of G if Y (G j ) = 1). Thus, the total weight of all vertices
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in G is at most

2
∑

j∈C′

∑

i∈G j

Yiwi ≤ 2B,

where the last inequality follows because Y ∈ P . It means that eitherW1 orW2 is less
than or equal to B, and Algorithm 1 always returns a feasible solution.
Cost analysis
We show that the expected cost of j can be bounded in terms of γ j , Uj , and y. For
j ∈ C, let j ′( j) denote the cluster center of j and define j ′( j) = j if j ∈ C′. Recall
that in the instance I ′ = (B,F , C′, c), each client j ∈ C′ has demand d j = |Mj |.
Notice that

OPT f =
∑

j∈C
C j ≥

∑

j∈C
C j ′( j) =

∑

j∈C′
d jC j

=
∑

j∈C′
d j

⎛

⎝
∑

i∈G j

xi j ci j +
∑

i∈F\G j

xi j ci j

⎞

⎠

≥
∑

j∈C′
d j

⎛

⎝
∑

i∈G j

yi ci j + γ j (1 − y(G j ))

⎞

⎠ . (1)

The last inequality follows because, for any center j ,
∑

i∈F xi j = 1, and γ j is the
radius of the ball G j by definition. Now, for v ∈ [0, 1]F , we define

Bj (v) := d j

⎛

⎝
∑

i∈G j

vi ci j + γ j (1 − v(G j ))

⎞

⎠ .

Let K (v) = ∑
j∈C′ Bj (v). Recall that E[Yi ] = yi for all i ∈ F . By (1) and linearity

of expectation, we have

E[K (Y )] = K (y) ≤ OPT f .

Also note that

∑

j∈C′
E[Bj (Y )] =

∑

j∈C′
Bj (y) ≤

∑

j∈C′
d jC j ≤

∑

j∈C′

∑

k∈Mj

Ck =
∑

j∈C
C j .

Next, we will analyze cost I ′(S). To this end, we shall bound the connection cost
of a client j in terms of Bj (Y ). Algorithm 1 guarantees that, for each j ∈ C′, either
i1( j) or i2( j) is in S. By construction, ci1( j) j ≤ ci2( j) j . In the worst case, we may
need to connect j to i2( j), and hence cost ( j) ≤ d j ci2( j) j for all client j .

Fix any client j with Y (G j ) < 1. Recall that γ j = mini /∈Fj ci j and σ( j) is
the closest client to j in C′. Suppose γ j = ci ′ j where i ′ ∈ Fj ′ for some j ′ ∈ C′.

123



Algorithmica (2018) 80:1093–1114 1105

By definition, ci ′ j ′ ≤ γ j . Then c jσ( j) ≤ c j j ′ ≤ ci ′ j + ci ′ j ′ ≤ 2γ j . Also, since
i1(σ ( j)) ∈ F ′

σ( j), we have that cσ( j)i1(σ ( j)) ≤ 2Cσ( j). In addition, recall that
4max{C j ,Cσ( j)} ≤ c jσ( j) ≤ 2γ j . Thus, 2Cσ( j) ≤ γ j . Then the following bound
holds when Y (G j ) < 1:

cost ( j) ≤ d j ci2( j) j
≤ d j (c jσ( j) + cσ( j)i2( j))

= d j (c jσ( j) + cσ( j)i1(σ ( j)))

≤ d j (2γ j + 2Cσ( j))

≤ 3d jγ j .

Consider the following cases.

– If j 	= s, then either Y (G j ) = 1 or Y (G j ) = 1/2.
– Case Y (G j ) = 1: then Yi1( j) = Yi2( j) = 1/2, we have

cost ( j) ≤ d j ci2( j) j ≤ 2d j

∑

i∈G j

Yi ci j = 2Bj (Y ).

– Case Y (G j ) = 1/2: we have

cost ( j) ≤ 3d jγ j = 6d jγ j (1 − Y (G j )) ≤ 6Bj (Y ).

– If j = s, we cannot bound the cost in terms of Bj (Y ). Instead, we shall use
Kumar’s bound.
– Case Y (G j ) = 1: i2( j) ∈ G j . Recall that Uj is the upper-bound on the
connection cost of j . OurLPconstraints guarantee that xi j = 0 for all ci j > Uj .
Since Yi2( j) > 0, we also have yi2( j) > 0 or xi2( j) j > 0, which implies that
ci2( j) j ≤ Uj . Thus,

cost ( j) ≤ d j ci2( j) j ≤ d jU j .

– CaseY (G j ) < 1: then theremust exists some facility i /∈ G j such that xi j > 0.
Since γ j is the radius of G j , we have γ j ≤ ci j ≤ Uj ; and hence,

cost ( j) ≤ 3d jγ j ≤ 3d jU j .

In either cases, applying the improved Kumar’s bound to the cluster Ms where
cks ≤ 4Ck for all k ∈ Ms , we get

cost ( j) ≤ 3d jU j

≤ 3εOPTI + 3 · 4
δ

∑

k∈Ms

Ck

≤ 3εOPTI + 12

δ
OPT f .
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Now, we will bound the facility-opening cost. Notice that, for all facilities i ∈ C1∪C2
but at most two facilities i1(s) and i2(s), we have Yi ∈ {1/2, 1}.

Then,

E[ cost I ′(S)] ≤
∑

j∈C′: j 	=s

6E[Bj (Y )] + 3εOPTI + (12/δ)OPT f

= 6
∑

j∈C′
Bj (y) + 3εOPTI + (12/δ)OPT f

≤ 6K (y) + 3εOPTI + (12/δ)OPT f

≤ (6 + 12/δ)OPT f + 3εOPTI .

Therefore,

E[ cost I(S)] ≤ E[ cost I ′(S)] + 4OPT f ≤ (10 + 12/δ)OPT f + 3εOPTI .

Finally, applying Theorem 1 to S,

E[ cost I0(S)] ≤ max

{
1 + δ

1 − δ
, 10 + 12/δ + 3ε

}

OPTI0 . 
�

2.6 A (17.46 + ε)-Approximation Algorithm via Conditioning on the Fractional
Cluster Center

Recall that the improved Kumar’s bound for the fractional client s is

|Ms |Us ≤ εOPTI + (4/δ)
∑

j∈Ms

C j .

In Theorem 2, we upper-bound the term
∑

j∈Ms
C j by OPT f . However, if this is tight,

then the fractional cost of all other clients not in Ms must be zero and we should get
an improved ratio.

To formalize this idea, let u ∈ C′ be the client such that
∑

j∈Mu
C j is maximum.

Let α ∈ [0, 1] such that
∑

j∈Mu
C j = αOPT f , then

|Ms |Us ≤ εOPTI + (4/δ)αOPT f . (2)

The following bound follows immediately by replacing the Kumar’s bound by (2) in
the proof of Theorem 2.

E[ cost I(S)] ≤ (10 + 12α/δ + 3ε)OPTI . (3)

In fact, this bound is only tightwhen u happens to be the fractional client after sampling
Y . If u is not “fractional”, the second term in the RHS of (2) should be at most
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(1 − α)OPT f . Indeed, if u is rarely a fractional client, we should obtain a strictly
better bound. To this end, let E be the event that u is the fractional client after the
sampling phase. Let p = Pr[E]. We get the following lemma.

Lemma 8 Algorithm 2 returns a solution S with

E[ cost I(S)] ≤ (10 + min{12α/δ, (12/δ)(pα + (1 − p)(1 − α))} + 3ε)OPTI .

Proof We reuse the notations and the connection cost analysis in the proof of Theorem
2. Recall that E is the event that u is the fractional client. We have

E[ cost I ′(S)|E] ≤ 6
∑

j∈C′: j 	=u

E[Bj (Y )|E] + 3εOPTI + (12α/δ)OPT f .

If Ē happens, assume s 	= u is the fractional one and let Ē(s) denote this event. Then,

E[ cost I ′(S)|Ē(s)] ≤ 6
∑

j∈C′: j 	=s

E[Bj (Y )|Ē(s)] + 3εOPTI + (12/δ)(1 − α)OPT f

≤ 6
∑

j∈C′
E[Bj (Y )|Ē(s)] + 3εOPTI + (12/δ)(1 − α)OPT f

Therefore,

E[ cost I ′(S)|Ē] ≤ 6
∑

j∈C′
E[Bj (Y )|Ē] + 3εOPTI + (12/δ)(1 − α)OPT f .

Also, (1 − p)E[Bu(Y )|Ē] ≤ E[Bu(Y )] because Bu(Y ) is always non-negative. The
total expected cost can be bounded as follows.

E[ cost I ′(S)] = p E[costI ′(S)|E] + (1 − p)E[costI ′(S)|Ē]
≤ 6

∑

j∈C′: j 	=u

E[Bj (Y )] + 3εOPTI

+ (12/δ)(pα + (1 − p)(1 − α))OPT f + 6(1 − p)E[Bu(Y )|Ē]
≤ 6

∑

j∈C′
E[Bj (Y )] + 3εOPTI + (12/δ)(pα + (1 − p)(1 − α))OPT f .

≤ 6K (y) + (3ε + (12/δ)(pα + (1 − p)(1 − α)))OPTI
≤ (6 + 3ε + (12/δ)(pα + (1 − p)(1 − α)))OPTI . (4)

The lemma follows due to (3), (4), and the fact that E[ cost I(S)] ≤ E[ cost I ′(S)] +
4OPT f . 
�

Finally, conditioning on the event E , we are able to combine certain terms and get
the following improved bound.
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Lemma 9 Algorithm 2 returns a solution S with

E[ cost I(S)|E] ≤ (max{6/p, 12/δ} + 4 + 3ε)OPTI .

Proof Again, since Bj (Y ) ≥ 0 for all j ∈ C′ and all Y , we have E[Bj (Y )|E] ≤
E[Bj (Y )]/p. Also, recall that E[Bj (Y )] = Bj (y) ≤ d jC j ≤ ∑

k∈Mj
Ck for any

j ∈ C′. Therefore,

E[ cost I ′(S)|E] ≤ 6
∑

j∈C′: j 	=u

E[Bj (Y )|E] + 3εOPTI + (12/δ)
∑

j∈Mu

C j

≤ (6/p)
∑

j∈C′: j 	=u

E[Bj (Y )] + 3εOPTI + (12/δ)
∑

j∈Mu

C j

≤ (6/p)
∑

j∈C: j /∈Mu

C j + 3εOPTI + (12/δ)
∑

j∈Mu

C j

≤ max{6/p, 12/δ}
∑

j∈C
C j + 3εOPTI

≤ max{6/p, 12/δ}OPT f + 3εOPTI
≤ (max{6/p, 12/δ} + 3ε)OPTI .

The lemma follows since E[ cost I(S)|E] ≤ E[ cost I ′(S)|E] + 4OPT f . 
�
Now we have all the required ingredients to get an improved approximation ratio.

Algorithm 3 is a derandomized version of Algorithm 2.

Algorithm 3 DeterministicAlgorithm(δ, ε, I0)
1: Generate O(n2/ε) pairs (I,F ′) using the algorithm in the proof of Lemma 3.
2: S ← ∅
3: for each pair (I,F ′) do
4: Let (x, y) be the optimal solution of the modified LP relaxation in Section 2.3.
5: Apply the filtering algorithm to get I′.
6: Use F ,C′ to define the polytope P .
7: Decompose y into a convex combination of extreme points y(1), y(2), . . . , y(t) of P .
8: for each Y ∈ {y(1), y(2), . . . , y(t)} do
9: Let S ′ ←Round(Y )
10: If S ′ is feasible and its cost is smaller than the cost of S then S ← S ′.
11: return S

Theorem 3 Algorithm 3 returns a feasible solution S where

cost I0(S) ≤ (17.46 + 3ε)OPTI0 ,

when setting δ = 0.891647.
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Proof Again, suppose I is a sparse instance obtained from I0. Recall that p = Pr[E]
is the probability that u, the cluster center with maximum fractional cost

∑
j∈Mu

C j = αOPT f , is fractional. Consider the following cases:

– Case p ≤ 1/2: By Lemma 8 and the fact that Algorithm 3 always returns a solution
S from the same distribution with minimum cost, we have

cost I(S) ≤ (10 + min{12α/δ, (12/δ)(pα + (1 − p)(1 − α))} + 3ε)OPTI .

By Theorem 1, the approximation ratio is at most

max

{
1 + δ

1 − δ
, 10 + 3ε + min{12α/δ, (12/δ)(pα + (1 − p)(1 − α))}

}

.

– If α ≤ 1/2, the ratio is at most max
{
1+δ
1−δ

, 10 + 3ε + 6/δ
}

.

– If α ≥ 1/2, we have

(12/δ)(pα + (1 − p)(1 − α)) = (12/δ)(p(2α − 1) − α + 1) ≤ 6/δ.

Again, the ratio is at most max
{
1+δ
1−δ

, 10 + 3ε + 6/δ
}

.

– Case p ≥ 1/2: Observe that the event E does happen for some point in the for
loop at lines 8, 9, and 10. By Lemma 9 and the fact that 1+ 2/p = 3 < 12/δ, we
have

cost I(S) ≤ (max{6/p, 12/δ} + 4 + 3ε)OPTI = (12/δ + 4 + 3ε)OPTI .

By Theorem 1, the approximation ratio is bounded by max
{
1+δ
1−δ

, 12
δ

+ 3ε + 4
}

.

In all cases, the approximation ratio is at most

max

{
1 + δ

1 − δ
, 12/δ + 3ε + 4, 10 + 3ε + 6/δ

}

≤ 17.4582 + 3ε,

when δ = 0.89167. 
�
Note that in [10], Swamy considered a slightly more general version of KM where

each facility also has an opening cost. It can be shown that Theorem 3 also extends to
this variant.

3 A Bi-factor 3.05-Approximation Algorithm for Knapsack Median

In this section, we develop a bi-factor approximation algorithm for KM that outputs a
pseudo-solution of cost at most 3.05OPTI and of weight bounded by (1 + ε)B. This
is a substantial improvement upon the previous comparable result, which achieved
a factor of 16 + ε and violated the budget additively by the largest weight wmax of
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a facility. It is not hard to observe that one can also use Swamy’s algorithm [10] to
obtain an 8-approximation that opens a constant number of extra facilities (exceeding
the budget B). Our algorithmworks for the original problem formulation of KMwhere
all facility costs are zero. Our algorithm is inspired by a recent algorithm of Li and
Svensson [8] for the k-median problem, which beat the long standing best bound of
3+ε. The overall approach consists in computing a so-called bi-point solution, which
is a convex combination aF1 + bF2 of two integral pseudo solutions F1 and F2 for
appropriate factors a, b ≥ 0 with a + b = 1, and then rounding this bi-point solution
to an integral one.

Dependingon thevalueofa, Li andSvensson apply three different bi-point rounding
procedures. We extend two of them to the case of KM. The rounding procedures of
Li and Svensson have the inherent property of opening k + c facilities where c is a
constant. Li and Svensson find a way to preprocess the instance such that any pseudo
approximation algorithm for k-median that opens k + c facilities can be turned into a
(proper) approximation algorithm by paying only an additional ε in the approximation
ratio. We did not find a way to prove a similar result also for KM and therefore our
algorithms violate the facility budget by a factor of 1 + ε.

3.1 Pruning the Instance

The bi-factor approximation algorithm that wewill describe in Sect. 3.2 has the follow-
ing property. It outputs a (possibly infeasible) pseudo-solution of cost at most αOPTI
such that the budget B is respectedwhenwe remove the two heaviest facilities from this
solution. This can be combined with a simple reduction to the case where the weight
of any facility is at most εB. This ensures that our approximate solution violates the
budget by a factor at most 1 + 2ε while maintaining the approximation factor α.

Lemma 10 Let I = (B,F , C, c, w) be any KM instance. Assume there exists an
algorithm A that computes for instance I a solution that consists of a feasible solution
and two additional facilities, and that has cost at most αOPTI . Then there exists for
any ε > 0 a bi-factor approximation algorithm A′ which computes a solution of weight
(1 + ε)B and of cost at most αOPTI .

Proof Let I = (B,F , C, c, w) be an instance of knapsack median, let Fε ⊆ F be the
set of facilities whose weight exceeds εB and let S be some fixed optimum solution.
Note that any feasible solution can have no more than 1/ε many facilities in Fε .

This allows us to guess the set Sε := S ∩ Fε of “heavy” facilities in the optimum
solutionS. To this endwe enumerate all O( 1

ε
|F |1/ε)many subsets ofFε of cardinality

at most 1/ε. At some iteration, we will consider precisely the set Sε . We modify the
instance as follows. The budget is adjusted to B ′ := B − w(Sε). The weight of each
facility in Sε is set to zero. The facilities in Fε \ Sε are removed from the instance.
Let I ′ = (B ′,F \ (Fε \ Sε), C, c, w′) be the modified instance. Since S is a feasible
solution to I ′ it follows that OPTI ′ ≤ OPTI . Therefore, the algorithm A from the
statement outputs a solution S ′ whose cost is at most αOPTI . If S ′ ⊆ Sε we are done
since then S ′ is already feasible solution under the original weight w. Otherwise, let
f1, f2 be the two heaviest facilities of S ′ \ Sε where we set f2 = f1 if there is only
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one such facility. By the above-mentioned property of our algorithm, we have that
w′(S ′ \ { f1, f2}) ≤ B ′ and thus w(S ′ \ { f1, f2}) ≤ B. Since f1, f2 /∈ Sε we have that
w( f1) and w( f2) are bounded by εB. Hence the total weight of solution S ′ under the
original weight function is w(S ′) ≤ (1 + 2ε)B. 
�

3.2 Computing and Rounding a Bi-point Solution

Extending a similar result for the k-median [11], we can compute a so-called bi-point
solution, which is a convex combination of two integral pseudo-solutions.

Theorem 4 We can compute in polynomial time two sets F1 and F2 of facilities and
factors a, b ≥ 0 such that a+b = 1,w(F1) ≤ B ≤ w(F2), a ·w(F1)+b·w(F2) ≤ B,
and a · costI(F1) + b · costI(F2) ≤ 2 · OPTI .
Proof We use the idea of Lagrangean relaxation to reduce the Knapsack median
problem to the uncapacitated facility location problem. We would like to get rid of
problematic constraint

∑
i∈F wi yi ≤ B. Its violationwill be penalized in the objective

function by λ(
∑

i∈F wi yi − B), for some parameter λ ≥ 0. This penalty will favors
solutions that obey the constraint. Our new linear program is then

min
∑

i∈F , j∈C
ci j xi j + λ

∑

i∈F
wi yi − λB

s.t.
∑

i∈F
xi j = 1 ∀ j ∈ C

xi j ≤ yi ∀i ∈ F , j ∈ C
xi, j , yi ≥ 0 ∀i ∈ F , j ∈ C

This LP gives a lower bound on OPT f as each feasible solution to the relaxation
of the knapsack LP is also a feasible solution to the above LP of no larger cost. In
the above LP the term −λB in the objective function is a constant. Therefore, this
LP can be interpreted as a relaxation of the uncapacitated facility location problem
where each facility has i has an opening cost λwi . Note that increasing the parameter
λ also increases the cost of the facilities and will therefore generally lead to optimum
solutions of smaller facility weight (with respect to w). The idea of the algorithm is
now to find two values λ1 and λ2 for parameter λ, and two approximate solutions F1
and F2 to the above facility location problem with these parameter settings such that
λ1 and λ2 are sufficiently close and such that w(F1) ≤ B ≤ w(F2). It can then be
shown that a convex combination of these two solutions, called bi-point solution, is a
good approximation to the knapsack median problem.

Williamson and Shmoys (Section 7.7, pp. 182–186 in [11]) prove an analogous
theorem for the k-median problem, which arises when we set wi = 1 for all facilities
i and B = k. We can extend this proof to the case of non-uniform weights in a
completely analogous manner. Moreover, instead of using the algorithm of Jain and
Vazirani [5] for facility location (which has approximation ratio 3), we use a greedy
algorithm of Jain et al. (Algorithm 2 in [4]) for facility location achieving a factor of 2.


�
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We will now give an algorithm which for a given Knapsack Median instance
I = (B,F , C, d, w) returns a pseudo-solution as in Lemma 10 with cost 3.05OPTI .

We use Theorem 4 to obtain a bi-point solution of cost 2 OPTI . We will convert
it into a pseudo-solution of cost 1.523 times bigger than the bi-point solution. Let
aF1 + bF2 be the bi-point solution where a + b = 1, w(F1) ≤ B < w(F2) and
aw(F1) + bw(F2) = B. For each client j ∈ C the closest elements in sets F1 and
F2 are denoted by i1( j) and i2( j), respectively. Moreover, let d1( j) = ci1( j) j and
d2( j) = ci2( j) j . Then the (fractional) connection cost of j in our bi-point solution is
ad1( j) + bd2( j). In a similar way let d1 = ∑

j∈C d1( j) and d2 = ∑
j∈C d2( j). Then

the bi-point solution has cost ad1 + bd2.
We consider two candidate solutions. In the first we just pick F1 which has cost

bounded by d1
ad1+bd2

≤ 1
a+brD

, where rD = d2
d1
. This, multiplied by 2, gives our

approximation factor.
To obtain the second candidate solutionwe use the concept of stars. For each facility

i ∈ F2 define π(i) to be the facility from set F1 which is closest to i . For a facility
i ∈ F1 define star Si with root i and leafs Li = {i ′ ∈ F2|π(i ′) = i}. Note that by the
definition of stars, we have that any client j with i2( j) ∈ Si has ci2( j)i ≤ ci2( j)i1( j) =
d2( j) + d1( j) and therefore c ji ≤ c ji2( j) + ci2( j)i ≤ 2d2( j) + d1( j).

The idea of the algorithm is to open for each star either its root or all of its leaves
so that in total the budget is respected. We formulate this subproblem by means of
an auxiliary LP. For any star Si let δ(Li ) = { j ∈ C | i2( j) ∈ Si }. Consider a
client j ∈ δ(Li ). If we open the root of Si the connection cost of j is bounded by
2d2( j)+d1( j), but if we open the leaf i2( j) ∈ Li we pay only d2( j) for connecting j .
Thus, we save in total an amount of

∑
j∈δ(Li )

d2( j) + d1( j) when we open all leaves
of Si in comparison to opening just the root i . This leads us to the following linear
programming relaxation where we introduce for each star Si a variable xi indicating
whether we open the leaves of this star (xi = 1) or its root

max
∑

i∈F1

∑

j∈δ(Li )

(d1( j) + d2( j))xi subject to

∑

i∈F1

(w(Si ) − wi )xi ≤ B − w(F1)

0 ≤ xi ≤ 1 ∀i ∈ F1 . (5)

Now observe that this is a knapsack LP. Therefore, any optimum extreme point
solution x to this LP has at most one fractional variable. Note that if we set xi = b for
all i ∈ F1 we obtain a feasible solution to the above LP. Therefore the objective value
of the above LP is lower bounded by b(d1 + d2). We now open for all stars Si with
integral xi either its root (xi = 0) or all of its leaves (xi = 1) according to the value
of xi . For the (single) star Si where xi is fractional we apply the following rounding
procedure.

We always open i , the root of Si . To round the leaf set Li , we set up another
auxiliary knapsack LP similar to LP (5). In this LP, each leaf i ′ ∈ Li has a variable
x̂i ′ indicating if the facility is open (x̂i ′ = 1) or not (x̂i ′ = 0). For each leaf i ′ ∈ Li let
gi ′ = ∑

j : i2( j)=i ′(d1( j) + d2( j)) be its contribution to LP (5). This gives rise to the
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following LP on the variables x̂i ′ for all i ′ ∈ Li . (The value xi is a constant now.)

max
∑

i ′∈Li

gi ′ x̂i ′ subject to

∑

i ′∈Li

wi ′ x̂i ′ ≤ xi · w(Li )

0 ≤ x̂i ′ ≤ 1 ∀i ′ ∈ Li .

Note that in the budget constraint of this LP we neglect the fact that the root is
opened unconditionally, which causes a slight violation of the total budget bound B.
Similar as for LP (5), we can compute an optimum extreme point solution x̂ which
has at most one fractional variable x̂i ′ and whose objective function value is lower
bounded by

∑
j∈δ(Li )

(d1( j) + d2( j))xi . We open all i ′ ∈ Li with x̂i ′ = 1 and also
the only fractional leaf. As a result, the overall set of opened facilities consists of a
feasible solution and two additional facilities (namely the root i and the fractional leaf
in Li ).

We will now analyze the cost of this solution. Both of the above knapsack LPs only
reduce the connection cost in comparison to the original bipoint solution (or equiva-
lently increase the saving with respect to the quantity d1 + 2d2), the total connection
cost of the solution can be upper bounded by d1+2d2−b(d1+d2) = (1+a)d2+ad1.

The cost increase of the second algorithm with respect to the bi-point solution is at
most

(1 + a)d2 + ad1
(1 − a)d2 + ad1

= (1 + a)rD + a

(1 − a)rD + a
,

We always choose the better of the solutions of the two algorithms described above.
Our approximation ratio is upper bounded by

max
rD≥0
a∈[0,1]

min

{
(1 + a)rD + a

(1 − a)rD + a
,

1

a + rD(1 − a)

}

≤ 1.523

This, multiplied by 2 gives our overall approximation ratio of 3.05.

Theorem 5 For any ε > 0, there is a bi-factor approximation algorithm for KM that
computes a solution of weight (1 + ε)B and has a cost 3.05OPTI .

Proof As argued above our algorithm computes a pseudo solution S of cost at most
3.05OPTI . Moreover, S consists of a feasible solution and two additional facilities.
Hence, Lemma 10 implies the theorem. 
�

4 Discussion

The proof of Theorem 3 implies that for every (ε, δ)-sparse instance I, there exists
a solution S such that cost I(S) ≤ (4 + 12/δ)OPT f + 3εOPTI . Therefore, the
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integrality gap of I is at most 4+12/δ
1−3ε . Unfortunately, our client-centric sparsification

process inflates the approximation factor to at least 1+δ
1−δ

, so we must choose some
δ < 1 which balances this factor with that of Algorithm 3. In contrast, the facility-
centric sparsification used in [8] incurs only a 1 + ε factor in cost. We leave it as a
open question whether the facility-centric version could also be used to get around the
integrality gap of KM.

Our bi-factor approximation algorithm achieves a substantially smaller approxima-
tion ratio at the expense of slightly violating the budget by opening two extra facilities.
We leave it as an open question, to obtain a pre- and postprocessing in the flavor of Li
and Svensson to turn this into an approximation algorithm. It seems even interesting
to turn any bi-factor approximation into an approximation algorithm by losing only
a constant factor in the approximation ratio. We also leave it as an open question to
extend the third bi-point rounding procedure of Li and Svensson to knapsack median,
which would give an improved result.
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