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Abstract The notion of differing-inputs obfuscation (diO) was introduced by Barak
et al. (CRYPTO, pp 1–18, 2001). It guarantees that, for any two circuits C0,C1 for
which it is difficult to come up with an input x on whichC0(x) �= C1(x), it should also
be difficult to distinguish the obfuscation ofC0 from that ofC1. This is a strengthening
of indistinguishability obfuscation, where the above is only guaranteed for circuits that
agree on all inputs. Two recentworks ofAnanth et al. (Differing-inputs obfuscation and
applications, http://eprint.iacr.org/, 2013) and Boyle et al. (Lindell, pp 52–73, 2014)
study the notion of diO in the setting where the attacker is also given some auxiliary
information related to the circuits, showing that this notion leads to many interesting
applications. In this work, we show that the existence of general-purpose diO with
general auxiliary input has a surprising consequence: it implies that a specific circuit
C∗ with specific auxiliary input aux∗ cannot be obfuscated in a way that hides some
specific information. In other words, under the conjecture that such special-purpose
obfuscation exists, we show that general-purpose diO cannot exist. This conjecture is
a falsifiable assumption which we do not know how to break for candidate obfuscation
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schemes.Wealso showsimilar implausibility results for extractablewitness encryption
with auxiliary input and for “output-only dependent” hardcore bits for general one-
way functions.

Keywords Obfuscation · Witness encryption

1 Introduction

The formal study of program obfuscation was initiated by Hada [16] and Barak et
al. [6,7]. Since then there have been many negative and, more recently, also positive
results on obfuscation. We briefly survey both directions.

1.1 Negative Results

Hada observed that a super-strong notion of obfuscation, requiring that the obfuscated
code does not leak anything beyond what can be learned given black-box oracle access
to the underlying function, cannot be met unless the obfuscated function is learnable.
Barak et al. define a slightly weaker (but still very strong) notion of “virtual-black-
box” (VBB) obfuscation, roughly requiring that the obfuscated circuit does not leak
any predicate of the obfuscated function beyond what can be learned given black-box
oracle access to that function. The main result of Barak et al. shows the impossibility
of VBB-obfuscation for general circuits. The impossibility result constructs specific
albeit “contrived” functions that cannot be VBB-obfuscated, but also shows that such
functions can be embedded into cryptosystems giving “contrived” constructions of
cryptosystems (signature schemes, encryption, pseudo-random functions) that cannot
be VBB-obfuscated. The main idea behind this result is to construct functions where
obfuscated code can be “fed” into the function as an input, causing it to output extra
information. Such counterexamples even exist in weak computational classes, (such as
any class that simultaneously contains NC0 and a PRF [2]), and therefore we cannot
even get general VBB obfuscation for such weak classes. However, this result still
leaves open the possibility thatmany specific functions andmost natural cryptosystems
can be VBB-obfuscated.

Thework ofGoldwasser andKalai [14] considers a notion of VBBobfuscationwith
auxiliary input and shows that no pseudo-random function (even natural ones) can be
VBB-obfuscated in the presence of arbitrary auxiliary input. Recent work extends
this result to weaker assumptions and more restricted forms of auxiliary input [3]. In
all these works, the impossibility result constructs some contrived auxiliary input. In
particular, in all these results, the auxiliary input is itself an obfuscated circuit. These
negative results leave open two interesting possibilities:

– Perhaps most “natural” functions and “standard-construction” cryptosystems can
beVBB-obfuscated in the presence ofmost “natural” auxiliary inputs, even though
there are “contrived” examples of functions and auxiliary inputs that cannot be
obfuscated.
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– Perhaps some general form of obfuscation, weaker than VBB, is possible for
general functions.

1.2 Positive Results

In the face of their impossibility result, Barak et al. proposed two weaker notions of
obfuscation that may be achievable for general functions: indistinguishability obfus-
cation and differing-inputs obfuscation. Indistinguishability obfuscation says that for
any pair of circuits C0,C1 that agree on all inputs C0(x) = C1(x), it should be hard
to distinguish the obfuscation of C0 from that of C1. The work of Garg et al. [12]
gave the first candidate for general-purpose indistinguishability obfuscation based on
multilinear maps, and several applications of this primitive. The work of Sahai and
Waters [22] showed how to use iO in applications and many works relying on iO have
appeared since then. Indistinguishability obfuscation is also called the “best possi-
ble” obfuscation since anything that any obfuscator can hide, an indistinguishability
obfuscator (with sufficient padding) is guaranteed to hide as well. Therefore, one can
conjecture that this obfuscator satisfies stronger properties.

The works of [8,10] also give constructions of obfuscators satisfying even the
stronger VBB property in the “generic multilinear map” model. This result is difficult
to interpret since we do have “non-generic” attacks given by the prior negative results.

Reconciling the positive and negative results suggests the following interpretation:
when it comes to general functionalities and general auxiliary input, one can cook-up
clever “contrived” counterexamples that allow for “non-generic” attacks, and therefore
one must settle for weak notions of obfuscation, like indistinguishability obfuscation.
On the other hand, when it comes to most specific functionalities with specific auxil-
iary input distributions, even strong notions of VBB obfuscation may be achievable.
In particular, if we fix a specific function and auxiliary input, unless there is some
“obvious” attack where the code of the function can be meaningfully used as an input
(either to the function itself or to some other function given by the auxiliary input) it
may be reasonable to assume that VBB obfuscation is possible in this specific case.

1.3 Differing-Inputs Obfuscation

Despite its usefulness in many recent applications, indistinguishability obfuscation is
often difficult to use as a general assumption. The work of Barak et al. also proposed
a stronger notion called differing-inputs obfuscation (diO). In particular, this notion
says that for any distribution on circuits (C0,C1), if it is hard to find an input x such
that C0(x) �= C1(x), then it should also be hard to distinguish the obfuscation of C0
from that of C1. The recent work of Ananth et al. [1] and Boyle et al. [4] extend this
notion to the setting of auxiliary input, where the attacker is given (C0,C1,aux) and,
if it is hard to use this information to find an input x on which C0(x) �= C1(x), then it
should also be hard to use this information to distinguish the obfuscation ofC0 andC1.
These works give several interesting applications of this notion, including the ability
to obfuscate Turing Machine without the cost of converting them into a circuit.
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1.4 Our Result

As our main result, we show that the existence of general-purpose differing-inputs
obfuscation (diO) with auxiliary-input leads to a surprising consequence: it would
show the impossibility of obfuscating a specific circuit C∗ with specific auxiliary
input aux∗ in a way that hides some specific information. In particular, we put forth a
“counter-conjecture” that such “special purpose” circuit-obfuscators exist and, under
this conjecture, general-purpose diO with auxiliary input does not exist. Moreover,
under the same conjecture, we also show that extractable witness encryption (with
auxiliary input) does not exist. We also consider a restricted scenario of “bounded-
length auxiliary input” where the length of the auxiliary input is bounded a-priori, and
the diO obfuscator is given the length bound. We show that a variant of our ‘special
purpose obfuscation” conjecture (using an obfuscator for TuringMachines rather than
circuits) rules this out as well. Lastly, in Appendix 7, we also show that this variant
of our conjecture rules out “output-only dependent” hardcore bits for general one-
way functions, where the value of the hardcore bit is completely determined by the
output of the function. Such hardcore bits were recently constructed using diO with
bounded-length auxiliary input by Bellare and Tessaro [11].

1.5 What to Believe?

Our “special-purpose obfuscation” conjecture is not known to be implied by differing-
inputs obfuscation itself, and hence we do not get unconditional impossibility results.
In particular, ourmain result leaves uswith the following twoopposing possibilities: (I)
general-purpose diO with auxiliary input exists, (II) our special-purpose obfuscation
assumption holds.We cannot objectively say which one of these is false. However, (II)
is a falsifiable assumption in the formal sense of [19], where an efficient challenger
can check if an attack is valid. Using the obfuscator of [12] (or [8,10]), we currently
do not know of any attacks on (II). In other words, the validity of (I) would imply
the existence of an efficient algorithm whose correctness would be easy to verify, but
we do not have any candidate for this algorithm. On the other hand, (I) itself is not
stated as a falsifiable assumption, and there is no direct way to verify an attack against
it via an efficient challenger. Indeed, we present an efficient attack that contradicts
the security of (I), but there is no direct way to check if our attack is “valid” since
doing so requires proving (II). Therefore, we view our result as presenting a significant
challenge to the plausibility of general-purpose diO with auxiliary input. See further
discussion on our conjecture in Sect. 4.

1.6 Consequences of Our Result

Assuming that our “special-purpose obfuscation” conjecture holds, we have ruled
out the existence of general-purpose diO with auxiliary input. However, it may still be
reasonable to assume that diO security and even VBB security with auxiliary input can
hold in concrete cases. Many of the applications of diO in the works [1,4] and follow-
up works remain plausible and only rely on diO security with some concrete auxiliary
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input, which is unlikely to contain our “counterexample”.1 Nevertheless, to avoid our
implausibility result, one would have to carefully pose a new diO assumption for the
specific auxiliary input required in each new application and convincingly argue that
this assumption is plausible even if the general one is not. Although this approach may
be a sound, it runs counter to our goal of constructing a wide variety of cryptosystems
from a few general (and plausible) assumptions.

1.7 Related Work

Our technique follows the approach of similar results [3,5,9,14], all of which use
one form of obfuscation to derive counterexamples for other forms of obfuscation
and/or various extractability assumptions. In particular, the results of [3,14] show that
existence of iO implies the impossibility of VBB obfuscation of natural functionalities
with (unnatural) auxiliary input, whereas [5,9] show that existence of iO/diO implies
impossibility of extractable functions and related extractability primitives.

1.8 Our Technique

The main idea of our technique is to create a contrived “auxiliary input” aux which
is itself an obfuscated circuit. In particular, aux allows the attacker to distinguish any
obfuscations of some carefully designed C0,C1, without gaining the ability to find an
input on which they differ. The “special purpose” assumption is needed to guarantee
that aux does not “leak” an input x on which C0(x) �= C1(x).

In more detail, the circuits Cb (b ∈ {0, 1}) have a verification key vk of a signature
scheme hard-coded in them. If they get an input x = (m, σ ) consisting of a valid
message/signature pair, they output the bit b, else they just both output 0. Finding
an input x on which C0(x) �= C1(x) requires finding a valid message/signature pair
(which is hard to do even given vk). We set the auxiliary input aux to be a “special-
purpose” obfuscation of a circuit C∗ that has the signing key sk hard-coded and is
defined as follows: given as input any circuit C with 1-bit output, it outputs C(m, σ )

wherem = H(C) is a collision-resistant hash ofC and σ is a signature ofm under sk.
It is easy to use (an obfuscation of)C∗ to distinguishC0 andC1 just by feeding them to
C∗.However, givenblack-box access toC∗,we show that it is impossible to recover any
message/signature pair and therefore any input x onwhichC0(x) �= C1(x). Intuitively,
each call to C∗ leaks one bit of information on a fresh message/signature pair, which
is not enough to recover any such pair in full. We therefore put forth the conjecture
that there exists a “special-purpose” method of obfuscatingC∗, that does not allow the
attacker to learn any message/signature pair. Under this special-purpose obfuscation
assumption, the auxiliary input aux allows us to distinguish any obfuscation ofC0,C1
but does not allow us to find any input x on which C0(x) �= C1(x).

1 The notable exceptions are “extractable/functional witness encryption” [4] and “output-only dependent
hardcore bits for any one-way function” [11] where the auxiliary input is external and is not fixed by the
construction. Our counterexamples show that these notions are “implausible” in their general form.
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1.9 Follow-Up Work

Following our work, the work of Ishai, Pandey and Sahai [17] proposes a relaxed
definition of diO called public-coin diO. This definition considers distributions on
circuits (C0,C1) that are generated using some random coins r , and such that it is
difficult to find an input x on which C0(x) �= C1(x) even given r . For such circuits, it
insists that the obfuscation of C0 and C1 is indistinguishable even given the coins r .
The notion of public-coin diO completely avoids our counter-example. In particular, it
prevents us from embedding some hidden information in the auxiliary input or in the
definition of the circuits C0,C1 since the adversary sees all the information needed
to generate these. The work of [17] uses this notion of public-coin diO to construct
succinct obfuscation and functional encryption schemes for Turing Machines.

2 Preliminaries and Definitions

2.1 Notation

We let λ denote the security parameter throughout the paper. We use the notation
C[prm] to denote a circuit that depends on a parameter prm. The parameter can be
an arbitrary string, and we think of prm as being “hard wired” in the description
of the corresponding circuit. The input to a circuit is specified inside parenthesis, so
C[prm](x) describes the computation of the circuitC[prm] (whose definition depends
on prm) on the input x .

2.2 Differing-Inputs Obfuscation

Our definition of differing-inputs obfuscation (diO) with auxiliary input follows that
of Ananth et al. [1], which is also equivalent to that of Boyle et al. [4]. First, we define
the notion of “differing-inputs” circuits.

Definition 1 A circuit family C with a sampler (C0,C1,aux) ← Sam(1λ) which
samples C0,C1 ∈ C is said to be a differing-inputs family if for all PPT attackers A
there is a negligible function ε such that:

Pr[C0(x) �= C1(x) : (C0,C1,aux) ← Sam(1λ), x ← A(1λ,C0,C1,aux)] ≤ ε(λ).

Definition 2 APPT algorithmO is a differing-inputs obfuscator (diO) for a differing-
inputs family C,Sam if the following holds:

– Correctness: For all λ ∈ N,C ∈ C and all inputs x , we have:

Pr[C ′(x) = C(x) | C ′ ← O(1λ,C)] = 1.
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– Security: For all PPT distinguishers D, there is a negligible function ε such that:

|Pr[D(1λ,O(1λ,C0),aux) = 1] − Pr[D(1λ,O(1λ,C1),aux) = 1]| ≤ ε(λ)

where (C0,C1,aux) ← Sam(1λ).

A PPT algorithmO is a general-purpose differing-inputs obfuscator if the above holds
for all differing-inputs families C,Sam.

The works of [1,4] put forth the conjecture that general-purpose diO exists, and
that the obfuscator of [12] is a good candidate.

2.3 Extractable Witness Encryption

Next we define the “extractable” variant of witness encryption following Goldwasser
et al. [15]. The notion of witness encryption was first defined and realized by Garg et
al. [13]. Goldwasser et al. [15] conjecture that the same construction can be assumed to
be extractable with auxiliary input. For simplicity, we assume that the message space
is 1 bit. Next we present these definitions formally (following [13,15], but making
the definitions even weaker by assuming the auxiliary input comes from an efficiently
sampleable distribution and allowing the extractor to depend on this distribution).

Definition 3 Awitness encryption scheme for anNP language L (with corresponding
witness relation R) consists of the following two polynomial-time algorithms:

Encryption. The algorithm Enc(1λ, x, b) takes as input a security parameter 1λ, an
unbounded-length string x , and a message b ∈ {0, 1} and outputs a ciphertext c.
Decryption. The algorithm Dec(c, w) takes as input a ciphertext c and an
unbounded-length string w, and outputs a message b or the symbol ⊥.

These algorithms satisfy the following two conditions:

– Correctness. For any security parameter λ, for any b ∈ {0, 1}, and for any x ∈ L
such that R(x, w) holds, we have that

Pr
[
Dec

(
Enc(1λ, x, b), w

) = b
] = 1.

– Extractable Security. For any PPT adversary A, polynomial-time sampler
(x,aux) ← Sam(1λ) and for any polynomial q(·), there exists a PPT extrac-
tor E and a polynomial p(·), such that:

Pr

[
A(1λ, x, c,aux) = b

∣∣∣
∣
b ← {0, 1}, (x,aux) ← Sam(1λ),

c ← Enc(1λ, x, b)

]
≥ 1

2
+ 1

q(λ)

⇒ Pr[E(1λ, x,aux)=w s.t. (x, w) ∈ RL : (x,aux) ← Sam(1λ)]≥ 1

p(λ)
.
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3 The Counterexample to DiO and the Counter-Conjecture

We construct a family (C,Sam) which we show to be unobfuscatable with respect to
differing-inputs obfuscation.However, to show that this family (C,Sam) is a differing-
inputs family, we will in turn need to rely on a new “special purpose obfuscation”
conjecture.

LetS = (KeyGen,Sig,Ver) be a signature schemewith signature size �sig(λ) and
adeterministic signing algorithm.2 LetH = {Hλ}be a collision-resistant hash function
(CRHF) family with output size �hash(λ). Define the circuit family C consisting of
circuits C[b, vk] ∈ C defined as follows:

C[b, vk](m, σ ) // Hard-coded values: b ∈ {0, 1}, vk verification key
// Input: m ∈ {0, 1}�hash(λ), σ ∈ {0, 1}�sig(λ)

– Check Vervk(m, σ ) = 1. If not output 0 else output b.

Let �circ(λ) be the maximal size of the circuit C[b, vk] when b ∈ {0, 1} and
(sk, vk) ← KeyGen(1λ).

Our counterexample to diO will consist of setting C0 = C[0, vk] and C1 =
C[1, vk]. Finding an input on which C0(x) �= C1(x) is equivalent to finding any
valid message/signature pair x = (m, σ ) which is hard given only the description of
C0,C1 (which includes vk). However, we will provide an additional auxiliary input
aux which makes it easy to distinguish any (bounded size) obfuscation of C0 from
that of C1. We will need to argue that aux does not leak any valid message/signature
pair, which will require a new assumption.

Let �∗ = �∗(λ) be a length parameter (which will later be set to correspond to the
size of a candidate obfuscation of the circuits C[b, vk]). Define the circuit family C
consisting of circuits C∗[H, sk] ∈ C with input-length �∗ and 1-bit output as follows:

C∗[H, sk](C) // Hard-coded values: H ∈ H, sk signing key
// Input: C : a circuit of size |C | = �∗ with 1-bit output.

– Compute m = H(C), σ = Sigsk(m).
– Output the bit C(m, σ ).

Let spO be a “special purpose” obfuscator that satisfies correctness and whose
security properties we will define shortly. We define the circuit sampler Sam�∗(1λ),
parameterized by some polynomial �∗(·), as follows:
– Sample (sk, vk) ← KeyGen(1λ) and H ← Hλ.
– Set C0 = C[0, vk],C1 = C[1, vk] ∈ C.
– Set C∗ = C∗[H, sk] ∈ C to be a circuit with input-length �∗ = �∗(λ) and set
aux ← spO(1λ,C∗).

– Output C0,C1,aux.

It is easy to see that the circuit family C,Sam�∗ is unobfuscatable since aux allows
one to easily distinguish any obfuscations of C0 and C1 that have circuit-size at most

2 Any signature scheme can be converted into one with a deterministic signing algorithm by replacing the
random coins with a PRF of the message.
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�∗. For any candidate obfuscatorO, we can choose �∗ sufficiently large to ensure that
O fails.

Lemma 1 Fix any signature/hash schemes S, H which define the class of circuits C,
and let spO be any “special-purpose obfuscator” satisfying correctness. Then for any
candidate diO obfuscatorO there is a polynomial �∗(λ) such that the obfuscations of
the family (C,Sam�∗) underO are easily distinguishable: there is a polynomial-time
distinguisher D such that

|Pr[D(1λ,O(1λ,C0),aux) = 1] − Pr[D(1λ,O(1λ,C1),aux) = 1]| = 1

where (C0,C1,aux) ← Sam�∗(1λ).

Proof Let �circ(λ) be themaximal size of the circuitC[b, vk] ∈ C when b ∈ {0, 1} and
(sk, vk) ← KeyGen(1λ). Set �∗(λ) be the maximal size of O(1λ,C) for any C ∈ C
of size |C | = �circ(λ). The distinguisher D(1λ, C̃,aux) simply interprets aux as a
circuit and outputs aux(C̃). It is easy to see that, if C̃ = O(1λ,Cb), then aux(C̃) = b
and therefore the distinguishing advantage is 1. Also the size of C̃ is at most �∗(λ)

and hence it can be used as an input to aux.

��
To get a counterexample to the existence of general-purpose differing-inputs obfus-

cation, we need to show that, for some signature scheme S, CRHF H and obfuscator
spO, the family (C,Sam�∗) is a differing-inputs family for any �∗. Notice that finding
an input x = (m, σ ) on which C0(x) �= C1(x) is the same as finding a valid mes-
sage/signature pair. Therefore, the above reduces to the following conjecture which
says that, given the obfuscation of the “breaker” circuit C∗ it is difficult to produce
any valid message/signature pair.

Conjecture 1 (Special-Purpose Obfuscation) There exists a signature scheme S,
CRHF H and an obfuscator spO such that the following hods. For any PPT attacker
A and any polynomial �∗(·) there is a negligible ε(λ) such that:

Pr

⎡

⎣Vervk(m, σ ) = 1

∣∣∣∣∣
∣

(sk, vk) ← KeyGen(1λ), H ← Hλ

C̃ ← spO(1λ,C∗[H, sk])
(m, σ ) ← A(1λ, vk, C̃)

⎤

⎦ ≤ ε(λ)

where we take the circuit C∗[H, sk] ∈ C with input-size �∗(λ) as defined above.

If we fix some specific choice of schemes S, H, spO (e.g., a standard construction
of signatures and hash functions and the obfuscation scheme of [12]) then the above
becomes a falsifiable assumption. We can efficiently test if an attacker A breaks the
scheme. We now show that, under the above conjecture, the circuit family (C,Sam)

defined above is a differing-inputs family.

Lemma 2 For any signature scheme S, CRHF H and an obfuscator spO satisfying
Conjecture 1, for any polynomial �∗, the circuit family (C,Sam�∗) defined above is a
differing-inputs family.
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Proof Assume there is a PPT attacker B such that:

Pr[C0(x) �=C1(x) : (C0,C1,aux)←Sam�∗(1λ), x←B(1λ,C0,C1,aux)] = ε(λ).

Since C0(x) �= C1(x) means that x = (m, σ ) such that Vervk(m, σ ) = 1, we get

Pr[Vervk(m, σ )=1 :(C0,C1,aux)←Sam�∗(1λ), x ← B(1λ,C0,C1,aux)] = ε(λ).

Define the attacker A(1λ, vk, C̃) that constructs C0 = C[0, vk],C1 = C[1, vk],
aux = C̃ and calls B(1λ,C0,C1,aux). Then

Pr

[
Vervk(m, σ ) = 1

∣
∣∣∣

(sk, vk) ← KeyGen(1λ), H ← Hλ

(m, σ ) ← A(1λ, vk, spO(1λ,C∗[H, sk]))
]

= ε(λ)

where the input size of C∗[H, sk] is �∗(λ). Therefore, by the conjecture, we must
have ε(λ) is negligible, which means that the (C,Sam�∗) is differing-inputs family.

��
Combining Lemma 2 and Lemma 1 we get the main theorem.

Theorem 1 Under the special-purpose obfuscation conjecture (Conjecture 1),
general-purpose differing-inputs obfuscators do not exist.

4 Substantiating the Special-Purpose Obfuscation Conjecture

Wenowattempt to substantiate the special-purpose obfuscation conjecture (Conjecture
1). As a first step, we show that black-box access to the circuit C∗[H, sk] cannot be
used to leak a message/signature pair. Intuitively, each query C allows the attacker to
learn 1 bit of leakage C(m, σ ) on a signature of the message m = H(C). Assuming
the attacker cannot break collision-resistance, he cannot get more than 1 bit of leakage
on any single signature. Generically, seeing 1 bit of leakage on signatures of many
different messages does not allow an attacker to come up with any valid message,
signature pair. We formalize this via the following Lemma.

Lemma 3 For any signature scheme S and CRHF H, and parameter �∗(λ), for any
PPT attacker A there is a negligible ε(·) such that:

Pr

[
Vervk(m, σ ) = 1

∣∣∣
∣

(sk, vk) ← KeyGen(1λ), H ← Hλ

(m, σ ) ← AC∗[H,sk](·)(1λ, vk, H)

]
≤ ε(λ)

where C∗[H, sk] ∈ C is defined above and has input size �∗(λ).

Proof Fix some signature scheme S and CRHFH and PPT attackerA. Let q = q(λ)

be an upper bound on the number of queries that A makes to C∗ and let ε(λ) denote
the success probability of A. We define an attacker B on the EU-CMA (existential
unforgeability against chosen message attack) signature security of S as follows:
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– B guesses an index i ← [q] and a bit b ← {0, 1} uniformly at random.
– B gets vk from its challenger and samples H ← Hλ. It runs A(1λ, vk, H).

– Whenever A makes any query other than the i th query to C∗ with some input
C , the attacker B computes m = H(C) uses its signing oracle to compute
σ = Sigsk(m). It then output C(m, σ ).

– When A makes the i th query Ci to C∗, the attacker B simply responds with
the bit b it chose randomly.

– At the end B outputs the value (m, σ ) that A outputs.

Define the events:

– WinB is the event that B wins the EU-CMA signature game.
– Ver is the event that Vervk(m, σ ) = 1.
– Col is the event that, during the course of the game, the attacker A submits two
different circuits C,C ′ to its oracle such that H(C) = H(C ′).

– Good1 is the event that, if A outputs (m, σ ), then no query C j to C∗ resulted in
H(C j ) = m other than possibly the i th query.

– Good2 is the event that, if the i th query is Ci , and we set m = H(Ci ), σ =
Sigsk(m), then Ci (m, σ ) = b.

Then we have

Pr[WinB] ≥ Pr[Ver ∧ Good1] ≥ Pr[Ver ∧ Good1 ∧ Good2 ∧ ¬Col]
≥ Pr[Good1 | Ver ∧ Good2 ∧ ¬Col]Pr[Ver ∧ Good2 ∧ ¬Col]
≥ 1

q
Pr[Ver ∧ Good2 ∧ ¬Col] (1)

≥ 1

q
Pr[Good2]Pr[Ver | Good2] − Pr[Col]

≥ 1

2q
ε(λ) − δcol(λ) (2)

where δcol(λ) := Pr[Col] is negligible by the security of the CRHF. Equation (1)
follows since, even if we condition on ¬Col and all other randomness in the game
other than the choice of i , the attackerAmade atmost 1 queryC j such that H(C j ) = m
and thereforewith probability 1/q over only the choice of i wehave i = j . Equation (2)
follows since the probability ofGood2 is 1

2 only over the choice of b, and conditioned
on Good2, the attacker B perfectly simulates the obfuscation game for A.

Since, by the security of the signature scheme,wemust have Pr[WinB] is negligible,
this must also mean that ε(λ) is negligible, which concludes the proof. ��
4.1 Further Informal Discussion

We stress that to rule out general-purpose diO we do not need the conjecture above to
hold for all hash functions and signatures. 3 Rather, it is enough that it holds for some
hash function and signature scheme (such as e.g., RSA PKCS #1 v1.5).

3 Indeed, we suspect that one should be able to come up with some “unnatural” signature and hash function
for which it does not hold (following similar counter-examples from [5,7,14]).
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Let’s consider attempts at attacking the conjecture, and give highly informal argu-
ments for why they seem to fail. To do so, let’s fix some “standard-construction” hash
function and signature scheme such as RSA PKCS #1 v1.5, in which case we are also
fixing the auxiliary information aux = vk. As mentioned, all of the prior obfuscation
impossibility results have the same general structure which, applied to our problem,
would require us to either: (i) use the obfuscated-code spO(C∗) to design a special
input on which C∗ outputs additional information [7], or (ii) interpret the auxiliary
information aux = vk as code which outputs some information when given spO(C∗)
as an input [3,14]. Since in our case vk is just the verification of a standard scheme
(e.g. RSA PKCS #1 v1.5), there does not seem to be much hope in approach (ii).
On the other hand, there do not seem to be any special inputs on which C∗ acts in
any “special way” so as to exploit approach (i). The fact that the input to C∗ is itself
interpreted as a circuit C and executed by C∗ should give us some pause. After all,
we can make C depend on spO(C∗). But such inputs would not be treated in any
kind of special way by C∗: they would still only allow the attacker to leak one bit of
information C(m, σ ) on an honestly generated message/signature pair.

Finally, we note that a recent result that relates iO to a limited form of diO has
no bearing on our counterexample: Boyle et al. [4] showed that differing-inputs
obfuscation is already implied by indistinguishability obfuscation, in the special case
where the two circuits C0,C1 only differ on polynomially many inputs. In our coun-
terexample, the circuits C0,C1 differ on all valid message/signature pairs where the
message-domain is super-polynomial. Therefore, we do not get any negative results
for indistinguishability obfuscation.

5 Bounded-Length Auxiliary Input

Our counterexample shows that, under our special-purpose obfuscation conjecture,
there is no general-purpose diO scheme that works with any auxiliary input. In par-
ticular, we constructed family (C0,C1,aux) where the definition of aux relies on
some parameter �∗ such that any obfuscations of C0 and C1 having size at most �∗ are
always distinguishable given aux. We can make the parameter �∗ arbitrary large at the
expense of making the auxiliary input aux correspondingly large. This leaves open
the possibility of a diO scheme that is secure for all auxiliary input of some arbitrary
but a-priori bounded size. We define this as follows:

Definition 4 We define a general-purpose diO obfuscator with bounded-length aux-
iliary input analogously to Definition1 but with the following changes:

– The syntax of the obfuscatorO(1λ, 1�aux (λ),C) now takes an additional parameter
�aux (λ).

– We require that for all polynomial �aux (λ) security holds for differing-inputs fam-
ilies (C,Sam) where the size of aux in (C0,C1,aux) ← Sam(1λ) is bounded
by �aux (λ).

Our previously described counterexample does not rule out this definition. In particular,
the auxiliary input aux in our counterexample is an obfuscated circuit that takes as
input an obfuscation of Cb. If the obfuscation of Cb can depend on (and exceed) the

123



Algorithmica (2017) 79:1353–1373 1365

size of aux, then this would not work. However, we can rule out this weaker notion
of diO for bounded-length auxiliary input if we additionally assume that we have a
special-purpose obfuscator spO which works directly on TuringMachines rather than
circuits. In particular, a TuringMachine special-purpose obfuscator spO(1λ, M) takes
as input a Turing Machine M and outputs an obfuscated Turing Machine M̃ where M̃
can be evaluated on arbitrary-length inputs and produces the same output as M .

The Counterexample. Fix a signature scheme S and hash function familyH as before,
and define the circuit family C consisting of circuits C[b, vk] as before. We define
the “breaker” Turing Machine M∗[H, sk] which has H and sk hard-coded in its
description analogously to the way we defined the “breaker” circuit C∗[H, sk], as
follows:

M∗[H, sk](C) // Hard-coded values: H ∈ Hλ, sk signing key
// Input: C circuit with 1-bit output and arbitrary size.

- Compute m = H(C), σ = Sigsk(m).
- Output C(m, σ ).

Notice that, unlike before, we no longer have any parameter �∗ that would fix the
maximal input length of the input circuit C given to M∗[H, sk].

Let spO be a Turing-Machine obfuscator that satisfies correctness. We define the
circuit sampler SamT M (1λ) as follows:

– Sample (sk, vk) ← KeyGen(1λ) and H ← Hλ.
– Set C0 = C[0, vk],C1 = C[1, vk] ∈ C.
– Set M∗ = M∗[H, sk] and aux ← spO(1λ, M∗).
– Output C0,C1,aux.

Conjecture 2 (Special-Purpose TM Obfuscation) There exists a signature scheme S,
CRHFH and a Turing Machine obfuscator spO such that the following hods: for any
PPT attacker A there is a negligible ε(λ) such that:

Pr

⎡

⎣Vervk(m, σ ) = 1

∣∣
∣∣∣∣

(sk, vk) ← KeyGen(1λ), H ← Hλ,

M̃ ← spO(1λ, M∗[H, sk]),
(m, σ ) ← A(1λ, vk, M̃)

⎤

⎦ ≤ ε(λ)

where the Turing Machine M∗[H, sk]is defined above.

Theorem 2 Under the special-purpose TM obfuscation conjecture (Conjecture 2),
there is no general-purpose diO obfuscators (for circuits) that has security for
bounded-length auxiliary input.

In particular, under the conjecture, the circuit family (C,SamT M ) defined above
is a fixed differing-inputs family with some fixed polynomial bound on the length of
the auxiliary input, yet there is no diO obfuscator for this particular family.

The proof of the above theorem is the same as that of Theorem 1.
Discussion.We note that candidate general-purpose iO and diO obfuscators for Turing
Machines were constructed by [1,4]. Although the security claims rely on general-
purpose (circuit) diO with auxiliary input, it seems reasonable to assume that these
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constructions are secure in special cases, and also that they satisfies stronger security
properties thanmerely iO and diO. In particular, using these candidate obfuscators, we
do not knowof any attacks onConjecture 2.Moreover, it is still a falsifiable assumption
once we fix some candidates S,H, spO. On the other hand, the Turing Machine
conjecture certainly seems stronger and more complex than the corresponding circuit
conjecture (Conjecture 1).

6 Extending Implausibility to Extractable Witness Encryption

In previous section we showed that a “special-purpose obfuscation” conjecture (Con-
jecture 1) can be used to rule out existence of a general-purpose differing-inputs
obfuscator. In this section we show that the same “special-purpose obfuscation” con-
jecture can also be used to rule out existence of extractable witness encryption. Note
that this is a stronger result as general-purpose differing-inputs obfuscation is known
to imply extractable witness encryption.

Theorem 3 Under the special-purpose obfuscation conjecture (Conjecture 1),
extractable witness encryption does not exist.

Proof We prove our theorem by giving an NP-relation R for which there does not
exist an extractable witness encryption scheme. In order to prove this we will need to
rely on our “special-purpose obfuscation” conjecture (Conjecture 1).

Let S = (KeyGen,Sig,Ver) be a signature scheme with a deterministic signing
algorithm. We define the NP-relation Rver so that (vk, (m, σ )) ∈ Rver if and only if
Vervk(m, σ ) = 1. Let (Enc,Dec) be a candidate extractable witness encryption for
this relation R. Given an string vk and a ciphertext c, letC[vk, c](w) be the circuit that
takes as input a witness w and computesDec(c, w). Let �∗(λ) be the size of C[vk, c].

We now define the same auxiliary input as in the previous section. Let H = {Hλ}
be a collision-resistant hash function (CRHF) family with output size �in(λ). Define
the circuit family C consisting of circuits C∗[H, sk] ∈ C defined as follows:

C∗[H, sk](C) // Hard-coded values: H ∈ Hλ, sk signing key
// Input: C circuit of size �∗(λ) with 1-bit output.

– Compute m = H(C), σ = Sigsk(m).
– Output C(m, σ ).

Let spO be a “special purpose” obfuscator whose properties defined in Conjecture 1.
We define the distribution samples Sam(1λ) as follows:

– Sample (sk, vk) ← KeyGen(1λ) and H ← Hλ.
– Set C∗ = C∗[H, sk] ∈ C and aux ← spO(C∗).
– Output vk,aux, where vk is the NP statement.

Now consider an experiment where we sample (vk,aux) ← Sam(1λ) and encrypt
c ← Enc(1λ, vk, b) where b ← {0, 1} and vk acts as an NP statement. We construct
an adversary A that can output b with probability 1. Our adversary A(1λ, vk, c,aux)
simply interprets aux as a circuit and outputs aux(C[vk, c]). It is easy to see that, if
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c = Enc(1λ, vk, b), then aux(C[vk, c]) = b and therefore the adversary outputs b
with probability 1.

On the other hand,we claim that no extractor E that can output validwitnesses given
(vk,aux), contradicting the extractability property of the witness encryption scheme.
Notice that finding a witness w = (m, σ ) for the statement consisting of a verification
key vk under the relation Rver is same as finding a valid message/signature pair given
just the “special purpose” obfuscation aux and vk (the proof of this is similar to the
proof of Lemma2). In other words, Conjecture 1 directly implies that for any PPT
candidate extractor E there is a negligible ε such that:

Pr[E(1λ, vk,aux)=(m, σ ) s.t. (vk, (m, σ )) ∈ Rver : (x,aux)←Sam(1λ)]≤ε(λ)

contradicting the extractability requirement of extractable witness encryption. This
completes our proof. ��
Bounded-Length Auxiliary Input.We could also define extractable witness encryption
with bounded-length auxiliary input, where the encryption/decryption procedures can
all depend on the size of the auxiliary input. This would be analogous to the def-
inition of diO with bounded-length auxiliary input. We can rule out this notion of
witness encryption with bounded-length auxiliary input under our special-purpose
Turing Machine obfuscation assumption (Conjecture 2) analogously to our results for
diO in Sect. 5.

7 Output-Only Dependent Hardcore Bits

In a recent work, Bellare, Stepanovs and Tessaro [11] show the existence of polyno-
mially many hardcore bits for any one-way function. In the case of injective one-way
functions, their construction relies on indistinguishability obfuscation. However, in
the case of arbitrary one-way functions, it relies on diO with auxiliary input. The
construction has a very interesting property which we call “output-only dependence”.
In particular, even if the one-way function f (x) is many-to-one, the hardcore bits
h(x) are completely determined by f (x); for any inputs x, x ′ such that f (x) = f (x ′)
we also get h(x) = h(x ′). This property is interesting even in the case of a single
hardcore bit, and does not hold for any of the known general constructions (such as
for the Goldreich-Levin bit).

Unfortunately, we show that our special-purpose obfuscation assumption (for
Turing Machines) also gives a counterexample to the security of the hardcore bit con-
struction of [11]. More generally, we show that there is a contrived one-way function
that does not have any output-only dependent hardcore bit. In more detail:

– Under the special-purpose obfuscation conjecture for circuits (Conjecture 1), we
construct a one-way function that does not have any output-only dependent hard-
core bits given auxiliary input.4

4 The result of Bellare, Stepanovs and Tessaro [11] does not consider auxiliary input.
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– Under the special-purpose obfuscation conjecture for Turing Machines (Conjec-
ture 2) we get the above result even without auxiliary input. In particular, we
construct a one-way function which does not have any output-only dependent
hardcore bits.

The formal definitions and statements follow.

7.1 Definitions

7.1.1 One-Way Function Families (with Auxiliary Input).

Aone-way function family consists of twopolynomial-timeprocedures (FKeyGen, f )
and an input-size n(·), with the following syntax: fk ← FKeyGen(1λ) is a randomized
algorithm that generates the function-key fk and ffk(x) is a deterministic algorithm
that evaluates the function with function-key fk and input x ∈ {0, 1}n(λ). We say
that (FKeyGen, f ) is a one-way function family if for all PPT attackers A there is a
negligible ε(·) such that

Pr

[
ffk(x

′) = y

∣
∣∣∣
fk ← FKeyGen(1λ), x ← {0, 1}n(λ)

y := ffk(x), x ′ ← A(1λ, fk, y)

]
≤ ε(λ).

We also define a one-way function family with auxiliary input. If (FKeyGen, f ) is
a one-way function family, then a compatible auxiliary input consists of a sampling
algorithm (fk,aux) ← FAuxGen(1λ) such that the distribution of fk is exactly the
same when generated by FKeyGen and FAuxGen. Furthermore, we require one-way
security to hold even given the auxiliary info aux. In particular, for any PPT attacker
A there is a negligible ε(·) such that

Pr

[
ffk(x

′) = y

∣∣∣∣
(fk,aux) ← FAuxGen(1λ), x ← {0, 1}n(λ),

y := ffk(x), x ′ ← A(1λ, fk,aux, y)

]
≤ ε(λ).

7.1.2 Hardcore-Bit

A hardcore bit for a one-way function family (FKeyGen, f ) consists of two
polynomial-time procedures (HKeyGen, h) with the following syntax: hk ←
HKeyGen(1λ, fk) is a randomized algorithm that generates the hardcore-function-
key hk and hhk(x) takes as input x ∈ {0, 1}n(λ) and outputs a bit b ∈ {0, 1}. For
security, we require the following: for all PPT attackers A there is a negligible ε(·)
such that:

∣∣Pr[A(1λ, fk,hk, ffk(x), hhk(x)) = 1 ] − Pr[A(1λ, fk,hk, ffk(x), b) = 1]∣∣ ≤ ε(λ).

where fk ← FKeyGen(1λ),hk ← HKeyGen(1λ, fk), x ← {0, 1}n(λ) and b ←
{0, 1}.

In the setting of auxiliary input, the syntax of hard-core bits is the same. For a
one-way function family (FKeyGen, f ), we say that (HKeyGen, h) is a hardcore bit
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with auxiliary input if for every compatible auxiliary input FAuxGen and every PPT
attacker A we have:

∣∣∣∣
Pr[A(1λ, fk,hk, ffk(x),aux, hhk(x)) = 1 ]

− Pr[A(1λ, fk,hk, ffk(x),aux, b) = 1]
∣∣∣∣ ≤ ε(λ).

where (fk,aux) ← FAuxGen(1λ),hk ← HKeyGen(1λ, fk), x ← {0, 1}n(λ) and
b ← {0, 1}. Known constructions of hardcore bits (e.g., the Goldreich-Levin bit) are
secure in the presence of auxiliary input.

We say that a hardcore-bit (HKeyGen, h) for a one-way function family
(FKeyGen, f ) is output-only dependent if there is some negligible ε(λ) such that:

Pr[∃ x, x ′ ∈ {0, 1}n(λ) such that ffk(x) = ffk(x
′) and hhk(x) �= hhk(x

′)] ≤ ε(λ)

where the probability is over fk ← FKeyGen(1λ),hk ← HKeyGen(1λ, fk). Infor-
mally, this means that hhk(x) is completely determined by ffk(x) with overwhelming
probability. Known constructions of general hardcore bits (e.g., the Goldreich-Levin
bit) are not output-only dependent.

7.2 Counterexample with Auxiliary Input

Let g : {{0, 1}λ → {0, 1}m(λ)}λ∈N be any (fixed) one-way function so that for all
PPT attackers A there is a negligible ε such that:

Pr[g(r ′) = g(r) : r ← {0, 1}λ, r ′ ← A(1λ, g(r))] ≤ ε(λ).

Let S = (KeyGen,Sig,Ver) be a signature scheme with signature-length �sig(λ)

and let H be a CRHF with output size �hash(λ). Define the one-way function family
(FKeyGen, f ) as follows.

– fk ← FKeyGen(1λ): Sample (sk, vk) ← KeyGen(1λ) to be the signature sign-
ing/verification keys. Set fk := vk.

– ffk(x): Interpret x = (r,m, σ, y), vk = fk. If Vervk(m, σ ) = 1 output y else
output g(r).

The input size to ffk(·) is n(λ) = λ + �hash(λ) + �sig(λ) + m(λ) and the output size
is m(λ). It is easy to show that the one-way security of this construction follows from
the one-way security of g and the signature security of S. Intuitively, on a uniformly
random x , ffk(x) = g(x) with overwhelming probability. Inverting ffk(x) therefore
requires either (I) inverting g(x) or (II) coming up with a valid message/signature pair
(m, σ ) given vk.

We now define a class of compatible auxiliary inputs for (FKeyGen, f ), parame-
terized by some polynomial length-bound �∗(λ). Let the circuit family C, consisting of
circuitsC∗[H, sk] ∈ C, be defined the sameway as previously. LetspO be any special-
purpose obfuscator for circuits. The auxiliary-input sampling algorithm is defined via
FAuxGen�∗ as follows:
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– (fk,aux) ← FAuxGen�∗(1λ): Sample (sk, vk) ← KeyGen(1λ) to be the sig-
nature signing/verification keys. Set fk = vk. Sample a hash function H ←
Hλ and let C∗[H, sk] ∈ C be a circuit with input length �∗. Set aux ←
spO(1λ,C∗[H, sk]).

Lemma 4 Under the special-purpose obfuscation conjecture for circuits (Conjec-
ture 1) and the one-way security of the function g, the function family (FKeyGen, f )
is one-way and, for any polynomial �∗, FAuxGen�∗ is compatible auxiliary input.

Proof Assume there is a polynomial �∗(λ) and an attacker A whose probability of
winning the one-wayness game with auxiliary input is:

Pr

[
ffk(x

′) = y

∣∣∣∣
(fk,aux) ← FAuxGen(1λ), x ← {0, 1}n(λ),

y := ffk(x), x ′ ← A(1λ, fk,aux, y)

]
= ε(λ).

By the security of the signature scheme, we know that for a random (m, σ ) the prob-
ability of Vervk(m, σ ) = 1 is negligible. Therefore, with overwhelming probability,
ffk(x) = g(r) when we choose x = (r,m, σ, y) at random. We can write:

Pr

[
ffk(x

′) = y

∣∣∣∣
(fk,aux) ← FAuxGen(1λ), r ← {0, 1}λ,

y := g(r), x ′ ← A(1λ, fk,aux, y)

]
= ε(λ) − negl(λ).

Let us define the event E1 to be the event thatAwinswith x ′ = (r ′,m′, σ ′, y′)where
g(r ′) = g(r). Let E2 be the event that A wins and Vervk(m′, σ ′) = 1. Since one of
E1, E2 must happenwheneverAwins, we have Pr[E1]+Pr[E2]+negl(λ) ≥ ε(λ). By
the one-wayness of g, we have Pr[E1] = negl(λ). By the special-purpose obfuscation
assumption, we have Pr[E2] = negl(λ). Therefore ε(λ) = negl(λ) which proves the
lemma. ��
Theorem 4 Under the special-purpose obfuscation conjecture for circuits (Con-
jecture 1), the function family (FKeyGen, f ) is one-way but does not have any
output-only dependent hardcore bit with auxiliary input. In particular, for any can-
didate hardcore-bit construction (HKeyGen, h) there is a polynomial �∗ such that
the FAuxGen�∗ is some compatible auxiliary input which breaks the security of the
hardcore bit.

Proof Let (HKeyGen, h) be any candidate hardcore bit construction for (FKeyGen,

f ), and assume that it is output-only dependent. Consider the circuit C[hk, y](m, σ )

which gets (m, σ ) ∈ {0, 1}�hash(λ)+�sig(λ) as input, constructs x ′ = (0λ,m, σ, y) and
outputs hhk(x). Let �∗(λ) be the size of this circuit when fk ← FKeyGen(1λ) and
hk ← HKeyGen(1λ, fk).

By Lemma 4, we know that under Conjecture 1, the sampler FAuxGen�∗ is com-
patible auxiliary input for the one-way function family (FKeyGen, f ). We now show
that the hardcore bit (HKeyGen, h) can be easily distinguished given the auxiliary
input aux. In particular, consider the distinguisher A(1λ, fk,hk, y,aux, b) that con-
structs the circuit C[hk, y] described above and runs b′ = aux(C[hk, y]). If b′ = b
it outputs 1 else 0. We claim that:
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∣∣∣∣
Pr[A(1λ, fk,hk, y,aux, hhk(x)) = 1 ]

− Pr[A(1λ, fk,hk, y,aux, b) = 1]
∣∣∣∣ = 1

2
− negl(λ)

where (fk,aux) ← FAuxGen(1λ),hk ← HKeyGen(1λ, fk), x ← {0, 1}n(λ)y =
ffk(x) and b ← {0, 1}.
By definition, we have b′ = aux(C[hk, y]) = C[hk, y](m′, σ ′) = hhk(x ′)

for some pre-image x ′ = (0λ,m′, σ ′, y) such that ffk(x ′) = ffk(x) = y. By
output-only dependence, we also have hhk(x ′) = hhk(x) with probability 1 −
negl(λ). Therefore Pr[A(1λ, fk,hk, y,aux, hhk(x)) = 1 ] = 1 − negl(λ) and
Pr[A(1λ, fk,hk, y,aux, b) = 1 ] = 1

2 , which proves the theorem. ��

7.3 Counterexample Without Auxiliary Input

We can modify the above counterexample to work in the setting without auxiliary
input by simply thinking of the auxiliary input aux as part of the function key. In
particular, we define FKeyGen(1λ) to set fk = (vk,aux) where aux is defined as
above. The only problem is that we now get a circular dependence on sizes: the size
of fk = (vk,aux) exceeds the size of aux which needs to exceed the circuit-size of
hhk(·)which in turn can depend on (and exceed) the size of fk. Indeed, the construction
of [10] does have this property where the size of hk (and therefore also the circuit-size
of hhk) exceeds the size of fk. To get around this, we can use the same trick as in
Sect. 5 by relying on a Turing Machine obfuscator rather than a circuit obfuscator.
In particular, we can set aux to be a Turing Machine obfuscation of the breaker TM
M∗[H, sk] defined in Sect. 5. The size of the obfuscated circuit aux is now some fixed
polynomial no matter what the size �∗ is of the input that we want to feed to aux.

More formally, let spO be a special-purpose TuringMachine obfuscator and define
the function family (FKeyGenT M , f ) where:

– fk ← FKeyGenT M (1λ): Sample (sk, vk) ← KeyGen(1λ) to be the signature
signing/verification keys. Sample a hash function H ← Hλ and let M∗[H, sk] be
a TM defined the same way as in Sect. 5. Let aux ← spO(1λ, M∗[H, sk]). Set
fk = (vk,aux).

– ffk is defined the same way as previously and ignores aux.

Theorem 5 Under the special-purpose obfuscation conjecture for Turing Machines
(Conjecture 2), the function family (FKeyGenT M , f ) is one-way but does not have
any output-only dependent hardcore bit.

The proof of the above theorem is the same as that of Theorem 4.

8 Conclusions

We propose a seemingly reasonable “special-purpose” obfuscation conjecture under
which general-purpose diO and extractable witness encryption with auxiliary input
cannot exist. Furthermore a variant of this conjecture also shows the impossibility
of output-only dependent hardcore bits for every one-way function. Many interesting
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open problems remain. Firstly, is there some inherent reason why our conjecture
cannot hold? This is certainly possible, and we cannot objectively say which of the two
conflicting possibilities (diOwith auxiliary input vs. our conjecture) is false. However,
the conjecture is a simple-to-state falsifiable assumption. Showing the possibility of
general-purpose diO and extractable witness encryption would require coming up
with an attack on this conjecture. On the other hand, general-purpose diO and witness
encryption are not stated as falsifiable assumptions; indeed we give a candidate attack
on these notions, but we cannot efficiently check if the attack is valid. In the absence
of further evidence, we choose to interpret this result as giving strong evidence that
general-purpose diO and extractable witness encryption are “implausible”. Is there a
way to convert this “implausibility” result into an “impossibility” result? On a different
note, is it still reasonable to assume the existence of general-purpose diO without
auxiliary input? We do not see any way to extend our “implausibility” result to the
case without auxiliary input. Lastly, it remains as an interesting open problem to
characterize the known techniques for getting obfuscation impossibility results, and
come up with a strong and general obfuscation assumption that capture everything
which is not directly ruled out by these techniques.
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