
Algorithmica (2017) 79:814–834
DOI 10.1007/s00453-016-0271-3

String Powers in Trees

Tomasz Kociumaka1 · Jakub Radoszewski1 ·
Wojciech Rytter1 · Tomasz Waleń1

Received: 30 September 2015 / Accepted: 20 December 2016 / Published online: 3 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this paper we consider substrings of an unrooted edge-labeled tree, which
are defined as the composite labels of simple paths.We studyhow thenumber of distinct
repetitive substrings depends on their exponent α. An α-power is defined as a string
U with an (integral, not necessarily shortest) period |U |/α. For example, squares
are 2-powers and cubes are 3-powers. We investigate the asymptotic growth of the
maximal number powersα(n) of distinct α-powers occurring as substrings of a tree
with n nodes. The maximum number of such powers behaves much unlike in strings.
In a previous work (CPM 2012. LNCS, vol 7354. Springer, Berlin, pp 27–40, 2012. It
was proved that the number of different squares in a tree is powers2(n) = Θ(n4/3).
We extend this result and analyze powers of arbitrary rational exponent α ≥ 1. We
identify two phase-transition thresholds:

1. powersα(n) = Θ(n2) for 1 ≤ α < 2;
2. powersα(n) = Θ(n4/3) for 2 ≤ α < 3;
3. powersα(n) = Θ(n) for α ≥ 3.

This is a full version of a paper presented at CPM 2015. LNCS, vol 9133. Springer,
Berlin, pp 284–294, 2015. Compared to the earlier version, we improve our main
technical contribution, i.e., the upper bound on the number of cubes in a tree, from

B Tomasz Kociumaka
kociumaka@mimuw.edu.pl

Jakub Radoszewski
jrad@mimuw.edu.pl

Wojciech Rytter
rytter@mimuw.edu.pl

Tomasz Waleń
walen@mimuw.edu.pl

1 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0271-3&domain=pdf
http://orcid.org/0000-0002-2477-1702

Algorithmica (2017) 79:814–834 815

O(n log n) to O(n). This lets us obtain a tight asymptotic characterization of the
powers function.

Keywords Repetitions · Cubes · Labeled trees · Squares · Periodicities ·
Combinatorics on words

1 Introduction

Repetitions are a fundamental notion in combinatorics on words. For the first time
they were studied more than a century ago by Thue [19] in the context of square-free
strings, that is, strings that do not contain substrings of the form W 2 = WW . Since
then, α-free strings, avoiding string powers of exponent α (of the form Wα), have
been studied in many different contexts; see [18]. Another line of research is related
to strings that are rich in string powers. One can prove that the number of different
squares in a string of length n does not exceed 2n (see [9,12,13]) and this upper
bound has recently been improved to 11

6 n [7]; stronger bounds are known for cubes
[17].

Repetitions are also considered in labeled trees and graphs. In thismodel, a substring
corresponds to a sequence of labels of edges (or nodes) on a simple path. The origin of
this study comes from a generalization of square-free strings and α-free strings, called
non-repetitive colorings of graphs. A survey by Grytczuk [11] presents several results
of this kind. In particular, non-repetitive colorings of labeled trees were constructed
by Brešar et al. [3]. Strings related to paths in graphs have also been studied in the
context of hypertexts [1].

Enumeration of squares in labeled trees has already been considered from both
combinatorial [6] and algorithmic point of view [14]. Our study is a continuation of
the results of [6], where it has been proved that the maximum number of different
squares in a labeled tree with n nodes is of the order Θ(n4/3).

Related work concerns the maximum number of distinct palindromic substrings
of a tree. Brlek et al. [4] provided a Ω(n3/2) lower bound construction and shortly
afterwards Gawrychowski et al. [10] proved a matching O(n3/2) upper bound. Here,
the situation is also unlike for strings as the maximum number of palindromes in a
string of length n is known to be exactly n + 1 [8].

Let T be a tree whose edges are labeled with symbols from an alphabet Σ . We
denote the size of the tree, that is, the number of nodes, by |T |. A substring of T
is the sequence of labels of edges on a simple path in T . We define powersα(T)

as the number of different substrings of T which are powers of (possibly fractional)
exponent; see Fig. 1. We denote

powersα(n) = max|T |=n
powersα(T).

1.1 Our Results

We give a complete asymptotic characterization of the function powers:

123

816 Algorithmica (2017) 79:814–834

α powersα(n)

1 ≤ α < 2 Θ(n2)
2 ≤ α < 3 Θ(n4/3)
3 ≤ α Θ(n)

b

a

a

a
b a

a

b a

a

b

bb

ab

a

b

a
a

Fig. 1 There are 5 different cubic substrings in this tree: a3, (ab)3, (ba)3, (aab)3, (baa)3. Hence,
powers3(T) = 5. Note that the cube (ab)3 occurs twice; also a3 has multiple occurrences. The most
repetitive substring, a 3.5-power (ab)3.5, is marked in the figure

The linear upper bound for 3 ≤ α < 4 is a significant improvement upon the con-
ference version [16], where only anO(n log n) bound was given. In fact, our proof of
the improved result follows a much different line of reasoning compared to the argu-
ment presented there. This is mainly because we avoid using centroid decomposition,
whose standard application inherently prevents obtaining any o(n log n) bound.

1.2 Structure of the Paper

Our upper bounds on the asymptotic behaviour of the powersα function need to be
proved for α = 1, α = 2, and α = 3 only. Indeed, the number of α-powers for every
α ∈ [1, 2), α ∈ [2, 3), and α ∈ [3,∞), does not exceed the number of 1-powers,
2-powers, and 3-powers, respectively. The first result is trivial and the second was
already presented in [6]. Hence, the only challenging case is that of α = 3, to which
we devote a greater part of this paper. The relatively simple lower-bound constructions
for any rational α ≥ 1 are given in Sect. 7.

To analyze the number of cubes,we assume that the tree is rooted at an arbitrary node
and associate each node with its value, the sequence of labels going towards the root.
In many cases this lets us ignore the structure of the whole tree and apply results for
classic strings. For example, any path is naturally decomposed into two fragments: one
going towards the root and the other leading downward. The corresponding substring
is the concatenation of a prefix and a reversed prefix of the values of path’s endpoints.
These two prefixes, called wings, play a central role in the analysis of cubic substrings
of the tree.

Section 3 deals with a few classes of cubes whose structure or location in the
tree makes their number easy to bound. What remains is called essential cubes and
analyzed through Sects. 4, 5, and 6. Our approach there is to generate for each node of
the tree several candidates, which are potential roots of cubes starting or ending there.
These candidates are, respectively, prefixes and reversed prefixes of the value of the

123

Algorithmica (2017) 79:814–834 817

node. They are constructed so that each essential cube corresponds to a candidate for
at least one of the two endpoints.

Section 4 introduces a notion of d-regular strings and provides several results moti-
vated by the structure of potential wings of cubes starting or ending at a given node.
The main tool there is (as usual) periodicity.

In Sect. 5, we explicitly construct the candidates. For this, we group the cubes into
logarithmically many layers depending on their lengths. For a fixed node, the set of
potential roots in the same layer has a well-defined structure described using the notion
of d-regularity. We use the synchronization of the related periodic structures to restrict
the set of potential roots to a constant number of candidates. This gives O(n log n)

candidates in total and thus leads to anO(n log n) bound for the total number of distinct
cubes.

To refine this result, in Sect. 6 we analyze the dependencies between the candidates
across all layers and ancestors of a given node. By accounting each candidate to a
single (topmost) node and by slightly restricting the definition of candidates, we are
able to show that there are O(n) candidates in total. Consequently, the number of
distinct cubes is also proved to be O(n).

2 Preliminaries

2.1 Combinatorics of Strings

Let V be a string over an alphabet Σ . We denote its letters by V [1], . . . , V [m] and
its length m by |V |. By V R we denote the reverse string V [m] . . . V [1]. For 1 ≤
i ≤ j ≤ m a string V [i.. j] = V [i] . . . V [j] is a substring of V . For an integer i ,
1 ≤ i ≤ m, a substring V [1..i] is called a prefix of V , and V [i..m] is called a suffix of
V . If U = V [i.. j], we say that U occurs in V at position i .

We say that a positive integer q is a period of V if V [i] = V [i + q] holds for
1 ≤ i ≤ m − q. In this case, we also say that the prefix of V of length q is a period of
V . The (length of) the shortest period of V is denoted by per(V).

We say that a string V is an α-power (a power of exponent α) of a stringU , denoted
as V = Uα , if |V | = α|U | and U is a period of V (not necessarily the shortest one).
The stringU is called the root of the α-power V . The exponent α may be any rational
number satisfying α ≥ 1.

Example 2.1 For U = abcd and α = 3.25, we have Uα = abcdabcdabcda.

Powers of exponent α = 2 are called squares, and powers of exponent α = 3 are
called cubes. A string V is called non-primitive if it is an α-power for an integer α ≥ 2.
Otherwise, V is called primitive. Primitive strings have several useful properties;
see [5,18].

Fact 2.2 (Synchronization Property) If P is a primitive string, then it occurs exactly
twice as a substring of P2.

Fact 2.3 Let p be a period of a string X and P be any substring of X of length p.
If p is the shortest period of X, then P is primitive. Conversely, if P is primitive and
p ≤ 1

2 |X |, then p is the shortest period of X.

123

818 Algorithmica (2017) 79:814–834

r

u

t

v

val(u, v)U

val(u)

V

Fig. 2 Basic notions for an occurrence (u, v) of val(u, v) in a tree rooted at r . The node t = lca(u, v) is the
peak of the path and strings U and V are its left and right wing, respectively. Note that val(u, v) = UV R ,
U is a prefix of val(u), and V is a prefix of val(v)

We also use the following folklore fact, which, in particular, appeared as Lemma
3.2 in [2].

Fact 2.4 (Breslauer & Galil [2]) Let X, Y be strings satisfying |Y | ≤ ⌈ 3
2 |X |⌉. The

set of positions where X occurs in Y forms a single arithmetic progression. Moreover,
if there are at least 2 occurrences, the difference of this progression is per(X).

2.2 Labeled Trees

Let T be a labeled tree. If u and v are two nodes of T , then by val(u, v) we denote the
sequence of labels of edges on the path from u to v. We call val(u, v) a substring of
T and (u, v) an occurrence of the string val(u, v) in T .

We assume that the tree is rooted in an arbitrary node r . The value of a node u
is defined as val(u) = val(u, r). For any two nodes u, v, by lca(u, v) we denote
their lowest common ancestor in T . We call the node t = lca(u, v) the peak of the
occurrence (u, v) of val(u, v). It naturally decomposes the occurrence (u, v) into two
fragments. We call U = val(u, t) and V = val(v, t), the left wing and the right wing
of the occurrence (u, v), respectively, so that val(u, v) = UV R ; see Fig. 2.

A directed tree Tr is a rooted tree with all its edges directed towards the root r .
Every substring of a directed labeled tree corresponds to a directed path in the tree.
The following fact is a simple generalization of the upper bound of 2n on the number
of squares in a string of length n; see [9,12]. A proof of this fact was also implicitly
presented in [15].

Lemma 2.5 A directed tree with n nodes contains at most 2n different square sub-
strings.

Proof It suffices to note that there are at most two topmost occurrences of different
squares starting at each node of the tree; see [9,12]. ��

2.3 Linear Upper Bound for Trivial Cubes

To illustrate our terminology and approach in a toy setting, at the very beginning we
show an O(n) bound on the number of cubes of a very special form.

123

Algorithmica (2017) 79:814–834 819

r

u

t

vX
X

X
U

V

Fig. 3 A balanced leftist occurrence (u, v) of a cube X3 = UV R with wings U and V

Fact 2.6 A tree with n nodes with edges labeled with {a,b} contains at most 2n cubes
of the form (aiba j)3.

Proof For a string S we define two strings: a left candidate L(S) and a right candidate
R(S). Consider the first two positions x1 and x2 (1-based) where a character b occurs
in S. If there are no such positions or x2 < 2x1, we set both L(S) and R(S) to be
empty strings. Otherwise, we set L(S) = ax1−1bax2−2x1 and R(S) = ax2−2x1bax1−1

so that L(S) is a prefix of S of length x2 − x1 and R(S) is the reverse of L(S).
Suppose a cube X3 = (aiba j)3 has an occurrence (u, v) with peak t . Observe that

one of the wings contains at least two characters b. The distance between them must
be |X |. It is easy to see that this implies X = L(val(u)) or X = R(val(v)) depending
on whether the left or the right wing contains the two b’s. Consequently, for each node
of the tree we obtain two candidates for the root of a cube, which gives 2n candidates
in total. ��

3 Simple Cases of Cubic Occurrences

Consider an occurrence (u, v) of a non-empty cube X3. Let U and V be its left and
the right wing, respectively. The occurrence is called leftist if |U | ≥ |V | and rightist
if |U | ≤ |V | (see Fig. 3). Due to the following lemma, it suffices to bound the number
of cubes with a leftist occurrence.

Lemma 3.1 In a rooted tree the numbers of different cubes with a leftist occurrence
and with a rightist occurrence are equal.

Proof Observe that (u, v) is a leftist occurrence of a cube X3 if and only if (v, u) is a
rightist occurrence of a cube Y 3 where Y = X R . ��

If both wings are shorter than 2|X |, then (u, v) is called a balanced occurrence of
X3 (see Fig. 3). Otherwise, it is unbalanced. It turns out that the number of cubes with
an unbalanced occurrence is easy to bound.

Lemma 3.2 A rooted tree with n nodes contains at most 2n different cubes with a
leftist unbalanced occurrence.

123

820 Algorithmica (2017) 79:814–834

u t v
a a a a a a a a a a a ab b b

U
V RV

X X X

Fig. 4 A palindromic occurrence (u, v) of a cube X3 = (abaaa)3

Proof Let T be a tree rooted in r and let Tr be the corresponding directed tree. If
(u, v) is an unbalanced leftist occurrence of a cube X3, then its left wing U satisfies
|U | ≥ 2|X | and thus X2 occurs as a square substring in Tr . By Lemma 2.5, there are
at most 2n such different squares. ��

A cube X3 is called a p-cube if X is primitive. Otherwise, it is called an np-cube.
A bound on the number of np-cubes also follows from Lemma 2.5.

Lemma 3.3 A rooted tree with n nodes contains at most 4n different np-cubes with a
leftist occurrence.

Proof Let X3 be an np-cube with a leftist occurrence (u, v) in a tree T rooted at r .
We have X = Y k for a primitive string Y and an integer k ≥ 2. Let � = ⌊ 3k

4

⌋
. Note

that Y 2� is a proper prefix of the left wing U and thus a square in the directed tree Tr .
Consider an assignment Y 3k �→ Y 2�. Observe that a single square can be assigned
this way at most two cubes: Y 2� can be assigned to Y 4�,Y 4�+1,Y 4�+2, or Y 4�+3, but
no more than two of these exponents may be divisible by 3.

By Lemma 2.5, there are at most 2n different squares in the directed tree Tr .
Therefore, the number of different np-cubes with a leftist occurrence is bounded by
4n. ��

An occurrence (u, v) of a cube with wings U and V is called palindromic if V is a
suffix of U ; see Fig. 4. Note that every palindromic occurrence is leftist. Palindromic
occurrences turn out to be a special case in the analysis of regular cubes in Sect. 5
(see Lemma 5.4). For the separation of concerns, we bound their number already in
this section.

Lemma 3.4 A rooted tree with n nodes contains at most n different p-cubes with a
balanced palindromic occurrence.

Proof For a string L , consider the set TL of the tree nodes v with the value val(v) = L .
Moreover, let BL be the set of lowest common ancestors of distinct nodes in TL , i.e.,
BL = {lca(v, v′) : v, v′ ∈ TL , v �= v′}. We shall prove that if (u, v) with v ∈ TL is a
balanced palindromic occurrence of a p-cube X3, then its peak t belongs to BL , and
that X3 is uniquely determined by L and t . Since |BL | ≤ |TL | − 1 and the sets TL
for different strings L are clearly disjoint, this yields the desired upper bound when
summed over all strings L .

Let us consider a balanced palindromic occurrence (u, v) with v ∈ TL , peak t , and
wings U , V . Observe that L = V · val(t) is a suffix of val(u) = U · val(t). Thus, u
has an ancestor v′ ∈ TL such that v �= v′. Consequently, t = lca(v, v′) ∈ BL .

Let us proceed with a proof of uniqueness of the cube. The equality L = V · val(t)
means that V is uniquely determined by L and t . Because the occurrence (u, v) is

123

Algorithmica (2017) 79:814–834 821

balanced and palindromic, X2 is a suffix of VV R , which in turn is a suffix of X3. As X
is primitive, |X | is the shortest period of VV R . Consequently, the cube X3 is uniquely
determined by its right wing V , and thus also by L and t . ��

From now on we only consider non-palindromic balanced leftist occurrences of p-
cubes in T . We call these occurrences essential and cubes admitting them—essential
cubes. Due toLemmas3.1, 3.2, 3.3, and3.4, the number of all cubes in T is proportional
to O(n) plus the number of essential cubes.

4 d-Regular Strings

In this section, we introduce a type of strings which we call d-regular strings. Such
strings are not periodic, but have a highly periodic prefix whose period also occurs as
a suffix. It will turn out that the roots of many essential cubes are regular.

For two strings U , V , we denote their longest common prefix by lcp(U, V). For a
string P , by CP (U) we denote |lcp(U, P∞)|, that is, the length of the longest prefix
of U which has P as a period.

Example 4.1 Caba(abaabaabb) = 8, Caba(abbabb) = 2.

We have the following simple observation.

Observation 4.2 If a string X is not an integer power of a string P, then CP (X) +
CPR (X R) < |X | + |P|.
Definition 4.3 Let d be a positive integer. We say that a string X with d ≤ |X | < 5

4d
is d-regular if there exists a primitive string P such that:

(1) |P| ≤ 1
8d,

(2) 1
2d ≤ CP (X) < |X | − |P|,

(3) P2 is a suffix of X .

Note that for a regular string X the primitive string P , called the core of X , is
uniquely determined. Due to Fact 2.3, it is the shortest period of X

[
1..

⌈ 1
4 |X |⌉]

(and
of X [1.. ⌈ 1

2d
⌉]).

Example 4.4 The following string X of length 26 is 24-regular:

1
2d

a b a a b a a b a a b a a b b a b a b b a b a a b a

Its core is P = aba. Note that X is 25-regular and 26-regular as well. However, it is
not 23-regular, since 8|P| > 23, and not 27-regular, since |X | < 27.

Definition 4.5 For a string A define Prefd(A) as the set of prefixes X of A such that
d ≤ |X | < 5

4d and X · X[
1..

⌈ 1
2d

⌉]
is also prefix of A.

This definition is justified by the following observation, which follows from the
fact that every essential occurrence of a cube is leftist.

123

822 Algorithmica (2017) 79:814–834

A

1
2d d

5
4d

7
4d

X0

X1 = X0

X2 = X1

X
k

= Xk D

. . .

Prefd(A)
LRegd(A)D

D

D

D

Fig. 5 An illustration of Lemma 4.8 and notions used in its proof. The hatched rectangles represent D =
A[1..

⌈
1
2 d

⌉
] and its occurrences in A following the prefixes in Prefd (A). Here, j = 1, p = per(D) < 1

8 d,

and p is not a period of any X ′
i

Observation 4.6 If (u, v) is an essential occurrence of a cube X3 satisfying d ≤
|X | < 5

4d, then X ∈ Prefd(val(u)).

Definition 4.7 For a string A define LRegd(A) as the set of d-regular strings in
Prefd(A).

Our main effort lies in dealing with cubes X3 with d-regular X . ByObservation 4.6,
for such cubes we have X ∈ LRegd(val(u)). The following result states that most
elements of Prefd(A) are d-regular and that these elements have a very well-defined
structure; see also Fig. 5.

Lemma 4.8

(a) The set Prefd(A)\LRegd(A) consists of at most two primitive strings, which might
only be among the shortest two elements of Prefd(A).

(b) Let LRegd(A) = {X0, . . . , Xk} where |X0| < · · · < |Xk |. Then Xi = X0Pi for
i = 0, . . . , k where P is the common core of all Xi .

Proof Let D = A
[
1..

⌈ 1
2d

⌉]
. Note that for d ≤ x < 5

4d we have A[1..x] ∈ Prefd(A)

if and only if D occurs in A at position x + 1. Thus, elements of Prefd(A) correspond
to occurrences of D in a substring of A of length

⌈ 1
4d

⌉ + ⌈ 1
2d

⌉ − 1 ≤ 3
2

⌈ 1
2d

⌉
.

By Fact 2.4, the set of all such occurrences forms an arithmetic progression and its
difference is p = per(D) unless |Prefd(A)| = 1. In the latter case the statement is
trivial, so we may assume |Prefd(A)| > 1.

Let Prefd(A) = {X ′
0, . . . , X

′
k′ }, where |X ′

0| < · · · < |X ′
k′ |. We have |X ′

i | =
|X ′

0| + i p and thus X ′
i = X ′

0P
i where P = A[1..p]; see Fig. 5. Let j be the smallest

index i such that X ′
i has a suffix P2. Clearly, j ≤ 2. It turns out that the index j

indicates the first d-regular element of Prefd(A), if there is any.

Claim If p ≤ 1
8d and P is not a period of X ′

j , then LRegd(A) = {X ′
j , . . . , X

′
k′ }.

Otherwise, LRegd(A) = ∅.

123

Algorithmica (2017) 79:814–834 823

B

Y

≥ 1
2 d

3
4d d

5
4d

Q Q

Fig. 6 An illustration for Lemma 4.10. The only candidate for the core of the reverses of strings in
RRegd (B) can be retrieved from B and d

Proof If p > 1
8d, then condition (1) for a d-regular string cannot be satisfied by any

element of Prefd(A). Similarly, if P is a period of X ′
j , it is also a period of X ′

i for

i ≥ j , and thus condition (2) cannot be satisfied. Next, suppose that p ≤ 1
8d and

that P is not a period of X ′
j . By condition (3), no string X ′

i for i < j is d-regular.
However, conditions (1) and (3) are satisfied for X ′

j , . . . , X
′
k′ . As for condition (2),

note that CP (A) ≥ |D| = ⌈ 1
2d

⌉
. Finally, CP (X ′

i) < |X ′
i | − |P| for i ≥ j , since X ′

i
ends with P2, and otherwise Observation 4.2 would yield that P is a period of X ′

i and
thus also a period of X ′

j . ��
Thus, we have shown part (b) of the lemma. To complete the proof of part (a),

we need to show that if the condition in the Claim is not satisfied, the set Prefd(A) \
LRegd(A) contains atmost twoprimitive strings.Note that if k′ ≥ 2, thend+2p < 5

4d,
so p < 1

8d. By the claim, in this case all the strings X ′
j , . . . , X

′
k′ are d-regular unless

P is a period of X ′
j . In the latter case, strings X

′
i for j ≤ i ≤ k′ are all integral powers

of P , and thus none of them is primitive. ��
We call the string P of Lemma 4.8(b) the core of LRegd(A).
For an essential occurrence (u, v) of a cube X3, LRegd(val(u)) can be interpreted

as the set of possible choices for the root X provided that it is d-regular. The following
notion applied to val(v) plays a symmetric role.

Definition 4.9 For a string B define RRegd(B) as the set of prefixes Y of B such that
Y R is d-regular.

The structure of RRegd(B) is also very well defined; see Fig. 6.

Lemma 4.10 Let RRegd(B) = {Y0, . . . ,Ym} where |Y0| < · · · < |Ym |. Then Y j =
Y0Q j for j = 0, . . . ,m where QR is the common core of all Y R

i . Moreover, |Q| =
per(B

[
(
⌊ 3
4d

⌋ + 1)..d
]
) and Q is a prefix of B.

Proof Assume that RRegd(B) �= ∅ (otherwise the statement is trivial). Suppose Y ∈
RRegd(B) with P being the core of Y R and let Q = PR . Note that Y has a suffix
of length at least 1

2d with period |Q|. As |Y | < 5
4d and |Q| ≤ 1

8d, Fact 2.3 yields
|Q| = per(B

[
(
⌊ 3
4d

⌋+1)..d
]
). Together with the fact that Q = Y [1..|Q|] = B[1..|Q|]

(since Q2 is a prefix of Y), this means that Q is uniquely determined by B and d.
Consequently, all Y ∈ RRegd(B) indeed have a common core.

123

824 Algorithmica (2017) 79:814–834

X X X
U (V)R

Fig. 7 Typical structure of a d-regular cube X3. Dotted lines represent several possible locations of the
peak t = lca(u, v)

Now, consider strings Y0 and Y j with j > 0. First, note that |Q| is a period of
Y j [(|Y0| − |Q| + 1)..|Y j |], since it is a period of a suffix of Y j of length at least 1

2d
and

(|Y j | − |Y0|) + |Q| ≤ 1
4d + 1

8d < 1
2d.

Next, observe that both Y0 and Y j end with Q2. By the synchronization property of
primitive strings (Fact 2.2), this implies Y j = Y0Qi for some integer i .

Observe that if X is a d-regular string with core P , then PX is also d-regular as
long as |PX | < 5

4d. Thus, if Y ∈ RRegd(B) and Y Qi ∈ RRegd(B), we know that for

every 0 ≤ i ′ ≤ i the string Y Qi ′ is also d-regular and appears as a prefix of B. This
concludes the proof. ��

We call the string Q of Lemma 4.10 the core of RRegd(B).

5 O(n log n) Bound for Cubes

We say that X3 is a d-cube if d ≤ |X | < 5
4d. In this section, we show that for any

integer d, the number of essential d-cubes is bounded by 6n. Combinedwith the results
of Sect. 3, this yields an O(n log n) upper bound on the number of all distinct cubes.

A d-cube X3 is called a d-regular cube if its root X is d-regular. The following
observation relates the notion of d-regular cubes with the results of Sect. 4.

Observation 5.1 If (u, v) is an essential occurrence of a d-regular cube X3, then
X ∈ LRegd(val(u)) and X R ∈ RRegd(val(v)).

Let us analyze howan essential occurrence of a d-regular cube X3 may look like. Let
P be the core of X , Q = PR , and let XU ′ and X RV ′ be the wings of the occurrence;
see Fig. 7. Typically, we have CP (X) < |U ′| or CQ(X R) < |V ′|. In either case, by
looking at the distance between two positions where the periodicity breaks in val(u)

or in val(v), we can uniquely determine |X |. This is exactly how we constructed the
left candidate and the right candidate in the proof of Fact 2.6.

Unfortunately, in general we may simultaneously have CP (X) ≥ |U ′| and
CQ(X R) ≥ |V ′|; see also Fig. 8. To account for this possibility, we develop a sub-
tler argument which uses the following notion of aligned elements of LRegd(A) and
RRegd(B).

Definition 5.2 For X ∈ LRegd(A) with core P and A = X A′, we say that X is
aligned (in A) if

|CP (A) − CP (A′)| < |P|.

123

Algorithmica (2017) 79:814–834 825

P = PR = aba

a b
a a

b a
a b

a a
b a

a a
b a

a b
a a

b a
a b

a a
b a

a b
a a

b a
a b

a a

t

r

u v

a b a a b a a b a a b a a b a a b a a b a a b a a a b a a b a a b a a b a

Fig. 8 An occurrence of the cube X3 = ((aba)4a(aba)4)3, which is a 24-regular cube. Consider the first
character of val(t). If it is not equal to b, then X ∈ LReg24(val(u)) is aligned. If it is not equal to a, then
X R ∈ RReg24(val(v)) is aligned

Similarly, for Y ∈ RRegd(B) such that Y R has core QR and B = Y B ′, we say that Y
is aligned (in B) if

|CQ(B) − CQ(B ′)| < |Q|.

Example 5.3 Consider a string A = a4ba7baba4. The only aligned element of
LReg8(A) is X0 = A[1..8].

A a a a a b a a a a a a a b a b a a

X2
0 a a a a b a a a a a a a b a a a

On the other hand, for a string B = (ab)2a4(ab)7b2, RReg16(B) has two aligned
elements: Y0 = B[1..16] and Y1 = B[1..18].

B a b a b a a a a a b a b a b a b a b a b a b b b

Y 2
0 a b a b a a a a a b a b a b a b a b a b a a a a a b a b a b a b

Y 2
1 a b a b a a a a a b a b a b a b a b a b a b a a a a a b a b a b a b a b

Lemma 5.4 If (u, v) is an essential occurrence of a d-regular cube X3, then X is
aligned in LRegd(val(u)) or X R is aligned in RRegd(val(v)).

Proof Let P be the core of X and Q = PR . Also, let val(u) = A = X A′ and
val(v) = B = X RB ′. Note that CP (A) = CP (X) and CQ(B) = CQ(X R) since
|P| = |Q| is not a period of X .

Additionally, let us define t = lca(u, v), U = XU ′ = val(u, t), and V = X RV ′ =
val(v, t); see Fig. 9. Note thatU ′ and V ′ are prefixes of A′ and B ′, respectively. Since

123

826 Algorithmica (2017) 79:814–834

r

t

u

vU

(V)R

U

U

X

A

A

V

(U)R

V

V
XR

B

B

Fig. 9 Notation used in the proof of Lemma 5.4. All strings are read upwards

X = U ′(V ′)R , U ′ and V ′ are also prefixes of X and X R , respectively. We consider
three cases depending on CP (A′) and CQ(B ′).
Case 1: Suppose that CP (A′) < |U ′| or CQ(B ′) < |V ′|. If CP (A′) < |U ′|, then we
have

CP (A′) = CP (U ′) = CP (X) = CP (A),

which concludes the proof. Similarly, if CQ(B ′) < |V ′|:

CQ(B ′) = CQ(V ′) = CQ(X R) = CQ(B).

Case 2: Suppose that CP (A′) ≥ |U ′| + |P| and CQ(B ′) ≥ |V ′| + |Q|. Let T be
the prefix of val(t) of length |P| = |Q|. Note that U ′T has period P and V ′T has
period Q = PR . Consequently, both T R(V ′)RU ′T and T R(U ′)RV ′T have period
T R (of length |P| = |Q| = |T |), and thus (V ′)RU ′ = (U ′)RV ′. Note that these are
suffixes of the wings U and V of length |X |. Since the wings have period |X | and
|V | ≤ |U |, this means that V is a suffix of U . This contradicts the occurrence (u, v)

being non-palindromic.
Case 3:Finally suppose thatCP (A′) ≥ |U ′|,CQ(B ′) ≥ |V ′|, andCP (A′) < |U ′|+|P|
or CQ(B ′) < |V ′| + |Q|. Then we have:

CP (X) ≥ CP (U ′) = |U ′| and CQ(XR) ≥ CQ(V ′) = |V ′|.

However, as |P| is not a period of X = U ′(V ′)R , Observation 4.2 yields

CP (X) < |U ′| + |P| and CQ(X R) < |V ′| + |Q|.

Because CP (A) = CP (X) and CQ(B) = CQ(X R), we have

|U ′| ≤ CP (A) < |U ′| + |P| and |V ′| ≤ CQ(B) < |V ′| + |Q|.

123

Algorithmica (2017) 79:814–834 827

Consequently, X is aligned in A or X R is aligned in B. ��
Now let us show that the number of aligned strings for a given d is small.

Lemma 5.5

(a) For each string A there are at most two aligned elements in LRegd(A).
(b) For each string B there are at most two aligned elements in RRegd(B).

Proof (a) Let LRegd(A) = {X0, . . . , Xk} and define Ai so that A = Xi Ai . Observe
that CP (Ai) = CP (A0) − i |P| and thus

|CP (A) − CP (Ai)| = |CP (A) − CP (A0) − i |P|| .

Consequently, there are at most two (integer) indices i for which Xi is aligned in
LRegd(A).

(b) Let RRegd(B) = {Y0, . . . ,Ym} and define Bi so that B = Yi Bi . Observe that
CQ(Bj) = CQ(B0) − j |Q| and thus

|CQ(B) − CQ(Bi)| = ∣∣CQ(B) − CQ(B0) − i |Q|∣∣ .

Consequently, there are at most two (integer) indices i for which Yi is aligned in
RRegd(B). ��

Inspired by Lemmas 5.4 and 4.8(a), we now define the sets of candidates for a root
of an essential d-cube; see also Fig. 10.

Definition 5.6

(a) For a string A, the left candidates set LCandd(A) consists of the primitive elements
of Prefd(A) \ LRegd(A) and all aligned elements X ∈ LRegd(A).

(b) For a string B, the right candidates set RCandd(B) consists of all strings X such
that X R is an aligned element of RRegd(B).

Lemma 5.7 If (u, v) is an essential occurrence of a d-cube X3, then X belongs to
the left candidates set LCandd(val(u)) or the right candidates set RCandd(val(v)).

Proof Let A = val(u) and B = val(v). If X is not d-regular, then X ∈ Prefd(A) \
LRegd(A), so X ∈ LCandd(A) because X is primitive (all essential cubes are p-cubes
by definition). Otherwise, by Observation 5.1, X is an aligned element of LRegd(A)

or X R is an aligned element of RRegd(A). Consequently, X ∈ LCandd(A) or X ∈
RCandd(B), respectively. ��

Let D be the set of numbers not exceeding n of the form
⌈
(54)

i
⌉
for i ∈ Z≥0. Note

that each cube is a d-cube for some d ∈ D. By Lemmas 4.8(a) and 5.5, for a given
d, for every node there are at most 4 left candidates and at most 2 right candidates.
Hence, we obtain the announced result.

Corollary 5.8 For every d ∈ {1, . . . , n}, the number of distinct essential d-cubes is
at most 6n. Consequently, powers3(n) = O(n log n).

123

828 Algorithmica (2017) 79:814–834

d
5
4d

A
CP (A)

CP (A)

. . .

. . .

. . .

. . .

. . .

. . .

Prefd(A)

LRegd(A)

. . .

. . .

. . .

Fig. 10 A schematic illustration of the set LCandd (A) of left candidates (hatched rectangles) among all
elements of Prefd (A). There are four candidates: two elements of Prefd (A) \ LRegd (A) and two aligned
elements of LRegd (A)

6 O(n) Bound for Cubes

A string X is called a left candidate if X ∈ LCandd(u) for some d ∈ D and a node u.
We say that a left candidate X has its highest occurrence at u if u is a highest (closest to
the root) node satisfying X ∈ LCandd(u). We analogously define highest occurrences
of right candidates.

We prove the O(n) bound on the number of regular d-cubes by counting for every
node u the candidates having highest occurrence at u. In Sect. 6.1, we show that this
number is constant for left candidates. In Sect. 6.2, we prove an analogous result for a
subset of right candidates called strong right candidates.We also show that Lemma 5.7
remains validwhen a restriction to strong right candidates ismade. Finally,we combine
all auxiliary results and in Sect. 6.3wederive the linear bound for the number of distinct
cubes.

6.1 Left Candidates

Lemma 6.1 LCandd(A) depends only on the prefix of A of length
⌊ 5
2d

⌋
.

Proof The set Prefd(A) depends only on the prefix of length
⌈ 5
4d + 1

2d
⌉ ≤ 2d and

determines LRegd(A) and its core P . Let us fix X ∈ LRegd(A) and define A′ so that
A = X A′. We claim that whether X is aligned in LRegd(A) depends only on the prefix
of A of length 2|X | ≤ ⌊ 5

2d
⌋
.

Recall that X is aligned if and only if |CP (A′)−CP (A)| < |P|.Moreover,CP (A) =
CP (X) < |X | − |P| since X is d-regular. Thus, a necessary condition for X to be
aligned is CP (A′) < |X |. Under this restriction CP (A′) clearly depends only on the
prefix of A = X A′ of length 2|X |.

123

Algorithmica (2017) 79:814–834 829

As LCandd(A) consists only of Prefd(A) \ LRegd(A) and the aligned elements of
LRegd(A), this concludes the proof. ��
Lemma 6.2 If LCandd(A) �= ∅, then A has a proper suffix A′ such that LCandd ′(A)

= LCandd ′(A′) for each d ′ < 1
5d.

Proof Suppose X ∈ LCandd(A). Let us define A′ so that A = X A′. By Lemma 6.1,
it suffices to prove that |lcp(A, A′)| ≥ 5

2d
′. However, recall that X ∈ Prefd(A) so

X · X[
1..

⌈ 1
2d

⌉]
is a prefix of A. Consequently, X

[
1..

⌈ 1
2d

⌉]
is a common prefix of

A and A′. Since 5
2d

′ < 1
2d, this completes the proof. ��

Corollary 6.3 For every node u of the tree there areO(1) left candidates which have
the highest occurrence at this node.

Proof Let A = val(u) and let dmax be the largest index d ∈ D such that LCandd(A) �=
∅. By Lemma 6.2, all candidates in LCandd(A) for d < 1

5dmax have their highest
occurrence at a proper ancestor of u. Since there is only a constant number of indices
d ∈ D with 1

5dmax ≤ d ≤ dmax and for each of them LCandd(A) is of constant size,
the statement follows. ��

6.2 Right Candidates

For right candidates our solution is more subtle than the one for left candidates. This is
because the direct counterpart of Corollary 6.3 is false; see Example 6.4. To overcome
this issue, we carefully restrict the family of right candidates so that the analogue of
Corollary 6.3 becomes true but at the same time we do not lose any d-regular cube,
i.e., a counterpart of Lemma 5.7 remains valid.

Example 6.4 Let us define a family of strings Bk = a3b1a7b2 . . .a2
k+1−1bk where

a,b1, . . . ,bk are pairwise distinct characters. For 1 ≤ j < k consider the prefixes
Y j = a3b1 . . .a2

j+1−1b ja2
j+2−4 of Bk . Note that |Y j | = 2 · (2 j+2 − 4) and that Y R

j

is d-regular for any integer d satisfying 4
5 |Y j | < d ≤ |Y j |, in particular for some

d ∈ D. Since Y j is followed by exactly 3 letters a in Bk , it is aligned in RRegd(Bk)

and thus Y R
j a right candidate. Consequently, Bk has at least k−1 = Ω(log |Bk |) right

candidates. Because b1 occurs exactly once in Bk , none of them is a right candidate
of a proper suffix of Bk .

Definition 6.5 We say that a right candidate X ∈ RCandd(B) is strong if

|lcp(B, B ′)| + CP (X) ≥ |X |

where P is the core of X and B = X RB ′; see also Fig. 11. The set of strong right
candidates among RCandd(B) is denoted by SRCandd(B).

Let us prove that Lemma 5.7 can be adapted so that it involves only strong right
candidates instead of all right candidates.

123

830 Algorithmica (2017) 79:814–834

Fig. 11 An illustration of the
condition for X ∈ RCandd (B)

to be a strong candidate
CP (X)

|lcp(B,B)||lcp(B,B)|

XR B

B

Lemma 6.6 If (u, v) is an essential occurrence of a d-cube X3, then X ∈
LCandd(val(u)) ∪ SRCandd(val(v)).

Proof Recall that, by Lemma 5.7, X ∈ LCandd(val(u)) ∪ RCandd(val(v)). Con-
sequently, it suffices to prove X ∈ LCandd(val(u)) ∪ SRCandd(val(v)) under an
additional assumption that X ∈ RCandd(val(v)).

This assumption in particular implies that X R ∈ RRegd(val(v)), so X is d-regular
and thus X ∈ LRegd(val(u)) by Observation 5.1.

Let val(u) = A = X A′ and val(v) = B = X RB ′. Let us also define t = lca(u, v),
XU ′ = val(u, t), and X RV ′ = val(v, t). If CP (X) < |U ′|, we have

CP (A′) = CP (U ′) = CP (X) = CP (A),

as in Case 1 in the proof of Lemma 5.4. Consequently, X is aligned in LRegd(A) and
thus X ∈ LCandd(A).

Now, suppose that CP (X) ≥ |U ′|. Obviously, |lcp(B, B ′)| ≥ |V ′|, which in total
gives

|lcp(B, B ′)| + CP (X) ≥ |U ′| + |V ′| = |X |.

Because X ∈ RCandd(B), this implies X ∈ SRCandd(B). ��
Lemma 6.7 SRCandd(B) depends only on the prefix of B of length

⌊ 5
2d

⌋
.

Proof Clearly, RRegd(B) depends only on the prefix of B of length
⌊ 5
4d

⌋
. Addition-

ally, whether Y ∈ RRegd(B) is aligned in B depends only on the prefix of B of length
2|Y | ≤ ⌊ 5

2d
⌋
. To prove this claim, we use exactly the same argument as for aligned

elements of LRegd(A) in the proof of Lemma 6.1.
Finally, we claim that whether X ∈ RCandd(B) is strong, depends only on

the prefix of B of length 2|X | ≤ ⌊ 5
2d

⌋
. Recall that X is strong if and only if

|lcp(B, B ′)| + CP (X) ≥ |X | where P is the core of X and B = X RB ′. Observe
that a sufficient condition for X being strong is |lcp(B, B ′)| ≥ |X |. Unless this con-
dition holds, lcp(B, B ′) clearly depends only on the prefix of B of length 2|X |. This
concludes the proof. ��
Lemma 6.8 Let X ∈ SRCandd(B), B = X RB ′, and φ = |lcp(B, B ′)|.
(a) SRCandd ′(B) = SRCandd ′(B ′) for each d ′ < 2

5φ.
(b) SRCandd ′(B) = RCandd ′(B) = ∅ for 8φ < d ′ < 1

2d.

123

Algorithmica (2017) 79:814–834 831

Proof If d ′ < 2
5φ, we have |lcp(B, B ′)| = φ ≥ 5

2d
′. Thus, SRCandd ′(B) =

SRCandd ′(B ′) due to Lemma 6.7.
Let us proceed to the second claim. Let P be the core of X and denote Q = PR .

Observe that, since X is a strong right candidate, CP (X) ≥ |X | − φ, so |P| = |Q|
is a period of B[1 + φ..|X |]. We know that X R is not a power of Q, so CQ(B) =
CQ(X R) < φ + |Q| due to Observation 4.2. However, Q2 is a prefix of X R (and of
B) and consequently φ > CQ(B) − |Q| ≥ 2|Q| − |Q| = |Q|.

Now, suppose that the set RRegd ′(B) is not empty for some d ′ satisfying 8φ <

d ′ < 1
2d. Let P

′ be its core and Q′ = (P ′)R . By Lemma 4.10, the length of Q′ would
be the shortest period of Z = B

[
(
⌊ 3
4d

′⌋+ 1)..d ′]. However, since 3
4d

′ > 6φ > φ and
d ′ < |X |, |Q| is a period of Z and, because |Q| < φ < 1

8d
′, Fact 2.3 implies that it is

the shortest period of Z . Hence, |Q| = |Q′|. As both Q and Q′ are prefixes of B, we
have Q = Q′.

Let Y ′ ∈ RRegd ′(B) and B = Y ′B ′′. Observe that

CQ(B ′′) ≥ |X | − |Y ′| ≥ d − 5
4d

′ > 3
4d

′ > 6φ > 2|Q| + φ > |Q| + CQ(B).

Hence, Y ′ is not aligned and thus (Y ′)R /∈ RCandd ′(B). ��

Corollary 6.9 For every node v of the tree there are O(1) strong right candidates
which have the highest occurrence at this node.

Proof Let B = val(v) and let dmax be the largest index d ∈ D such that
SRCandd(B) �= ∅. By Lemma 6.8, for d < 2

5φ and 8φ < d < 1
2dmax there are

no strong right candidates with highest occurrence in v. Since there is only a con-
stant number of the remaining indices d ∈ D and for each of them SRCandd(u) is of
constant size, the statement follows. ��

6.3 Main Result

With a complete characterization of left candidates and strong right candidates, we
finally arrive at our main contribution: a linear upper bound on the number of cubes
in trees.

Theorem 6.10 powers3(n) = O(n).

Proof By Lemma 6.6, if (u, v) is an essential occurrence of a cube X3, then X is a
left candidate or a strong right candidate. By Corollaries 6.3 and 6.9, only a constant
number of such candidates may have the highest occurrence at any particular node.
Hence, the total number of such distinct candidates is O(n). Consequently, there are
O(n) distinct essential cubes. By Lemmas 3.1, 3.2, 3.3, and 3.4, the number of non-
essential cubes can also be bounded by O(n). ��

123

832 Algorithmica (2017) 79:814–834

a a a a a a a a b a a a a a a a aS8 =

i = 6 c = 2

i = 7 c = 2

i = 3 c = 1

Fig. 12 Example for the proof of Theorem 7.1. S8 contains powers of exponent α = 1 34 of the form

aibacy−1−iacx for (i, c) ∈ {(3, 1), (6, 2), (7, 2)}

7 Powers with Exponent α �= 3

Let Sm be a string ambam . Note that Sm can be seen as a tree with a linear structure.
Though the following fact can be treated as a folklore result, we provide its proof for
completeness.

Theorem 7.1 For every rational number α ∈ [1, 2), we have powersα(Sm) =
Ω(|Sm |2).
Proof Let α = 1 + x

y where x < y are coprime non-negative integers. For every
positive integer c ≤ m

y , we construct c(y − x) different powers of exponent α and
length cyα that occur in Sm :

aibacy−1−iacx for cx ≤ i < cy;

see Fig. 12. Note that i < cy ≤ m and cy − 1 − i + cx < cy ≤ m, so they indeed
occur as substrings of Sm . In total we obtain

∑

1≤c≤m
y

c(y − x) = Θ
(m2(y−x)

y2
) = Θ(m2)

different α-powers. Moreover, |Sm | = Θ(m), so this implies powersα(Sm) =
Ω(|Sm |2). ��
Corollary 7.2 For every rational α ∈ [1, 2), we have powersα(n) = Θ(n2).

Recall that for α = 2 it has been shown that powers2(n) = Θ(n4/3) [6]. It turns
out that the same bound applies for any exponent α satisfying 2 ≤ α < 3. Moreover,
the lower bound on powersα(n) is realized by the same family of trees called combs;
see Fig. 13.

A comb Tm consists of a path ofm2 nodes called the spine, with at most one branch
attached to each node of the spine. Branches are located at positions {1, 2, . . . ,m−1,
m, 2m, 3m, . . . ,m2} of the spine. All edges of the spine are labeled with letters a.
Each branch is a path starting with a letter b, followed by m2 edges labeled with
letters a.

Theorem 7.3 For every rational number α ∈ [2, 3), we have powersα(Tm) =
Ω(|Tm |4/3).

123

Algorithmica (2017) 79:814–834 833

aaa · · ·

m

b

a

a

...

· · ·aaa · · ·

m

b

a

a

...

aaaa · · ·

m

b

a

a

...

m×m

b

a

a

...

m×m

b

a

a

...

m×m

b

a

a

...

m×m

b

a

a

...

m×m

m2

Fig. 13 Lower bound example Tm for powers of exponent α, 2 ≤ α < 3

Proof Let α = 2 + x
y where x < y are coprime non-negative integers. For every

positive integer c ≤ m2

y , we construct c(y − x) different α-powers of length cyα that
occur in Tm :

(aibacy−1−i)2acx for cx ≤ i < cy.

Let us prove that these powers indeed occur in Tm . In [6] it was shown that for every
0 < j < m2 there are two branches whose starting nodes u, v (on the spine) satisfy
|val(u, v)| = j . We apply this fact for j = cy − 1 and align letters b at the edges
incident to u and v. Each branch containsm2 edges labeled with a. Since i < cy ≤ m2

and cy−1− i + cx < cy ≤ m2, this is enough to extend an occurrence of bacy−1b to
an occurrence of (aibacy−1−i)2acx . Altogether this gives Θ(m4) different α-powers.
Since |Tm | = Θ(m3), the number of the considered powers in Tm is Ω(|Tm |4/3). ��

Corollary 7.4 For every rational α ∈ [2, 3), we have powersα(n) = Θ(n4/3).

We have also a trivial lower bound powersα(n) = Ω(n) for every α, due to the
string an . By Theorem 6.10, this concludes the asymptotic analysis of the function
powers.

Corollary 7.5 For every rational α ≥ 3, we have powersα(n) = Θ(n).

Acknowledgements TomaszKociumaka is supported by Polish budget funds for science in 2013-2017 as a
research project under the ‘Diamond Grant’ program. Jakub Radoszewski and TomaszWaleń are supported
by the Polish Ministry of Science and Higher Education under the ‘Iuventus Plus’ program in 2015-2016
Grant No 0392/IP3/2015/73. Wojciech Rytter is supported by the Polish National Science Center, Grant
No 2014/13/B/ST6/00770.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

834 Algorithmica (2017) 79:814–834

References

1. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. J. Algorithms 35(1), 82–99
(2000). doi:10.1006/jagm.1999.1063

2. Breslauer, D., Galil, Z.: Finding all periods and initial palindromes of a string in parallel. Algorithmica
14(4), 355–366 (1995). doi:10.1007/BF01294132

3. Brešar, B., Grytczuk, J., Klavžar, S., Niwczyk, S., Peterin, I.: Nonrepetitive colorings of trees. Discret.
Math. 307(2), 163–172 (2007). doi:10.1016/j.disc.2006.06.017

4. Brlek, S., Lafrenière, N., Provençal, X.: Palindromic complexity of trees. In: Potapov, I. (ed.) Develop-
ments in Language Theory, DLT 2015, LNCS, vol. 9168, pp. 155–166. Springer (2015). doi:10.1007/
978-3-319-21500-6_12

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, New
York (2007)

6. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Tyczyński,
W., Waleń, T.: The maximum number of squares in a tree. In: Kärkkäinen, J., Stoye, J. (eds.) Combi-
natorial Pattern Matching, CPM 2012, LNCS, vol. 7354, pp. 27–40. Springer, Berlin (2012). doi:10.
1007/978-3-642-31265-6_3

7. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain? Discret. Appl. Math.
180, 52–69 (2015). doi:10.1016/j.dam.2014.08.016

8. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy.
Theor. Comput. Sci. 255(1–2), 539–553 (2001). doi:10.1016/S0304-3975(99)00320-5

9. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb. Theory Ser. A 82(1),
112–120 (1998). doi:10.1006/jcta.1997.2843

10. Gawrychowski, P., Kociumaka, T., Rytter, W., Waleń, T.: Tight bound for the number of distinct palin-
dromes in a tree. In: Iliopoulos, C.S., Puglisi, S.J., Yilmaz, E. (eds.) String Processing and Information
Retrieval, SPIRE 2015, LNCS, vol. 9309, pp. 270–276. Springer (2015). doi:10.1007/978-3-319-
23826-5_26

11. Grytczuk, J.: Thue type problems for graphs, points, and numbers. Discret. Math. 308(19), 4419–4429
(2008). doi:10.1016/j.disc.2007.08.039

12. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares. J. Comb. Theory Ser.
A 112(1), 163–164 (2005). doi:10.1016/j.jcta.2005.01.006

13. Ilie, L.: A note on the number of squares in a word. Theor. Comput. Sci. 380(3), 373–376 (2007).
doi:10.1016/j.tcs.2007.03.025

14. Kociumaka, T., Pachocki, J., Radoszewski, J., Rytter, W., Waleń, T.: Efficient counting of square
substrings in a tree. Theor. Comput. Sci. 544, 60–73 (2014). doi:10.1016/j.tcs.2014.04.015

15. Kociumaka, T., Radoszewski, J., Rytter,W.,Waleń, T.:Maximumnumber of distinct and nonequivalent
nonstandard squares in a word. In: Shur, A.M., Volkov,M.V. (eds.) Developments in Language Theory,
LNCS, vol. 8633, pp. 215–226. Springer (2014). doi:10.1007/978-3-319-09698-8_19

16. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: String powers in trees. In: Cicalese, F., Porat,
E., Vaccaro, U. (eds.) Combinatorial Pattern Matching, CPM 2015, LNCS, vol. 9133, pp. 284–294.
Springer (2015). doi:10.1007/978-3-319-19929-0_24

17. Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: On the maximum number of cubic subwords in a
word. Eur. J. Comb. 34(1), 27–37 (2013). doi:10.1016/j.ejc.2012.07.012

18. Lothaire, M.: Combinatorics on Words, 2nd edn. Cambridge Mathematical Library, Cambridge Uni-
versity Press, Cambridge (1997)

19. Thue, A.: Über unendliche Zeichenreihen. Skrifter udgivne af Videnskabsselskabet i Christiania. I.
Mathematisk-naturvidenskabelig klasse 1, 7 (1906). http://www.biodiversitylibrary.org/item/52020

123

http://dx.doi.org/10.1006/jagm.1999.1063
http://dx.doi.org/10.1007/BF01294132
http://dx.doi.org/10.1016/j.disc.2006.06.017
http://dx.doi.org/10.1007/978-3-319-21500-6_12
http://dx.doi.org/10.1007/978-3-319-21500-6_12
http://dx.doi.org/10.1007/978-3-642-31265-6_3
http://dx.doi.org/10.1007/978-3-642-31265-6_3
http://dx.doi.org/10.1016/j.dam.2014.08.016
http://dx.doi.org/10.1016/S0304-3975(99)00320-5
http://dx.doi.org/10.1006/jcta.1997.2843
http://dx.doi.org/10.1007/978-3-319-23826-5_26
http://dx.doi.org/10.1007/978-3-319-23826-5_26
http://dx.doi.org/10.1016/j.disc.2007.08.039
http://dx.doi.org/10.1016/j.jcta.2005.01.006
http://dx.doi.org/10.1016/j.tcs.2007.03.025
http://dx.doi.org/10.1016/j.tcs.2014.04.015
http://dx.doi.org/10.1007/978-3-319-09698-8_19
http://dx.doi.org/10.1007/978-3-319-19929-0_24
http://dx.doi.org/10.1016/j.ejc.2012.07.012
http://www.biodiversitylibrary.org/item/52020

	String Powers in Trees
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Structure of the Paper

	2 Preliminaries
	2.1 Combinatorics of Strings
	2.2 Labeled Trees
	2.3 Linear Upper Bound for Trivial Cubes

	3 Simple Cases of Cubic Occurrences
	4 d-Regular Strings
	5 mathcalO(nlogn) Bound for Cubes
	6 mathcalO(n) Bound for Cubes
	6.1 Left Candidates
	6.2 Right Candidates
	6.3 Main Result

	7 Powers with Exponent α=3
	Acknowledgements
	References

