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Abstract Let c, k be two positive integers. Given a graph G = (V, E), the c-Load
Coloring problem asks whether there is a c-coloring ϕ : V → [c] such that for
every i ∈ [c], there are at least k edges with both endvertices colored i . Gutin and
Jones (Inf Process Lett 114:446–449, 2014) studied this problem with c = 2. They
showed 2-Load Coloring to be fixed-parameter tractable (FPT) with parameter k
by obtaining a kernel with at most 7k vertices. In this paper, we extend the study to any
fixed c by giving both a linear-vertex and a linear-edge kernel. In the particular case of
c = 2, we obtain a kernel with less than 4k vertices and less than 6k+(3+√

2)
√
k+4

edges. These results imply that for any fixed c ≥ 2, c-Load Coloring is FPT and
the optimization version of c-Load Coloring (where k is to be maximized) has an
approximation algorithm with a constant ratio.

Keywords Parameterized algorithms · Kernels · FPT · Approximation algorithms ·
Load coloring

1 Introduction

Given a graph G = (V, E) and an integer k, the 2-Load Coloring problem intro-
duced in [1], asks whether there is a coloring ϕ : V → {1, 2} such that for i = 1 and
2, there are at least k edges with both endvertices colored i . The coloring needs not

A preliminary version of this paper appeared in conference proceedings [3]. The main differences
between this version of the paper and [3] are listed in the end of Sect. 1.
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be proper. This problem is NP-complete [1], and Gutin and Jones studied its parame-
terization by k [9]. They proved that 2-Load Coloring is fixed-parameter tractable
(FPT)1 by obtaining a kernel with at most 7k vertices. It is natural to extend 2-Load
Coloring to any number c of colors as follows. Henceforth, for a positive integer p,
[p] = {1, 2, . . . , p}.
Definition 1 (c-Load Coloring) Let c be a positive integer. Given a positive integer
k and a graph G = (V, E), the c-Load Coloring problem asks whether there is a
c-coloring ϕ : V → [c] such that for every i ∈ [c], there are at least k edges with both
endvertices colored i . If such a coloring ϕ exists, we call ϕ a (c, k)-coloring of G and
we write G ∈ (c, k)-LC.

The c-Load Coloring problem can be viewed as a subgraph packing problem
[14]: decide whether a graph G contains c vertex-disjoint k-edge subgraphs. Hence,
G ∈ (1, k)-LC if and only if |E(G)| ≥ k. In this paper, we consider c-Load Col-
oring parameterized by k for every fixed c ≥ 2. Note that c-Load Coloring is
NP-complete for every fixed c ≥ 2. Indeed, we can reduce 2-Load Coloring to
c-Load Coloringwith c > 2 by taking the disjoint union of G with c−2 stars K1,k .

We prove that the problem admits a kernel with less than 2ck vertices. Thus, for
c = 2 we improve the kernel result of [9]. To show our result, we introduce reduction
rules, which are new even for c = 2. We prove that the reduction rules can run in
polynomial time and that an irreducible graph with at least 2ck vertices is in (c, k)-
LC.

While there are many parameterized graph problems which admit kernels linear in
the number of vertices, usually only problems on classes of sparse graphs admit kernels
linear in the number of edges (since in such graphs the number of edges is linear in the
number of vertices), see, e.g., [4,8,15]. Only a few problems for general graphs admit
O(k)-edge kernels, see [10,11,16]. Our next result is in the same category: c- Load
Coloring admits a kernel with O(k) edges for every fixed c ≥ 2. Namely, the kernel
has less than 6.25c2k edges when c ≥ 2 and, moreover, less than 6k+(3+√

2)
√
k+4

edges when c = 2.
The optimization version of c-Load Coloring, called the Max c- Load Col-

oring problem, is as follows.

Definition 2 Let c be a positive integer. Given a graph G, the Max c- Load Col-
oring problem asks to find the maximum k such that G ∈ (c, k)-LC.

Using the above bound on the number of edges in a kernel for c ≥ 2, we show that
Max c- Load Coloring admits constant ratio approximation algorithms for any
fixed c.

The paper is organized as follows. After providing additional terminology and
notation in the remainder of this section, we show that the problem admits a kernel
with less than 2ck vertices in Sect. 2. Then, in Sect. 3, we prove the upper bound on
the number of edges in a kernel for every c ≥ 2 and, in Sect. 4, we show the constant

1 For comprehensive introductions to parameterized algorithms and complexity, see recent monographs
[5,8]; [12,15] are excellent recent survey papers on kernelization.
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ratio approximation result for Max c- Load Coloring. We improve our bound for
c = 2 in Sect. 5. We complete the paper with discussions in Sect. 6.
Graphs Following [1,9], we consider graphs without loops or multiple edges. (Actu-
ally, our results generalize to graphs with loops and multiple edges, see Sect. 6). For
a graph G, V (G) (E(G), respectively) denotes the vertex set (edge set, respectively)
of G, �(G) denotes the maximum degree of G, n its number of vertices, and m its
number of edges. A vertex u with degree 0 (1, respectively) is an isolated vertex (a
leaf-neighbor of v, where uv ∈ E(G), respectively). For a coloring ϕ, we say that an
edge uv is colored i if ϕ(u) = ϕ(v) = i , otherwise we say that it is uncolored. Since
we deal with a particular kind of edge coloring, we may also assume without loss of
generality that the graphs under consideration do not have isolated vertices.

For a vertex x and a vertex set X in G, N (x) = {y : xy ∈ E(G)}, d(x) = |N (x)|,
NX (x) = N (x) ∩ X and dX (x) = |NX (x)|. For disjoint vertex sets X,Y of G, let
G[X ] be the subgraph of G induced by X , E(X) = E(G[X ]) and E(X,Y ) = {xy ∈
E(G) : x ∈ X, y ∈ Y }.
Differences between this version of the paper and [3] There are three main differences
between the two versions of the paper: in this version, we improve (i) the running
time of our reduction rule algorithm from exponential in c to quadratic in c, (ii) the
approximation ratio from exponential in c to linear in c, and (iii) the bound on the
number of edges in the kernel for c = 2 from 8k to 6k + (3 + √

2)
√
k + 4 .

2 Bounding Number of Vertices in Kernel

In this section, we show that c-Load Coloring admits a kernel with less than 2ck
vertices. The fact that (ck − 1)K2 is a No-instance suggests that this kernel bound is
likely to be optimal. The kernelization can be carried out in time O((cn)2).

For any integer i ≥ 1 and τ ∈ {<,≤,=,>,≥}, K1,τ i denotes a star K1, j such
that j τ i and j ≥ 1. For instance, K1,≤p is a star with q edges, q ∈ [p]. Then, a
K1,τ i -graph is a forest in which every component is a star K1,τ i , and a K1,τ i -cover
of G is a spanning subgraph of G which is a K1,τ i -graph. We call any K1,τ i -graph a
star graph and any K1,τ i -cover a star cover.

We first prove the bound for star graphs with small maximum degree.

Lemma 1 If G is a K1,<2k-graph with n ≥ 2ck, then G ∈ (c, k)-LC.

Proof Let G be a K1,<2k-graph with n ≥ 2ck. We prove the lemma by induction on
c. The base case of c = 1 holds since a K1,<2k-graph has no isolated vertices: this
property implies G has at least |V (G)|

2 ≥ k edges.
Since all components ofG are trees, for each one the number of vertices is onemore

than the number of edges. If there is a component C , with k ≤ |E(C)| < 2k, we may
color V (C)with one color. Since we only used |V (C)| ≤ 2k vertices, H = G−V (C)

has at least 2(c− 1)k vertices and so H ∈ (c − 1, k)-LC by the induction hypothesis.
Thus, G ∈ (c, k)-LC.

We may assume that every component has less than k edges and let C1, . . . ,Ct

be the components of G. Let b be the minimum nonnegative integer for which there
exists I ⊆ [t] such that �i∈I |E(Ci )| = k + b ≥ k. Since there is no isolated vertex
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Fig. 1 An overload from O3,2.
The thick arcs emphases the
stars present in the overload

G

u1

u2

u3

|Vu1 | ≥ 2

|V1| = 3

in a star graph, m ≥ n
2 ≥ ck, and thus such a set I exists. Observe that for any i ∈ I ,

|E(Ci )| > b, as otherwise � j∈I\{i}|E(C j )| = k + b − |E(Ci )| ≥ k, a contradiction
to the minimality of b. Since every component has less than k edges, b ≤ k − 2.

For a star (V, E), the ratio |V |
|E | increases when |E | decreases. Thus, we have

� j∈I |V (C j )| ≤ � j∈I |E(C j )|maxh∈I ( |V (Ch)||E(Ch)| ) ≤ (k+b) b+2
b+1 . But 2k−(k+b) b+2

b+1 =
(k−2−b)b

b+1 ≥ 0, and so � j∈I |V (C j )| ≤ 2k. We may color the components Ci , i ∈ I ,
by the same color. Again, we have that H = G − V

(⋃
i∈I Ci

)
has at least 2(c − 1)k

vertices and so H ∈ (c− 1, k)-LC by the induction hypothesis. Thus, G ∈ (c, k)-LC.
	


For any star graph S and τ ∈ {<,≤,=,>,≥}, let C(S) (L(S), respectively) be the
centers (leaves, respectively) of stars in S (for the case of isolated edges in S, assign
one vertex to C(S) and one vertex to L(S) arbitrarily). Let Sτ be the subgraph of S
consisting of all stars whose centers v satisfy d(v) τ 2k − 1.

Corollary 1 If |C(S≥)| + |V (S<)|
2k ≥ c, then S ∈ (c, k)-LC.

Proof Clearly, S≥ ∈ (|C(S≥)|, k)-LC. We also have S< ∈
(
� |V (S<)|

2k �, k
)
-LC by

Lemma 1. Thus, S ∈ (|C(S≥)| + � |V (S<)|
2k �, k)-LC. 	


We now introduce a family (Oi,k)i,k∈N of overloads.

Definition 3 We call a pair (V1, V2) of disjoint vertex sets an overload from Oi,k if
|V1| = i , N (v) ⊆ V1 for all v ∈ V2, and for every u ∈ V1 there is a set Vu ⊆ NV2(u)

such that |Vu | ≥ k and for every pair u, v of distinct vertices of V1, Vu ∩ Vv = ∅ (see
Fig. 1).

Note that V2 in Definition 3 is an independent set.
If a graph G has an overload (V1, V2) from Oi,k , then G[V1 ∪ V2] ∈ (i, k)-LC: for

each u ∈ V1, color Vu ∪ {u} with one color. From this observation, we deduce the
following set of reduction rules:
Reduction rule Ri,k. If an instance G of c-Load Coloring contains an overload
(V1, V2) ∈ Oi, j , j ≥ k, delete the vertices of V1 ∪ V2 from G and decrease c by i .

Since the existence of an overload from Oi, j for i ≥ c and j ≥ k, in a graph G
implies G ∈ (c, k)-LC, we only consider Ri,k for i < c. If it is not possible to apply
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any ruleRi,k, i < c, to a graphG, we say thatG is irreducible for (c, k)-LC, otherwise
we apply the reduction rule and say that the resulting graph is reduced from G using
(V1, V2).

Observe that Ri,k may create isolated vertices, however, we will show in the fol-
lowing that we only use Ri,k in cases that do not produce isolated vertices.

Let G ′ be a graph reduced from G using (V1, V2) ∈ Oi, j , i < c.

Proposition 1 If G ′ ∈ (c − i, k)-LC then G ∈ (c,min{ j, k})-LC.

Proof We obtain a (c,min{ j, k})-coloring of G by merging any (c− i, k)-coloring of
G ′ with an (i, j)-coloring of the overload (V1, V2) ∈ Oi, j . 	


Proposition 2 If G ∈ (c, k)-LC then G ′ ∈ (c − i, k)-LC.

Proof Whatever the (c, k)-coloring of G, any edge incident to V1 is colored with a
color used for V1 or is uncolored. Thus, there are at least c− |V1| colors for which all
edges of that color are in E(G − V1). But by definition of an overload, any vertex in
V2 is isolated in G − V1. So, these colored edges are in E(G − (V1 ∪ V2)) = E(G ′).
We conclude that G ′ ∈ (c − |V1|, k)-LC. 	


These two propositions imply that the reduction rules are safe.

Lemma 2 Let G ′ be reduced from G using (V1, V2) ∈ Oi, j , i < c, j ≥ k. Then
G ∈ (c, k)-LC if and only if G ′ ∈ (c − i, k)-LC.

We now describe our polynomial reduction algorithm.

Theorem 1 Given two positive integers c, k > 1 and a graphG with n ≥ 2ck vertices,
there exists an algorithm running in time O((cn)2) which decides G ∈ (c, k)-LC or
outputs an instance (G ′, c′) reduced from (G, c) using an overload from Oc−c′,2k−1,
where c′ ∈ [c − 1], |V (G ′)| < 2c′k.

Proof We first show that G has a star cover. Recall that we assume G has no isolated
vertex. By choosing a spanning tree of each component of G, we obtain a forest F . If
a tree in F is not a star, it has an edge between two non-leaves. As long as F contains
such an edge, delete it from F . Observe that F becomes a star cover of G.

Let S be a star cover ofG. If S ∈ (c, k)-LC, thenG ∈ (c, k)-LC since S is a subgraph
of G. So, if |C(S≥)| + |V (S<)|

2k ≥ c, then the algorithm may decide G ∈ (c, k)-LC by
Corollary 1. On the other hand, if S> is empty, G ∈ (c, k)-LC by Lemma 1. We may
assume these two properties do not hold and thus |C(S≥)| ∈ [c − 1].

From star cover S, we will try to find some overload (V1, V2) such that we can apply
the reduction rule. Our main idea is to regard centers of “big” stars as candidates for
V1 and their leaves as candidates for V2, in the hope of finding big stars whose leaves
have no neighbors outside of V1. If, unfortunely, the leaf has neighbor outside of V1,
we will modify the star cover until we find an overload or we can conclude that the
graph is a Yes-instance.
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Fig. 2 k = 2, the dashed edges
are in S, and will be deleted
from it; the dotted edges are
what we are looking for, and will
be put into S

S<S=S>

y

x

⊆ S

We will now show that we may modify the star cover S until one of the above
properties holds or G contains an overload (V1, V2) ∈ Oc−c′,2k−1. In particular, we
will show that the modification can be done in time O(c2n) and it strictly decreases
|V (S>)|. Thus, the processmay be applied atmost n times and the resulting algorithm’s
running time is indeed O((cn)2).

We maintain a star graph S′: initially, let S′ = S> and while there is an edge
uv ∈ E(G)\E(S) such that u ∈ L(S′) and v ∈ C(S=\S′), add the star centered at v to
S′. Observe that this first construction runs in time O(c2n). Indeed, since |C(S≥)| < c,
such an edge can be found in time O(cn) and there are at most c steps in this while
loop. As S′ is a subgraph of the S, S′ is a star graph.

Claim 1 At any step of the construction of S′ and for any leaf y ∈ L(S′), there exists
an alternating path P from x to y such that V (P) ⊆ S′, x ∈ C(S>), the odd edges
are in E(S) and go from a center to a leaf, and the even edges are in E(G)\E(S) and
go from a leaf to a center (see Fig. 2).

We prove this claim by induction on the number of steps in the while loop. Initially,
for any leaf y, the neighbor x of y is in C(S>), thus the desired path is {xy}. At any
step, we add a vertex v ∈ C(S=) to S′ because there exists an edge uv ∈ E(G)\E(S)

such that u is a leaf introduced into S′ before v. By induction hypothesis, there is a
desired alternating path P from x to u such that V (P) ∩ NS[v] = ∅. Thus the desired
alternating path for any leaf-neighbor y of v is P ∪ {uv, vy}.

We say that we reverse an alternating path from x to y in S if we remove the odd
edges from E(S) and add the even edges into E(S). This operation decreases the size
of the star centered at x by 1, does not change the size of the transitional stars and
isolates y. Since the length of a path is bounded by 2|C(S′)| < 2c, we may save these
paths during the construction of S′, and thus a reversal costs constant time.

Now we show how to handle the remaining problematic edges, i.e. edges uv ∈
E(G)\E(S) such that u ∈ L(S′) and v ∈ V (G)\C(S′) (see Fig. 2). Recall that
v /∈ C(S≥) by the construction of S′ and there is an alternating path P from a vertex
x ∈ C(S>) to u by Claim 1. In any of the following cases, we show how to modify
S such that |V (S>)| decreases (by reversing a path) and such that the resulting graph
remains a star cover :

• v ∈ C(S<) or v is the leaf of a single-leaf star in S : we reverse P in S and add
uv to E(S). Despite the reversal, the vertex u is not isolated in the resulting graph
because of uv and v does not become the center of a star of size greater than 2k−1.

• v ∈ L(S) and v is not the leaf of a single-leaf star in S. Let y be the neighbor of v

in S.
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– vy /∈ E(P): we reverse P in S, add uv to E(S) and remove vy from it.
Observe that the vertices u and v do not become isolated. The vertex y is not
isolated either. Indeed, if x �= y, y loses only one neighbor but it was not the
center of a single-leaf star in S, and otherwise, it loses two neighbors but since
y = x ∈ C(S>) and k > 1, dS(y) − 2 > 2k − 3 ≥ 1.

– P = P ′ ∪ {yv} ∪ P ′′: let w be the neighbor of u in S, we reverse P ′ ∪ {yv} in
S, add vu and remove uw from E(S). Again, u and v do not become isolated
because of uv. Also, as w �= x (since they are different vertices of a path), w
loses only one neighbor. We have dS(w) − 1 = 2k − 2 ≥ 2 and w does not
become isolated.

So, we may assume there is no edge uv ∈ E(G)\E(S) such that u ∈ L(S′) and
v ∈ V (G)\C(S′). Then any vertex in L(S′) is isolated in G − C(S′). Thus, for any
u ∈ L(S′), we have N (u) ⊆ C(S′), and for each v ∈ C(S′), we can define Vv to
be the leaves of the star centered at v, for which we have |Vv| ≥ 2k − 1. These
two observations imply (C(S′), L(S′)) is an overload from O|C(S′)|,2k−1. Since the
reductions are safe, the algorithm may output (G ′, c′) = (G − V (S′), c − |C(S′)|).
Note that |V (G ′)| = 2k|C(S=\S′)| + |V (S<)| < 2k(c − |C(S′)|) = 2c′k by the first
assumption of the second paragraph of this proof. Since C(S>) ⊆ C(S′) ⊆ C(S≥),
we have |C(S′)| ∈ [c − 1] (by the second paragraph of this proof) and therefore
c′ = c − |C(S′)| ∈ [c − 1]. Observe moreover that the reduced graph G ′ contains the
star cover S − V (S′) and thus has no isolated vertices.

We finally discuss how to find such an edge in at most O(c2n) time if it exists. We
may assumewe initially computed the degree of each vertex ofG once (in time O(n2))
and we can make copies of this information in time O(n). Then, we may compute the
degree of each vertex of the graph G − C(S′) in O(cn) time since |C(S′)| < c. We
only need to know if there is a vertex u ∈ L(S′) such that dV \C(S′)(u) > 0. If so, u is
not isolated in G − C(S′) and it is incident to one of the desired edges that we may
find in time O(n). 	

Theorem 2 For any fixed c ≥ 2 and for any positive integer k, c-Load Coloring
admits a kernel with less than 2ck vertices.

Proof Observe first that G ∈ (c, 1)-LC if and only if G has a matching with at least c
edges. Since this property can be decided in polynomial time, we just need to consider
the case when k > 1 and the input G has at least n ≥ 2ck vertices. Thus, the algorithm
of Theorem 1 may decide whether G ∈ (c, k)-LC or obtains an instance (G ′, c′)
reduced from (G, c) such that |V (G ′)| < 2c′k. 	


3 Bounding Number of Edges in Kernel

Let S(c) be the integer sequence defined by induction by S(1) = 1, S(2c) = 4S(c) and
S(2c + 1) = 2S(c) + 2S(c + 1). This sequence is known as A073121 in the Online
Encyclopedia of Integer Sequences [17] (see also [2]). We will use the following
technical result.

Proposition 3 If c is even, S(c) ≤ 9c2−4
8 , and for any c, S(c) ≤ 9c2−1

8 .
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Proof It is easy to check the base cases: S(1) = 1 = 9(1)2−1
8 , S(2) = 4 = 9(2)2−4

8

and S(3) = 10 = 9(3)2−1
8 . We now assume the claim holds for every c ≤ 2c′ − 1 and

we will prove it for c = 2c′ and c = 2c′ + 1. For even value, we have:

S(2c) = 4S(c) ≤ 4
9c2 − 1

8
= 9(2c)2 − 4

8
.

For odd value, we have:

S(2c + 1) = 2(S(c) + S(c + 1))

≤ 2
9c2 + 9(c + 1)2 − 1 − 4

8
= 9(2c + 1)2 − 1

8
.

	

Byusing the kernel in the previous section,we show that c-Load Coloring admits

a kernel with less than (2S(c)+4c2−5c)k edges. Because of the upper bound on S(c)
given by Proposition 3, the number of edges in a kernel may be bounded by 6.25c2k.
We first prove a smaller bound for bipartite graphs.

Lemma 3 Let b(c, k, n) = S(c)k+(c−1)n. For every positive integer c and bipartite
graph G with n vertices, if m ≥ b(c, k, n) then G ∈ (c, k)-LC.

Proof We prove the lemma by induction on c. For the base case, observe that any
graph with at least k = b(1, k, n) edges is in (1, k)-LC for every k and n. We now
assume the claim holds for every c ≤ 2c′ − 1 and we will prove it for c = 2c′ and
c = 2c′ + 1.

Suppose that G = (A ∪ B, E) is a bipartite graph with n vertices and at least
b(c, k, n) edges, but G /∈ (c, k)-LC. Let B2 be a maximal subset of B such that

|E(A, B2)| < b(c − c′, k, |A| + |B2|) + b(c − c′, k, |B2|) (1)

So, for any vertex u ∈ B\B2, the set B2 ∪{u} does not satisfy (1). Such a set B2 exists
since the empty set satisfies (1). Moreover, for any partition (A1, A2) of A, we know
there exists i ∈ {1, 2} such that

|E(Ai , B2 ∪ {u})| ≥ b(c − c′, k, |Ai | + |B2 ∪ {u}|) (2)

as otherwise, the linearity in n of b(c, k, n) implies a contradictionwith themaximality
of B2:

|E(A, B2 ∪ {u})| = |E(A1, B2 ∪ {u})| + |E(A2, B2 ∪ {u})|
< b(c − c′, k, |A1| + |B2 ∪ {u}|) + b(c − c′, k, |A2| + |B2 ∪ {u}|)
= b(c − c′, k, |A| + |B2 ∪ {u}|) + b(c − c′, k, |B2 ∪ {u}|).
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Let B1 = B\B2, A1 = A and A2 = ∅. We define the following inequalities.

|E(A1, B1)| < b(c′, k, |A1| + |B1|) + |A1| (3)

|E(A2, B1)| < b(c′, k, |A2| + |B1|) + |A2|. (4)

While (3) does not hold and (4) holds, we move an arbitrary vertex from A1 to A2.
Suppose eventually (3) and (4) are both false and let u be an arbitrary vertex in B1.
We deduce for both i = 1 and i = 2 that

|E(Ai , B1\{u})| ≥ b(c′, k, |Ai | + |B1|).

Thus, there exist disjoint vertex sets X and Y such that |E(X)| ≥ b(c′, k, |X |) and
|E(Y )| ≥ b(c − c′, k, |Y |) (either X = A1 ∪ B1\{u} and Y = A2 ∪ B2 ∪ {u}, or
X = A2 ∪ B1\{u} and Y = A1 ∪ B2 ∪ {u}, depending on whether (2) holds for i = 1
or i = 2). By taking a (c′, k)-coloring of X and a (c − c′, k)-coloring of Y , we have
that G ∈ (c, k)-LC, a contradiction.

So, we may assume (3) eventually holds. If A2 = ∅, then |E(A2, B1)| = 0.
Otherwise, let v be the last vertex moved from A1 to A2. Observe that

|E(A2, B1)| ≤ |E(A2\{v}, B1)| + |B1|
< b(c′, k, |A2\{v}| + |B1|) + |A2\{v}| + |B1|(by (4)).
< b(c′, k, |A2| + |B1|) + |A2| + |B1|. (5)

In both cases, (5) holds and we can bound the number of edges in G:

|E(G)| = |E(A, B2)| + |E(A1, B1)| + |E(A2, B1)|
< b(c − c′, k, |A| + |B2|) + b(c − c′, k, |B2|)

+ b(c′, k, |A1| + |B1|) + |A1|
+ b(c′, k, |A2| + |B1|) + |A2| + |B1|
(by inequalities (1), (3), (5)).

If c = 2c′, we have c − c′ = c′ and it is not hard to check that

|E(G)| < 4S(c′)k + 2(c′ − 1)n + n = b(c, k, n).

Otherwise, c = 2c′ + 1 and then c − c′ = c′ + 1. Thus,

|E(G)| < 2S(c′)k + 2S(c′ + 1)k + 2(c′ − 1)n

+|A| + 2|B2| + |A1| + |A2| + |B1|
≤ S(2c′ + 1)k + 2c′n = b(c, k, n).

Thus, for c = 2c′ and c = 2c′ + 1, we have |E(G)| < b(c, k, n), a contradiction.
So, there is no bipartite graph with n vertices and at least b(c, k, n) edges such that
G /∈ (c, k)-LC. 	
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We now generalize this lemma for any graph. We would like to find a partition
(A, B) of V such that |E(A)| + |E(B)| is bounded, since |E(A, B)| is bounded.
Lemma 4 Let f (c, k, n) = (2S(c) − c)k + 2(c − 1)n. For every positive integer c
and every graph G with n vertices, if m ≥ f (c, k, n) then G ∈ (c, k)-LC.

Proof We prove the lemma by induction on c. For the base case, observe that any
graph with at least k = f (1, k, n) edges is in (1, k)-LC for every k and n. We now
assume the claim holds for every c ≤ 2c′ − 1 and we will prove it for c = 2c′ and
c = 2c′ + 1.

Consider a graph G with n vertices and at least f (c′, k, n) edges, such that G /∈
(c, k)-LC.Wewill first show that there exists a set A ⊆ V (G) such that f (c′, k, |A|) ≤
|E(A)| ≤ f (c′, k, |A|) + |A| (and thus G[A] ∈ (c′, k)-LC). We may construct the
set A as follows: initially A = ∅ and while |E(A)| < f (c′, k, |A|), add an arbitrary
vertex of V (G)\A to A. Let u be the last added vertex. Then

|E(A)| ≤ |E(A\{u})|+|A\{u}| < f (c′, k, |A\{u}|)+|A\{u}| < f (c′, k, |A|)+|A|.

Let B = V (G)\A. If G[B] ∈ (c − c′, k)-LC, then G ∈ (c, k)-LC, a contradiction.
So |E(B)| < f (c − c′, k, |B|). Furthermore, |E(A, B)| < b(c, k, n) by Lemma 3.
Finally, we may bound |E(G)|. If c = 2c′, we have c − c′ = c′

|E(G)| < f (c′, k, |A|) + f (c′, k, |B|) + b(2c′, k, n) + |A|
= (2S(c′) − c′)k + 2(c′ − 1)|A| + (2S(c′) − c′)k + 2(c′ − 1)|B|

+ S(2c′)k + (2c′ − 1)n + |A|
≤ (2S(2c′) − 2c′)k + (4c′ − 2)n = f (c, k, n).

Otherwise, c = 2c′ + 1 and c − c′ = c′ + 1. Thus,

|E(G)| < f (c′, k, |A|) + f (c′ + 1, k, |B|) + b(2c′ + 1, k, n) + |A|
= (2S(c′) − c′)k + 2(c′ − 1)|A| + (2S(c′ + 1) − (c′ + 1))k + 2c′|B|

+ S(2c′ + 1)k + 2c′n + |A|
≤ (2S(2c′ + 1) − (2c′ + 1))k + 4c′n = f (c, k, n).

Thus, in both cases |E(G)| < f (c, k, n), as required. 	

Recall that Proposition 3 implies f (c, k, 2ck) < 6.25c2k. Thus Lemma 4 implies

the following

Corollary 2 For every graph G with less than 2ck vertices, if m ≥ 6.25c2k then
G ∈ (c, k)-LC.

Theorem 2 and Corollary 2 imply the following.

Theorem 3 The c-Load Coloring Problem admits a kernel with less than
f (c, k, 2ck) < 6.25c2k edges.
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The size of this kernel may be optimal up to a constant factor. Indeed, the complete
bipartite graph Kc,ck−1 is an irreducible graph for (c, k)-LC with c2k − c = O(c2k)
edges, but Kc,ck−1 /∈ (c, k)-LC. We can increase this lower bound by joining all c
vertices on the smaller side of Kc,ck−1. The resulting graph is not in (c, k)-LC either,
and it has c2k + c(c−3)

2 edges.

4 Approximation Algorithm

We consider an approximation algorithm for theMax c- Load Coloring problem.
Given a graph G and integer c, we wish to determine kopt (G, c), the maximum k for
whichG ∈ (c, k)-LC.Given an approximation algorithm,we define the approximation
ratio as kopt (G,c)

k , where k is the output of the approximation algorithm.

Note that kopt (G, c) ≤ �|E(G)|
c � by the pigeonhole principle. Let K (c)k be an upper

bound of the number of edges in a kernel for c-Load Coloring. By Theorem 3, we
may have K (c) = 6.25c2.

Theorem 4 Given a graph G and a positive integer c, there exists an algorithm

running in time O(c3n2) which outputs k such that G ∈ (c, k)-LC and
kopt (G,c)

k+1 <
K (c)
c = 6.25c.

Proof We prove the claim by induction on c. If c = 1, the algorithm trivially outputs
|E(G)|. We assume the claim holds for any i < c, and want to prove it for c.

Let k = �|E(G)|
K (c) �. Note that k + 1 >

|E(G)|
K (c) ≥ ckopt (G,c)

K (c) , thus K (c)
c >

kopt (G,c)
k+1 . We

also have K (c)
c >

kopt (G,c)
2k−1 if k > 1.

If k ≤ 1, since G ∈ (c, 1)-LC if and only if G has a matching with at least c edges,
the algorithm may decide whether G ∈ (c, 1)-LC in time O(c2n) using any matching
algorithm. Depending on the answer, the algorithm outputs kopt (G, c) = k = 0 or
k = 1. Therefore we may assume k > 1.

If n < 2ck, and as we choose k such that m ≥ K (c)k, Corollary 2 implies G ∈
(c, k)-LC. Thus, the algorithm may output k. Otherwise, we may give G as input of
Theorem 1’s algorithm for c-Load Coloring. Again, if the answer is G ∈ (c, k)-
LC, our approximation algorithm may output k. Otherwise the algorithm of Theorem
1 returns a graph G ′ reduced from G using an overload from Oc−c′,2k−1, where
c′ ∈ [c − 1].

So now assume we have such a G ′. Since G ∈ (c, kopt (G, c))-LC, we have G ′ ∈
(c′, kopt (G, c))-LC by Proposition 2. Thus kopt (G, c) ≤ kopt (G ′, c′) and by induction
hypothesis, wemay find an integer k′ such thatG ′ ∈ (c′, k′)-LC and 6.25c > 6.25c′ >
kopt (G ′,c′)

k′+1 ≥ kopt (G,c)
k′+1 . As we also have G ∈ (c,min{2k − 1, k′})-LC by Proposition

1, let the algorithm output min{2k − 1, k′}.
The time complexity of the algorithm follows from the complexity of the algorithm

of Theorem 1 and the fact that any step of the induction needs to use the reduction
algorithm only once and this strictly decreases c. 	
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Note that Theorem 4 does not technically give us a K (c)
c = 6.25c approximation,

as we only have kopt
k+1 <

K (c)
c rather than kopt

k <
K (c)
c . However, the following holds:

Corollary 3 There is a12.5c approximation algorithm forMax c- Load Coloring.

Proof By construction, if the approximation algorithm outputs k = 0, then
kopt (G, c) = 0. Otherwise, k ≥ 1 and then kopt

k ≤ 2kopt
k+1 < 2 K (c)

c = 12.5c. 	


5 Number of Edges in Kernel for c = 2

In this section, we look into the edge kernel problem for the special case when c = 2.
By doing a refined analysis, we will give a kernel with less than 6k+ (3+√

2)
√
k+4

edges for 2-Load Coloring, which is a better bound than the general one.

Lemma 5 If a graph G is irreducible for (2, k)-LC and�(G) ≥ 3k, then G ∈ (2, k)-
LC.

Proof Let u be one of the vertices with degree � and N (u) its neighbors. Since G
is reduced by Reduction Rule R1,k, u has at least 2k neighbors which are not leaves.
Thus, these vertices are incident to at least k edges not incident with u. Arbitrarily
color k of them with color 1. By construction, there are at most 2k colored vertices.
So there are at least � − 2k ≥ k uncolored vertices in N (u). We color them and u
with 2. Thus, G ∈ (2, k)-LC. 	


We first establish a bound of the number of edges in a particular kind of minimal
vertex subsets.

Lemma 6 Let k be a positive integer. For any V ′ ⊆ V (G) such that |E(V ′)| =
k + d ≥ k and V ′ contains at most one vertex u with dV ′(u) ≤ d, we have d <

√
2k.

Proof Since |E(V ′)| ≥ k > 0, V ′ has at least two vertices, and thus there exists a
vertex v ∈ V ′ such that d < dV ′(v) ≤ |V ′| − 1. This implies

2(k + d) = 2|E(V ′)| =
∑

v∈V ′
dV ′(v) ≥ (d + 1)(|V ′| − 1) ≥ (d + 1)2.

Thus, 2k ≥ d2 + 1 implying d <
√
2k. 	


The following lemmas and corollaries bound sizes of some sets of edges in a
partition of V (G) in three sets.

Lemma 7 Let G have a partition V (G) = A ∪ B1 ∪ B2 and let s = min
i∈[2]|Bi |. If

|E(A, Bi )| + 2|E(Bi )| ≥ 2k + s for i ∈ [2], then G ∈ (2, k)-LC.

Proof For any 2-coloring ofG, any i ∈ [2] and any disjoint vertex sets X,Y , we denote
by Ei (X) (Ei (X,Y ), respectively) the set of edges colored i from E(X) (E(X,Y),
respectively). Throughout the proof, all vertices of Bi , i ∈ [2], will be colored i , and
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therefore Ei (Bi ) = E(Bi ). Let B = B1 ∪ B2, and for each B ′ ⊆ B, let A[B ′] = {u ∈
A : NB(u) = B ′}. Also, let Ai [B ′] be the set of vertices from A[B ′] colored i .

Let us color vertices of A as follows.
If there is a set B ′ = B ′

1 ∪ B ′
2, such that B ′

1 ⊆ B1, B ′
2 ⊆ B2, and |A[B ′]| is even,

then we assign half of the vertices of A[B ′] color 1, and the other half color 2. We
have

|Ei (A[B ′], Bi )| = |Ai [B ′]| |B ′
i | = |A[B ′]|

2
|B ′

i | for both i ∈ [2].

If there are two sets B ′ = B ′
1 ∪ B ′

2 and B ′′ = B ′′
1 ∪ B ′′

2 , such that |A[B ′]| and
|A[B ′′]| are odd, B ′

1, B
′′
1 ⊆ B1, B ′

2, B
′′
2 ⊆ B2, and |B ′

1| ≥ |B ′′
1 |, |B ′

2| ≤ |B ′′
2 |, then

assign |A[B′]|+1
2 vertices of A[B ′] and |A[B′′]|−1

2 vertices of A[B ′′] color 1, and |A[B′]|−1
2

vertices of A[B ′] and |A[B′′]|+1
2 vertices of A[B ′′] color 2. We have

|E1(A[B ′], B1)| + |E1(A[B ′′], B1)| = (|A[B ′]| + 1)

2
|B ′

1| + (|A[B ′′]| − 1)

2
|B ′′

1 |

≥ |A[B ′]|
2

|B ′
1| + |A[B ′′]|

2
|B ′′

1 |.

and, similarly, |E2(A[B ′] ∪ A[B ′′], B2)| ≥ |A[B′]|
2 |B ′

2| + |A[B′′]|
2 |B ′′

2 |.
Let us denote by B1,B2,…,Bt the remaining subsets for which A[B j ] is uncolored,

and for i ∈ [2] and j ∈ [t], define B j
i = B j ∩ Bi . Since for every pair of uncolored

sets B j , Bh , we have that either |B j
1 | > |Bh

1 | and |B j
2 | > |Bh

2 |, or |B j
1 | < |Bh

1 | and
|B j

2 | < |Bh
2 |, we may order these sets such that for all j, h, 0 < j < h ≤ t , we have

|B j
1 | > |Bh

1 | and |B j
2 | > |Bh

2 |. Without loss of generality, let us assume |B1| ≤ |B2|.
For each j ∈ [t], assign |A[B j ]|+1

2 vertices of A[B j ] color 1 if j is even, and assign
|A[B j ]|−1

2 vertices of A[Bj ] color 1, otherwise. Assign the remaining vertices of A[B j ]
color 2. Then we have that

t∑

j=1

|E2(A[B j ], B2)| =
t∑

j=1

( |A[B j ]|
2

|B j
2 |

)
+

∑

j odd

|B j
2 |
2

−
∑

j even

|B j
2 |
2

≥
t∑

j=1

( |A[B j ]|
2

|B j
2 |

)
+

�t/2�∑

j=1

|B2 j−2
2 | − |B2 j

2 |
2

≥
t∑

j=1

( |A[B j ]|
2

|B j
2 |

)
.
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We also have that

t∑

j=1

|E1

(
A[B j ], B1

)
| =

t∑

j=1

( |A[B j ]|
2

|B j
1 |

)
−

∑

j odd

|B j
1 |
2

+
∑

j even

|B j
1 |
2

≥
t∑

j=1

( |A[B j ]|
2

|B j
1 |

)
− |B1

1 |
2

+
�(t−1)/2�∑

j=1

|B2 j
1 | − |B2 j+1

1 |
2

≥
t∑

j=1

( |A[B j ]|
2

|B j
1 |

)
− s

2
.

Observe that we have colored all the vertices. Since all the sets A[B ′] are disjoint,
we may sum up all the inequalities we have so far for both i ∈ [2] to obtain:

2|Ei (V (G))| ≥ 2|Ei (Bi )| + 2|Ei (A, Bi )|
= 2|E(Bi )| + 2

∑

B′⊆B

|Ei (A[B ′], Bi )|

≥ 2|E(Bi )| +
∑

B′⊆B

|A[B ′]| |B ′
i | − s

= 2|E(Bi )| + |E(A, Bi )| − s ≥ 2k,

which means |Ei (V (G))| ≥ k for both i ∈ [2], and so G ∈ (2, k)-LC. 	

Corollary 4 Let k and s be two positive integers and V> = {u ∈ V (G) : d(u) ≥
2k
s + s + 1}. If |V>| ≥ 2s then G ∈ (2, k)-LC.

Proof Let B1 and B2 two disjoint arbitrary subsets of V> such that |B1| = |B2| = s
and let A = V (G)\(B1 ∪ B2). Observe that for both i ∈ [2], every vertex u ∈ Bi has
at most |B3−i | = s neighbors in |B3−i |, thus dA∪Bi (u) = dV (G)\B3−i (u) ≥ 2k

s + 1.
We deduce

|E(A, Bi )| + 2|E(Bi )| =
∑

u∈Bi
dA∪Bi (u) ≥ |Bi |

(
2k

s
+ 1

)
= 2k + s.

So, by Lemma 7, G ∈ (2, k)-LC. 	

Corollary 5 Let k be a positive integer and V> = {u ∈ V (G) : d(u) ≥ 3

√
k + 4}. If

|V>| ≥ 2�√k� then G ∈ (2, k)-LC.

Proof Let s = �√k� ≥ 1 and e = √
k − s < 1. Corollary 4 applies since

2k

s
+ s + 1 = 2(s + e)2

s
+ s + 1 = 3s + 4e + 2e2

s
+ 1 = 3

√
k + e + 2e2

s

+1 < 3
√
k + 4.
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If |B1| = 1, we may obtain a better result than Lemma 7.

Lemma 8 Let G have a partition V (G) = A ∪ {u} ∪ B2 such that dA(u) ≥ 2k. If
|E(A, B2)| + |E(B2)| ≥ k, then G ∈ (2, k)-LC.

Proof Choose a minimal set A′ ⊆ A, such that |E(A′, B2)| + |E(B2)| ≥ k. Observe
that for all v ∈ A′, dB2(v) ≥ 1, as otherwise, such a vertex would not contribute to
|E(A′, B2)|+|E(B2)| and wemay delete it, a contradiction with the minimality of A′.
Then we have |A′| ≤ k, and thus dA\A′(u) ≥ dA(u)−|A′| ≥ k. We may color A′ ∪ B2
with one color and (A\A′) ∪ {u} with another, which implies that G ∈ (2, k)-LC. 	

Corollary 6 Let G /∈ (2, k)-LC. Then there exists at most one vertex such that d(v) >

2k.

Proof Suppose there are at least two vertices u and v with degree greater than 2k and
let A = V (G)\{u, v}. We have dA(u) ≥ 2k and dA(v) ≥ 2k, then Lemma 8 applies
and G ∈ (2, k)-LC, a contradiction. 	


With these observations, we may prove the main lemma of this section.

Lemma 9 Let�(G) < 3k and |E(G)| ≥ 6k+(3+√
2)

√
k+4. Then G ∈ (2, k)-LC.

Proof LetG be a graphwith at least 6k+(3+√
2)

√
k+4 edges and� = �(G) < 3k,

but G /∈ (2, k)-LC. Let t = 3
√
k + 4, V> = {x ∈ V (G) : d(x) ≥ t}

and A = V (G)\V>. Let u be a vertex of degree �. By Corollary 6, for every
v ∈ V (G)\{u}, d(v) ≤ 2k.

As t > 2k√
k
+√

k, we have |V>| < 2
√
k, as otherwise,G ∈ (2, k)-LCP by Corollary

4, a contradiction. Thus, for any partition X , Y of V> we have

|E(X,Y )| ≤ |X ||Y | < |X |(2√k − |X |) ≤ k (6)

We will now show that there exists a partition V (G) = A′ ∪ B1 ∪ B2 such that
|E(A′)| = k + d < k + √

2k, |E(B1 ∪ B2)| < k and |E(A′, Bi )| ≥ 2k, for both
i ∈ [2]. Let us consider the following two cases.
Case 1 dA(u) ≥ 2k. Let B1 = {u} and B2 = V>\B1. By Lemma 8, we have
|E(A, B2)| + |E(B2)| < k. If |E(A)| < k then |E(G)| = |E(A)| + |E(A, B2)| +
|E(B2)|+d(u) < k+k+� < 5k, a contradiction. Thus, wemay assume |E(A)| ≥ k.
We take a minimal set A′ ⊆ A, such that k ≤ |E(A′)| = k + d. Observe that if there
is any vertex v ∈ A′ with |N ′

A(v)| ≤ d, then A′′ = A′\{v} is a smaller vertex set such
that |E(A′′)| ≥ k, a contradiction to the minimality of A′. Thus, by Lemma 6 we have
d <

√
2k. Let B ′ = A\A′. Note that we have |E(B1 ∪ B2 ∪ B ′)| < k as otherwise

G ∈ (2, k)-LC since |E(A′)| ≥ k.
Suppose |E(A′, {u})| ≥ 2k. Then |E(A′, B2 ∪ B ′)| + |E(B2 ∪ B ′)| ≥ k implies

G ∈ (2, k)-LC by Lemma 8. So we have |E(G)| = |E(A′)| + |E(A′, B2 ∪ B ′)| +
|E(B2 ∪ B ′)| + d(u) < k + d + k + � < 5k + d, a contradiction.

So, we may assume |E(A′, B1)| < 2k. While this inequality holds, push a vertex
from B ′ to B1. Observe that after any move |E(A′, B1)| < 2k + t since max{d(v) :
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v ∈ B ′} ≤ t . Suppose that B ′ is empty but |E(A′, B1)| < 2k. Then |E(A′, B2)| ≤
|E(A, B2)| + |E(B2)| < k by Lemma 8, and |E(G)| = |E(A′)| + |E(A′, B1)| +
|E(A′, B2)| + |E(B1 ∪ B2)| < k + d + 2k + k + k = 5k + d, a contradiction. Thus,
|E(A′, B1)| ≥ 2k and we will put the remaining vertices of B ′ to B2. We also have
|E(A′, B2)| ≥ 2k as otherwise |E(G)| = |E(A′)|+|E(A′, B1∪B2)|+|E(B1∪B2)| <

(k+d)+ (4k+ t)+k = 6k+d+ t , a contradiction. So, we have the desired partition.
Case 2 dA(u) < 2k. Recall that |V>| ≤ 2

√
k. Choose first a maximal set B1 ⊆ V>,

such that u ∈ B1, |E(A, B1)| + 2|E(B1)| < 2k + √
k. Then choose a maximal set

B2 ⊆ V>\B1, such that |E(A, B2)|+2|E(B2)| < 2k+√
k. Let R = V>\(B1∪B2). If

|R| ≥ 2, put one vertex in B1 and one in B2, and then for both i ∈ [2], the maximality
of Bi implies |E(A, Bi )| + 2|E(Bi )| ≥ 2k + √

k, and so G ∈ (2, k)-LC by Lemma
7, a contradiction.

Thus,wemayassume that R is emptyor has onevertex. If R is not empty, let R = {r}
and recall that d(r) ≤ 2k. Suppose that |E(A ∪ R)| < k. By (6), |E(B1, B2)| < k.
Thus, |E(G)| = |E(A ∪ R)| + |E(A, B1)| + |E(B1)| + |E(A, B2)| + |E(B2)| +
|E(B1, B2)| + |E(R, B1 ∪ B2)| < k + 4k + 2

√
k + k + |B1 ∪ B2| < 6k + 4

√
k, a

contradiction.
Thus, wemay assume that |E(A∪R)| ≥ k. Let A′ be aminimal subset of A∪R such

that R ⊆ A′ and k ≤ |E(A′)| = k+d. There is no v ∈ A′\R with |N ′
A(v)| ≤ d, and so

byLemma6we have d <
√
2k. Let B ′ = A\A′ and observe that |E(B1∪B2∪B ′)| < k

as otherwise G ∈ (2, k)-LC since |E(A′)| ≥ k.
If |E(A′, B1)| ≥ 2k, we still have |E(A′, B1)| < |E(A, B1)| + |E(R, B1)| <

|E(A, B1)| + |B1| < 2k + √
k + 2

√
k < 2k + t . Otherwise, while |E(A′, B1)| < 2k

holds, push a vertex from B ′ to B1.Observe that after anymove |E(A′, B1)| < 2k+t . In
any case, |E(A′, B1)| < 2k+ t . Suppose that B ′ becomes empty while |E(A′, B1)| <

2k. Then |E(A′, B2)| ≤ |E(A, B2)| + 2|E(B2)| + |E(R, B2)| < 2k + √
k + 2

√
k <

2k+t andwe have the bound |E(G)| = |E(A′)|+|E(A′, B1)|+|E(A′, B2)|+|E(B1∪
B2)| < (k+d)+2k+(2k+ t)+k = 6k+ t+d, a contradiction. So |E(A′, B1)| ≥ 2k
and we move the remaining vertices of B ′ to B2. Suppose |E(A′, B2)| < 2k, we also
have the bound |E(G)| < 6k + t + d, a contradiction. Thus, for both i ∈ [2], we have
|E(A′, Bi )| ≥ 2k. So, we have the desired partition.

Let us consider such a partition. If there is a set T ⊆ A′, such that |E(T, B1)| > k
and |E(T, B2)| ≤ k (thus |E(A′\T, B2)| ≥ k) or symmetrically, |E(T, B1)| ≤ k
(thus E(A′\T, B1) ≥ k) and |E(T, B2)| > k, then G ∈ (2, k)-LC, a contradic-
tion. So, for any set T ⊆ A′, we have either max{|E(T, B1)|, |E(T, B2)|} ≤ k
or min{|E(T, B1)|, |E(T, B2)|} > k. Select a maximal subset A1 of A′ such that
|E(A1, Bi )| ≤ k for i ∈ [2]. Observe that by construction in the two cases, A′ con-
tains at most one vertex r such that d(r) > t , and such a vertex has d(r) ≤ 2k.
In the construction of A1, we may assume that r is the first element added to
A1 (note that |E({r}, Bi )| ≤ k for i ∈ [2], as otherwise |E({r}, Bi )| > k for
i ∈ [2] and d(r) > 2k, a contradiction). Thus, we may assume that d(v) ≤ t
for every v ∈ A′\A1. Let A2 = A′\(A1 ∪ {v}), where v is an arbitrary vertex in
A′\A1, and observe that |E(A2, Bi )| < k for i ∈ [2] or G ∈ (2, k)-LC. The par-
tition A′ = A1 ∪ A2 ∪ {v} satisfies max{|E(Ai , Bj )| : i, j ∈ [2]} ≤ k. Thus,
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|E(A′, B1 ∪ B2)| < 4k + dB1∪B2(v) ≤ 4k + t , and so |E(G)| < 6k + t + d, a
contradiction. 	


Lemmas 5 and 9 imply the following:

Theorem 5 If G is irreducible for (2, k)-LC and has at least 6k + (3 + √
2)

√
k + 4

edges, then G ∈ (2, k)-LC. Thus, 2-Load Coloring admits a kernel with less than
6k + (3 + √

2)
√
k + 4 edges.

6 Discussions

1. We believe that our bound on the number of vertices in a kernel is optimal, but the
bound on the number of edges may not be optimal even for c = 2. We conjecture
that the optimal bound is c2k + O(1). Here is an example showing tightness.
Consider the complete bipartite graph Kc,ck−1 and add all possible edges between
vertices of the partite set of size c. The resulting digraph is a reduced No-instance
with c2k + c(c − 3)/2 edges.

2. Our linear-vertex kernel result implies an O∗(c2ck)-time algorithm for c- Load
Coloring, which simply tests all the c-colorings of the kernel. It is however pos-
sible that the problem admits much better FPT algorithms, since the complement
of c-Load Coloring, No c- Load Coloring, has small, but not constant,
forbidden minors and is minor-bidimensional (see [6,7] for more information on
forbidden minors and bidimensionality).

Let pw(G) and tw(G) denote the pathwidth and the treewidth of G. Since the path
Pc(k+1) is one of the forbidden minors forNo c- Load Coloring, it is easy to decide
whether G ∈ (c, k)-LC or G has a path-decomposition of size bounded by c(k + 1).
Indeed, ifG /∈ (c, k)-LC, anyDFS on the connected components ofG gives a Tremaux
tree with depth bounded by c(k + 1) that we may transform into path decomposition
of size bounded by c(k+1) in polynomial time. Since the O∗(2tw(G))-time algorithm
for 2-Load Coloring from [9] can be generalized to an O∗(ctw(G))-time algorithm
for c-Load Coloring, there exists a O∗(cck)-time algorithm for this problem.

For c = 2, the running time O∗(4k) (first obtained in [9]) can be improved using
the result by Kneis et al. [13] that a graph withm edges and n vertices has treewidth at
most m/5.769 + O(log n). Thus, by Theorem 3 in polynomial time we can reduce a
graph G to a graph G ′ with tw(G ′) ≤ 1.0401k + O(

√
k). Therefore, the O∗(2tw(G))

algorithm for 2-Load Coloring has running time O∗(2.0564k).
Ifwe require that the inputG is H -minor-free for somefixedgraph H , then tw(G) =

O(
√
n) by [6,7], and our linear-vertex kernel leads to an O∗(cO(

√
ck))-time algorithm.

Unfortunately, there is no constant forbidden minor for No c- Load Coloring as
membership in (c, k)-LC requires at least ck edges.

Nevertheless, by Theorem 4.12 of [6], and since branchwidth is linked to the
treewidth up to a constant factor, any graph G contains an (�(

tw(G)
gen(G)

) × �(
tw(G)
gen(G)

))-
grid as a minor, where gen(G) is the genus of G. Since the (r × r)-grid is a
forbidden minor for No c- Load Coloring when r ≥ �√(c + 1)k �, we have
tw(G) = O(

√
ck gen(G)). Thus, we obtain an O∗(cO(

√
ck gen(G)))-time algorithm to
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solve c-Load Coloring, which is subexponential for graphs of bounded genus. Note
also that the complete graph Kc�√2k+1� is also one of the forbidden minors. Thus, the

Hadwiger number h(G) ofG is bounded by c�√2k+1�. For any familywith treewidth
bounded by o(h(G)2), there is a subexponential algorithm. For instance, there is an
O∗(c

√
ck)-time algorithm for chordal graphs.

3. Let us discuss extensions of our results to pseudographs, which may have loops
and multiple edges. Let us start with isolated vertices and loops. Since the isolated
vertices do not involve any edges, it is safe to delete them. Observe that loops are
always colored with the color of their vertex. But a leaf has also to be colored with
the color of its neighbor, as otherwise the edge between them is uncolored. Thus,
any loop can be replaced by a pendant edge.

It remains to consider the multiple edges. Since multiple edges can be colored
with at most one color, it is safe to reduce any multigraph with multiplicity greater
than k to its maximal induced subgraph with multiplicity k. It is not hard to show
that the overloads from Definition 3 can be generalized just by requiring that for
all u ∈ V1, |E({u}, Vu)| ≥ k. Thus, the reductions are also safe for multigraphs.
As the maximal induced (simple) graph of any multigraph has the same number of
vertices and the same connectivity, our bound on the number of vertices in a kernel
holds for multigraphs, too. The bounds on the number of edges in a kernel has to be
slightly changed. Let t be the maximal multiplicity of an edge in the multigraph under
consideration. Then the bound of the number of edges in a kernel (for any c) will be
6.25c2tk and thus we will have an approximation algorithm of ratio 12.5ct .
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