
Algorithmica (2018) 80:415–447
https://doi.org/10.1007/s00453-016-0255-3

Stable Sets in {ISK4,wheel}-Free Graphs

Martin Milanič1 · Irena Penev2 ·
Nicolas Trotignon3

Received: 9 February 2016 / Accepted: 17 November 2016 / Published online: 30 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract An ISK4 in a graph G is an induced subgraph of G that is isomorphic to
a subdivision of K4 (the complete graph on four vertices). A wheel is a graph that
consists of a chordless cycle, together with a vertex that has at least three neighbors
in the cycle. A graph is {ISK4,wheel}-free if it has no ISK4 and does not contain a
wheel as an induced subgraph. We give an O(|V (G)|7)-time algorithm to compute
the maximum weight of a stable set in an input weighted {ISK4,wheel}-free graph G
with non-negative integer weights.

M. Milanič: Partially supported by the Slovenian Research Agency (I0-0035, Research Program P1-0285
and Research Projects N1-0032, J1-5433, J1-6720, J1-6743, and J1-7051).
I. Penev: Partially supported by the ANR Project Stint under Contract ANR- 13- BS02- 0007, by the
LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program Investissements
d’Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), and by the
ERC Advanced Grant GRACOL, Project No. 320812. This research was conducted while the author was
at the LIP, ENS de Lyon, Université de Lyon (Lyon, France), and at the Technical University of Denmark
(Lyngby, Denmark).
N. Trotignon: Partially supported by ANR project Stint under reference ANR-13-BS02-0007 and by the
LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program Investissements
d’Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

B Irena Penev
I.Penev@leeds.ac.uk

Martin Milanič
martin.milanic@upr.si

Nicolas Trotignon
nicolas.trotignon@ens-lyon.fr

1 UP IAM, UP FAMNIT, University of Primorska, Koper, Slovenia

2 School of Computing, University of Leeds, Leeds, UK

3 CNRS, LIP, ENS de Lyon, Université de Lyon, Lyon, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0255-3&domain=pdf
http://orcid.org/0000-0002-3432-8421

416 Algorithmica (2018) 80:415–447

1 Introduction

All graphs in this paper are finite and simple. An ISK4 in a graph G is an induced
subgraph of G that is isomorphic to a subdivision of K4 (the complete graph on four
vertices). An ISK4-free graph is a graph G that contains no ISK4 (that is, no induced
subgraph of G is isomorphic to a subdivision of K4). The class of ISK4-free graphs
contains all series–parallel graphs, and also all line graphs of graphs of maximum
degree at most three.

Lévêque, Maffray, and Trotignon [11] proved a decomposition theorem for ISK4-
free graphs, but gave no algorithmic applications. In particular, no polynomial-time
algorithms and no hardness proofs are known for the following problems in the class
of ISK4-free graphs: recognition, maximum stable set, and coloring. (Finding a max-
imum clique in an ISK4-free graph is of course trivial because every clique in such a
graph is of size at most three).

A wheel is a graph that consists of a chordless cycle, together with a vertex (called
the center of the wheel) that has at least three neighbors in the cycle. A graph is wheel-
free if none of its induced subgraphs is a wheel. Wheel-free graphs have a number
of structural properties (see for instance [1,2,8]). However, the maximum stable set
problem is easily seen to remain NP-hard even when restricted to the class of wheel-
free graphs. To see this, denote by α(G) the stability number (i.e., the maximum size
of a stable set) of a graph G, and consider the operation of subdividing every edge of
G twice. This yields a graph G ′ that is wheel-free (because every vertex of degree at
least three in G ′ has only neighbors of degree two, and so it cannot be the center of a
wheel). As observed by Poljak [13], α(G ′) = α(G) + |E(G)|, and so computing the
stability number of a wheel-free graph is as hard as computing it in a general graph.

A graph is {ISK4,wheel}-free if it is ISK4-free and wheel-free. In [11], a decom-
position theorem is given for {ISK4,wheel}-free graphs. (This theorem was obtained
as a corollary of the decomposition theorem for ISK4-free graphs from [11].) The
theorem for {ISK4,wheel}-free graphs is stronger than the one for ISK4-free graphs
in the sense that the former theorem can be used to solve the recognition and the col-
oring problems for {ISK4,wheel}-free graphs in polynomial time. However, no other
algorithmic application has previously been reported.

In this paper, we investigate the maximum weight stable set problem restricted to
{ISK4,wheel}-free graphs. Let us be precise. First, by a weighted graph, we mean an
ordered pair (G, w), whereG is a graph andw is a function (called aweight function for
G) that assigns to each vertex v of G a non-negative integer weight w(v). The weight
of a set of vertices is the sum of the weights of its elements. The stability number of
a weighted graph (G, w), denoted by α(G, w), is the maximum weight of a stable set
of G, and a maximum weighted stable set of (G, w) is a stable set whose weight is
precisely α(G, w). (If (G, w) is a weighted graph and H is an induced subgraph of
G, then we will also write α(H, w) for the stability number of the weighted graph
(H, w′) where w′ is the restriction of w to V (H).) The maximum weight stable set
problem for a given class G of graphs is the problem of finding a maximum weight
stable set in a given weighted graph (G, w) such that G ∈ G. A hereditary class is a
class of graphs that is closed under isomorphism and induced subgraphs (clearly, the
class of {ISK4,wheel}-free graphs is a hereditary class). The following is well-known.

123

Algorithmica (2018) 80:415–447 417

Proposition 1.1 (Folklore)LetG be a hereditary class. Suppose thatA is an algorithm
that computes the stability number of any weighted graph (G, w) such that G ∈ G
in O(|V (G)|k) time. Then there is an algorithm B that computes a maximum weight
stable set of any graph (G, w) such that G ∈ G in O(|V (G)|max{k+1,3}) time.

Proof Let (G, w) be an input graph with G ∈ G, and set n = |V (G)|. If G is the null
graph, then the algorithm returns∅ and stops.Otherwise,we choose a vertexv ∈ V (G),
we compute the graph G�N [v] in O(n2) time (where N [v] is the set consisting
of v and all its neighbors in G), and using the algorithm A, we compute α(G, w)

and α(G�N [v], w) in O(nk) time. Clearly, w(v) + α(G�N [v], w) ≤ α(G, w). If
w(v)+α(G�N [v], w) = α(G, w), then we recursively compute a maximum weight
stable set S of (G�N [v], w), and the algorithm returns {v}∪ S and stops. On the other
hand, if w(v) + α(G�N [v], w) < α(G, w), then we see that no maximum weight
stable set of (G, w) contains v. In this case, we compute G�v in O(n2) time, we
recursively compute a maximum weight stable set S of (G�v,w), and the algorithm
returns S and stops.

It is clear that the algorithm is correct. We make O(n) recursive calls to the algo-
rithm, and it follows that the total running time of the algorithm is O(nmax{k+1,3}).

��
In view of Proposition 1.1, from now on, we focus on constructing a polynomial-

time algorithm that computes the stability number of weighted {ISK4,wheel}-free
graphs.

The decomposition theorem for {ISK4,wheel}-free graphs from [11] states
(roughly) that every such graph is either “basic” or admits a “decomposition” (that is,
a way to break it up into smaller pieces). The basic classes are all fairly easy to handle
and the main difficulty is posed by the decompositions. One of the decompositions,
namely the clique-cutset (that is, a clique whose deletion yields a disconnected graph),
is easy to handle, but the other one is not: the “proper 2-cutset.” A proper 2-cutset of
a graph G is a pair of non-adjacent vertices, say a and b, such that V (G)�{a, b} can
be partitioned into two non-empty sets X and Y so that there is no edge between X
and Y , and neither G[X ∪ {a, b}] nor G[Y ∪ {a, b}] is a path between a and b.

The problemwith a proper 2-cutset {a, b} of a graph G is that a maximum stable set
of G may contain a (but not b), or b (but not a), or neither a nor b, or both a and b. This
phenomenon also occurs in any induced subgraph of G that contains a and b, and in
particular in any reasonable subgraph built for the purposes of a recursive algorithm.
So, any naive attempt to build an algorithm for themaximum stable set problem relying
on proper 2-cutsets should lead one to consider an exponential number of cases. In
fact, the situation is even worse for proper 2-cutsets as shown by a hardness result that
we explain now. Let G be a graph. A 2-extension of G is any graph obtained from G
by first deleting a vertex v of degree two, with non-adjacent neighbors a and b, then
adding four vertices of degree two forming a path a − x1 − x2 − x3 − x4 − b, and
finally adding a vertex x adjacent to x1, x2, x3 and x4. An extended bipartite graph
is any graph obtained from a bipartite graph by repeatedly applying 2-extensions.
Trivially, extended bipartite graphs have a decomposition theorem: if G is an extended
bipartite graph, then either G is bipartite, or G was obtained from an even cycle by
performing exactly one 2-extension, or G has a proper 2-cutset. It is well-known that

123

418 Algorithmica (2018) 80:415–447

one can find the stability number of a (weighted) bipartite graph in polynomial time
(see for instance [9]). It is also clear that the stability number of a (weighted) graph
obtained from an even cycle by performing exactly one 2-extension can be found in
polynomial time (indeed, if G is obtained from an even cycle by performing exactly
one 2-extension, and x, x1, x2, x3, x4 are as in the definition of a 2-extension, then
every stable set of G is also a stable set of at least one of G�{x2, x3}, G�{x, x1},
and G�{x, x2}, and each of these three induced subgraphs of G is either a path or
an even cycle, and is therefore bipartite). So, if proper 2-cutsets were a good tool for
solving themaximum stable set problem, there should be a polynomial-time algorithm
for solving this problem in extended bipartite graphs. However, it was shown in [16]
that the maximum stable set problem is NP-hard when restricted to extended bipartite
graphs. The result is stated differently in [16], and so we reproduce it here for the sake
of completeness.

Proposition 1.2 The problem of computing the stability number of an input extended
bipartite graph is NP-hard.

Proof Suppose there is a polynomial-time algorithmA for our problem.We prove the
theorem by using A as a subroutine to solve the problem of computing the stability
number of a general graph G in polynomial time. First build B by subdividing every
edge of G once. Let X be the set of vertices of degree two in B that arise from the
subdivisions. Note that B is bipartite, and (X, V (B)�X) is a bipartition of B. Now
build agraph H from B byapplying a2-extension to everyvertexof X . By construction,
H is an extended bipartite graph, and it is easy to check that α(H) = α(G)+2|E(G)|.
Thus, A indeed allows one to compute the stability number of a general graph in
polynomial time.

Despite this negative result, we can use (a variant of) a proper 2-cutset in the special
case of {ISK4,wheel}-free graphs, mainly because the basic classes are very restricted.
We rely on what is called a “trigraph,” which is a graph where some edges are left
“undecided” (the notion is from [6,7], and formal definitions are given in Sect. 2).
The idea is as follows. When G is a graph, a and b are non-adjacent vertices of
G whose deletion yields a disconnected graph, and V (G)�{a, b} is partitioned into
non-empty sets X and Y such that there are no edges between X and Y , we build a
(tri)graph on the vertex set X ∪ {a, b}by keeping the edges of G, and by leaving the
adjacency between a and b undecided. We give weights to a and b, and we also give
weights specific to the pair {a, b}. Roughly speaking, the weights associated with the
vertices a and b and the pair {a, b} “encode” the maximum weight of a stable set in
graphs G[Y], G[Y ∪ {a}], G[Y ∪ {b}], and G[Y ∪ {a, b}]. We therefore need weights,
undecided adjacencies, and a way to handle the notion of the weight of a stable set in
this context. All this is captured in the notion of weighted trigraph (we postpone the
formal definition to Sect. 3). We remark that a similar idea was previously used in [15]
in the context of bull-free graphs. However, the definition of a weighted trigraph was
simpler in [15] than in the present paper, as was the definition of the weight of a stable
set in a weighted trigraph. The reason for this is that the decompositions that appear
in the context of bull-free graphs are more convenient than proper 2-cutsets for the
purposes of computing the stability number.

123

Algorithmica (2018) 80:415–447 419

We complete the introduction by giving an outline of the paper. In Sect. 2, we
define trigraphs and introduce some basic trigraph-related terminology that we need.
In Sect. 3, we define weighted trigraphs, explain how to compute the weight of a set
of vertices in a weighted trigraph, and prove several results about weighted stable
sets in weighted trigraphs. These properties are more complicated than one might
expect because of the weights associated with the undecided adjacencies. Because
of these weights, the weight of a set is not a monotone function (one could increase
the weight of a set by taking a subset). For this reason, all proofs need to be written
very carefully. In Sect. 4, we state a decomposition theorem for {ISK4,wheel}-free
trigraphs (see Theorem 4.1). Since the proof of this theorem is very similar to that of
the decomposition theorem for ISK4-free graphs from [11], we omit the proof of The-
orem 4.1 in the present paper. The interested reader can find a detailed proof in [12].
Interestingly, the fact that our theorem concerns trigraphs rather than graphs does not
substantially complicate the proof, even though our theorem is formally stronger than
the corresponding one for graphs. On the other hand, the fact that we restrict our atten-
tion to the wheel-free case significantly simplifies our proof. We complete Sect. 4 by
using Theorem 4.1 to prove an “extreme” decomposition theorem for {ISK4,wheel}-
free trigraphs (see Theorem 4.8 and Corollary 4.9). Roughly speaking, our extreme
decomposition theorem states that every {ISK4,wheel}-free trigraph is either basic
or admits a decomposition such that one block of decomposition is basic. In Sect. 5,
we give a transformation from a weighted trigraph to a weighted graph that preserves
the stability number. In Sect. 6, we use this transformation to compute the stability
number in our basic trigraphs. Again, the proofs have to be done carefully, because as
proven at the very end of the paper (see Theorem 8.1), it is NP-hard to compute the
stability number of weighted bipartite trigraphs, and so one should be suspicious of
“simple” classes of trigraphs in our context. In Sect. 7, we prove our main technical
result: there is an O(|V (G)|7)-time algorithm to compute the stability number of an
input weighted {ISK4,wheel}-free trigraph (G, w) (see Theorem 7.1). Since every
weighted {ISK4,wheel}-free graph can be seen as a weighted {ISK4,wheel}-free tri-
graph, the algorithm from Theorem 7.1 can also be applied to {ISK4,wheel}-free
graphs. Together with Proposition 1.1, this yields an O(|V (G)|8)-time algorithm that
finds a maximumweight stable set of an input weighted {ISK4,wheel}-free graph (see
Corollary 7.2). In Sect. 8, we prove the above-mentioned Theorem 8.1, which states
that it is NP-hard to compute the stability number of a weighted bipartite trigraph.

2 Trigraphs

Given a set S, we denote by
(S
2

)
the set of all subsets of S of size two. A trigraph is

an ordered pair G = (V (G), θG), where V (G) is a finite set, called the vertex set of
G (members of V (G) are called vertices of G), and θG : (V (G)

2

) → {−1, 0, 1} is a
function, called the adjacency function of G. The null trigraph is the trigraph whose
vertex set is empty; a non-null trigraph is any trigraph whose vertex set is non-empty.
If G is a trigraph and u, v ∈ V (G) are distinct, we usually write uv instead of {u, v}
(note that this means that uv = vu), and furthermore:

123

420 Algorithmica (2018) 80:415–447

• if θG(uv) = 1, we say that uv is a strongly adjacent pair of G, or that u and v are
strongly adjacent in G, or that u is strongly adjacent to v in G, or that v is a strong
neighbor of u in G, or that u and v are the endpoints of a strongly adjacent pair
of G;

• if θG(uv) = 0, we say that uv is a semi-adjacent pair of G, or that u and v are
semi-adjacent inG, or that u is semi-adjacent to v inG, or that v is aweak neighbor
of u in G, or that u and v are the endpoints of a semi-adjacent pair of G;

• if θG(uv) = −1, we say that uv is a strongly anti-adjacent pair of G, or that u
and v are strongly anti-adjacent in G, or that u is strongly anti-adjacent to v in G,
or that v is a strong anti-neighbor of u in G, or that u and v are the endpoints of a
strongly anti-adjacent pair of G;

• if θG(uv) ≥ 0, we say that uv is an adjacent pair of G, or that u and v are adjacent
in G, or that u is adjacent to v in G, or that v is a neighbor of u in G, or that u and
v are the endpoints of an adjacent pair of G;

• if θG(uv) ≤ 0, we say that uv is an anti-adjacent pair of G, or that u and v are
anti-adjacent in G, or that u is anti-adjacent to v in G, or that v is an anti-neighbor
of u in G, or that u and v are the endpoints of an anti-adjacent pair of G.

Note that a semi-adjacent pair is simultaneously an adjacent pair and an anti-adjacent
pair. One can think of strongly adjacent pairs as “edges,” of strongly anti-adjacent pairs
as “non-edges,” and of semi-adjacent pairs as “optional edges.” Clearly, any graph can
be thought of as a trigraph: a graph is simply a trigraph with no semi-adjacent pairs,
that is, the adjacency function of a graph G is a mapping from

(V (G)
2

)
to the set {−1, 1}.

Given a trigraph G, a vertex u ∈ V (G), and a set X ⊆ V (G)�{u}, we say that
u is complete (respectively: strongly complete, anti-complete, strongly anti-complete)
to X in G provided that u is adjacent (respectively: strongly adjacent, anti-adjacent,
strongly anti-adjacent) to every vertex of X in G. Given a trigraph G and disjoint
sets X, Y ⊆ V (G), we say that X is complete (respectively: strongly complete, anti-
complete, strongly anti-complete) toY inG provided that every vertex of X is complete
(respectively: strongly complete, anti-complete, strongly anti-complete) to Y in G.

Isomorphism between trigraphs is defined in the natural way. The complement of
a trigraph G = (V (G), θG) is the trigraph G = (V (G), θG) such that V (G) = V (G)

and θG = −θG . Thus, G is obtained from G by turning all strongly adjacent pairs of
G into strongly anti-adjacent pairs, and turning all strongly anti-adjacent pairs of G
into strongly adjacent pairs; semi-adjacent pairs of G remain semi-adjacent in G.

Given trigraphs G and G̃, we say that G̃ is a semi-realization of G provided that
V (G̃) = V (G) and for all distinct u, v ∈ V (G̃) = V (G), we have that if θG(uv) = 1
then θG̃(uv) = 1, and if θG(uv) = −1 then θG̃(uv) = −1. Thus, a semi-realization of
a trigraph G is any trigraph that can be obtained from G by “deciding” the adjacency
of some semi-adjacent pairs of G, that is, by possibly turning some semi-adjacent
pairs of G into strongly adjacent or strongly anti-adjacent pairs. (In particular, every
trigraph is a semi-realization of itself.) A realization of a trigraph G is a graph that
is a semi-realization of G. Thus, a realization of a trigraph G is any graph that can
be obtained by “deciding” the adjacency of all semi-adjacent pairs of G, that is, by
turning each semi-adjacent pair of G into an edge or a non-edge. Clearly, if a trigraph
G has m semi-adjacent pairs, then G has 3m semi-realizations and 2m realizations.

123

Algorithmica (2018) 80:415–447 421

The full realization of a trigraph G is the graph obtained from G by turning all semi-
adjacent pairs of G into strongly adjacent pairs (i.e., edges), and the null realization of
G is the graph obtained from G by turning all semi-adjacent pairs of G into strongly
anti-adjacent pairs (i.e., non-edges).

A clique (respectively: strong clique, stable set, strongly stable set) of a trigraph G
is a set of pairwise adjacent (respectively: strongly adjacent, anti-adjacent, strongly
anti-adjacent) vertices of G. Note that any subset of V (G) of size at most one is both
a strong clique and a strongly stable set of G. Note also that if S ⊆ V (G), then S is a
(strong) clique of G if and only if S is a (strongly) stable set of G. Note furthermore
that if K is a strong clique and S is a stable set of G, then |K ∩ S| ≤ 1; similarly, if
K is a clique and S is a strongly stable set of G, then |K ∩ S| ≤ 1. However, if K is a
clique and S is a stable set of G, then we are only guaranteed that vertices in K ∩ S are
pairwise semi-adjacent to each other, and it is possible that |K ∩ S| ≥ 2. A triangle
(respectively: strong triangle) is a clique (respectively: strong clique) of size three.

Given a trigraph G and a set X ⊆ V (G), the subtrigraph of G induced by X ,
denoted by G[X], is the trigraph with vertex set X and adjacency function θG �

(X
2

)
,

where for a function f : A → B and a set A′ ⊆ A, we denote by f � A′ the
restriction of f to A′. If H = G[X] for some X ⊆ V (G), we also say that H is
an induced subtrigraph of G; when convenient, we relax this definition and say that
H is an induced subtrigraph of G provided that there is some set X ⊆ V (G) such
that H is isomorphic to G[X]. If v1, . . . , vk are vertices of a trigraph G, we often
write G[v1, . . . , vk] instead of G[{v1, . . . , vk}]. Further, for a trigraph G and a set
X ⊆ V (G), we set G�X = G[V (G)�X]; for v ∈ V (G), we often write G�v

instead of G�{v}. The trigraph G�X (respectively: G�v) is called the subtrigraph
of G obtained by deleting X (respectively: by deleting v).

If H is a graph, we say that a trigraph G is an H-trigraph if some realization of
G is (isomorphic to) H . Further, if H is a graph and G a trigraph, we say that G is
H-free provided that all realizations of G are H -free (equivalently: provided that no
induced subtrigraph of G is an H -trigraph). If H is a family of graphs, we say that a
trigraph G is H-free provided that G is H -free for all graphs H ∈ H. In particular, a
trigraph is ISK4-free (respectively:wheel-free, {ISK4,wheel}-free) if all its realizations
are ISK4-free (respectively: wheel-free, {ISK4,wheel}-free).

A trigraph is connected if its full realization is a connected graph. A trigraph is
disconnected if it is not connected. A component of a non-null trigraph G is any
(inclusion-wise) vertex-maximal connected induced subtrigraph of G. Clearly, if H is
an induced subtrigraph of a non-null trigraph G, then we have that H is a component
of G if and only if the full realization of H is a component of the full realization of G.

A trigraph is a path if at least one of its realizations is a path. A trigraph is a narrow
path if its full realization is a path. We often denote a path P by v0 − v1 − · · · − vk

(with k ≥ 0), where v0, v1, . . . , vk are the vertices of P that appear in that order in
some realization P̃ of P such that P̃ is a path. The endpoints of a narrow path are the
endpoints of its full realization; if a and b are the endpoints of a narrow path P , thenwe
also say that P is a narrow path between a and b. A path (respectively: narrow path)
in a trigraph G is an induced subtrigraph P of G such that P is a path (respectively:
narrow path).

123

422 Algorithmica (2018) 80:415–447

Note that if G is a connected trigraph, then for all vertices a, b ∈ V (G), there exists
a narrow path between a and b in G. (To see this, consider the full realization G̃ of G.
G̃ is connected, and so there is a path in G̃ between a and b; let P be a shortest such
path in G̃. The minimality of P guarantees that P is an induced path of G̃. But now
G[V (P)] is a narrow path of G between a and b).

A hole of a trigraph G is an induced subtrigraph C of G such that some realization
of C is a chordless cycle of length at least four. We often denote a hole C of G by
v0 − v1 − · · · − vk−1 − v0 (with k ≥ 4 and indices in Zk), where v0, v1, . . . , vk−1 are
the vertices of C that appear in that order in some realization C̃ of C such that C̃ is a
chordless cycle of length at least four.

A cutset of a trigraph G is a (possibly empty) set C ⊆ V (G) such that G�C is
disconnected. A cut-partition of a trigraph G is a partition (A, B, C) of V (G) such that
A and B are non-empty (C may possibly be empty), and A is strongly anti-complete
to B. Note that if (A, B, C) is a cut-partition of G, then C is a cutset of G. Conversely,
every cutset of G induces at least one cut-partition of G. A clique-cutset of a trigraph
G is a (possibly empty) strong clique C of G such that G�C is disconnected. A cut-
vertex of a trigraph G is a vertex v ∈ V (G) such that G�v is disconnected. Note that
if v is a cut-vertex of G, then {v} is a clique-cutset of G. A stable 2-cutset of a trigraph
G is cutset of G that is a stable set of size two. We remark that if C is a cutset of a
trigraph G such that |C | ≤ 2, then C is either a clique-cutset or a stable 2-cutset of G.

A graph is series–parallel if it does not contain any subdivision of K4 as a (not
necessarily induced) subgraph. A trigraph is series–parallel if its full realization is
series–parallel (equivalently: if all its realizations are series–parallel).

A bipartite trigraph is a trigraph G whose vertex set can be partitioned into two
(possibly empty) strongly stable sets, A and B; under these circumstances, (A, B) is
said to be a bipartition of the bipartite trigraphG. If, in addition, the two strongly stable
sets A and B forming a bipartition are strongly complete to each other, G is said to
be a complete bipartite trigraph. Note that non-null complete bipartite trigraphs have
precisely two bipartitions: if (A, B) is a bipartition of a complete bipartite trigraph
G, then so is (B, A), and G has no other bipartitions. Furthermore, note that bipartite
trigraphs may have semi-adjacent pairs, but complete bipartite trigraphs cannot. Thus,
complete bipartite trigraphs are in fact complete bipartite graphs.

The line graph of a graph H , denoted by L(H), is the graph whose vertices are the
edges of H , and in which two vertices (i.e., edges of H) are adjacent if they share an
endpoint in H . A line trigraph of a graph H is a trigraph G whose full realization is
(isomorphic to) L(H), and all of whose triangles are strong. A trigraph G is said to
be a line trigraph provided there is a graph H such that G is a line trigraph of H .

3 Stable Sets in Weighted Trigraphs

In what follows, N is the set of non-negative integers. Given a trigraph G, we define

D(G) = V (G) ∪ {(u, v) | u, v ∈ V (G), u = v} ∪
(

V (G)

2

)
.

123

Algorithmica (2018) 80:415–447 423

A weight function for a trigraph G is any function w : D(G) → N that satisfies the
following two properties:

• for all distinct u, v ∈ V (G), if uv is not a semi-adjacent pair of G, then w(u, v) =
w(v, u) = w(uv) = 0;

• all distinct u, v ∈ V (G) satisfy w(u, v) ≤ w(uv).

A weighted trigraph is an ordered pair (G, w) where G is a trigraph and w is a weight
function for G.

Essentially, a weight function w assigns a non-negative integer weight w(u) to
each vertex u of the trigraph G, and for each semi-adjacent pair uv, there are three
non-negative integer weights associated with it, namely w(u, v), w(v, u), and w(uv),
and these weights must satisfy max{w(u, v), w(v, u)} ≤ w(uv). If uv is a strongly
adjacent or strongly anti-adjacent pair, thenwehavew(u, v) = w(v, u) = w(uv) = 0.
(Zero weights are assigned to strongly adjacent and strongly anti-adjacent pairs for
the purposes of making calculations notationally simpler, but only vertices and semi-
adjacent pairs actually “count.”)

Note that if a trigraph G is a semi-realization of a trigraph G ′, then every weight
function for G is also a weight function for G ′ (however, a weight function for G ′
need not be a weight function for G).

If (G, w) is a weighted trigraph, and H is an induced subtrigraph of G, then clearly,
(H, w � D(H)) is also aweighted trigraph; to simplify notation,we oftenwrite (H, w)

instead of (H, w � D(H)).
Given a weighted trigraph (G, w) and a set S ⊆ V (G), the weight of S with respect

to (G, w), denoted by �S�(G,w), is defined to be

�S�(G,w) =
(

∑

u∈S

w(u)

)

+
⎛

⎝
∑

u∈S

∑

v∈V (G)�S

w(u, v)

⎞

⎠ +
⎛

⎜
⎝

∑

uv∈(V (G)�S
2)

w(uv)

⎞

⎟
⎠ .

Note that if (G, w) is aweighted trigraph such thatG has no semi-adjacent pairs (that is,
such that G is a graph), then for all S ⊆ V (G), we have that �S�(G,w) = ∑

u∈S w(u).
Thus, our definition of a weight of a set of vertices in a weighted trigraph indeed
generalizes the usual notion of the weight of a set in a weighted graph.

It is easy to see that for all weighted trigraphs (G, w), all induced subtrigraphs H
of G, and all sets S ⊆ V (H), we have that �S�(H,w) ≤ �S�(G,w). Strict inequality
may hold because the weight of a set in a weighted trigraph depends not only on what
is in the set, but also on what is outside of it. Furthermore, if (G, w) is a weighted
trigraph and S1 � S2 ⊆ V (G), there is in general no relationship between �S1�(G,w)

and �S2�(G,w), that is, any one of the following is possible: �S1�(G,w) < �S2�(G,w),
�S1�(G,w) = �S2�(G,w), and �S1�(G,w) > �S2�(G,w).

The stability number of a weighted trigraph (G, w), denoted by α(G, w), is defined
to be

α(G, w) = max{�S�(G,w) | S is a stable set of G}.

A zero-vertex of a weighted trigraph (G, w) is any vertex u ∈ V (G) such that
w(u) = 0.

123

424 Algorithmica (2018) 80:415–447

Proposition 3.1 Let (G, w) be a weighted trigraph, and let Z , S ⊆ V (G). Then
�S�(G,w) ≤ �S�Z�(G,w) + ∑

u∈Z w(u).

Proof Since w(u) ≥ 0 for all u ∈ V (G), we may assume that Z ⊆ S. Using the
definition of �S�(G,w) and �S�Z�(G,w), we obtain the following:

�S�(G,w) =
(

∑

u∈S

w(u)

)

+
⎛

⎝
∑

u∈S

∑

v∈V (G)�S

w(u, v)

⎞

⎠

+
⎛

⎜
⎝

∑

uv∈(V (G)�S
2)

w(uv)

⎞

⎟
⎠

=
⎛

⎝
∑

u∈S�Z

w(u)

⎞

⎠ +
(

∑

u∈Z

w(u)

)

+
⎛

⎝
∑

u∈S�Z

∑

v∈V (G)�(S�Z)

w(u, v)

⎞

⎠ −
⎛

⎝
∑

u∈S�Z

∑

v∈Z

w(u, v)

⎞

⎠

+
⎛

⎝
∑

u∈Z

∑

v∈V (G)�S

w(u, v)

⎞

⎠ +
⎛

⎜
⎝

∑

uv∈(V (G)�(S� Z)
2)

w(uv)

⎞

⎟
⎠

−
⎛

⎜
⎝

∑

uv∈(Z
2)

w(uv)

⎞

⎟
⎠ −

⎛

⎝
∑

u∈Z

∑

v∈V (G)�S

w(uv)

⎞

⎠

= �S�Z�(G,w) +
(

∑

u∈Z

w(u)

)

−
⎛

⎝

⎛

⎝
∑

u∈S�Z

∑

v∈Z

w(u, v)

⎞

⎠

+
⎛

⎝
∑

u∈Z

∑

v∈V (G)�S

(w(uv) − w(u, v))

⎞

⎠ +
⎛

⎜
⎝

∑

uv∈(Z
2)

w(uv)

⎞

⎟
⎠

⎞

⎟
⎠ .

By the definition of a weight function, we have that w(uv) ≥ w(u, v) ≥ 0 for
all distinct u, v ∈ V (G). The calculation above now implies that �S�(G,w) ≤
�S�Z�(G,w) + ∑

u∈Z w(u), which is what we needed. ��
Proposition 3.2 For all weighted trigraphs (G, w), there exists a stable set S of G
such that S contains no zero-vertices of (G, w) and �S�(G,w) = α(G, w).

Proof Fix a weighted trigraph (G, w) and a stable set S of G such that �S�(G,w) =
α(G, w). Let Z be the set of all zero-vertices of G. Then S�Z is a stable set of G that
contains no zero vertices of G, and clearly, we have that �S�Z�(G,w) ≤ α(G, w). On
the other hand, Proposition 3.1 implies that α(G, w) = �S�(G,w) ≤ �S�Z�(G,w) +

123

Algorithmica (2018) 80:415–447 425

∑
u∈Z w(u) = �S�Z�(G,w). It follows that �S�Z�(G,w) = α(G, w), and so S�Z is

the stable set that we needed. ��
The next two propositions (Propositions 3.3 and 3.4) are easy consequences of the

appropriate definitions, and we leave their proofs as exercises for the reader.

Proposition 3.3 Let (G, w) be a weighted trigraph, let (A, B, C) be a cut-partition
of G, and let S ⊆ V (G). Then �S ∩ (A ∪ C)�(G[A∪C],w) + �S ∩ (B ∪ C)�(G[B∪C],w) =
�S�(G,w) + �S ∩ C�(G[C],w).

Proposition 3.4 Let (G, w) and (G ′, w′) be weighted trigraphs such that V (G) =
V (G ′). Let C ⊆ V (G), and assume that θG � (

(V (G)
2

)
�

(C
2

)
) = θG ′ � (

(V (G)
2

)
�

(C
2

)
)

and w � (D(G)�D(G[C])) = w′ � (D(G ′)�D(G ′[C])) (that is, adjacency and
weights in (G, w) and (G ′, w′) are the same except possibly within C). Let S ⊆ V (G).
Then �S�(G,w) − �S ∩ C�(G[C],w) = �S�(G ′,w′) − �S ∩ C�(G ′[C],w′).

We now need a couple of definitions. If (G, w) is a weighted trigraph and R ⊆
V (G), the reduction of (G, w) to R, denoted by Red[G, w; R], is defined to be the
weighted trigraph (G[R], w′), where w′ : D(G[R]) → N is given by:

• for all u ∈ R, w′(u) = max
{
w(u) − ∑

v∈V (G)�R(w(uv) − w(u, v)), 0
}
;

• for all distinct u, v ∈ R, w′(u, v) = w(u, v);
• for all uv ∈ (R

2

)
, w′(uv) = w(uv).

Further, we define the exterior weight of R with respect to (G, w), denoted by
Ext[G, w; R], to be

Ext[G, w; R] =
⎛

⎜
⎝

∑

uv∈(V (G)� R
2)

w(uv)

⎞

⎟
⎠ +

⎛

⎝
∑

u∈R

∑

v∈V (G)�R

w(uv)

⎞

⎠ .

We remark that for all weighted trigraphs (G, w), we have that Red[G, w; V (G)] =
(G, w) and Ext[G, w; V (G)] = 0, and consequently, α(G, w) = α(Red[G, w;
V (G)]) + Ext[G, w; V (G)].
Proposition 3.5 There is an algorithm with the following specifications:

• Input: a weighted trigraph (G, w) and a set R ⊆ V (G);
• Output: Red[G, w; R] and Ext[G, w; R];
• Running time: O(n2), where n = |V (G)|.

Proof Clearly, the trigraph G[R] can be computed in time O(n2). Similarly, the quan-
tity

∑
uv∈(V (G)� R

2)
w(uv) can be found in time O(n2). Further, for each vertex u ∈ R,

the quantities
∑

v∈V (G)�R w(uv) andmax{w(u)−∑
v∈V (G)�R(w(uv)−w(u, v)), 0}

can be found in O(n) time. Since R contains at most n vertices, the result follows. ��
Proposition 3.6 Let (G, w) be a weighted trigraph, and let S ⊆ R ⊆ V (G).
Then �S�(G,w) ≤ �S�Red[G,w;R] + Ext[G, w; R]. Furthermore, if S contains no zero-
vertices of Red[G, w; R], then equality holds, that is, �S�(G,w) = �S�Red[G,w;R] +
Ext[G, w; R].

123

426 Algorithmica (2018) 80:415–447

Proof Set w′ : D(G[R]) → N so that (G[R], w′) = Red[G, w; R]. By definition,
for all u ∈ S, w′(u) ≥ w(u) − ∑

v∈V (G)�R(w(uv) − w(u, v)) (and if u is not a
zero-vertex of Red[G, w; R], then equality holds). Consequently,

�S�Red[G,w;R] + Ext[G, w; R]

=
(

∑

u∈S

w′(u)

)

+
⎛

⎝
∑

u∈S

∑

v∈R�S

w′(u, v)

⎞

⎠ +
⎛

⎜
⎝

∑

uv∈(R�S
2)

w′(uv)

⎞

⎟
⎠

+
⎛

⎜
⎝

∑

uv∈(V (G)� R
2)

w(uv)

⎞

⎟
⎠ +

⎛

⎝
∑

u∈R

∑

v∈V (G)�R

w(uv)

⎞

⎠

≥
⎛

⎝
∑

u∈S

⎛

⎝w(u) −
∑

v∈V (G)�R

(w(uv) − w(u, v))

⎞

⎠

⎞

⎠ +
⎛

⎝
∑

u∈S

∑

v∈R�S

w(u, v)

⎞

⎠

+
⎛

⎜
⎝

∑

uv∈(R�S
2)

w(uv)

⎞

⎟
⎠ +

⎛

⎜
⎝

∑

uv∈(V (G)� R
2)

w(uv)

⎞

⎟
⎠ +

⎛

⎝
∑

u∈R

∑

v∈V (G)�R

w(uv)

⎞

⎠

=
(

∑

u∈S

w(u)

)

−
⎛

⎝
∑

u∈S

∑

v∈V (G)�R

w(uv)

⎞

⎠ +
⎛

⎝
∑

u∈S

∑

v∈V (G)�S

w(u, v)

⎞

⎠

+
⎛

⎜
⎝

∑

uv∈(R�S
2)

w(uv)

⎞

⎟
⎠ +

⎛

⎜
⎝

∑

uv∈(V (G)� R
2)

w(uv)

⎞

⎟
⎠ +

⎛

⎝
∑

u∈R

∑

v∈V (G)�R

w(uv)

⎞

⎠

=
(

∑

u∈S

w(u)

)

+
⎛

⎝
∑

u∈S

∑

v∈V (G)�S

w(u, v)

⎞

⎠ +
⎛

⎜
⎝

∑

uv∈(R�S
2)

w(uv)

⎞

⎟
⎠

+
⎛

⎜
⎝

∑

uv∈(V (G)� R
2)

w(uv)

⎞

⎟
⎠ +

⎛

⎝
∑

u∈R�S

∑

v∈V (G)�R

w(uv)

⎞

⎠

=
(

∑

u∈S

w(u)

)

+
⎛

⎝
∑

u∈S

∑

v∈V (G)�S

w(u, v)

⎞

⎠ +
⎛

⎜
⎝

∑

uv∈(V (G)�S
2)

w(uv)

⎞

⎟
⎠

= �S�(G,w).

This proves that �S�(G,w) ≤ �S�Red[G,w;R] +Ext[G, w; R]. Furthermore, if S contains
no zero vertices of Red[G, w; R] (and so w′(u) = w(u) − ∑

v∈V (G)�R(w(uv) −
w(u, v)) for all u ∈ S), the computation above yields �S�(G,w) = �S�Red[G,w;R] +
Ext[G, w; R]. ��

123

Algorithmica (2018) 80:415–447 427

Proposition 3.7 Let (G, w) be a weighted trigraph, let S ⊆ R ⊆ V (G), and assume
that S is a stable set of G. Then

∑
u∈S w(u) ≤ α(Red[G, w; R]) + Ext[G, w; R].

Proof By the definition of �S�(G,w), we have that
∑

u∈S w(u) ≤ �S�(G,w). We now
compute:

∑

u∈S
w(u) ≤ �S�(G,w)

≤ �S�Red[G,w;R] + Ext[G, w; R] by Proposition 3.6
≤ α(Red[G, w; R]) + Ext[G, w; R].

Thus,
∑

u∈S w(u) ≤ α(Red[G, w; R])+Ext[G, w; R]. This completes the argument.
��

Proposition 3.8 Let (G, w) be a weighted trigraph, and let R1, R2 ⊆ V (G)

be disjoint sets. Set αR1 = α(Red[G, w; R1]) + Ext[G, w; R1] and αR1∪R2 =
α(Red[G, w; R1 ∪ R2]) + Ext[G, w; R1 ∪ R2]. Then αR1 ≤ αR1∪R2 ≤ αR1 +∑

u∈R2
w(u).

Proof We first show that αR1 ≤ αR1∪R2 . Using Proposition 3.2, we fix a stable set S ⊆
R1 ofG that contains no zero-vertices of Red[G, w; R1] and satisfies �S�Red[G,w;R1] =
α(Red[G, w; R1]). Then

αR1 = α(Red[G, w; R1]) + Ext[G, w; R1]
= �S�Red[G,w;R1] + Ext[G, w; R1]
= �S�(G,w) by Proposition 3.6
≤ �S�Red[G,w;R1∪R2] + Ext[G, w; R1 ∪ R2] by Proposition 3.6
≤ α(Red[G, w; R1 ∪ R2])

+Ext[G, w; R1 ∪ R2]
= αR1∪R2 .

Thus, αR1 ≤ αR1∪R2 .
It remains to show that αR1∪R2 ≤ αR1 + ∑

u∈R2
w(u). Using Proposition 3.2, we

fix a stable set S ⊆ R1 ∪ R2 that contains no zero-vertices of Red[G, w; R1 ∪ R2] and
satisfies �S�Red[G,w;R1∪R2] = α(Red[G, w; R1 ∪ R2]). We then have the following:

αR1∪R2 = α(Red[G, w; R1 ∪ R2])
+Ext[G, w; R1 ∪ R2]

= �S�Red[G,w;R1∪R2]+Ext[G, w; R1 ∪ R2]
= �S�(G,w) by Proposition 3.6
≤ �S�R2�(G,w) + ∑

u∈R2

w(u) by Proposition 3.1

≤ �S�R2�Red[G,w;R1]+ by Proposition 3.6
+Ext[G, w; R1] + ∑

u∈R2

w(u)

≤ α(Red[G, w; R1])
+Ext[G, w; R1] + ∑

u∈R2

w(u)

= αR1 + ∑

u∈R2

w(u).

123

428 Algorithmica (2018) 80:415–447

Thus, αR1∪R2 ≤ αR1 + ∑
u∈R2

w(u). This completes the argument. ��
Before stating our next proposition, we remind the reader that if G is a semi-

realization of a trigraph G ′, then every weight function for G is also a weight function
for G ′. In particular, if (G, w) is a weighted trigraph, and G ′ is a trigraph obtained
from G by possibly turning some strongly anti-adjacent pairs of G into semi-adjacent
pairs, then (G ′, w) is also a weighted trigraph.

Proposition 3.9 Let (G, w) be a weighted trigraph, and let (A, B, C) be a cut-
partition of G. For each X ∈ {A, B}, let G X be a trigraph obtained from G[X ∪ C]
by possibly turning some strongly anti-adjacent pairs of G[X ∪C] into semi-adjacent
pairs. For all C ′ ⊆ C, set αA∪C ′ = α(Red[G A, w; A ∪ C ′]) + Ext[G A, w; A ∪ C ′].
Let k ∈ N and let wB be a weight function for G B that satisfies all of the following:

• for all u ∈ B, wB(u) = w(u);
• for all uv ∈ (B∪C

2

)
�

(C
2

)
, wB(u, v) = w(u, v) and wB(uv) = w(uv);

• for all SC ⊆ C such that SC is a stable set of G B, we have that �SC�(G B [C],wB) =
αA∪SC − k.

Then α(G, w) = k + α(G B, wB).

Proof We begin by observing that for all X ∈ {A, B} and S ⊆ X ∪ C , we have that
S is a stable set of G X if and only if S is a stable set of G[X ∪ C], and furthermore,
for all Y ⊆ X ∪ C , we have that �S ∩ Y �(G X [Y],w) = �S ∩ Y �(G[Y],w).

Let us first show that α(G, w) ≤ k + α(G B, wB). Fix a stable set S of G such that
�S�(G,w) = α(G, w). Set SA = S ∩ (A ∪ C), SB = S ∩ (B ∪ C), and SC = S ∩ C .
We then have the following:

α(G, w) = �S�(G,w)

= �SA�(G[A∪C],w) + �SB�(G[B∪C],w) by Proposition 3.3
− �SC�(G[C],w)

= �SA�(G A,w) + �SB�(G B ,w)

− �SC�(G B [C],w)

= �SA�(G A,w) + �SB�(G B ,wB) by Proposition 3.4
− �SC�(G B [C],wB)

= �SA�(G A,w) + �SB�(G B ,wB)

− (αA∪SC − k)

≤ k + α(G B, wB) − αA∪SC

+ �SA�(G A,w)

≤ k + α(G B, wB) − αA∪SC by Proposition 3.6
+ �SA�Red[G A,w;A∪SC]
+Ext[G A, w; A ∪ SC]

≤ k + α(G B, wB) − αA∪SC

+α(Red[G A, w; A ∪ SC])
+Ext[G A, w; A ∪ SC]

= k + α(G B, wB).

This proves that α(G, w) ≤ k + α(G B, wB).

123

Algorithmica (2018) 80:415–447 429

It remains to show that k +α(G B , wB) ≤ α(G, w). Using Proposition 3.2, we fix a
stable set SB of G B that contains no zero-vertices of G B and satisfies �SB�(G B ,wB) =
α(G B, wB); wemay assume that SB was chosen inclusion-minimal with this property,
that is, that for all S′

B � SB ,wehave that �S′
B�(G B ,wB) < α(G B, wB). Set SC = SB∩C .

Let us first check that for all S′
C � SC , we have that αA∪S′

C
< αA∪SC . Fix S′

C � SC ,
and set S′

B = (SB�C) ∪ S′
C . By the minimality of SB , we have that �S′

B�(G B ,wB) <

�SB�(G B ,wB). SincewB is aweight function forG B , we know thatwB(u, v) ≤ wB(uv)

for all uv ∈ (B∪C
2

)
. We now have that

0 < �SB�(G B ,wB) − �S′
B�(G B ,wB)

=
(
�SC�(G B [C],wB) − �S′

C�(G B [C],wB)

)

+
(∑

u∈SC �S′
C

∑

v∈B�SB

(wB(u, v) − wB(uv))
)

≤ �SC�(G B [C],wB) − �S′
C�(G B [C],wB).

= αA∪SC − αA∪S′
C
,

and consequently, αA∪S′
C

< αA∪SC , as we had claimed.
Now, using Proposition 3.2, we fix a stable set SA ⊆ A ∪ SC of G A that contains no

zero-vertices of G A and satisfies �SA�(Red[G A,w;A∪SC]) = α(Red[G A, w; A ∪ SC]).
By Proposition 3.6, we have that

�SA�(G A,w) = �SA�Red[G A,w;A∪SC] + Ext[G A, w; A ∪ SC]
= α(Red[G A, w; A ∪ SC]) + Ext[G A, w; A ∪ SC]
= αA∪SC .

Next, note the following:

αA∪SC = �SA�(G A,w)

≤ �SA�Red[G A,w;A∪(SA∩C)] by Proposition 3.6
+Ext[G A, w; A ∪ (SA ∩ C)]

≤ α(Red[G A, w; A ∪ (SA ∩ C)])
+Ext[G A, w; A ∪ (SA ∩ C)]

= αA∪(SA∩C).

Thus, αA∪SC ≤ αA∪(SA∩C). Now, recall that for all S′
C � SC , we have that αA∪S′

C
<

αA∪SC ; since (by the construction of SA) we have that SA ∩ C ⊆ SC , this implies that
SC = SA ∩ C .

Set S = SA ∪ SB ; since SA ∩ C = SC = SB ∩ C , and since (A, B, C) is a
cut-partition of G, we readily deduce that S is a stable set of G. We now compute:

k + α(G B, wB) = k + �SB�(G B ,wB)

= k + (αA∪SC − k)

+ �SB�(G B ,wB)

123

430 Algorithmica (2018) 80:415–447

− �SC�(G B [C],wB)

= αA∪SC + �SB�(G B ,w) by Proposition 3.4

− �SC�(G B [C],w)

= �SA�(G A,w)

+ �SB�(G B ,w)

− �SC�(G B [C],w)

= �SA�(G[A∪C],w)

+ �SB�(G[B∪C],w)

− �SC�(G[C],w)

= �S�(G,w) by Proposition 3.3

≤ α(G, w).

This completes the argument. ��
Lemma 3.10 Let (G, w) be a weighted trigraph, let C be a clique-cutset of G, and let
(A, B, C) be an associated cut-partition of G. Set G A = G[A ∪C] and G B = G[B ∪
C]. For each C ′ ⊆ C, set αA∪C ′ = α(Red[G A, w; A ∪ C ′]) + Ext[G A, w; A ∪ C ′].
Define wB : D(G B) → N by setting wB(c) = αA∪{c} − αA for all c ∈ C, and
wB � (D(G B)�C) = w � (D(G B)�C). Then wB is a weight function for G B, and
α(G, w) = αA + α(G B, wB).

Proof By Proposition 3.8, we have that wB(c) ≥ 0 for all c ∈ C , and it follows
immediately that wB is a weight function for G B . Now, set k = αA. Using the fact
thatC is a strong clique of G B , we observe that theweight functionwB for G B satisfies
the hypotheses of Proposition 3.9, and we deduce that α(G, w) = αA + α(G B, wB).
��
Lemma 3.11 Let (G, w) be a weighted trigraph and let (A, B, C) be a cut-partition of
G such that C is a stable set of size two of G. Set C = {c1, c2}. For each X ∈ {A, B},
let G X be the trigraph on the vertex set X ∪ C in which c1c2 is a semi-adjacent
pair and all other adjacencies are inherited from G[X ∪ C]. For each C ′ ⊆ C, set
αA∪C ′ = α(Red[G A, w; A ∪ C ′]) + Ext[G A, w; A ∪ C ′]. Define wB : D(G B) → N

as follows:

• wB(c1) = αA∪C − w(c2);
• wB(c2) = w(c2);
• wB(c1, c2) = αA∪{c1} − αA∪C + w(c2);
• wB(c2, c1) = αA∪{c2} − w(c2);
• wB(c1c2) = αA;

• wB �
(

D(G B)�D(G B[C])
)

= w �
(

D(G B)�D(G B[C])
)

.

Then wB is a weight function for G B, and α(G B, wB) = α(G, w).

Proof We first show that wB is a weight function for G B . It suffices to show that
wB(c1), wB(c1, c2), wB(c2, c1) ≥ 0 and that wB(c1, c2), wB(c2, c1) ≤ wB(c1c2),

123

Algorithmica (2018) 80:415–447 431

forwB clearly satisfies all the other conditions from the definition of a weight function.
The fact thatwB(c1), wB(c2, c1) ≥ 0 follows immediately fromProposition 3.7. Next,
Proposition 3.8 guarantees that αA∪C ≤ αA∪{c1} + w(c2), which immediately implies
that wB(c1, c2) ≥ 0. Similarly, Proposition 3.8 guarantees that αA∪{c2} ≤ αA +
w(c2), which implies thatwB(c2, c1) ≤ wB(c1c2). Finally, to show thatwB(c1, c2) ≤
wB(c1c2), we observe that:

wB(c1, c2) = αA∪{c1} − αA∪C + w(c2)

≤
(
αA + w(c1)

)
− αA∪C + w(c2) by Proposition 3.8

= αA +
(
w(c1) + w(c2)

)
− αA∪C

≤ αA by Proposition 3.7
= wB(c1c2).

This proves that wB is indeed a weight function for G B .
Now, set k = 0. We see by inspection that wB satisfies the hypotheses of Propo-

sition 3.9, and we deduce that α(G B, wB) = α(G, w). This completes the argument.
��

4 Decomposition Theorem

In this section, we state a decomposition theorem for {ISK4,wheel}-free trigraphs (see
Theorem 4.1 below), and then we derive an “extreme” decomposition theorem for this
class of graphs, which states (roughly) that every {ISK4,wheel}-free trigraph is either
“basic” or admits a “decomposition” such that one of the “blocks of decomposition”
is basic (see Theorem 4.8 and Corollary 4.9). Here, we state Theorem 4.1 without
proof, but the interested reader can find a complete proof in [12]. As explained in the
Introduction, the proof of Theorem 4.1 closely follows the proof of the decomposition
theorem for ISK4-free graphs from [11], but the proof of our theorem is easier because
we restrict ourselves to the wheel-free case. Interestingly, the fact that we work with
trigraphs rather than graphs does not make the proof significantly harder.

Theorem 4.1 [12] Let G be an {ISK4,wheel}-free trigraph. Then at least one of the
following holds:

• G is a series–parallel trigraph;
• G is a complete bipartite trigraph;
• G is a line trigraph;
• G admits a clique-cutset;
• G admits a stable 2-cutset.

We remark that Lévêque, Maffray, and Trotignon [11] proved a graph analogue of
Theorem 4.1. Their theorem had an additional outcome, namely, that G is a “long
rich square.” In fact, long rich squares are not wheel-free, and so this outcome is
unnecessary (see [12] for details). Furthermore, the last outcome of the decomposition
theorem for {ISK4,wheel}-free graphs from [11] is that the graph admits a proper 2-
cutset. In the trigraph context, we work with stable 2-cutsets instead.

123

432 Algorithmica (2018) 80:415–447

Let us say that G is a basic trigraph if G is either a series–parallel trigraph, a
complete bipartite trigraph, or a line trigraph. Note that all induced subtrigraphs of a
basic trigraph are basic trigraphs.

A good cut-partition of a trigraph G is a cut-partition (A, B, C) of G such that
either

• C is a clique-cutset of G such that |C | ≤ 3 (in this case, (A, B, C) is said to be a
good cut-partition of type clique), or

• C is a stable 2-cutset of G, and each of G[A ∪C] and G[B ∪C] contains a narrow
path between the two vertices of C (in this case, (A, B, C) is said to be a good
cut-partition of type stable).

Proposition 4.2 Let G be an {ISK4,wheel}-free trigraph. Then the following are
equivalent:

(a) G admits a clique-cutset or a stable 2-cutset;
(b) G admits a good cut-partition.

Proof Clearly, (b) implies (a). For the reverse, we suppose that G admits a clique-
cutset or a stable 2-cutset, and we show that G admits a good cut-partition. If G
admits a clique-cutset, then let C be a clique-cutset of G, and otherwise, let C be a
stable 2-cutset of G. Let (A, B, C) be any cut-partition of G induced by C . If C is
a clique-cutset, then since G is ISK4-free, we see that |C | ≤ 3, and it follows that
(A, B, C) is a good cut-partition of G of type clique. So assume that C is a stable
2-cutset. (Note that this means that G admits no clique-cutset, and in particular, G is
connected and contains no cut-vertices.) Set C = {c1, c2}. We claim that (A, B, C) is
a good cut-partition of G of type stable. To prove this, we must only show that each
of G[A ∪ C] and G[B ∪ C] contains a narrow path between c1 and c2. By symmetry,
it suffices to show that G[A ∪ C] contains a narrow path between c1 and c2. Let A1
be the vertex set of a component of G[A]. Vertex c1 must have a neighbor in A1,
for otherwise, c2 would be a cut-vertex of G; similarly, vertex c2 has a neighbor in
A1. Thus, G[A1 ∪ {c1, c2}] is connected, and it follows that G[A1 ∪ {c1, c2}] (and
consequently G[A ∪ C] as well) contains a narrow path between c1 and c2. Thus,
(A, B, C) is a good cut-partition of G of type stable. This completes the argument. ��

Theorem 4.1 and Proposition 4.2 immediately imply the following.

Corollary 4.3 Let G be an {ISK4,wheel}-free trigraph. Then either G is a basic
trigraph, or G admits a good cut-partition.

Our goal for the remainder of the section is to derive an “extreme decomposition
theorem” from Corollary 4.3 (see Theorem 4.8 and Corollary 4.9).

Given a good cut-partition (A, B, C) of a trigraph G, and given X ∈ {A, B}, we
define the X-block of G with respect to (A, B, C) as follows:

• if (A, B, C) is of type clique, then G X = G[X ∪ C];
• if (A, B, C) is of type stable, then G X is the trigraph obtained from G[X ∪ C] by
making the two vertices of C semi-adjacent.

123

Algorithmica (2018) 80:415–447 433

We remark that G X is well-defined because every good cut-partition is either of type
clique or of type stable, but not both. We also remark that if (A, B, C) is of type stable
and the two vertices of C are semi-adjacent in G, then G X = G[X ∪ C].
Proposition 4.4 Let (A, B, C) be a good cut-partition of an {ISK4,wheel}-free tri-
graph G, and for each X ∈ {A, B}, let G X be the X-block of G with respect to
(A, B, C). Then G A and G B are {ISK4,wheel}-free.

Proof By symmetry, it suffices to show thatG A is {ISK4,wheel}-free.Wemay assume
that G A = G[A∪C], for otherwise, we are done. It now follows from the construction
of G A that (A, B, C) is of type stable, and that the two vertices of C (call them c1 and
c2) are strongly anti-adjacent in G. Furthermore, G A is obtained from G[A ∪ C] by
turning the strongly anti-adjacent pair c1c2 into a semi-adjacent pair. Let G̃ A be some
realization of G A; we must show that G̃ A is {ISK4,wheel}-free. If c1c2 is a non-edge
of G̃ A, then G̃ A is an induced subgraph of some realization of G[A ∪ C], and since G
is {ISK4,wheel}-free, so is G̃ A. So assume that c1c2 is an edge of G̃ A. Since (A, B, C)

is a good cut-partition of G of type stable, we know that G[B ∪ C] contains a narrow
path P between c1 and c2. Then some realization H of G[A ∪ V (P)] is a subdivision
of G̃ A. Since G is {ISK4,wheel}-free, so is H . Note that every subdivision of an ISK4
is an ISK4, and that every subdivision of a wheel contains either an induced wheel or
an ISK4. Thus, if G̃ A contained an ISK4 or an induced wheel, then all its subdivisions
would also contain an ISK4 or an induced wheel. Since the {ISK4,wheel}-free graph
H is a subdivision of G̃ A, it follows that G̃ A is an {ISK4,wheel}-free graph. This
completes the argument. ��
Proposition 4.5 There is an algorithm with the following specifications:

• Input: a trigraph G;
• Output: exactly one of the following:

• a good cut-partition (A, B, C) of G of type clique, together with the true
statement “(A, B, C) is a good cut-partition of G of type clique”;

• a good cut-partition (A, B, C) of G of type stable, together with the true
statement “(A, B, C) is a good cut-partition of G of type stable, and G does
not admit a good cut-partition of type clique”;

• the true statement “G does not admit a good cut-partition”;
• Running time: O(n5), where n = |V (G)|.

Proof Let G f be the full realization of G; clearly, G f can be constructed in O(n2)

time. We first form a list C1, . . . , Ck of all (possibly empty) strong cliques of G of
size at most three; there are at most

(n
0

) + (n
1

) + (n
2

) + (n
3

)
such cliques, and the list

C1, . . . , Ck can be found in time O(n3). For each i ∈ {1, . . . , k}, we can determine
in time O(n2) whether Ci is a cutset of G f ; since we are testing O(n3) cliques, we
can determine whether G has a clique-cutset of size at most three in O(n5) time. If
we determined that some Ci from the list is a cutset of G f (and therefore of G), then
we can find the components A1, . . . , At (t ≥ 2) of G�Ci in time O(n2). In this case,
(V (A1),

⋃t
j=2 V (A j), Ci) is a good cut-partition of G type clique, and the algorithm

returns this cut-partition and stops. So assume that the algorithm determined that G

123

434 Algorithmica (2018) 80:415–447

contains no clique-cutsets of size at most three, and consequently, G admits no good
cut-partition of type clique. (In particular,G is connected and contains no cut-vertices.)

We then form a list S1, . . . , S� of all (not necessarily strong) stable sets of size two
of G. There are at most

(n
2

)
such stable sets, and so this list can be formed in O(n2)

time. For each i ∈ {1, . . . , �}, we can determine in time O(n2) whether Si is a cutset
of G f ; since there are O(n2) sets in our list, testing the whole list takes O(n4) time.
If none of S1, . . . , S� is a cutset of G f , then G contains no stable 2-cutsets; in this
case, by Proposition 4.2, the algorithm returns the true statement that G admits no
good cut-partition and stops. So assume that the algorithm determined that some Si

from the list is a cutset of G f (and therefore of G); clearly, Si is a stable 2-cutset of G.
We now find the components A1, . . . , At (t ≥ 2) of G f �Si , and using the fact that G
is connected and admits no cut-vertex, we deduce that (V (A1),

⋃t
j=2 V (A j), Si) is

a good cut-partition of G of type stable. The algorithm now returns this cut-partition
and stops.

It is clear that the algorithm is correct, and that its running time is O(n5). ��
Lemma 4.6 There is an algorithm with the following specifications:

• Input: a trigraph G and a good cut-partition (A, B, C) of G;
• Output: either the true statement “the A-block of G with respect to (A, B, C) does

not admit a good cut-partition,” or a good cut-partition (A′, B ′, C ′) of G such that
A′ ∪ C ′

� A ∪ C;
• Running time: O(n5), where n = |V (G)|.

Proof We first form G A, the A-block of G with respect to (A, B, C); this takes O(n2)

time. We then apply the algorithm from Proposition 4.5 to G A; this takes O(n5) time.
If the algorithm from Proposition 4.5 returns the answer that G A admits no good cut-
partition, thenwe are done. So assume that the algorithm fromProposition 4.5 returned
a good cut-partition (A1, B1, C1) of G A. By the construction of G A, we know that C
is a clique of G A (indeed, C is either a strong clique of size at most three of G A, or
a set of two semi-adjacent vertices of G A), and consequently, either C ⊆ A1 ∪ C1 or
C ⊆ B1∪C1. By symmetry, wemay assume thatC ⊆ B1∪C1. Now (A1, B ∪ B1, C1)

is a cut-partition of G, and clearly A1 ∪ C1 � A ∪ C . The algorithm now returns the
cut-partition (A1, B ∪ B1, C1) and stops.

It is clear that the running time of the algorithm is O(n5). To show that the algorithm
is correct, we must show that (A1, B ∪ B1, C1) is a good cut-partition of G. If G A =
G[A ∪ C], or if the good cut-partition (A1, B1, C1) of G A is of type clique, then it
is clear that (A1, B ∪ B1, C1) is a good cut-partition of G, and furthermore, the good
cut-partition (A1, B ∪ B1, C1) of G is of the same type (type clique or type stable)
as the good cut-partition (A1, B1, C1) of G A. So assume that G A = G[A ∪ C] and
that the good cut-partition (A1, B1, C1) of G A is of type stable. We now claim that
(A1, B ∪ B1, C1) is a good cut-partition of G of type stable.

Since G A = G[A ∪ C], we deduce from the construction of G A that (A, B, C)

is a good cut-partition of G of type stable, and furthermore, that the two vertices
of C (call them c and c′) are strongly anti-adjacent in G and semi-adjacent in G A.
Since (A1, B1, C1) is a good cut-partition of G A of type stable, we know that C1 is a
stable set of G A (and consequently, a stable set of G) of size two; set C1 = {c1, c′

1}.

123

Algorithmica (2018) 80:415–447 435

Furthermore, the specifications of the algorithm from Proposition 4.5 guarantee that
G A does not admit a good cut-partition of type clique (for otherwise, the algorithm
from Proposition 4.5 would have returned such a cut-partition), and consequently, G A

is connected and contains no cut-vertices. We also note that since C ⊆ B1 ∪ C1, we
have either that G A[A1 ∪ C1] = G[A1 ∪ C1], or that C = C1 and G A[A1 ∪ C1] is
obtained from G[A1 ∪ C1] by turning the strongly anti-adjacent pair cc′ = c1c′

1 into
a semi-adjacent pair.

Now, to show that (A1, B ∪ B1, C1) is a good cut-partition of G of type stable, we
need only show that each of G[A1 ∪ C1] and G[B ∪ B1 ∪ C1] contains a narrow path
between c1 and c′

1. Let us first show that G[A1 ∪ C1] contains a narrow path between
c1 and c′

1. Let A′
1 be the vertex set of some component of G A[A1] = G[A1]. Since

G A contains no cut-vertices, we know that each of c1 and c′
1 has a neighbor in A′

1 in
G A; consequently, each of c1 and c′

1 has a neighbor in A′
1 in G. Thus, G[A′

1∪{c1, c′
1}]

is connected, and it follows that G[A′
1 ∪ {c1, c′

1}] (and consequently G[A1 ∪ C1] as
well) contains a narrow path between c1 and c′

1.
It remains to show that G[B ∪ B1 ∪ C1] contains a narrow path between c1 and c′

1.
Since (A1, B1, C1) is a good cut-partition of G A of type stable, we know that there
is a narrow path P between c1 and c′

1 in G A[B1 ∪ C1]. Further, since (A, B, C) is a
good cut-partition of G of type stable, we know that there is a narrow path Q between
c and c′ in G[B ∪ C]. Now, we know that G A[B1 ∪ C1] is the trigraph obtained from
G[B1 ∪ C1] by turning the strongly anti-adjacent pair cc′ into a semi-adjacent pair.
Thus, if P contains at most one of c and c′, then the narrow path P between c and c′
is an induced subtrigraph of G[B ∪ B1 ∪ C1], and if P contains both c and c′, then
G[V (P) ∪ V (Q)] is a narrow path in G[B ∪ B1 ∪ C1] between c1 and c′

1 (essentially,
G[V (P) ∪ V (Q)] is the narrow path obtained from P by replacing the semi-adjacent
pair cc′ by the narrow path Q). This completes the argument. ��
Lemma 4.7 There exists an algorithm with the following specifications:

• Input: a trigraph G;
• Output: exactly one of the following:

• the true statement “G admits no good cut-partition”;
• a good cut-partition (A, B, C) of G, and the true statement “the A-block of

G with respect to (A, B, C) admits no good cut-partition”;
• Running time: O(n6), where n = |V (G)|.

Proof Step 1. We first call the algorithm from Proposition 4.5 with input G; the
running time of that algorithm is O(n5). If the algorithm from Proposition 4.5 returns
the answer that G admits no good cut-partition, then we are done. So assume that the
algorithm from Proposition 4.5 returned a good cut-partition (A, B, C) of G. We now
go to Step 2.

Step 2. We call the algorithm from Lemma 4.6 with input G and (A, B, C). If the
algorithm from Lemma 4.6 returns the answer that the A-block of G with respect to
(A, B, C) does not admit a good cut-partition, then we are done. So assume that the
algorithm from Lemma 4.6 returned a good cut-partition (A′, B ′, C ′) of G such that
A′ ∪ C ′

� A ∪ C . We now set (A, B, C) := (A′, B ′, C ′), and we go back to Step 2.
Since the size of A ∪ C decreases after each call of Step 2, we make at most n

recursive calls to Step 2 (and in particular, the algorithm terminates). Since the running

123

436 Algorithmica (2018) 80:415–447

time of the algorithm from Lemma 4.6 is O(n5), we conclude that the running time
of our algorithm is O(n6). ��
Theorem 4.8 There exists an algorithm with the following specifications:

• Input: an {ISK4,wheel}-free trigraph G;
• Output: exactly one of the following:

• the true statement “G is a basic trigraph”;
• a good cut-partition (A, B, C) of G, and the true statement “the A-block of

G with respect to (A, B, C) is a basic trigraph”;
• Running time: O(n6), where n = |V (G)|.

Proof We call the algorithm from Lemma 4.7 with input G. If that algorithm returns
the answer that G admits no good cut-partition, then our algorithm returns the answer
thatG is a basic trigraph and stops. On the other hand, if the algorithm fromLemma 4.7
returns a good cut-partition (A, B, C) of G and the statement that the A-block of G
with respect to (A, B, C) admits no good cut-partition, then our algorithm stops and
returns the good cut-partition (A, B, C) of G and the statement that the A-block of G
with respect to (A, B, C) is a basic trigraph.

Since the running time of the algorithm from Lemma 4.7 is O(n6), the running time
of our algorithm is also O(n6). The correctness of our algorithm follows immediately
from Corollary 4.3 and Proposition 4.4. ��

The following “extreme decomposition theorem” for {ISK4,wheel}-free trigraphs
is an immediate corollary of Theorem 4.8.

Corollary 4.9 Let G be an {ISK4,wheel}-free trigraph. Then either G is a basic
trigraph, or G admits a good cut-partition (A, B, C) such that the A-block of G with
respect to (A, B, C) is a basic trigraph.

5 A Stability Preserving Transformation

We now describe a transformation on a weighted trigraph that preserves the stability
number, while decreasing the number of semi-adjacent pairs. It is based on the gem,
a graph G with five vertices such that one of them, say v, is adjacent to all the others
and G�v is isomorphic to the four-vertex path P4.

Let (G, w) be a weighted trigraph and let uv be a semi-adjacent pair in G. The
weighted trigraph obtained from (G, w) by replacing uv with a gem is the weighted
trigraph (G ′, w′) defined as follows:

• The vertex set is V (G ′) = V (G) ∪ {xuv, xv,u, xu,v}, where xuv, xv,u, xu,v are
pairwise distinct and do not belong to V (G).

• The adjacency function is θG ′ : (V (G ′)
2

) → {−1, 0, 1}, defined as follows:

• θG ′ � (
(V (G)

2

)
�{uv}) = θG � (

(V (G)
2

)
�{uv})

• θG ′(e) = 1 for all e ∈ {uxv,u, xv,u xu,v, xu,vv, xuvu, xuvxv,u, xuvxu,v, xuvv},
• θG ′(e) = −1 for all other e ∈ (V (G ′)

2

)
.

(In particular, G ′[u, xv,u, xu,v, v, xuv] is a graph isomorphic to a gem.)

123

Algorithmica (2018) 80:415–447 437

• The weight function w′ : D(G ′) → N is defined as follows:
• w′ � (D(G)�{uv, (v, u), (u, v)}) = w � (D(G)�{uv, (v, u), (u, v)}),
• w′(xuv) = w(uv), w′(xv,u) = w(v, u), w′(xu,v) = w(u, v), and
• w′(p) = 0 for all other p ∈ D(G ′) .

It is immediate to see that (G ′, w′) is indeed a weighted trigraph, that is, that w′ is
a weight function of G ′. The importance of the above transformation stems from the
fact that it preserves the stability number, a fact which we now prove.

Proposition 5.1 Let uv be a semi-adjacent pair in a weighted trigraph (G, w) and let
(G ′, w′) be the weighted trigraph obtained from (G, w) by replacing uv with a gem.
Then, α(G ′, w′) = α(G, w).

Proof Let xuv, xv,u, xu,v be the three vertices in V (G ′)�V (G) labeled as in the defi-
nition of the operation of replacing a semi-adjacent pair with a gem.

We split the proof of the equality α(G ′, w′) = α(G, w) into two parts. First,
we show that α(G, w) ≤ α(G ′, w′). Let S ∈ V (G) be a stable set of G such that
�S�(G,w) = α(G, w). We consider three cases depending on the number of vertices
in S ∩ {u, v}. In each case, we exhibit a stable set S′ of G ′ such that �S′�(G ′,w′) =
�S�(G,w). This is enough, for then we obtain that α(G, w) = �S�(G,w) = �S′�(G ′,w′) ≤
α(G ′, w′), which is what we need.

If |S ∩ {u, v}| = 0, then the set S′ = S ∪ {xuv} is a stable set of G ′. Its weight with
respect to (G ′, w′) is

�S′�(G ′,w′) =
∑

x∈S′
w′(x) +

∑

x∈S′

∑

y∈V (G)�S′
w′(x, y) +

∑

xy∈(V (G′)�S′
2)

w′(xy)

=
(

∑

x∈S

w(x) + w′(xuv)

)

+
∑

x∈S

∑

y∈V (G)�S

w(x, y)

+
⎛

⎜
⎝

∑

xy∈(V (G)�S
2)

w(xy) − w(uv)

⎞

⎟
⎠

=
∑

x∈S

w(x) +
∑

x∈S

∑

y∈V (G)�S

w(x, y) +
∑

xy∈(V (G)�S
2)

w(xy)

= �S�(G,w).

If |S ∩{u, v}| = 1, then we may assume without loss of generality that S ∩{u, v} =
{u}. The set S′ = S ∪ {xu,v} is a stable set of G ′. Its weight with respect to (G ′, w′) is

�S′�(G ′,w′) =
∑

x∈S′
w′(x) +

∑

x∈S′

∑

y∈V (G)�S′
w′(x, y) +

∑

xy∈(V (G′)�S′
2)

w′(xy)

=
(

∑

x∈S

w(x) + w′(xu,v)

)

123

438 Algorithmica (2018) 80:415–447

+
⎛

⎝
∑

x∈S

∑

y∈V (G)�S

w(x, y) − w(u, v)

⎞

⎠ +
∑

xy∈(V (G)�S
2)

w(xy)

=
∑

x∈S

w(x) +
∑

x∈S

∑

y∈V (G)�S

w(x, y) +
∑

xy∈(V (G)�S
2)

w(xy)

= �S�(G,w).

Finally, suppose that |S ∩ {u, v}| = 2, that is, {u, v} ⊆ S. In this case, S′ = S itself
is a stable set of G ′. It is immediate to verify that its weight with respect to (G ′, w′)
is the same as its weight with respect to (G, w).

We now prove the reverse inequality, that is, we show that α(G ′, w′) ≤ α(G, w).
Let S′ ⊆ V (G ′) be a stable set of G ′ such that �S′�(G ′,w′) = α(G ′, w′).

Up to symmetry, it suffices to analyze four cases depending on the intersec-
tion of S′ with the vertex set of the gem, that is, depending on the set X =
S′ ∩ {u, v, xuv, xv,u, xu,v}. These four cases are:

X ∈ {{xuv}, {xv,u}, {u, xu,v}, {u, v}} .

Indeed, if X = ∅, then we can replace S′ with S′ ∪ {xuv} to obtain a set with �S′ ∪
{xuv}�(G ′,w′) ≥ �S′�(G ′,w′). If X = {u}, then we can replace S′ with S′ ∪ {xu,v} to
obtain a set with �S′ ∪ {xu,v}�(G ′,w′) ≥ �S′�(G ′,w′). Each of the remaining cases for
X either results in a non-stable set, or is symmetric to one of the four cases above.
In each case, we exhibit a stable set S of G such that �S�(G,w) = �S′�(G ′,w′). This
is enough because we then obtain α(G ′, w′) = �S′�(G ′,w′) = �S�(G,w) ≤ α(G, w),
which is what we need.

Case 1. X = {xuv}.
The set S = S′

�{xuv} is a stable set of G. Its weight with respect to (G, w) is

�S�(G,w) =
∑

x∈S

w(x) +
∑

x∈S

∑

y∈V (G)�S

w(x, y) +
∑

xy∈(V (G)�S
2)

w(xy)

=
(

∑

x∈S′
w′(x) − w′(xuv)

)

+
∑

x∈S′

∑

y∈V (G ′)�S′
w′(x, y)

+
⎛

⎜
⎝

∑

xy∈(V (G′)�S′
2)

w′(xy) + w(uv)

⎞

⎟
⎠

=
∑

x∈S′
w′(x) +

∑

x∈S′

∑

y∈V (G ′)�S′
w′(x, y) +

∑

xy∈(V (G′)�S′
2)

w′(xy)

= �S′�(G ′,w′).

Case 2. X = {xv,u}.

123

Algorithmica (2018) 80:415–447 439

In this case, the set S′′ = (S′
�{xv,u}) ∪ {xuv} is also a stable set of G ′. Since

w(uv) ≥ w(v, u), and since neither xuv nor xv,u is an endpoint of a semi-adjacent
pair of G ′, we have that

�S′′�(G ′,w′) = �S′�(G ′,w′) + w′(xuv) − w′(xv,u)

= �S′�(G ′,w′) + w(uv) − w(v, u)

≥ �S′�(G ′,w′).

This implies that α(G ′, w′) = �S′�(G ′,w′) ≤ �S′′�(G ′,w′) ≤ α(G ′, w′), and conse-
quently �S′′�(G ′,w′) = α(G ′, w′). Therefore, this case reduces to Case 1.

Case 3. X = {u, xu,v}.
The set S = S′

�{xu,v} is a stable set of G. Its weight with respect to (G, w) is

�S�(G,w) = ∑

x∈S
w(x) + ∑

x∈S

∑

y∈V (G)�S
w(x, y) + ∑

xy∈(V (G)�S
2)

w(xy)

=
(

∑

x∈S′
w′(x) − w′(xu,v)

)

+
(

∑

x∈S′

∑

y∈V (G ′)�S′
w′(x, y) + w(u, v)

)

+ ∑

xy∈(V (G′)�S′
2)

w′(xy)

= ∑

x∈S′
w′(x) + ∑

x∈S′

∑

y∈V (G ′)�S′
w′(x, y) + ∑

xy∈(V (G′)�S′
2)

w′(xy)

= �S′�(G ′,w′).

Case 4. X = {u, v}.
The set S = S′ itself is a stable set of G. It is immediate to verify that its weight

with respect to (G, w) is the same as its weight with respect to (G ′, w′).
This completes the argument. ��

6 Computing the Stability Number of Basic Weighted Trigraphs

We remind the reader that a basic trigraph is a trigraph G that is either a series–parallel
trigraph, a complete bipartite trigraph, or a line trigraph.

Theorem 6.1 There exists an algorithm with the following specifications:

• Input: a weighted basic trigraph (G, w);
• Output: α(G, w);
• Running time: O(n4 log n) where n = |V (G)|.

Proof Let (G, w) be a weighted basic trigraph. Then, G is either (i) a series–parallel
trigraph, (ii) a complete bipartite trigraph, or (iii) a line trigraph.

Testing (i) can be done by computing in O(n2) time the full realization G f of G,
and testing whether G f is series–parallel, which can be done in time O(|V (G f)| +
|E(G f)|) = O(n2) [17].

123

440 Algorithmica (2018) 80:415–447

Testing (ii) can be done in time O(n2) by first testing if G is a graph (that is, if its
adjacency function only takes values 1 and −1), and then testing in O(n2) time (for
example, using breadth-first search) if G is a complete bipartite graph.

Thus, it can be determined in time O(n2) whether (i), (ii), or neither of these two
cases occurs. If neither (i) nor (ii) occurs, then (iii) must occur.

We now discuss how to compute the stability number of (G, w) in each of the three
cases.

Case 1. G is a series–parallel trigraph.
Let (G ′, w′) be the weighted trigraph obtained from (G, w) by replacing each

semi-adjacent pair of G (in any order) with a gem. By Proposition 5.1, we have
that α(G, w) = α(G ′, w′). Since each replacement of a semi-adjacent pair with a gem
removes one semi-adjacent pair andproduces nonewones, the resulting trigraphG ′ has
no semi-adjacent pairs, that is, it is a graph.Clearly, |V (G ′)| = O(n2).Moreover, since
G ′ has exactly one edge for each strongly adjacent pair of G, exactly seven edges for
each semi-adjacent pair of G, and no other edges, we also have that |E(G ′)| = O(n2).

Since G is a series–parallel trigraph, its full realization G f is a series–parallel
graph. Note that G ′ is isomorphic to the graph G ′′ obtained from G f by replacing
each edge uv ∈ E(G f) that forms a semi-adjacent pair in G with a gem with vertex
set {u, xv,u, xu,v, v, xuv} and edge set

{
uxv,u, xv,u xu,v, xu,vv, xuvu, xuvxv,u, xuvxu,v, xuvv

}
.

For a graph H , let us denote by tw(H) its treewidth. We claim that the treewidth
of G ′′ (and consequently that of G ′) is at most three. To this end, it suffices to prove
the following.

Claim Let H be a graph and let H1 be a graph obtained from H by replac-
ing an edge uv ∈ E(H) with a gem with vertex set {u, xv,u, xu,v, v, xuv}
and edge set {uxv,u, xv,u xu,v, xu,vv, xuvu, xuvxv,u, xuvxu,v, xuvv}. Then, tw(H1) ≤
max{tw(H), 3}.

This is indeed enough. Since series–parallel graphs are of treewidth at most two [5],
G f is of treewidth at most two. Applying the claim repeatedly to each of the graphs in
the sequence of graphs transforming G f to G ′′ (by replacing one edge at a time with
a gem) implies that tw(G ′) ≤ max{tw(G f), 3} = 3.

Proof of Claim Recall that a graph K = (V, E) is chordal if every cycle in it of length
at least four has a chord, and that ω(K) denotes the clique number of K , that is, the
maximum size of a clique in K . Moreover, the treewidth of K equals the minimum
value of ω(K ′) − 1 over all chordal graphs of the form K ′ = (V, E ′) where E ⊆ E ′
(see, e.g., [5, Theorem 11.1.4]).

Let H ′ be a chordal supergraph of H such that tw(H) = ω(H ′) − 1. Then, the
graph H ′

1 defined as V (H ′
1) = V (H1) and E(H ′

1) = E(H ′) ∪ E(H1) ∪ {uv, uxu,v}
is a chordal supergraph of H1 with ω(H ′

1) = max{ω(H ′), 4}. Therefore, tw(H1) ≤
ω(H ′

1) − 1 = max{ω(H ′) − 1, 3} = max{tw(H), 3}. ��
We have shown that the treewidth of G ′ is at most three. It follows that the stability

number of (G ′, w′), and hence that of (G, w), can be computed in time O(|V (G ′)|) =

123

Algorithmica (2018) 80:415–447 441

O(n2), e.g., by first computing a tree-decomposition of G ′ of width at most three [4]
and then applying a dynamic programming algorithm along the tree decomposition [3].

Case 2. G is a complete bipartite trigraph.
In this case, G is a graph and all nonzero weights w(p) > 0 for p ∈ D(G)

appear on its vertices. Thus, if (A, B) is a bipartition of G, we have that α(G, w) =
max

{
∑

a∈A w(a),
∑

b∈B w(b)

}
. It follows that in this case the stability number can

be computed in time O(n) (to compute A and B, choose v ∈ V (G) arbitrarily, and
take A = N (v) and B = V (G)�A, where N (v) is the set of all neighbors of v in G).

Case 3. G is a line trigraph.
We apply a transformation similar to the one from Case 1. Namely, let (G ′, w′)

be the weighted trigraph obtained from (G, w) by replacing each semi-adjacent pair
of G (in any order) with a gem. Again, we have that the resulting trigraph G ′ has no
semi-adjacent pairs, that is, that G ′ is a graph, and that |V (G ′)| = |E(G ′)| = O(n2).

Claim Let (H, w) be a weighted line trigraph, let uv be a semi-adjacent pair in H,
and let (H ′, w′) be the trigraph obtained from (H, w) by replacing uv with a gem.
Then, H ′ is also a line trigraph.

Proof of Claim Suppose that H is a line trigraph of a graph K . This means that the full
realization H f of H is the line graph of K and all the triangles of H are strong. Vertices
u and v are adjacent in H f , and so they correspond to a pair of adjacent edges, say ab
and bc, respectively, in K . Since every triangle in H is strong, the edge uv ∈ E(H f)

is not part of any triangle in H f . This implies that b is a vertex of degree two in K , and
ac /∈ E(K). Let K ′ be the graph defined as follows: V (K ′) = (V (K)�{b})∪{d, e, f }
and E(K ′) = (E(K)�{ab, bc}) ∪ {ad, de, ec, d f, e f }. Then, the line graph of K ′ is
isomorphic to the full realization of H ′. Moreover, all the triangles of H ′ are strong.
Therefore, H ′ is a line trigraph. ��

Applying the above claim repeatedly to each of the trigraphs in the sequence of
trigraphs transforming (G, w) to (G ′, w′) implies that G ′ is a line trigraph. Since G ′
is in fact a graph, it is a line graph. Since the operation of replacing a semi-adjacent
pair with a gem preserves the stability number (by Proposition 5.1), we have that
α(G, w) = α(G ′, w′).

It is therefore enough to compute the stability number of the weighted line graph
(G ′, w′). This can be done as follows. First, compute a graph H ′ such that G ′ =
L(H ′); this can be done in time O(|V (G ′)| + |E(G ′)|) = O(n2) [14]. Second, solve
the instance of the maximum weight matching problem on H ′ with edge weights
corresponding to vertex weights in G ′. This can be done in time O(|V (H ′)|(|E(H ′)|+
|V (H ′)| log |V (H ′)|)) using the algorithm by Gabow [10].

The time complexity of the whole algorithm in Case 3 is dominated by the term
O(|V (H ′)|(|E(H ′)|+|V (H ′)| log |V (H ′)|)), which, since |V (H ′)| = O(|V (G ′)|) =
O(n2) and |E(H ′)| = O(|V (G ′)|) = O(n2), is of order O(n4 log n). This completes
the description of the algorithm for Case 3.

The running time O(n4 log n) of Case 3 dominates the running time of each of the
other steps of the algorithm. This completes the proof. ��

123

442 Algorithmica (2018) 80:415–447

7 Computing the Stability Number of {ISK4,wheel}-Free Weighted
Trigraphs

We now derive the main result of the paper: a polynomial-time algorithm that finds the
stability number of aweighted {ISK4,wheel}-free trigraph.We remark that since every
weighted {ISK4,wheel}-free graph (with non-negative integer weights) is a weighted
{ISK4,wheel}-free trigraph, this algorithmcanbe used to compute the stability number
of a weighted {ISK4,wheel}-free graph (and this is, in fact, the main purpose of our
algorithm).

Theorem 7.1 There exists an algorithm with the following specifications:

• Input: a weighted {ISK4,wheel}-free trigraph (G, w);
• Output: α(G, w);
• Running time: O(n7) where n = |V (G)|.

Proof Let (G, w) be the input {ISK4,wheel}-free trigraph with n = |V (G)|. We first
call the O(n6) time algorithm from Theorem 4.8 with input G. This algorithm either
returns the statement thatG is a basic trigraph, or returns a good cut-partition (A, B, C)

of G such that the A-block of G with respect to (A, B, C) is a basic trigraph.
If the algorithm returns the statement that G is a basic trigraph, then we apply

Theorem 6.1 and compute α(G, w) in time O(n4 log n).
Suppose now that the algorithm returned a good cut-partition (A, B, C) of G such

that the A-block of G with respect to (A, B, C) is a basic trigraph. For X ∈ {A, B},
let G X be the X -block of G with respect to (A, B, C). Since (A, B, C) is a good
cut-partition of G, we know that |C | ≤ 3, and so it can be determined in O(1) time
whether (A, B, C) is of type clique or of type stable. Clearly, we can compute the
trigraphs G A and G B in O(n2) time: if (A, B, C) is of type clique, then we have
G X = G[X ∪ C] for X ∈ {A, B}, and if (A, B, C) is of type stable, then G X (for
X ∈ {A, B}) is the trigraph obtained from G[X ∪ C] by making the two vertices of C
semi-adjacent. Now, for each of the 2|C| = O(1) sets of the form C ′ ⊆ C , compute
the weighted trigraph Red[G A, w; A ∪ C ′] and the quantity Ext[G A, w; A ∪ C ′]. By
Proposition 3.5, this can be done in time O(n2). Note that each of the reductions
Red[G A, w; A ∪ C ′] is a weighted induced subtrigraph of the basic trigraph G A (with
an appropriateweight function); since the class of basic trigraphs is closed under taking
induced subtrigraphs, it follows that each reduction Red[G A, w; A∪C ′] is a weighted
basic trigraph. Therefore, by Theorem 6.1, for each C ′ ⊆ C , the stability number of
Red[G A, w; A ∪ C ′] can be computed in time O(n4 log n). For each C ′ ⊆ C , set

αA∪C ′ = α(Red[G A, w; A ∪ C ′]) + Ext[G A, w; A ∪ C ′].

Now, if (A, B, C) is of type clique, then we define wB : D(G B) → N as in
Lemma3.10,we recursively computeα(G B , wB), andwe remark that byLemma3.10,
we have that α(G, w) = αA + α(G B, wB). On the other hand, if (A, B, C) is of type
stable, then we define wB : D(G B) → N as in Lemma 3.11, we recursively compute
α(G B, wB), andweobserve that byLemma3.11,wehave thatα(G, w) = α(G B, wB).
This completes the description of the algorithm.

123

Algorithmica (2018) 80:415–447 443

As there are at most n − 1 recursive calls and the remaining computations take
O(n6) time, the overall running time of the algorithm is O(n7). ��

As an immediate corollary of Theorem 7.1 and Proposition 1.1, we obtain the
following result.

Corollary 7.2 There exists an algorithm with the following specifications:

• Input: a weighted {ISK4,wheel}-free graph (G, w) with non-negative integer
weights;

• Output: a maximum weight stable set S of (G, w);
• Running time: O(n8) where n = |V (G)|.
We remark that the algorithm from Corollary 7.2 cannot readily be generalized

to trigraphs. One reason for this is that in the graph case, one can always find a
maximum weight stable set that is also an inclusion-wise maximal stable set (and this
fact is implicitly used in the proof of Proposition 1.1), whereas this is not the case for
trigraphs. We believe that one could use techniques similar to the ones from Sect. 3
in order to generalize Corollary 7.2 to trigraphs. However, our main interest here is in
graphs, and we used trigraphs only as a tool for obtaining algorithms for graphs; for
this reason, we did not attempt to construct an algorithm for trigraphs analogous to
the one given by Corollary 7.2. It may also be worth pointing out that, while we have
not attempted to construct a recognition algorithm for {ISK4,wheel}-free trigraphs, it
was shown in [11] that {ISK4,wheel}-free graphs can be recognized in O(n2m) time
(where n is the number of vertices and m the number of edges of the input graph).

8 Bipartite Trigraphs

As stated in the Introduction, computing the stability number of a weighted bipartite
trigraph is NP-hard. We now prove this result.

Theorem 8.1 The problem of computing the stability number of a weighted bipartite
trigraph is NP-hard.

Proof Suppose there is a polynomial-time algorithmA for the problem. We prove the
theorem by usingA as a subroutine to compute the stability number of a general graph
in polynomial time.

Let H be an arbitrary graph, and let n = |V (H)| and m = |E(H)|. The idea is as
follows. We build a bipartite trigraph G by first subdividing each edge of H once, and
then turning all edges of the resulting graph into semi-adjacent pairs. (Thus, |V (G)| =
n +m.) We construct a weight functionw for G such that α(G, w) = α(H)+2m. We
can useA to find α(G, w), and because α(G, w) = α(H)+2m, we deduce that α(H)

can be found in polynomial time. Now, describing the weight function w is bit com-
plicated because if uv is an edge of H , the weights assigned to the two semi-adjacent
pairs of G that correspond to uv are not symmetric between u and v. So, in order to
properly define the weight function w, we must first introduce some more notation.

First, let �H = (V (�H), A(�H)) be any orientation of H (in other words, �H is a
digraph that satisfies V (�H) = V (H), for each edge uv ∈ E(H), exactly one of

123

444 Algorithmica (2018) 80:415–447

the arcs �uv and �vu belongs to A(�H), and A(�H) contains no other arcs). For each
�uv ∈ A(�H), we introduce a new vertex x �uv , and we set X = {x �uv | �uv ∈ A(�H)}.
We now let G be the bipartite trigraph with bipartition (X, V (H)) in which for all
�uv ∈ A(H), vertex x �uv is semi-adjacent to u and v and strongly anti-adjacent to all
other vertices of V (H). (Thus, each arc �uv of �H effectively gets replaced by a narrow
path u − x �uv − v.) We remark that G contains no strongly adjacent pairs, and so all
subsets of V (G) are stable sets of G.

We now define a function w : D(G) → N as follows:

• w(v) = 1 for all v ∈ V (G);
• w(ux �uv) = w(x �uvv) = w(x �uv, v) = w(v, x �uv) = 1 for all �uv ∈ A(�H);
• w(e) = 0 for all other e ∈ D(G).

Clearly, w is a weight function for G, and by assumption, we can find α(G, w) in
polynomial time. (Since |V (G)| = n + m, the running time is in fact polynomial in
n.) We claim that α(G, w) = α(H) + 2m. This is enough, for then we can clearly
compute α(H) in polynomial time.

We now need some more notation. For each �uv ∈ A(�H) and S ⊆ V (G), set

cont(�uv; S) = �S ∩ {u, x �uv, v}�(G[u,x �uv,v],w) −
∑

x∈S∩{u,v}
w(x).

We refer to cont(�uv; S) as the contribution of the arc �uv to the weight of S with respect
to (G, w). Clearly, for all S ⊆ V (G), we have that

�S�(G,w) =
∑

x∈S∩V (H)

w(x) +
∑

�uv∈A(�H)

cont(�uv; S)

= |S ∩ V (H)| +
∑

�uv∈A(�H)

cont(�uv; S).

Furthermore, we see by inspection that for all �uv ∈ A(H) and S ⊆ V (G), we have
that

cont(�uv; S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if either S ∩ {u, x �uv, v} = {u, x �uv, v}
or S ∩ {u, x �uv, v} = {x �uv, v}
or S ∩ {u, x �uv, v} = {u, v}
or S ∩ {u, x �uv, v} = {u}

2 if either S ∩ {u, x �uv, v} = {u, x �uv}
or S ∩ {u, x �uv, v} = {v}
or S ∩ {u, x �uv, v} = {x �uv}
or S ∩ {u, x �uv, v} = ∅

In particular, 1 ≤ cont(�uv; S) ≤ 2 for all �uv ∈ A(�H) and S ⊆ V (H).
We can now show that α(H) + 2m ≤ α(G, w). Let SH be a stable set of H such

that |SH | = α(H). Since SH is a stable set of H , we know that |SH ∩ {u, v}| ≤ 1 for
all �uv ∈ A(�H). Now, let Y = {x �uv | �uv ∈ A(�H), u ∈ SH }, and set SG = SH ∪ Y . By
construction, for all �uv ∈ A(�H), we have that SG ∩ {u, x �uv, v} ∈ {{u, x �uv}, {v},∅},

123

Algorithmica (2018) 80:415–447 445

and consequently, cont(�uv; SG) = 2. Since |A(�H)| = m, and since SG is a stable set
of G (because G contains no strongly adjacent pairs), it now follows that

α(H) + 2m = |SH | +
∑

�uv∈A(�H)

cont(�uv; SG)

= �SG�(G,w)

≤ α(G, w).

It remains to show that α(G, w) ≤ α(H)+ 2m. Recall that all subsets of V (G) are
stable sets ofG. Now, among all subsets SG ofV (G) that satisfy �SG�(G,w) = α(G, w),
choose one for which the size of the set { �uv ∈ A(�H) | u, v ∈ SG} is as small as
possible. We need to show that �SG�(G,w) ≤ α(H) + 2m. Since cont(�uv; S) ≤ 2 for
all �uv ∈ A(�H), and since |A(�H)| = m, we see that

∑
�uv∈A(�H)

cont(�uv; SG) ≤ 2m,
and consequently,

�SG�(G,w) = |SG ∩ V (H)| +
∑

�uv∈A(�H)

cont(�uv; SG)

≤ |SG ∩ V (H)| + 2m.

Thus, it only remains to show that |SG ∩ V (H)| ≤ α(H). To prove this, we need
only show that SG ∩ V (H) is a stable set of H . Suppose otherwise, and choose an
arc �u0v0 ∈ A(�H) such that u0, v0 ∈ SG . Our goal is to construct a set S′

G ⊆ V (G)

such that �S′
G�(G,w) = α(G, w) and such that |{ �uv ∈ A(�H) | u, v ∈ S′

G}| < |{ �uv ∈
A(�H) | u, v ∈ SG}|. This will contradict the minimality of SG , which is all we need.

Let S′
G be the subset of V (G) defined as follows:

• S′
G ∩ V (H) = (SG ∩ V (H))�{u0};

• for all �uv ∈ A(�H),
• if u0 /∈ {u, v}, then we set x �uv ∈ S′

G if and only if x �uv ∈ SG ;
• if u0 = u, then we set x �u0v /∈ S′

G ;• if u0 = v, then we set x �u0v ∈ S′
G .

Because of the arc �u0v0, we see that |{ �uv ∈ A(�H) | u, v ∈ S′
G}| < |{ �uv ∈ A(�H) |

u, v ∈ SG}|. In order to verify that S′
G contradicts the minimality of SG , it remains to

show that �S′
G�(G,w) = α(G, w). By construction, |S′

G ∩ V (H)| = |SG ∩ V (H)| − 1.
Next, for all �uv ∈ A(�H) such that u0 ∈ {u, v}, we have that cont(�uv; S′

G) = 2, and
consequently, cont(�uv; S′

G) ≥ cont(�uv; SG). Furthermore, cont(�u0v0; SG) = 1, and
so cont(�uv; S′

G) = 1+ cont(�uv; SG). On the other hand, for all �uv ∈ A(�H) such that
u0 /∈ {u, v}, we have that cont(�uv; S′

G) = cont(�uv; SG). Thus,

∑

�uv∈A(�H)

cont(�uv; S′
G) ≥ 1 +

∑

�uv∈A(�H)

cont(�uv; SG),

123

446 Algorithmica (2018) 80:415–447

and it follows that

�S′
G�(G,w) = |S′

G ∩ V (H)| +
∑

�uv∈A(�H)

cont(�uv; S′
G)

≥ (|SG ∩ V (H)| − 1) + (1 +
∑

�uv∈A(�H)

cont(�uv; SG))

= |SG ∩ V (H)| +
∑

�uv∈A(�H)

cont(�uv; SG)

= �SG�(G,w)

= α(G, w).

Since S′
G is a stable set of G (because G contains no strongly adjacent pairs), we

deduce that �S′
G�(G,w) = α(G, w). Thus, S′

G indeed contradicts the minimality of SG .
This completes the argument. ��
Acknowledgements We would like to thank Frédéric Maffray for his help with the proof of Theorem 8.1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aboulker, P., Charbit, P., Trotignon, N., Vušković, K.: Vertex elimination orderings for hereditary graph
classes. Discrete Math. 338, 825–834 (2015)

2. Aboulker, P., Chudnovsky, M., Seymour, P., Trotignon, N.: Wheel-free planar graphs. Eur. J. Comb.
49, 57–67 (2015)

3. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial
k-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete
Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia
(1999)

6. Chudnovsky, M.: Berge trigraphs and their applications. PhD Thesis, Princeton University (2003)
7. Chudnovsky, M.: Berge trigraphs. J. Graph Theory 53(1), 1–55 (2006)
8. Diot, E., Radovanović, M., Trotignon, N., Vušković, K.: On graphs that do not contain a theta nor a

wheel Part I: two subclasses. arXiv:1504.01862 (2015)
9. Faigle, U., Frahling, G.: A combinatorial algorithm for weighted stable sets in bipartite graphs. Discrete

Appl. Math. 154, 1380–1391 (2006)
10. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking.

In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22–24 January
1990, San Francisco, California, pp. 434–443 (1990)

11. Lévêque, B.,Maffray, F., Trotignon, N.: On graphswith no induced subdivision of K4. J. Comb. Theory
Ser. B 102(4), 924–947 (2012)

12. Milanič, M., Penev, I., Trotignon, N.: A decomposition theorem for ISK4,wheel-free graphs.
arXiv:1602.02406 (2016)

13. Poljak, S.: A note on the stable sets and coloring of graphs. Commentationes Math. Univ. Carol. 15,
307–309 (1974)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1504.01862
http://arxiv.org/abs/1602.02406

Algorithmica (2018) 80:415–447 447

14. Roussopoulos, N.D.: A max{m, n} algorithm for determining the graph H from its line graph G. Inf.
Process. Lett. 2, 108–112 (1973)

15. Thomassé, S., Trotignon, N., Vušković, K.: A polynomial Turing-kernel for weighted independent set
in bull-free graphs. Algorithmica (2015). doi:10.1007/s00453-015-0083-x

16. Trotignon, N., Vušković, K.: Combinatorial optimization with 2-joins. J. Comb. Theory Ser. B 102(1),
153–185 (2012)

17. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J. Comput.
11(2), 298–313 (1982)

123

http://dx.doi.org/10.1007/s00453-015-0083-x

	Stable Sets in {ISK4,wheel}-Free Graphs
	Abstract
	1 Introduction
	2 Trigraphs
	3 Stable Sets in Weighted Trigraphs
	4 Decomposition Theorem
	5 A Stability Preserving Transformation
	6 Computing the Stability Number of Basic Weighted Trigraphs
	7 Computing the Stability Number of {ISK4,wheel}-Free Weighted Trigraphs
	8 Bipartite Trigraphs
	Acknowledgements
	References

