
Algorithmica (2017) 78:681–713
DOI 10.1007/s00453-016-0212-1

Towards a Runtime Comparison of Natural and
Artificial Evolution

Tiago Paixão1 · Jorge Pérez Heredia2 ·
Dirk Sudholt2 · Barbora Trubenová1

Received: 28 August 2015 / Accepted: 7 September 2016 / Published online: 19 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Evolutionary algorithms (EAs) form a popular optimisation paradigm
inspired by natural evolution. In recent years the field of evolutionary computation
has developed a rigorous analytical theory to analyse the runtimes of EAs on many
illustrative problems. Here we apply this theory to a simplemodel of natural evolution.
In the Strong SelectionWeakMutation (SSWM) evolutionary regime the time between
occurrences of newmutations is much longer than the time it takes for a mutated geno-
type to take over the population. In this situation, the population only contains copies
of one genotype and evolution can be modelled as a stochastic process evolving one
genotype by means of mutation and selection between the resident and the mutated
genotype. The probability of accepting the mutated genotype then depends on the
change in fitness. We study this process, SSWM, from an algorithmic perspective,
quantifying its expected optimisation time for various parameters and investigating
differences to a similar evolutionary algorithm, the well-known (1+1) EA. We show
that SSWM can have a moderate advantage over the (1+1) EA at crossing fitness
valleys and study an example where SSWM outperforms the (1+1) EA by taking
advantage of information on the fitness gradient.

Keywords Runtime analysis · Evolutionary algorithms · Natural evolution ·
Population genetics · Theory · Strong selection weak mutation regime

An extended abstract of this article with preliminary results was presented at GECCO’15 [25].

B Dirk Sudholt
d.sudholt@sheffield.ac.uk

1 IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

2 University of Sheffield, Sheffield S1 4DP, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0212-1&domain=pdf

682 Algorithmica (2017) 78:681–713

1 Introduction

Evolutionary algorithms are popular general-purpose heuristics that have found count-
less applications in design and optimisation. For many large-scale problems they
provide good results in reasonable time where many exact techniques fail [6]. They
are a method of choice in black-box optimisation, where no information about the
problem at hand is available, and the only way to obtain knowledge is to evaluate
candidate solutions.

In the last 20years evolutionary computation has developed a number of algo-
rithmic techniques for the analysis of evolutionary and genetic algorithms. These
methods typically focus on rigorously bounding the expected time required to reach
a global optimum, or other well-specified high-fitness solutions. Problems studied
include illustrative example functions from pseudo-Boolean optimisation that isolate
characteristics found inmore complex problems as well as problems from combinator-
ial optimisation. Various studies showed that the simple evolutionary algorithm called
(1+1) EA evolving a single search point (see Sect. 2) finds global optima across a range
of combinatorial optimisation problems in polynomial expected time, including short-
est paths [29], sorting (as maximising sortedness) [29], minimum spanning trees [18],
matroid optimisation problems [26], and Eulerian cycles [16]. The (1+1) EA (with
restarts) further constitutes a polynomial-time randomised approximation scheme for
the NP-hard Partition problem [35].

The runtime analysis of evolutionary algorithms has become one of the dominant
concepts in evolutionary computation, leading to a plethora of results for evolutionary
algorithms [1,10,20] as well as novel optimisation paradigms such as swarm intelli-
gence [19,20,31] and artificial immune systems [11].

Interestingly, although evolutionary algorithms are heavily inspired by natural evo-
lution, these methods have seldom been applied to natural evolution as studied in
mathematical population genetics. This is a missed opportunity: the time it takes for
a natural population to reach a fitness peak is an important question for the study of
natural evolution. The kinds of results obtained from runtime analysis, namely how the
runtime scaleswith genome size andmutation rate, are of general interest to population
genetics. Moreover, recently there has been a renewed interest in applying computer
science methods to problems in evolutionary biology with contributions from unlikely
fields such as game theory [2], machine learning [33] and Markov chain theory [3].
Here, we present a first attempt at applying runtime analysis to the so-called Strong
Selection Weak Mutation regime of natural populations.

The StrongSelectionWeakMutationmodel applieswhenmutations are rare enough
and selection is strong enough that the time between occurrences of new mutations is
long compared to the time a new genotype takes to replace the parent genotype [8].
Mutations occur rarely either because the mutation rate is low, or because the size
of the underlying population is small. Upon occurrence, a new mutation represents
relatively high fitness advantage or fitness loss, and strong selection ensures that it
either promptly replaces the original genotype, or is entirely lost from the population
(Fig. 1). Therefore, the population is most of the time composed of a single genotype
and evolution occurs through “jumps” between different genotypes, corresponding
to a new mutated genotype replacing the resident genotype in the population. The

123

Algorithmica (2017) 78:681–713 683

time

1

0

frequency

“generation”

Fig. 1 Illustration of the strong selection weak mutation regime. The y-axis represents the frequency of
genotypes that carry a specific mutation. Most of the time the population is composed of a single genotype,
as new mutations (represented by different colors) are quickly either fixed (green, blue, cyan) or lost (red)
(Color figure online)

relevant dynamics can then be characterized by a Markov stochastic process evolving
one genotype. This model is obtained as a limit of many other models, such as the
Wright–Fisher model [7]. One important aspect of this model is that new solutions are

accepted with a probability pfix = 1−e−2β� f

1−e−2Nβ� f that depends on the fitness difference
� f between the new mutated genotype and the resident genotype. Here N reflects
the size of the underlying population (not to be confused with the population size in
population-based EAs) and β represents the selection strength. One can think of f as
defining a phenotype that is under selection to bemaximized;β quantifies how strongly
a unit change in f is favoured. This probability was first derived by Kimura [14] for a
population of N individuals that are sampled binomially in proportion to their fitness.

This choice of acceptance function introduces twomain differences to the (1+1) EA.
First, while the (1+1) EA never decreases its current fitness (a property called elitism),
SSWM accepts solutions of lower fitness (worsenings) with some positive probability.
This is reminiscent of the Metropolis algorithm (Simulated Annealing with constant
temperature) which can also accept worsenings (see e. g. [12]). Second, and in contrast
to the Metropolis algorithm, solutions of higher fitness can be rejected, since they are
accepted with a probability that is roughly proportional to the relative advantage they
have over the current solution.

We cast thismodel of natural evolution as a stochastic process, referred to as SSWM,
using commonmutation operators from evolutionary algorithms.We then present first
runtime analyses of this process using techniques from the analysis of randomised and
evolutionary algorithms.

Our aims are manifold:

– to explore the performance of natural evolution in the context of runtime, compar-
ing it against simple evolutionary algorithms like the (1+1) EA,

– to investigate the non-elitistic selection mechanism implicit to SSWM and its
usefulness in the context of evolutionary algorithms, and

– to show that techniques for the analysis of evolutionary algorithms can be applied
to simple models of natural evolution, aiming to open up a new research field at
the intersection of evolutionary computation and population genetics (see [24] for
recent work on unifying these two fields).

123

684 Algorithmica (2017) 78:681–713

Our results are summarised as follows. For the simple function OneMax (x) :=∑n
i=1 xi , an easy hill-climbing task, we show in Sect. 3 that with suitably large pop-

ulation sizes or selection strength, when 2(N − 1)β ≥ ln(cn) with c > 1.2 and n
being the problem size, SSWM is an effective hill climber as it optimises OneMax in

expected time O
(
(n log n)

(
1 + 1

2β

))
. However, when 2Nβ is smaller than ln n by

any constant factor, we encounter a phase transition and SSWM requires exponential
time even on OneMax.

We then illustrate the particular features of the selection rule in more depth. In
Sect. 4, we consider a function Cliffd where a fitness valley of Hamming distance d
needs to be crossed in order to reach the global optimum. For d = ω(log n) the
(1+1) EA needs time Θ(nd), but SSWM is faster by a factor of eΩ(d) because of
its ability to accept worse solutions. Finally, in Sect. 5 we illustrate on the function
Balance [27] that SSWMcandrastically outperform the (1+1)EAbecause thefitness-
dependent selection drives it to follow the steepest gradient. While the (1+1) EA needs
exponential time in expectation with Ω(1) probability, SSWM with overwhelming
probability finds an optimum in polynomial time.

Themain technical difficulties are that in contrast to the simple (1+1) EA, SSWM is
a non-elitist algorithm, hence fitness-level arguments based on elitism are not applica-
ble. Popular techniques such as level-based theorems for non-elitist populations [4]
are not applicable either because they require population sizes larger than 1.Moreover,
while for the (1+1) EA transition probabilities to better solutions are solely determined
by probabilities for flipping bits duringmutation, for SSWM these additionally depend
on the fitness difference. The analysis of SSWM is more challenging than the analysis
of the (1+1) EA, and requires tailored proof techniques. We hope that these techniques
will be helpful for analysing other evolutionary algorithmswith fitness-based selection
schemes.

2 Preliminaries

We define the optimisation time of SSWM as the number of the first iteration at which
the optimum is accepted as a new individual.

As can be seen from the description above, the model resembles the (1+1) EA in
that it only maintains one genotype that may be replaced by mutated versions of it.
In fact, as will be obvious next, if fitness differences are large, SSWM behaves as the
(1+1) EA. The candidate solutions are accepted with probability

pfix(� f) = 1 − e−2β� f

1 − e−2Nβ� f
(1)

where � f �= 0 is the fitness difference to the current solution and N ≥ 1 is the size of
the underlying population. For� f = 0we define pfix(0) := lim� f→0 pfix(� f) = 1

N ,
so that pfix is continuous andwell defined for all� f (Fig. 2). If N = 1, this probability
is pfix(� f) = 1, meaning that any offspring will be accepted, and if N → ∞, it
will only accept solutions for which � f > 0. The formula (1) was first derived by
Kimura [14] and represents the probability of fixation, that is, the probability that a

123

Algorithmica (2017) 78:681–713 685

Δf

−1

1

0

pfix

1 2

(1+1) EA

SSWM (N = 30, β = 1)
SSWM (N = 5, β = 1)

1/N pfix(Δf) =
1− e−2βΔf

1− e−2NβΔf

Fig. 2 Probability of fixation of a new mutation that is initially present in one copy in the population

gene initially present in one copy in a population of N individuals is eventually present
in all individuals.

Since the acceptance function in this algorithm depends on the difference in fitness
between genotypes, we include a parameter β > 0 that effectively scales the fitness
function and that in population genetics models the strength of selection on a pheno-
type. By incorporating β as a parameter of this function (and hence of the algorithm)
we avoid having to explicitly rescale the fitness functions we analyse, while allowing
us to explore the performance of this algorithm on a family of functions.

For all N > 1 the function pfix is strictly increasing (see Lemma 16 in the
appendix) with a sigmoidal shape and limits lim� f →−∞ pfix(� f) = 0 as well as
lim� f →∞ pfix(� f) = 1 (Fig. 2). Similar limits are obtained when β tends to ∞,

lim
β→∞ pfix(� f) =

⎧
⎪⎨

⎪⎩

0 if � f < 0

1/N if � f = 0

1 if � f > 0

As such, for large |β� f | this probability of acceptance is close to the one in the
(1+1) EA, as long as N > 1, defeating the purpose of the comparison, with the only
difference being the tie-breaking rule. While the (1+1) EA always accepts the new
solution in case of a tie in fitness (� f = 0), SSWM only accepts the new solution
with probability 1/N .

We can then cast the SSWM regime as Algorithm 1, where the function mutate(x)
can be either standard bit mutation (all bits are mutated independently with probability
pm = 1/n, which we call global mutations) or flipping a single bit chosen uniformly
at random (whichwe call local mutations). The SSWMmodel is a good approximation
of natural evolution when the expected number of new mutants in the population is
much less than one, which implies that local mutations are a better approximation
for this regime. However, we also consider global mutations in order to facilitate a
comparison with evolutionary algorithms such as the (1+1) EA (Algorithm 2), which
uses global mutations. Most of our analyses apply to both mutation operators; the
analysis in Sect. 4 applies to global mutations only.

123

686 Algorithmica (2017) 78:681–713

Algorithm 1 SSWM ()
Choose x ∈ {0, 1}n uniformly at random
repeat
y ← mutate(x)
� f = f (y) − f (x)
Choose r ∈ [0, 1] uniformly at random
if r < pfix(� f) then
x ← y

end if
until stop

Algorithm 2 (1+1) EA
Choose x ∈ {0, 1}n uniformly at random
repeat
y ← mutate(x)

if f (y) ≥ f (x) then
x ← y

end if
until stop

Next, we derive upper and lower bounds for pfix(� f) that will be useful throughout
the manuscript. The bounds for � f > 0 show that pfix is roughly proportional to the
fitness difference between solutions β� f .

Lemma 1 For every β ∈ R
+ and N ∈ N

+ the following inequalities hold. If � f > 0
then

2β� f

1 + 2β� f
≤ pfix(� f) ≤ 2β� f

1 − e−2Nβ� f
.

If � f < 0 then

−2β� f

e−2Nβ� f
≤ pfix(� f) ≤ e−2β� f

e−2Nβ� f − 1
.

Proof In the following we frequently use 1 + x ≤ ex and 1 − e−x ≤ 1 for all x ∈ R

as well as ex ≤ 1
1−x for x < 1.

If � f > 0,

pfix(� f) = 1 − e−2β� f

1 − e−2Nβ� f
≥ 1 − e−2β� f ≥ 1 − 1

1 + 2β� f
= 2β� f

1 + 2β� f

as well as

pfix(� f) = 1 − e−2β� f

1 − e−2Nβ� f
≤ 2β� f

1 − e−2Nβ� f
.

If � f < 0, using the fact that e−x − 1 ≤ e−x :

pfix(� f) = e−2β� f − 1

e−2Nβ� f − 1
≤ e−2β� f

e−2Nβ� f − 1
.

Similarly:

pfix(� f) = e−2β� f − 1

e−2Nβ� f − 1
≥ e−2β� f − 1

e−2Nβ� f
≥ −2β� f

e−2Nβ� f
.

	

123

Algorithmica (2017) 78:681–713 687

The next lemma shows that the probability of accepting an improvement of � f is
exponentially larger (in Nβ� f) than accepting its symmetric fitness variation −� f .

Lemma 2 For every β ∈ R
+, � f ∈ R and N ∈ N

+

pfix(−� f)

pfix(+� f)
= e−2(N−1)β� f .

Proof

pfix(−� f)

pfix(+� f)
= e2β� f − 1

e2Nβ� f − 1
· 1 − e−2Nβ� f

1 − e−2β� f

= e2β� f

e2Nβ� f
= e−2(N−1)β� f

where we have applied the relation ex−1
1−e−x = ex . 	

3 SSWM on OneMax

The function OneMax(x) := ∑n
i=1 xi has been studied extensively in natural com-

putation because of its simplicity. It represents an easy hill climbing task, and it is the
easiest function with a unique optimum for all evolutionary algorithms that only use
standard bit mutation for variation [30]. Showing that SSWM can optimise OneMax
efficiently serves as proof of concept that SSWM is a reasonable optimiser. It further
sheds light on how to set algorithmic parameters such as the selection strength β and
the population size N . To this end, we first show a polynomial upper bound for the
runtime of SSWM on OneMax for a selection strength of 2(N − 1)β ≥ ln(cn). We
then show that SSWM exhibits a phase transition on its runtime as a function of 2Nβ;
decreasing this parameter by a constant factor below ln n leads to exponential runtimes
on OneMax.

Another reason why studying OneMax for SSWM makes sense is because not all
evolutionary algorithms that use a fitness-dependent selection perform well on One-
Max. Neumann et al. [17] as well as Oliveto and Witt [23] showed that evolutionary
algorithms using fitness-proportional selection, including the Simple Genetic Algo-
rithm, fail badly onOneMax evenwithin exponential time, with very high probability.

3.1 Upper Bound for SSWM on OneMax

We first show the following simple lemma, which gives an upper bound on the prob-
ability of increasing or decreasing the number of ones in a search point by k in one
mutation.

Lemma 3 For any positive integer k > 0, let mut(i, i ± k) for 0 ≤ i ≤ n be the
probability that a global mutation of a search point with i ones creates an offspring

123

688 Algorithmica (2017) 78:681–713

with i ± k ones. Then

mut(i, i + k) ≤
(
n − i

n

)k (

1 − 1

n

)n−k

· 1.14
k!

mut(i, i − k) ≤
(
i

n

)k (

1 − 1

n

)n−k

· 1.14
k!

mut(i, i − k) ≤ mut(i, i − 1)

k! .

Theproof canbe found in the appendix; it uses arguments from theproof ofLemma2
in [30]. The second inequality follows immediately from the first one due to the
symmetry mut(i, i − k) = mut(n − i, n − i + k).

Now we introduce the concept of drift and find some bounds for its forward and
backward expression.

Definition 1 Let Xt be the number of ones in the current search point after mutation
and selection have been applied. Then for all 1 ≤ i ≤ n the forward and backward
drifts are

�+(i) =E[Xt+1 − i | Xt = i, Xt+1 > i] · P(Xt+1 > i | Xt = i)

�−(i) =E[Xt+1 − i | Xt = i, Xt+1 < i] · P(Xt+1 < i | Xt = i)

and the net drift is the expected increase in the number of ones

�(i) = �+(i) + �−(i).

Lemma 4 Consider SSWM on OneMax and mutation probability pm = 1
n . Then for

global mutations, the forward and backward drifts can be bounded by

�+(i) ≥n − i

n

(

1 − 1

n

)n−1

pfix(1)

|�−(i)| ≤1.14

(

1 − 1

n

)n−1

· (pfix(−1) + e · pfix(−2)) .

For local mutations the relations are as follows

�+(i) =n − i

n
· pfix(1)

|�−(i)| ≤pfix(−1).

Proof For global mutations firstly we compute the lower bound for the forward drift.
Expanding from Definition 1,

123

Algorithmica (2017) 78:681–713 689

�+(i) =
n−i∑

j=1

mut(i, i + j) · j · pfix(j)

≥mut(i, i + 1) · pfix(1)

≥n − i

n

(

1 − 1

n

)n−1

pfix(1).

Secondly we calculate the upper bound for the backward drift,

|�−(i)| =
i∑

j=1

mut(i, i − j) · j · pfix(− j),

where j is now the number of new zeros. Bounding mut(i, i − j) from above by
Lemma 3 and bounding i/n ≤ 1 − 1/n yields

|�−(i)| ≤
i∑

j=1

1.14

j ! ·
(

1 − 1

n

) j

·
(

1 − 1

n

)n− j

· j · pfix(− j)

≤
i∑

j=1

1.14

j ! ·
(

1 − 1

n

)n−1

· j · pfix(− j).

Separating the case j = 1 and bounding the remaining fixation probabilities by
pfix(−2)

|�−(i)| ≤1.14

(

1 − 1

n

)n−1

pfix(−1) + 1.14

(

1 − 1

n

)n−1

· pfix(−2) ·
i∑

j=2

1

(j − 1)!

≤1.14

(

1 − 1

n

)n−1

(pfix(−1) + pfix(−2) · e)

where in the last step we have used
∑i

j=2
1

(j−1)! ≤ ∑∞
j=1

1
j ! = e − 1 ≤ e.

Finally, the case for local mutations is straightforward since the probability of a
local mutation increasing the number of ones is n−i

n and that of decreasing it is at most
1. 	

The following theorem shows that SSWM is efficient on OneMax whenever
2(N − 1)β ≥ ln(cn) for some constant c > 1.2, since then pfix(1) starts being greater
than n · pfix(−1), allowing for a positive drift even on the hardest fitness level (n − 1
ones).

Theorem 5 If 2(N − 1)β ≥ ln(cn), for a constant c > 1.2 and β ∈ R
+ then the

expected optimisation time of SSWM on OneMax with local or global mutations is
at most

123

690 Algorithmica (2017) 78:681–713

en ln(n) + O(n)

pfix(1)
≤

(

1 + 1

2β

)

· (en ln(n) + O(n))

for every initial search point.

Our preliminary work [25, Theorem 4] required 2Nβ ≥ ln(11n) and β ≤ 1. The
latter condition is counterintuitive as increasing β leads to more elitistic behaviour.
The former condition is related to the one in Theorem 5 as

2(N − 1)β ≥ ln(cn) ⇔ 2Nβ ≥ ln(e2βcn). (2)

The advantage of the condition 2(N − 1)β ≥ ln(cn) is that the result now holds for
all scaling factors β ∈ R

+, thus removing the previous restriction on β.
The factor 1

pfix(1)
≤ 1+ 1

2β (by Lemma 2) on the runtime bound represents the extra
time paid due to the probability of rejecting a better search point. For small selection
strength β � 1 the upper bound essentially increases with 1/(2β). This makes sense
as for small β (and Nβ 0) we have pfix(1) ≈ 2β (cf. Lemma 2). In this regime
absolute fitness differences are small and improvements are only accepted with a small
probability.

Proof of Theorem 5 We only give a proof for global mutations here. The analysis for
localmutations follows the sameway, with simpler calculations, andwithout the factor
“e” in the running time bound.

We estimate an upper bound for pfix(−2)

pfix(−2) = e4β − 1

e4Nβ − 1
= e2β − 1

e2Nβ − 1
· e2β + 1

e2Nβ + 1

= pfix(−1) · e2β + 1

e2Nβ + 1
≤ pfix(−1) · 2e

2β

e2Nβ
.

Using 2(N − 1)β ≥ ln(cn) leads to pfix(−2) ≤ pfix(−1) · 2
cn .

Continuing from Lemma 4,

�(i) ≥
(

1 − 1

n

)n−1

·
(
n − i

n
· pfix(1) − 1.14pfix(−1) − 1.14e · pfix(−2)

)

=
(

1 − 1

n

)n−1

pfix(1) ·
(
n − i

n
− 1.14

pfix(−1)

pfix(1)
− 1.14e

pfix(−2)

pfix(1)

)

.

Using pfix(−2) ≤ pfix(−1) · 2
cn and then Lemma 2 leads to

�(i) ≥
(

1 − 1

n

)n−1

pfix(1) ·
(
n − i

n
− 1.14

pfix(−1)

pfix(1)
− 2.28e

cn

pfix(−1)

pfix(1)

)

=
(

1 − 1

n

)n−1

pfix(1) ·
(
n − i

n
−

(

1.14 + 2.28e

cn

)

· e−2(N−1)β
)

.

123

Algorithmica (2017) 78:681–713 691

Since 2(N −1)β ≥ ln(cn), c > 1.2 and assuming n ≥ 100 (otherwise an O(n) bound
is trivial) we obtain

�(i) ≥
(

1 − 1

n

)n−1

pfix(1) ·
(
n − i

n
− 1.2

cn

)

.

Using c > 1.2 we verify that (n − i)/n − 1.2/(cn) is always positive for i ≥ 1, hence
we may bound (1 − 1/n)n−1 ≥ 1/e, leading to

�(i) ≥ pfix(1) ·
(
n − i

en
− 1.2

cen

)

≥ pfix(1) · c(n − i) − 1.2

cen
.

Now we apply Johannsen’s variable drift theorem [13] to the number of zeros, as
this represents the distance to the optimum. In a nutshell, the theorem states that if the
expected decrease of the distance to the optimum �(i) is bounded from below by a
function h(z) then the expected optimisation time, starting in state X0, is bounded as

E(T | X0) ≤ zmin

h(zmin)
+

∫ X0

zmin

1

h(z)
dz

where z is the number of zeros (n − i), T is the optimisation time and zmin is the
smallest positive state. Here we have zmin = 1, X0 ≤ n and by using

�(i) ≥ h(z) = pfix(1) · cz − 1.2

cen
(3)

we obtain an upper bound for the runtime

E(T | X0) ≤ 1

h(1)
+

∫ n

1

1

h(z)
dz

≤ 1

pfix(1)
·
(

cen

(c − 1.2)
+

∫ n

1

cen

(cz − 1.2)
dz

)

= 1

pfix(1)
·
(

O(n) + en ln

(
cn − 1.2

c − 1.2

))

≤ 1

pfix(1)
·
(

O(n) + en ln

(
cn

c − 1.2

))

= 1

pfix(1)
·
(

O(n) + en ln(n) + en ln

(
c

c − 1.2

))

= en ln(n) + O(n)

pfix(1)
≤

(

1 + 1

2β

)

· (en ln(n) + O(n))

where in the last step we have used Lemma 2. 	

123

692 Algorithmica (2017) 78:681–713

3.2 A Critical Threshold for SSWM on OneMax

The upper bound from Theorem 5 required 2(N − 1)β ≥ ln(cn), or equivalently,
2Nβ ≥ ln(n) + ln(c) + 2β. This condition is vital since if Nβ is chosen too small,
the runtime of SSWM on OneMax is exponential with very high probability, as we
show next.

If 2Nβ is smaller than ln(n) by a factor of 1 − ε, for some constant ε > 0,
the optimisation time is exponential in n, with overwhelming probability. SSWM
therefore exhibits a phase transition behaviour: changing Nβ by a constant factor
makes a difference between polynomial and exponential expected optimisation times
on OneMax.

Theorem 6 If 2 ≤ 2Nβ ≤ (1−ε) ln n for some 0 < ε < 1, then the optimisation time
of SSWMwith local or global mutations onOneMax is at least 2cn

ε/2
with probability

1 − 2−Ω(nε/2), for some constant c > 0.

The condition Nβ ≥ 1 is used to ease the presentation; it is not essential and we
believe it can be dropped when using more detailed calculations. The idea behind the
proof of Theorem 6 is to show that for all search points with at least n − nε/2 ones,
there is a negative drift for the number of ones. This is because for small Nβ the
selection pressure is too weak, and worsenings in fitness are more likely than steps
where mutation leads the algorithm closer to the optimum.

We then use the negative drift theorem with self-loops presented in Rowe and Sud-
holt [28] (an extension of the negative drift theorem [22] to stochastic processes with
large self-loop probabilities). It is stated in the following for the sake of completeness.
The theorem uses “pk,k±d ≤ x” as a shorthand for “pk,k+d ≤ x and pk,k−d ≤ x”.

Theorem 7 (Negative drift with self-loops [28]) Consider a Markov process X0,

X1, . . . on {0, . . . ,m}with transitionprobabilities pi, j and suppose there exist integers
a, b with 0 < a < b ≤ m and ε > 0 such that for all a ≤ k ≤ b the drift towards 0 is

E(k − Xt+1 | Xt = k) < −ε · (1 − pk,k) (4)

where pk,k is the self-loop probability at state k. Further assume there exist constants
r, δ > 0 (i. e. they are independent of m) such that for all k ≥ 1 and all d ≥ 1

pk,k±d ≤ r(1 − pk,k)

(1 + δ)d
. (5)

Let T be the first hitting time of a state at most a, starting from X0 ≥ b. Let 	 = b−a.
Then there is a constant c > 0 such that

Pr
(
T ≤ 2c	/r

)
= 2−Ω(/r).

Proof of Theorem 6 We only give a proof for global mutations; the same analysis goes
through for local mutations with similar, but simpler calculations.

123

Algorithmica (2017) 78:681–713 693

The drift theorem, Theorem 7, will be applied to the number of zeros at the current
point in time as distance function to the optimum, when the number of zeros is in the
interval [0, nε/2]. By Chernoff bounds, SSWM starts with a fitness of at most n−nε/2

with probability 1−2−Ω(n). We assume in the following that this happens; the claimed
probability bound then follows from a union bound of the failure probability 2−Ω(n)

and a failure probability 2−Ω(nε/2) which will result from an application of the drift
theorem.

Let pk, j be the probability that SSWM will make a transition from a search point
with k ones to one with j ones. Note that, although the drift theorem applies to the
number of zeros, our notation of transition probabilities pk, j refers to numbers of ones
for simplicity and consistency with other parts of the paper. Throughout the remainder
of the proof we assume k ≥ n − nε/2.

From Lemma 3 for every 1 ≤ j ≤ n − k we have

pk,k+ j ≤1.14

j ! ·
(
n − k

n

) j

·
(

1 − 1

n

)n− j

· pfix(j)

≤1.14

j ! ·
(
n − k

n

) j

· pfix(j)

≤1.14 ·
(
nε/2−1

) j · pfix(j). (6)

By Lemma 2 we bound pfix(j) from above by 2β j
1−e−2Nβ j . This gives

pk,k+ j ≤
(
nε/2−1

) j · 3β j

1 − e−2Nβ j
.

The forward drift �+(k) = ∑n−k
j=1 j · pk,k+ j is then bounded as follows

�+(k) ≤
n−k∑

j=1

j ·
(
nε/2−1

) j · 3β j

1 − e−2Nβ j

≤ 3β

1 − e−2Nβ

∞∑

j=1

j2 ·
(
nε/2−1

) j
.

Since x = nε/2−1 becomes arbitrarily small for large n, for positive x ≤ 0.09 we have
the inequality

∑∞
j=1 j2 · x j = x(1+x)

(1−x)3
≤ x(1 + 5x), which together with Nβ ≥ 1

implies

�+(k) ≤ 3β

1 − e−2 · nε/2−1 ·
(
1 + 5nε/2−1

)
. (7)

123

694 Algorithmica (2017) 78:681–713

On the other hand,

pk,k−1 ≥ k

n
·
(

1 − 1

n

)n−1

· pfix(−1) ≥ n − nε/2

en
· pfix(−1)

= pfix(−1)

e
·
(
1 − nε/2−1

)
≥ 1

e
· 2β

e2Nβ
·
(
1 − nε/2−1

)
,

and using e2Nβ ≤ e(1−ε) ln n = n1−ε,

pk,k−1 ≥2β · nε

en
·
(
1 − nε/2−1

)
. (8)

The expected increase in the number of ones at state k, denoted �(k), is hence at most

�(k) ≤
n−k∑

j=1

j · pk,k+ j − pk,k−1 = −Ω(pk,k−1)

as
∑n−k

j=1 j ·pk,k+ j = �+(k) = O(βnε/2−1) by (7) and pk,k−1 = Ω(βnε−1) by (8). To
establish the first condition (4), we need to show that the drift is�(k) ≤ −Ω(1− pk,k).
We already know that �(k) = −Ω(pk,k−1), hence we need to show that pk,k−1 =
Ω(1 − pk,k). By Lemma 3, we have for all k and all j ∈ N,

pk,k− j = mut(k, k − j) · pfix(− j) ≤ mut(k, k − 1)

j ! · pfix(−1) = pk,k−1

j ! . (9)

Using (9), we get

1 − pk,k =
n−k∑

j=1

pk,k+ j +
k∑

j=1

pk,k− j ≤
n−k∑

j=1

pk,k+ j + pk,k−1

∞∑

j=1

1

j !

=
n−k∑

j=1

pk,k+ j + (e − 1)pk,k−1

≤
n−k∑

j=1

j · pk,k+ j + (e − 1)pk,k−1 = O(pk,k−1)

where we again used that
∑n−k

j=1 j · pk,k+ j = �+(k) = O(βnε/2−1) by (7) and

pk,k = Ω(βnε−1) by (8).
Hence pk,k−1 = Ω(1 − pk,k) and

�(k) ≤ −Ω(pk,k−1) = −Ω(1 − pk,k)

which establishes the first condition of the drift theorem (4).

123

Algorithmica (2017) 78:681–713 695

The second condition (5) on exponentially decreasing transition probabilities fol-
lows, for all j ∈ N, from pk,k− j ≤ pk,k−1/(j !) ≤ 2pk,k−1/2 j ≤ 2(1 − pk,k)/2 j

by (9) and

pk,k+ j ≤
(
nε/2−1

) j · 3β j

1 − e−2Nβ j
≤

(
nε/2−1

) j · 3β j

1 − e−2

[multiplying by pk,k−1/pk,k−1 and using (8)]

≤pk,k−1 ·
(
nε/2−1

) j · 3β j
1−e−2

2β·nε

en · (
1 − nε/2−1

)

=pk,k−1 · n−ε/2 ·
(
nε/2−1

) j−1 · e

1 − nε/2−1 · 3
2

· j

1 − e−2

(if n is large enough)

≤pk,k−1 · n−ε/2 ·
(
nε/2−1

) j−1 · 5 j
≤pk,k−1 · 2− j ≤ (1 − pk,k) · 2− j

where the penultimate inequality holds since for j = 1 we get 5n−ε/2 ≤ 1/2 for large

enough n and for j > 1 we additionally use j · (
nε/2−1

) j−1 ≤ 2− j+1. This proves
the second condition (5) for δ := 1 and r := 2. Applying the drift theorem completes
the proof. 	

We remark that for many evolutionary algorithms, such as the (1+1) EA and the
(1+λ) EA, a lower bound on OneMax transfers to all functions with a unique global
optimum. The reason is that in these cases OneMax is an easiest function amongst
those with a single optimum [30]. This generalisation does not apply to SSWM. In
fact,OneMax is probably not the easiest function with a single global optimum, even
when the fitness range is normalised to [0, n]. The reason here is that acceptance is
determined by absolute fitness differences, and a convex fitness curve (beautifully
illustrated in [32, Fig. 1]) might amplify fitness differences close to the optimum, in
order to compensate for small probabilities of mutation creating fitness improvements.
We leave the discovery of an easiest function for SSWM (with a unique optimum) as
an open topic for future work.

4 On Traversing Fitness Valleys

We have shown that with the right parameters, SSWM is an efficient hill climber. On
the other hand, in contrast to the (1+1) EA, SSWM can accept worse solutions with a
probability that depends on the magnitude of the fitness decrease. This is reminiscent
of the Metropolis algorithm—although the latter accepts every improvement with
probability 1, whereas SSWM may reject improvements.

123

696 Algorithmica (2017) 78:681–713

|x|10

0

fitness

n − d n

Fig. 3 Sketch of the function Cliffd

Jansen and Wegener [12] compared the ability of the (1+1) EA and a Metropolis
algorithm in crossing fitness valleys and found that both showed similar performance
on smooth integer functions: functions where two Hamming neighbours have a fitness
difference of at most 1 [12, Sect. 6].

We consider a similar function, generalising a construction by Jägersküpper and
Storch [9]: the functionCliffd is defined such that non-elitist algorithms have a chance
to jump down a “cliff” of height roughly d and to traverse a fitness valley of Hamming
distance d to the optimum (see Fig. 3). Note that d may depend on n.

Definition 2 (Cliff)

Cliffd(x) =
{

|x |1 if |x |1 ≤ n − d

|x |1 − d + 1
2 otherwise

where |x |1 = ∑n
i=1 xi counts the number of ones.

The (1+1) EA typically optimises Cliffd through a direct jump from the top of the
cliff to the optimum, which takes expected time Θ(nd).

Theorem 8 The expected optimisation time of the (1+1) EA on Cliffd , for 2 ≤ d ≤
n/2, is Θ(nd).

In order to prove Theorem 8, the following lemma will be useful for showing that
the top of the cliff is reached with good probability. More generally, it shows that the
conditional probability of increasing the number of ones in a search point to j , given
it is increased to some value of j or higher, is at least 1/2.

Lemma 9 For all 0 ≤ i < j ≤ n,

mut(i, j)
∑n

k= j mut(i, k)
≥ 1

2
.

123

Algorithmica (2017) 78:681–713 697

The proof of this lemma is presented in the appendix.

Proof of Theorem 8 From any search point with i < n − d ones, the probability
of reaching a search point with higher fitness is at least n−i

en . The expected time for

accepting a search point with at least n−d ones is at most
∑n−d−1

i=0
en
n−i = O(n log n).

Note that this is O(nd) since d ≥ 2.
We claim that with probabilityΩ(1), the first such search point has n−d ones: with

probability at least 1/2 the initial search point will have at most n − d ones. Invoking
Lemma 9 with j := n − d, with probability at least 1/2 the top of the cliff is reached
before any other search point with at least n − d ones.

Once on the top of the cliff the algorithm has to jump directly to the optimum

to overcome it. The probability of such a jump is 1
nd

(
1 − 1

n

)n−d
and therefore the

expected time to make this jump is Θ(nd). 	

SSWM with global mutations also has an opportunity to make a direct jump to

the optimum. However, compared to the (1+1) EA its performance slightly improves
when considering shorter jumps and accepting a search point of inferior fitness. The
following theorem shows that for large enough cliffs, d = ω(log n), the expected
optimisation time is by a factor of eΩ(d) = nω(1) smaller than that of the (1+1) EA.
Although both algorithms need a long time for large d, the speedup of SSWM is
significant for large d.

Theorem 10 The expected optimisation time of SSWM with global mutations and
β = 1, N = 1

2 ln(9n) on Cliffd with d = ω(log n) is at most nd/eΩ(d).

Proof We define R as the expected time for reaching a search point with either n − d
or n ones, when starting with a worst possible non-optimal search point. Let Tcliff
be the random optimisation time when starting with any search point of n − d ones,
hereinafter called the top of the cliff or a local peak. Then the expected optimisation
time from any initial point is at most R + E (Tcliff).

Let psuccess be the probability that SSWM starting on top of the cliff will reach the
optimum before reaching the top of the cliff again. We call the time period needed to
reach the top of the cliff, or the global optimum, a trial. After the end of a trial, taking
at most R expected generations, with probability 1 − psuccess SSWM returns to the
top of the cliff again, so

E (Tcliff) ≤ R + (1 − psuccess) · E (Tcliff) ⇔ E (Tcliff) ≤ R

psuccess
. (10)

We first bound the worst-case time to return to the local peak or a global optimum
as R = O(n log n). Let S1 be the set of all search points with at most n − d ones
and S2 := {0, 1}n \ S1. As long as the current search point remains within S2, SSWM
behaves like on OneMax. Here we have 2Nβ = ln(9n) and by (2), along with
e2β · c = e2 · c < 9 for a suitable constant c > 1.2 (e. g. c := 1.21), the condition
2(N − 1)β ≥ ln(cn) of Theorem 5 is satisfied. Repeating arguments from the proof

of Theorem 5, in expected time O
(
n log n ·

(
1 + 1

2β

))
= O(n log n) (as here β = 1)

123

698 Algorithmica (2017) 78:681–713

SSWM either finds a global optimum or a search point in S1. Likewise, as long as the
current search point remains within S1, SSWM essentially behaves like on OneMax
and within expected time O(n log n) either the top of the cliff or a search point in S2
is found.

SSWM can switch indefinitely between S1 and S2 within one trial, as long as no
optimum nor a local peak is reached. Let Xt be the number of ones at time t , then
the conditional probability of moving to a local peak—when from a search point with
i < n − d ones either a local peak or a non-optimal search point in S2 is reached—is

Pr (Xt+1 = n − d | Xt+1 ≥ n − d, Xt = i < n − d)

= Pr (Xt+1 = n − d | Xt = i < n − d)

Pr (Xt+1 ≥ n − d | Xt = i < n − d)

= mut(i, n − d) · pfix(n − d − i)

mut(i, n − d) · pfix(n − d − i) + ∑n−1
k=n−d+1 mut(i, k) · pfix(k − i − d + 1/2)

= mut(i, n − d)

mut(i, n − d) + ∑n−1
k=n−d+1 mut(i, k) · pfix(k − i − d + 1/2)/pfix(n − d − i)

≥ mut(i, n − d)
∑n

k=n−d mut(i, k)

as pfix(n − d − i) ≥ pfix(k − i − d + 1/2) for all n − d < k < n. By Lemma 9,
the above fraction is at least 1/2. Hence every time SSWM increases the number
of ones to at least n − d, with probability at least 1/2 a local peak is found. This
means that in expectation at most two transitions from S1 to S2 will occur before a
local peak is reached, and the overall expected time spent in S1 and S2 is at most
R = O(1) · O(n log n).

The remainder of the proof now shows a lower bound on psuccess, the probability of
a trial being successful. A sufficient condition for a successful trial is that the following
events occur: the next mutation creates a search point with n − d + k ones, for some
integer 1 ≤ k ≤ d chosen later, this point is accepted, and from there the global
optimum is reached before returning to the top of the cliff.

We estimate the probabilities for these events separately in order to get an overall
lower bound on the probability of a trial being successful.

From any local peak there are
(d
k

)
search points at Hamming distance k that have n−

d + k ones. Considering only such mutations, the probability of a mutation increasing
the number of ones from n − d by k is at least

mut(n − d, n − d + k) ≥ 1

nk
·
(

1 − 1

n

)n−1

·
(
d

k

)

≥ 1

enk
·
(
d

k

)k

.

123

Algorithmica (2017) 78:681–713 699

The probability of accepting such a move is

pfix(k − d + 1/2) = e2β(d−k−1/2) − 1

e2Nβ(d−k−1/2) − 1
≥ e2(d−k−1/2) − 1

(9n)(d−k−1/2)
.

We now fix k := �d/e� and estimate the probability of making and accepting a jump
of length k:

mut(n − d, n − d + k) · pfix(k − d + 1/2)

≥ 1

enk
·
(
d

k

)k

· e
2(d−k−1/2) − 1

(9n)(d−k−1/2)

= Ω

(

n−d+1/2 ·
(
d

k

)k

·
(
e2

9

)d−k
)

= Ω

⎛

⎝n−d+1/2 ·
(

e1/e ·
(
e2

9

)1−1/e
)d

⎞

⎠

= Ω

(

n−d+1/2 ·
(
5

4

)d
)

.

Finally,we show that, if SSWMdoesmake this accepted jump,with high probability
it climbs up to the global optimum before returning to a search point in S1. To this
end we work towards applying the negative drift theorem to the number of ones in the
interval [a := �n − d + k/2�, b := n − d + k] and show that, since we start in state b,
a state a or less is unlikely to be reached in polynomial time.

We first show that the drift is typically equal to that on OneMax. For every search
point with more than a ones, in order to reach S1, at least k/2 bits have to flip. Until
this happens, SSWM behaves like on OneMax and hence reaches either a global
optimum or a point in S1 in expected time O(n log n). The probability for a mutation
flipping at least k/2 bits is at most 1/(k/2)! = (log n)−Ω(log n) = n−Ω(log log n), so the
probability that this happens in expected time O(n log n) is still n−Ω(log log n).

Assuming such jumps do not occur, we can then use drift bounds from the analysis
of OneMax for states with at least a ones. From the proof of Theorem 5 and (3) we
know that the drift at i ones for β = 1 is at least

�(i) ≥ Ω

(
n − i

n

)

.

As in the proof of Theorem 6, we denote by pi, j the transition probability from a state
with i ones to one with j ones. The probability of decreasing the current state is at
most pfix(−1) = O(1/n) due to Lemma 2. The probability of increasing the current
state is at most (n − i)/n as a necessary condition is that one out of n − i zeros needs
to flip. Hence for i ≤ b, which implies n − i = ω(1), the self-loop probability is at

123

700 Algorithmica (2017) 78:681–713

least

pi,i ≥ 1 − O

(
1

n

)

− n − i

n
= 1 − O

(
n − i

n

)

.

Together, we get�(i) ≥ Ω(1− pi,i), establishing the first condition (4) of Theorem 7.

Note that pfix(1) = 1−e−2

1−1/n = Ω(1), hence

1 − pi,i ≥ pi,i+1 ≥ n − i

en
· pfix(1) = Ω

(
n − i

n

)

. (11)

The second condition (5) follows for improving jumps from i to i + j , j ≥ 1, from
Lemma 3 and (11):

pi,i+ j ≤
(
n − i

n

) j

· 1

j ! · pfix(j) ≤ n − i

n
· 1

j ! ≤ (1 − pi,i) · O(1)

2 j
.

For backward jumps we get, for 1 ≤ j ≤ k/2, and n large enough,

pi,i− j ≤ pfix(− j) ≤ e2 j

e2N j − 1
= e2 j

(9n) j − 1
≤ 2− j .

Now Theorem 7 can be applied with r = O(1) and δ = 1 and it yields that the
probability of reaching a state of a or less in nω(1) steps is n−ω(1).

This implies that following a length-k jump, a trial is successful with probability

1−n−ω(1). This establishes psuccess := Ω

(

n−d+1/2 ·
(
5
4

)d
)

. Plugging this into (10),

adding time R for the time to reach the top of the cliff initially, and using that
O(n1/2 log n) · (4/5)d = e−Ω(d) for d = ω(log n) yields the claimed bound. 	

5 SSWM Outperforms (1+1) EA on Balance

Finally, we investigate a feature that distinguishes SSWM from the (1+1) EA as well
as the Metropolis algorithm: the fact that larger improvements are more likely to be
accepted than smaller improvements.

To this end, we consider the function Balance, originally introduced by Rohlfsha-
gen et al. [27] as an example where rapid dynamic changes in dynamic optimisation
can be beneficial. The function has also been studied in the context of stochastic ageing
by Oliveto and Sudholt [21] and it goes back to an earlier idea by Witt [36].

In its static (non-dynamic) form, Balance can be illustrated by a two-dimensional
plane, whose coordinates are determined by the number of leading ones (LO) in the
first half of the bit string, and the number of ones in the second half, respectively. The
former has a steeper gradient than the latter, as the leading ones part is weighted by a
factor of n in the fitness (see Fig. 4).

123

Algorithmica (2017) 78:681–713 701

0

0

n3

n2 · LO(a)

n2 · LO(a)

n · LO(a) + |b|1

LO(a)

|b|1

Fig. 4 Visualisation of Balance [27]

Definition 3 (Balance [27]) Let a, b ∈ {0, 1}n/2 and x = ab ∈ {0, 1}n . Then

Balance(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n3 if LO(a) = n/2, else

|b|1 + n · LO(a) if n/16 < |b|1 < 7n/16, else

n2 · LO(a) if |a|0 >
√
n, else

0 otherwise

where |x |1 = ∑n/2
i=1 xi , |x |0 is a number of zeros and LO(x) := ∑n/2

i=1

∏i
j=1 x j counts

the number of leading ones.

The function is constructed in such a way that all points with a maximum number of
leading ones are global optima, whereas increasing the number of ones in the second
half beyond a threshold of 7n/16 (or decreasing it below a symmetric threshold of
n/16) leads to a trap, a region of local optima that is hard to escape from.

Rohlfshagen et al. [27, Theorem 3] showed the following lower bound for the
(1+1) EA. The statement is specialised to non-dynamic optimisation and slightly
strengthened by using a statement from their proof.

Theorem 11 ([27])With probability Ω(1) the (1+1) EA on Balance reaches a trap,
and then needs at least n

√
n further generations in expectation to find an optimum

from there. The expected optimisation time of the (1+1) EA is thus Ω(n
√
n).

We believe that the probability bound Ω(1) can be strengthened to 1 − e−Ω(n1/2)

with a more detailed analysis, which would show that the (1+1) EA gets trapped with
an overwhelming probability.

We next show that SSWM with high probability finds an optimum in polynomial
time. For appropriately small β we have sufficiently many successes on the LO-part
such that we find an optimum before the OneMax-part reaches the region of local
optima. This is because for small β the probability of accepting small improvements
is small. The fact that SSWM for β < 1 is slower than the (1+1) EA on OneMax by
a factor of O(1/β) turns into an advantage over the (1+1) EA on Balance.

The following lemma shows that SSWM effectively uses elitist selection on the
LO-part of the function in a sense that every decrease is rejected with overwhelming
probability.

123

702 Algorithmica (2017) 78:681–713

Lemma 12 For every x = ab with n/16 < |b|1 < 7n/16 and β = n−3/2 and
Nβ = ln n, the probability of SSWM with local or global mutations accepting a
mutant x ′ = a′b′ with LO(a′) < LO(a) and n/16 < |b′|1 < 7n/16 is O(n−n).

Proof The loss in fitness is at least n−(|b′|1−|b|1) ≥ n/2. The probability of SSWM
accepting such a loss is at most

pfix(−n/2) ≤ 1 − e−2β(−n/2)

1 − e−2Nβ(−n/2)
≤ eβn

eNβn − 1
.

Assuming β = n−3/2 and Nβ = ln n, this is at most

e
√
n
n

nn − 1
≤ e

nn − 1
= O(n−n).

	

The following lemma establishes the optimisation time of the SSWM algorithm on

either the OneMax or the LO-part of Balance.
For global mutations we restrict our considerations to relevant steps, defined as

steps where no leading ones in the first half of the bit string is flipped. The probability
of a relevant step is always at least (1−1/n)n/2 ≈ e−1/2. When using local mutations,
all steps are defined as relevant.

Lemma 13 Let β = n−3/2 and Nβ = ln n. With probability 1 − e−Ω(n1/2), SSWM
with either local or global mutations either optimises the LO part or reaches the trap
(a set of all search points with fitness n2 · LO(a)) within

T := n2

4
· 1

pfix(n − √
n)

·
(
1 + n−1/4

)

relevant steps.

Proof We use the method of typical runs [34]: we consider the typical behaviour
of the algorithm, and show that events where the algorithm deviates from a typical
run are very unlikely. A union bound over all such failure events proves the claimed
probability bound.

Consider a relevant step, implying that global mutations will leave all leading ones
intact. With probability 1/n a local or global mutation will flip the first 0-bit. This
increases the fitness by k · n − �OM, where �OM is the difference in the OneMax-
value of b caused by this mutation and k is the number of consecutive 1-bits following
the first 0-bit, after mutation. The latter bits are called free riders and it is well known
(see [15, Lemma 1 and proof of Theorem 2]) that the number of free riders follows a
geometric distribution with parameter 1/2, only capped by the number of bits to the
end of the bit string a.

The probability of flipping at least
√
n bits in one global mutation is at most

1/(
√
n)! = e−Ω(

√
n) and the probability that this happens at least once in T rele-

vant steps is still of the same order (using that T = poly (n) as pfix(n − √
n) ≥

123

Algorithmica (2017) 78:681–713 703

1/N ≥ 1/poly (n)). We assume in the following that this does not happen, which
allows us to assume �OM ≤ √

n. We also assume that the number of leading ones
is never decreased during non-relevant steps as the probability of accepting such a
fitness decrease is O(n−n) by Lemma 12 and the expected number of non-relevant
steps before T relevant steps have occurred is O(T).

We have now restricted our attention to runs in which the number of leading ones
can never decrease, and any increase by mutation is accepted with probability at least
pfix(n − √

n). In a relevant step, the probability of increasing the number of leading
ones is hence at least 1/n · pfix(n−√

n) and the expected number of such improvements
in

T := n2

4
· 1

pfix(n − √
n)

· (1 + n−1/4)

relevant steps is at least n/4 + n3/4/4.
Now, a LO-value of n/2 is reached if (event A) in T relevant steps at least n/4 +

n3/4/8 improvements happen and if (event B) the first n/4 + n3/4/8 improvements
lead to a total of at least n/4 − n3/4/8 free riders (unless the number of leading
ones hits n/2). Note that these two events are independent, as improvements are due
to the current mutation and the number of free riders is due to the uniform random
distribution of bits following the first 0-bit [15, Lemma 1].

By Chernoff bounds [5] , the probability that the typical event A does not occur,
that is, less than n/4+n3/4/8 improvements happen, is e−Ω(n1/2). For the same reason
also the probability of event B not occurring is e−Ω(n1/2). Taking the union bound over
all rare failure probabilities proves the claim. 	

We now show that the OneMax part is not optimised before the LO part.

Lemma 14 Let β = n−3/2, Nβ = ln n, and T be as in Lemma 13. The probability
that SSWM starting with a0b0 such that n/4 ≤ |b0|1 ≤ n/4 + n3/4 creates a search
point ab with |b|1 ≤ n/16 or |b|1 ≥ 7n/16 in T relevant steps is e−Ω(n1/2).

It will become obvious that in T relevant steps SSWM typically makes a progress
of O(n) on the OneMax part. The proof of Lemma 14 requires a careful and deli-
cate analysis to show that the constant factors are small enough such that the stated
thresholds for |b|1 are not surpassed.
Proof of Lemma 14 We only prove that a search point with |b|1 ≥ 7n/16 is unlikely
to be reached with the claimed probability. The probability for reaching a search point
with |b|1 ≤ n/16 is clearly no larger, and a union bound for these two events leads to
a factor of 2 absorbed in the asymptotic notation.

The proof is divided into two parts: we first estimate the increase of |b|1 in steps
where the number of leading ones in a does not change. We refer to these as regular
steps. Steps where mutation increases the number of leading ones in a are called
special steps; during these steps every mutation of b is accepted as the fitness gain
through additional leading ones guarantees that any change in b will be accepted. In
the following, we first show that the progress in |b|1 in regular steps is close to 1.14n/9

123

704 Algorithmica (2017) 78:681–713

and then we show that the progress in special steps is bounded by O(n3/4) with high
probability.

Bounding the progress in regular steps: note that for β = n−3/2 we have

pfix(n − √
n) ≥ 2β(n − √

n)

1 + 2β(n − √
n)

≥ 2βn · (1 − O(n−1/2)).

Hence

T ≤ n2

4
· 1

2βn
·
(
1 + O(n−1/2)

)
= n

8β
·
(
1 + O(n−1/2)

)
.

We call a relevant step improving if the number of ones in b increases and the step
is accepted.

We first consider only steps where the number of leading ones stays the same. Then
the probability that the OneMax value increases from k by j , adapting Lemma 3 to
a string of length n/2, is at most

p j ≤
(
n/2 − k

n

) j

· 1.14
j ! · pfix(j)

(using n/2 − k ≤ n/4)

≤1.14 · 4− j

j ! · pfix(j) ≤ 1.14 · 4− j

j ! · 2β j

1 − e−2Nβ j

≤2.28β · 4− j · 1

1 − e−2Nβ j
=: p j .

In the following, we work with pessimistic transition probabilities p j . Note that for
all j ≥ 1

p j

p1
= 4−(j−1) · 1 − e−2Nβ

1 − e−2Nβ j
≤ 4−(j−1).

Let p+ denote (a lower bound on) the probability of an improving step, then

p+ ≤
∞∑

j=1

p j ≤ p1 ·
∞∑

j=1

4−(j−1) = p1 · 4
3
.

The conditional probability of advancing by j , given an improving step, is then

p j

p+ ≤ 4−(j−1) · p1
p+ =

(

1 − 3

4

) j−1

· 3
4
,

which corresponds to a geometric distribution with parameter 3/4.

123

Algorithmica (2017) 78:681–713 705

Now, by Chernoff bounds, the probability of having more than S := (1 + n−1/4) ·
p+ · T improving steps in T relevant steps is e−Ω(n1/2). Using a Chernoff bound for
geometric random variables [5, Theorem 1.14], the probability of S improving steps
yielding a total progress of at least (1 + n−1/4) · 4/3 · S is e−Ω(n1/2).

If none of these rare events happen, the progress is at most

(1 + O(n−1/4)) · 4
3

· p+ · T

= (1 + O(n−1/4)) · 16
9

· p1 · T

= (1 + O(n−1/4)) · 16
9

· 2.28β
4

· 1

1 − e−2Nβ
· n

8β
·
(
1 + O(n−1/2)

)

= (1 + O(n−1/4)) · 1.14
9

· 1

1 − n−2 · n ·
(
1 + O(n−1/2)

)

≤ (1 + O(n−1/4)) · 1.14
9

· n.

Bounding the progress in special steps: we also have at most n/2 steps where the
number of leading ones increases. If the number of leading ones increases by δ ≥ 1,
the fitness increase is δn + |b′|1 − |b|1. Hence the above estimations of jump lengths
are not applicable. These special steps are unorthodox as the large fitness increase
makes it likely that any mutation on the OneMax part is accepted. We show that the
progress on theOneMax part across all special steps is O(n3/4)with high probability.

We grant the algorithm an advantage if we assume that, after initialising with
|b|1 ≥ n/4, no search point with |b|1 < n/4 is ever reached.1 Under this assumption
we always have at least as many 1-bits as 0-bits in b, and mutation in expectation flips
at least as many 1-bits to 0 as 0-bits to 1.

Then the progress in |b|1 in one special step increasing the number of leading ones
by d ≥ 1 can be described as follows. Imagine a matching (pairing) between all bits in
b such that each pair contains at least one 1-bit. Let Xi denote the randomchange in |b|1
by the i-th pair. If the pair has two1-bits, Xi ≤ 0with probability 1.Otherwise,we have
Xi = 1 if the 0-bit in the pair is flipped, the 1-bit in the pair is not flipped, and themutant
is accepted (which depends on the overall |b|1-value in the mutant). The potential
fitness increase is at most dn + n/2 as the range of |b|1-values is n/2. Likewise, we
have Xi = −1 if the 0-bit is not flipped, the 1-bit is flipped, and the mutant is accepted
(which again depends on the overall |b|1-value in the mutant). The fitness increase is
at least dn − n/2. With the remaining probability we have Xi = 0. Hence for global
mutations (for local mutations simply drop the 1 − 1/n term) the total progress in a
special step increasingLO(a) by d is stochastically dominated by a sumof independent
variables Y1, . . . ,Yn/4 where Pr (Yi = ±1) = 1/n · (1 − 1/n) · pfix(dn ± n/2) and
Yi = 0 with the remaining probability.

1 Otherwise, we restart our considerations from the first point in time where |b|1 ≥ n/4 again, replacing
T with the number of remaining steps. With overwhelming probability we will then again have |b|1 ≤
n/4 + n3/4.

123

706 Algorithmica (2017) 78:681–713

There is a bias towards increasing the number of ones due to differences in the
arguments of pfix: E (Yi) = 1/n · (1 − 1/n) · (pfix(dn + n/2) − pfix(dn − n/2)).
Using the definition of pfix and preconditions β = n−3/2, Nβ = ln n, the bracket is
bounded as

pfix(dn + n/2) − pfix(dn − n/2)

= 1 − e−2dn−1/2−n−1/2

1 − n−2dn+n
− 1 − e−2dn−1/2+n−1/2

1 − n−2dn−n

= (1 + o(1))
((

1 − e−2dn−1/2−n−1/2
)

−
(
1 − e−2dn−1/2+n−1/2

))

= (1 + o(1)) · e−2dn−1/2
(
en

−1/2 − e−n−1/2
)

≤ (1 + o(1)) · e−2dn−1/2
(
(1 + 2n−1/2) − (1 − n−1/2)

)

= (1 + o(1)) · e−2dn−1/2 · 3n−1/2

where in the last inequality we have used 1 + x ≤ ex for all x and ex ≤ 1 + 2x for
0 ≤ x ≤ 1.

Note that the expectation, and hence the bias, is largest for d = 1, in which case
we get, using e−2dn−1/2 ≤ e−2n−1/2 ≤ 1,

E (Yi) ≤ (1 + o(1)) · 1/n · (1 − 1/n) · 3n−1/2 ≤ 4n−3/2

for n large enough.
The total progress in all m special steps is hence stochastically dominated by a

sequence of m · n/4 random variables Yi as defined above, with d := 1. Invoking
Lemma 17 (basically a Hoeffding bound on the non-zero outcomes of the variables),
stated in the appendix, with δ := n3/4, the total progress in all special steps is at most
δ + m · n/4 · E (Yi) = δ + O(n1/2) = O(n3/4) with probability 1 − e−Ω(n1/2).

Hence the net gain in the number of ones in all special steps is at most n3/4 +
O(mn/4 · n−3/2) = O(n3/4) with probability 1 − e−Ω(n1/2).

Together with all regular steps, the progress on the OneMax part is at most
1.14n/9 + O(n3/4), which for large enough n is less than the distance 7n/16 −
(n/4 + n3/4) to reach a point with |b|1 ≥ 7n/16 from initialisation. This proves the
claim. 	

Finally, we put the previous lemmas together into our main theorem that establishes
that SSWM can optimise Balance in polynomial time.

Theorem 15 With probability 1 − e−Ω(n1/2) SSWM with β = n−3/2 and Nβ = ln n
optimises Balance in time O(n/β) = O(n5/2).

Proof By Chernoff bounds, the probability that for the initial solution x0 = a0b0 we
have n/4 − n3/4 ≤ |b0|1 ≤ n/4 + n3/4 is 1 − e−Ω(n1/2). We assume pessimistically
that n/4 ≤ |b0|1 ≤ n/4 + n3/4. Then Lemma 14 is in force, and with probability
1 − e−Ω(n1/2) within T relevant steps, T as defined in Lemma 13, SSWM does not

123

Algorithmica (2017) 78:681–713 707

reach a trap or a search pointwithfitness 0. Lemma13 then implies thatwith probability
1 − e−Ω(n1/2) an optimal solution with n/2 leading ones is found.

The time bound follows from the fact that T = O(n/β) and that, again by Chernoff
bounds, we have at least T relevant steps in 3T iterations of SSWM, with probability
1 − e−Ω(n1/2). 	

6 Conclusions

The field of evolutionary computation has matured to the point where techniques can
be applied tomodels of natural evolution.Our analyses have demonstrated that runtime
analysis of evolutionary algorithms can be used to analyse a simple model of natural
evolution, opening new opportunities for interdisciplinary research with population
geneticists and biologists.

Our conclusions are highly relevant for biology, and open the door to the analysis
of more complex fitness landscapes in this field and to quantifying the efficiency of
evolutionary processes in more realistic scenarios of evolution. One interesting aspect
of our results is that they impose conditions on population size (N) and strength
of selection (β) which represent fundamental limits to what is possible by natural
selection. We hope that these results may inspire further research on the similarities
and differences between natural and artificial evolution.

From a computational perspective, we have shown that SSWMcan overcome obsta-
cles such as posed by Cliffd and Balance in different ways to the (1+1) EA, due to
its non-elitistic selection mechanism.We have seen how the probability of accepting a
mutant can be tuned to enable hill climbing, where fitness-proportional selection fails,
as well as tunnelling through fitness valleys, where elitist selection fails. For Bal-
ance we showed that SSWM can take advantage of information about the steepest
gradient. The selection rule in SSWM hence seems to be a versatile and useful mech-
anism. Future work could investigate its usefulness in the context of population-based
evolutionary algorithms.

Acknowledgements The research leading to these results has received funding from the European Union
SeventhFrameworkProgramme (FP7/2007-2013) underGrantAgreementNo. 618091 (SAGE).The authors
thank the anonymous reviewers for their many constructive comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

708 Algorithmica (2017) 78:681–713

Appendix

This appendix contains proofs that were omitted from the main part.

Lemma 16 pfix is monotonic for all N ≥ 1 and strictly increasing for N > 1

Proof If N = 1, pfix(β� f) = 1. In order to show that pfix(� f) is monotonically
increasing for N > 1 we show that ∂ pfix(� f)

∂ � f > 0 for all � f �= 0. The derivative is

∂ pfix(� f)

∂ � f
= 2β · e−2β� f

1 − e−2Nβ� f
− 2Nβ · e−2Nβ� f (1 − e−2β� f)

(1 − e−2Nβ� f)2
.

Dividing the derivative by 2β and multiplying by (1− e−2Nβ� f)2, which for � f �= 0
is always positive, we get

(1 − e−2Nβ� f)2

2β

∂ pfix(� f)

∂ � f
= e−2β� f

(
1 − e−2Nβ� f

)
− N · e−2Nβ� f

(
1 − e−2β� f

)

= e−2(N+1)β� f
(
e2Nβ� f + N − 1 − Ne2β� f

)
.

Hence ∂ pfix(� f)
∂ � f > 0 if and only if

e2Nβ� f + N − 1 > Ne2β� f . (12)

If N = 1 then e2Nβ� f + N − 1 = Ne2β� f , and from comparing the derivatives
w. r. t. N of both sides of (12):

∂

∂ N

(
e2Nβ� f + N − 1

)
= 2β� f e2Nβ� f + 1 (13)

∂

∂ N
Ne2β� f = e2β� f (14)

we see that for N = 1 the derivative (13) is larger than derivative (14). Since expression
(13) is an increasing positive function of N for any β� f while expression (14) is
constant in N , the inequality (12) is established for N > 1 and hence ∂ pfix(� f)

∂ � f > 0.
	

Restating Lemma 3 For any positive integer k > 0, let mut(i, i ± k) for 0 ≤ i ≤ n
be the probability that a global mutation of a search point with i ones creates an
offspring with i ± k ones. Then

mut(i, i + k) ≤
(
n − i

n

)k (

1 − 1

n

)n−k

· 1.14
k!

mut(i, i − k) ≤
(
i

n

)k (

1 − 1

n

)n−k

· 1.14
k!

mut(i, i − k) ≤ mut(i, i − 1)

k! .

123

Algorithmica (2017) 78:681–713 709

Proof of Lemma 3 During this proof we use that
(a
b

) = 0 for b > a. We follow the
proof of Lemma 2 in [30]. An offspring with i + k 1-bits is created if and only if there
is an integer j ∈ N0 such that j 1-bits flip and k + j 0-bits flip.

mut(i, i + k) =
n∑

j=0

(
i

j

)(
n − i

k + j

)(
1

n

)k+2 j (

1 − 1

n

)n−k−2 j

=
(
1

n

)k (

1 − 1

n

)n−k

·
n∑

j=0

(
i

j

)(
n − i

k + j

) (
1

n − 1

)2 j

.

Using
(n−i
k+ j

) = 1
(k+ j)! · (n − i) · (n − i − 1) · . . . · (n − i − k − j + 1) ≤ 1

(k+ j)! · (n −
i)k · (n − i − 1) j , this is at most

mut(i, i + k) ≤
(
1

n

)k (

1 − 1

n

)n−k

·
n∑

j=0

(n − i)k

j !(k + j)! ·
(
i(n − i − 1)

(n − 1)2

) j

.

It is easy to see that i(n−i−1)
(n−1)2

≤ 1
4 for all i , as the maximum is attained for i = n

2 − 1
2 .

Hence we get an upper bound of

mut(i, i + k) ≤
(
n − i

n

)k (

1 − 1

n

)n−k

·
n∑

j=0

4− j

j !(k + j)! .

Using (k + j)! ≥ k!(j + 1)! for all k ∈ N, j ∈ N0,

mut(i, i + k) ≤
(
n − i

n

)k (

1 − 1

n

)n−k

· 1

k!
∞∑

j=0

4− j

j !(j + 1)!

≤
(
n − i

n

)k (

1 − 1

n

)n−k

· 1.14
k! .

The proof for mutations decreasing the number of ones follows immediately due
to the symmetry mut(i, i − k) = mut(n − i, n − i + k).

Finally, we prove the third claim:

mut(i, i − k) =
(
i

k

)

n−k
(

1 − 1

n

)n−k

= i(i − 1) · . . . · (i − k + 1)

k! · n−k
(

1 − 1

n

)n−k

123

710 Algorithmica (2017) 78:681–713

≤ i

n
·
(
n − 1

n

)k−1

· 1

k!
(

1 − 1

n

)n−k

= i

n
·
(

1 − 1

n

)n−1

· 1

k! = mut(i, i − 1)

k! .

	

Restating Lemma 9 For all 0 ≤ i < j ≤ n,

mut(i, j)
∑n

k= j mut(i, k)
≥ 1

2
.

Proof of Lemma 9 The proof consists of two parts:
(1) The probability of improving by j − i = k bits is at least twice as large as the

probability of improving by k + 1 bits, i.e. mut(i, i + k) ≥ 2mut(i, i + k + 1) for any
0 ≤ i < j ≤ n.

(2) We use (1) to prove that mut(i, j)∑n
m= j mut(i,m)

≥ 1

2
.

Part 1) The probability to improve by k bits is

mut(i, i + k) =
n∑

l=0

(
i

l

)(
n − i

k + l

)(
1

n

)k+2l (

1 − 1

n

)n−k−2l

while the probability to improve by k + 1 bits is

mut(i, i + k + 1) =
n∑

l=0

(
i

l

)(
n − i

k + l + 1

) (
1

n

)k+2l+1 (

1 − 1

n

)n−k−2l−1

.

We want to show that the following is true:

mut(i, i + k) ≥ 2mut(i, i + k + 1)

⇔
n∑

l=0

(
i

l

)(
n − i

k + l

) (
1

n

)k+2l (

1 − 1

n

)n−k−2l

≥ 2
n∑

l=0

(
i

l

)(
n − i

k + l + 1

) (
1

n

)k+2l+1 (

1 − 1

n

)n−k−2l−1

⇔
n∑

l=0

(
i

l

)(
n − i

k + l

)

(n − 1)n−k−2l ≥ 2
n∑

l=0

(
i

l

)(
n − i

k + l + 1

)

(n − 1)n−k−2l−1

⇔
n∑

l=0

i !(n − i)!
l!(i − l)!

(n − 1)n−k−2l

(n − i − k − l − 1)!(k + l)!
[

1

(n − i − k − l)
− 2

(n − 1)(k + l + 1)

]

≥ 0.

123

Algorithmica (2017) 78:681–713 711

This holds if following holds for any 0 ≤ l ≤ n

[
1

(n − i − k − l)
− 2

(n − 1)(k + l + 1)

]

≥ 0

⇔ (n − 1)(k + l + 1) ≥ 2(n − i − k − l).

This is true for any k ≥ 1 (thus for any 0 ≤ i < j ≤ n).

Part 2) Using the above inequality mut(i, i + k) ≥ 2mut(i, i + k + 1) we can
bound every possible improvement better than k from above by

mut(i, i + k + l) ≤
(
1

2

)l

mut(i, i + k)

for any 0 ≤ l ≤ n − i − k. This can also be written as

mut(i, j + l) ≤
(
1

2

)l

mut(i, j)

for any 0 ≤ l ≤ n − j . This leads to

mut(i, j)
∑n

m= j mut(i,m)
= mut(i, j)

∑n− j
l=0 mut(i, j + l)

≥ mut(i, j)
∑n− j

l=0

(1
2

)l
mut(i, j)

= 1
∑n− j

l=0

(1
2

)l = 1

2 − 1
2n− j

≥ 1

2

which proves Lemma 9. 	

Lemma 17 Consider independent random variables Y1, . . . ,Yt where

Yi =

⎧
⎪⎨

⎪⎩

1 with probability p

0 with probability 1 − p − r

−1 with probability r

then for Y = ∑t
i=1 Yi we have E (Y) = t (p − r) and for every 0 ≤ δ ≤ t (p + r)

P(Y ≥ E (Y) + δ) ≤ e−Ω(t (p+r)) + e
−Ω

(
δ2

t (p+r)

)

.

Proof We imagine Yi to be drawn in a two-step process: in a first drawwith probability
1− p− r we set Yi = 0. Otherwise, we have Yi �= 0 and a second random experiment
determines whether Yi = 1 or Yi = −1.

123

712 Algorithmica (2017) 78:681–713

We define indicator variables Xi ∈ {0, 1} for the first experiment: Xi = 1 if
Yi �= 0. Then X = ∑t

i=1 Xi gives the number of events where Yi �= 0. Furthermore,
let Z j ∈ {−1,+1} be the outcome of the j-th instance of the second-type experiment
(such an experiment only happens when the first draw determined Yi �= 0), and
Z = ∑X

j=1 Z j be the sum of these variables. Since Z , in comparison to Y , excludes
all summands of value 0, we have Z = Y and hence E (Z) = E (Y) = t (p − r).

It is easy to see that (X < 2E (X)) ∧ (Z < E (Z) + δ | X < 2E (X)) ⇒ (Y <

E (Y) + δ). Therefore

P(Y ≥ E (Y) + δ) ≤ P(X ≥ 2E (X)) + P(Z ≥ E (Z) + δ | X < 2E (X)).

Nowwe apply a Chernoff bound to X and a Hoeffding bound to Z under the condition
of not having more non-zero variables than 2E (X):

P(Y ≥ E (Y) + δ) ≤ e− 1
3 E(X) + e− δ2

4E(X)

= e−Ω(E(X)) + e
−Ω

(
δ2

E(X)

)

= e−Ω(t (p+r)) + e
−Ω

(
δ2

t (p+r)

)

. 	

References

1. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics-Foundations and Recent Devel-
opments. Series on Theoretical Computer Science, vol. 1. World Scientific, Singapore (2011)

2. Chastain, E., Livnat, A., Papadimitriou, C., Vazirani, U.: Algorithms, games, and evolution. Proc. Natl.
Acad. Sci. 111(29), 10620–10623 (2014)

3. Chatterjee, K., Pavlogiannis, A., Adlam, B., Nowak, M.A.: The time scale of evolutionary innovation.
PLoS Comput. Biol. 10(9), 1–7 (2014)

4. Corus, D., Dang, D.-C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and
other search processes. In: Parallel Problem Solving from Nature (PPSN), Springer, Berlin, pp. 912–
921 (2014)

5. Doerr, B.: Analyzing Randomized Search Heuristics: Tools from Probability Theory. In: [1], pp. 1–20.
World Scientific, Singapore (2011)

6. Eiben, A .E., Smith, J .E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2015)
7. Ewens, W.J.: Mathematical Population Genetics 1: Theoretical Introduction, 2nd edn. Springer, New

York (2004)
8. Gillespie, J.H.:Molecular evolution over themutational landscape. Evolution 38(5), 1116–1129 (1984)
9. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy and when not.

In: Proceedings of IEEE Foundations of Computational Intelligence (FOCI 2007), pp. 25–32. IEEE
(2007)

10. Jansen, T.: Analyzing Evolutionary Algorithms. The Computer Science Perspective. Springer, Berlin
(2013)

11. Jansen, T., Oliveto, P.S., Zarges, C.: On the analysis of the immune-inspired B-Cell algorithm for the
Vertex Cover problem. In: Proceedings of the International Conference on Artificial Immune Systems
(ICARIS ’11), Springer, Berlin, pp. 117–131 (2011)

12. Jansen, T., Wegener, I.: A comparison of simulated annealing with a simple evolutionary algorithm on
pseudo-Boolean functions of unitation. Theor. Comput. Sci. 386(1–2), 73–93 (2007)

13. Johannsen, D.: Random Combinatorial Structures and Randomized Search Heuristics. Ph.D. thesis,
Universität des Saarlandes, Saarbrücken, Germany and the Max-Planck-Institut für Informatik (2010)

14. Kimura, M.: On the probability of fixation of mutant genes in a population. Genetics 47(6), 713–719
(1962)

123

Algorithmica (2017) 78:681–713 713

15. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4), 623–642 (2012)
16. Neumann, F.: Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Comput.

Oper. Res. 35(9), 2750–2759 (2008)
17. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: land-

scapes and efficiency. In: Proceedings of the 2009 Genetic and Evolutionary Computation Conference
(GECCO ’09), pp. 835–842, ACM (2009)

18. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum span-
ning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

19. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm. Algorithmica
54(2), 243–255 (2009)

20. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization—Algorithms and
Their Computational Complexity. Springer, Berlin (2010)

21. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageingmechanisms. In: Proceedings of
the 2014 Genetic and Evolutionary Computation Conference (GECCO ’14), ACM Press, pp. 113–120
(2014)

22. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation.
Algorithmica 59(3), 369–386 (2011)

23. Oliveto, P.S., Witt, C.: On the runtime analysis of the simple genetic algorithm. Theor. Comput. Sci.
545, 2–19 (2014)

24. Paixão, T., Badkobeh, G., Barton, N., Çörüş, D., Dang, D.-C., Friedrich, T., Lehre, P.K., Sudholt, D.,
Sutton, A.M., Trubenová, B.: Toward a unifying framework for evolutionary processes. J. Theor. Biol.
383, 28–43 (2015)

25. Paixão, T., Pérez Heredia, J., Sudholt, D., Trubenová, B.: First steps towards a runtime comparison
of natural and artificial evolution. In: Proceedings of the 2015 Genetic and Evolutionary Computation
Conference (GECCO ’15), pp. 1455–1462, ACM (2015)

26. Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems. Algorithmica
57(1), 187–206 (2010)

27. Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: an analysis of frequency and
magnitude of change. In: Proceedings of the 2009 Genetic and Evolutionary Computation Conference
(GECCO ’09), ACM Press, pp. 1713–1720 (2009)

28. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,λ) evolutionary algorithm.
Theor. Comput. Sci. 545, 20–38 (2014)

29. Scharnow, J., Tinnefeld,K.,Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest
paths problems. J. Math. Modell. Algorithms 3(4), 349–366 (2004)

30. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE
Trans. Evol. Comput. 17(3), 418–435 (2013)

31. Sudholt, D., Thyssen, C.: A simple ant colony optimizer for stochastic shortest path problems. Algo-
rithmica 64(4), 643–672 (2012)

32. Traulsen, A., Iwasa, Y., Nowak, M.A.: The fastest evolutionary trajectory. J. Theor. Biol. 249(3),
617–623 (2007)

33. Valiant, L .G.: Evolvability. J. ACM 56(1), 3:1–3:21 (2009)
34. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-boolean functions. In:

Sarker, R., Mohammadian, M., Yao, X. (eds.) Evolutionary Optimization, volume 48 of International
Series in Operations Research & Management Science, chapter 14. Kluwer Academic Publishers,
Dordrecht, pp. 349–369 (2003)

35. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In:
Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science (STACS ’05),
Springer, Berlin, pp. 44–56 (2005)

36. Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theor. Comput. Sci.
403(1), 104–120 (2008)

123

	Towards a Runtime Comparison of Natural and Artificial Evolution
	Abstract
	1 Introduction
	2 Preliminaries
	3 SSWM on OneMax
	3.1 Upper Bound for SSWM on OneMax
	3.2 A Critical Threshold for SSWM on OneMax

	4 On Traversing Fitness Valleys
	5 SSWM Outperforms (1+1) EA on Balance
	6 Conclusions
	Acknowledgements
	Appendix
	References

