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Abstract We present several sparsification lower and upper bounds for classic
problems in graph theory and logic. For the problems 4-Coloring, (Directed)

Hamiltonian Cycle, and (Connected) Dominating Set, we prove that there is
no polynomial-time algorithm that reduces anyn-vertex input to an equivalent instance,
of an arbitrary problem, with bitsize O(n2−ε) for ε > 0, unless NP ⊆ coNP/poly
and the polynomial-time hierarchy collapses. These results imply that existing linear-
vertex kernels for k-Nonblocker and k-Max Leaf Spanning Tree (the parametric
duals of (Connected) Dominating Set) cannot be improved to have O(k2−ε)

edges, unless NP ⊆ coNP/poly. We also present a positive result and exhibit a non-
trivial sparsification algorithm for d-Not-All-Equal-SAT. We give an algorithm
that reduces an n-variable input with clauses of size at most d to an equivalent input
with O(nd−1) clauses, for any fixed d. Our algorithm is based on a linear-algebraic
proof of Lovász that bounds the number of hyperedges in critically 3-chromatic d-
uniform n-vertex hypergraphs by

( n
d−1

)
. We show that our kernel is tight under the

assumption that NP � coNP/poly.
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1 Introduction

1.1 Background

Sparsification refers to the method of reducing an object such as a graph or CNF-
formula to an equivalent object that is less dense, that is, an object in which the
ratio of edges to vertices (or clauses to variables) is smaller. The notion is fruitful
in theoretical [16] and practical (cf. [10]) settings when working with (hyper)graphs
and formulas. The theory of kernelization, originating from the field of parameterized
complexity theory, can be used to analyze the limits of polynomial-time sparsification.
Using tools developed in the last five years, it has become possible to address questions
such as: “Is there a polynomial-time algorithm that reduces an n-vertex instance of
my favorite graph problem to an equivalent instance with a subquadratic number of
edges?”

The impetus for this line of analysis was given by an influential paper by Dell and
van Melkebeek [8] (conference version in 2010). One of their main results states that if
there is an ε > 0 and a polynomial-time algorithm that reduces any n-vertex instance
of Vertex Cover to an equivalent instance, of an arbitrary problem, that can be
encoded in O(n2−ε) bits, then NP ⊆ coNP/poly and the polynomial-time hierarchy
collapses. Since any nontrivial input (G, k) of Vertex Cover has k ≤ n = |V (G)|,
their result implies that the number of edges in the 2k-vertex kernel for k-Vertex
Cover [22] cannot be improved to O(k2−ε) unless NP ⊆ coNP/poly.

Using related techniques, Dell and van Melkebeek also proved important lower
bounds for d-cnf-sat problems: testing the satisfiability of a propositional formula in
conjunctive normal form (CNF), where each clause has at most d literals. They proved
that for every fixed integer d ≥ 3, the existence of a polynomial-time algorithm that
reduces any n-variable instance of d-cnf-sat to an equivalent instance, of an arbitrary
problem, with O(nd−ε) bits for some ε > 0, implies NP ⊆ coNP/poly. Their lower
bound is tight: there are O(nd) possible clauses of size d over n variables, allowing
an instance to be represented by a vector of O(nd) bits that specifies for each clause
whether or not it is present.

1.2 Our Results

We continue this line of investigation and analyze sparsification for several classic
problems in graph theory and logic. We obtain several sparsification lower bounds
that imply that the quadratic number of edges in existing linear-vertex kernels is likely
to be unavoidable. When it comes to problems from logic, we give the—to the best of
our knowledge—first example of a problem that does admit nontrivial sparsification:
d-Not-All-Equal-SAT. We also provide a matching lower bound.

The first problem we consider is 4-Coloring, which asks whether the input graph
has a proper vertex coloring with four colors. Using several new gadgets, we give a
cross-composition [3] to show that the problem has no compression of size O(n2−ε)

unless NP ⊆ coNP/poly. To obtain the lower bound, we give a polynomial-time
construction that embeds the logical or of a series of t size-n inputs of an NP-hard
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problem into a graph G ′ with O(
√
t · nO(1)) vertices, such that G ′ has a proper 4-

coloring if and only if there is a yes-instance among the inputs. The main structure of
the reduction follows the approach of Dell and Marx [7]: we create a table with two
rows and O(

√
t) columns and O(nO(1)) vertices in each cell. For each way of picking

one cell from each row, we aim to embed one instance into the edge set between the
corresponding groups of vertices. When the NP-hard starting problem is chosen such
that the t inputs each decompose into two induced subgraphs with a simple structure,
one can create the vertex groups and their connections such that for each pair of
cells (i, j), the subgraph they induce represents the i · √

t + j-th input. If there is a
yes-instance among the inputs, this leads to a pair of cells that can be properly colored
in a structured way. The challenging part of the reduction is to ensure that the edges in
the graph corresponding to no-inputs do not give conflicts when extending this partial
coloring to the entire graph.

It is easy to see that the lower bound for 4-Coloring implies that d-Coloring
with d ≥ 4 has no compression of size O(n2−ε) unless NP ⊆ coNP/poly, since
any instance of 4-Coloring can be transformed into an instance of d-Coloring by
adding d − 4 new universal vertices. The existence of a non-trivial sparsification for
3-Coloring remains unknown (see Sect. 7).

The next problem we attack is Hamiltonian Cycle. We rule out compressions
of size O(n2−ε) for the directed and undirected variant of the problem, assuming
NP � coNP/poly. The construction is inspired by kernelization lower bounds for
Directed Hamiltonian Cycle parameterized by the vertex-deletion distance to a
directed graph whose underlying undirected graph is a path [2].

By combining gadgets from kernelization lower bounds for two different parame-
terizations of Red Blue Dominating Set, we prove that there is no compression
of size O(n2−ε) for Dominating Set unless NP ⊆ coNP/poly. The same con-
struction rules out subquadratic compressions for Connected Dominating Set.
These lower bounds have implications for the kernelization complexity of the para-
metric duals Nonblocker and Max Leaf Spanning Tree of (Connected)

Dominating Set. For both Nonblocker and Max Leaf there are kernels
with O(k) vertices [6,11] that have Θ(k2) edges. Our lower bounds imply that
the number of edges in these kernels cannot be improved to O(k2−ε), unless
NP ⊆ coNP/poly.

The final family of problems we consider is d-Not-All-Equal-SAT for d ≥ 4
fixed. The input consists of a CNF-formula with at most d literals per clause. The
question is whether there is an assignment to the variables such that each clause
contains both a literal that evaluates to true and one that evaluates to false. There
is a simple linear-parameter transformation from d-cnf-sat to (d + 1)-nae-sat
that consists of adding one variable that occurs as a positive literal in all clauses.
By the results of Dell and van Melkebeek discussed above, this implies that d-nae-
sat does not admit compressions of size O(nd−1−ε) unless NP ⊆ coNP/poly. We
prove the surprising result that this lower bound is tight! A linear-algebraic result
due to Lovász [21], concerning the size of critically 3-chromatic d-uniform hyper-
graphs, can be used to give a kernel for d-nae-sat with O(nd−1) clauses for every
fixed d. The kernel is obtained by computing the basis of an associated matrix and
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removing the clauses that can be expressed as a linear combination of the basis
clauses1.

1.3 Related Work

Dell and Marx introduced the table structure for compression lower bounds [7] in their
study of compression for packing problems. Hermelin and Wu [15] analyzed simi-
lar problems. Other papers about polynomial kernelization and sparsification lower
bounds include [5,18].

2 Preliminaries

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet.
Let Q, Q′ ⊆ Σ∗ × N be parameterized problems and let h : N → N be a computable
function. A generalized kernel for Q into Q′ of size h(k) is an algorithm that, on
input (x, k) ∈ Σ∗×N, takes time polynomial in |x |+k and outputs an instance (x ′, k′)
such that:

1. |x ′| and k′ are bounded by h(k), and
2. (x ′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q′ = Q. It is a polynomial (generalized) kernel
if h(k) is a polynomial.

Since a polynomial-time reduction to an equivalent sparse instance yields a gener-
alized kernel, we will use the concept of generalized kernels in the remainder of this
paper to prove the non-existence of such sparsification algorithms. We employ the
cross-composition framework by Bodlaender et al. [3], which builds on earlier work
by several authors [1,8,13].

Definition 1 (Polynomial equivalence relation) An equivalence relation R on Σ∗ is
called a polynomial equivalence relation if the following conditions hold.

1. There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x and y
belong to the same equivalence class in time polynomial in |x | + |y|.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S
into a number of classes that is polynomially bounded in the size of the largest
element of S.

Definition 2 (Cross-composition) Let L ⊆ Σ∗ be a language, let R be a polyno-
mial equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem, and
let f : N → N be a function. An or-cross-composition of L into Q (with respect
to R) of cost f (t) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L
belonging to the same equivalence class of R, takes time polynomial in

∑t
i=1 |xi | and

outputs an instance (y, k) ∈ Σ∗ × N such that:

1 Added in print: the present authors recently generalized this result significantly, based on the fact that
assignments that satisfy d-nae-sat clauses can be interpreted as roots of a suitably chosen polynomial of
degree d − 1. We refer to [17] for this alternative, arguably more intuitive, view of the sparsification.
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1. the parameter k is bounded by O( f (t) · (maxi |xi |)c), where c is some constant
independent of t , and

2. (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L .

Theorem 1 ([3]) Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N be a parameterized
problem, and let d, ε be positive reals. If L is NP-hard under Karp reductions, has
an or-cross-composition into Q with cost f (t) = t1/d+o(1), where t denotes the
number of instances, and Q has a polynomial (generalized) kernelization with size
bound O(kd−ε), then NP ⊆ coNP/poly.

For r ∈ N we will refer to an or-cross-composition of cost f (t) = t1/r log(t) as
a degree-r cross-composition. By Theorem 1, a degree-r cross-composition can be
used to rule out generalized kernels of size O(kr−ε). We frequently use the fact that a
polynomial-time linear-parameter transformation from problem Q to Q′ implies that
any generalized kernelization lower bound for Q, also holds for Q′ (cf. [3,4]). Let [r ]
be defined as [r ] := {x ∈ N | 1 ≤ x ≤ r}.

3 Graph Coloring

In this section we analyze the 4- Coloring problem, which asks whether it is possible
to assign each vertex of the input graph one out of 4 possible colors, such that there is no
edge whose endpoints share the same color. We show that 4- Coloring does not have
a generalized kernel of size O(n2−ε), by giving a degree-2 cross-composition from
a tailor-made problem that will be introduced below. Before giving the construction,
we first present and analyze some of the gadgets that will be needed.

Definition 3 A treegadget is the graph obtained from a complete binary tree by replac-
ing each vertex v by a triangle on vertices rv , xv and yv . Let rv be connected to the
parent of v and let xv and yv be connected to the left and right subtree of v. An example
of a treegadget with eight leaves is shown in Fig. 1 . If vertex v is the root of the tree,
then rv is called the root of the treegadget. If v is a leaf of the complete binary tree,
we call the corresponding vertices xv and yv leaves of the treegadget. Let the height
of a treegadget be equal to the height of its corresponding binary tree.

leaves

root root

leaves

(a) Treegadget with no red leaf (b) Treegadget where one of the leaves is red

Fig. 1 Treegadgets of height two with example colorings. The solid shading is referred to as red. Treegadget
with no red leaf (a) and where one of the leaves is red (b) (Color figure online)
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It is easy to see that a treegadget is 3-colorable. The important property of this
gadget is that if there is a color that does not appear on any leaf in a proper 3-coloring,
then this must be the color of the root. See Fig. 1a for an illustration.

Lemma 1 Let T be a treegadget with root r and let c : V (T ) → {1, 2, 3} be a proper
3-coloring of T . If k ∈ {1, 2, 3} such that c(v) 
= k for every leaf v of T, then c(r) = k.

Proof This will be proven using induction on the structure of a treegadget. For a single
triangle, the result is obvious. Suppose we are given a treegadget of height h and that
the statement holds for all treegadgets of smaller height. Consider the top triangle
r, x, y where r is the root. Then, by the induction hypothesis, the roots of the left and
right subtree are colored using k. Hence x and y do not use color k. Since x, y, r is a
triangle, r has color k in the 3-coloring. ��

The following lemma will be used in the correctness proof of the cross-composition
to argue that the existence of a single yes-input is sufficient for 4-colorability of the
entire graph.

Lemma 2 Let T be a treegadget with leaves L ⊆ V (T ) and root r . Any 3-coloring
c′ : L → {1, 2, 3} that is proper on T [L] can be extended to a proper 3-coloring of T .
If there is a leaf v ∈ L such that c′(v) = i , then such an extension exists with c(r) 
= i .

Proof We will prove this by induction on the height of the treegadget. For a single
triangle, the result is obvious. Suppose the lemma is true for all treegadgets up to
height h − 1 and we are given a treegadget of height h with root triangle r, x, y and
with coloring of the leaves c′. Let one of the leaves be colored using i . Without loss
of generality assume this leaf is in the left subtree, whose root r1 is connected to x .
By the induction hypothesis, we can extend the coloring restricted to the leaves of the
left subtree to a proper 3-coloring of the left subtree such that c(r1) 
= i . We assign
color i to x . Since c′ restricted to the leaves in the right subtree is a proper 3-coloring
of the leaves in the right subtree, by induction we can extend that coloring to a proper
3-coloring of the right subtree. Suppose the root of this subtree gets color j ∈ {1, 2, 3}.
We now color y with a color k ∈ {1, 2, 3} \ {i, j}, which must exist. Finally, choose
c(r) ∈ {1, 2, 3} \ {i, k}. By definition, the vertices r , y, and x are now assigned a
different color. Both x and y have a different color than the root of their corresponding
subtree, thereby c is a proper coloring. We obtain that the defined coloring c is a proper
coloring extending c′ with c(r) 
= i . ��

Definition 4 A triangular gadget is a graph on 12 vertices depicted in Fig. 2. Vertices
u, v, and w are the corners of the gadget, all other vertices are referred to as inner
vertices.

It is easy to see that a triangular gadget is always 3-colorable in such a way that
every corner gets a different color. Furthermore, unlike a triangle, a triangular gadget
can be 4-colored such that all corners receive the same color. Moreover, we make the
following observation.
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u

wv

inner vertices

corner

Fig. 2 Triangular gadget with proper 3-coloring

Observation 1 Let G be a triangular gadget with corners u, v, and w, and let
c : V (G) → {1, 2, 3}beaproper3-coloringofG.Then c(v) 
= c(u) 
= c(w) 
= c(v).
Furthermore, every partial coloring that assigns distinct colors to the three corners
of a triangular gadget can be extended to a proper 3-coloring of the entire gadget.

Having presented all the gadgets we use in our construction, we now define the
source problem for the cross-composition. It is a variant of the problem that was
used to prove kernel lower bounds for Chromatic Number parameterized by vertex
cover [3].

2-3-Coloring with Triangle Split Decomposition

Input: A graph G with a partition of its vertex set into X ∪ Y such that G[X ] is
an edgeless graph and G[Y ] is a disjoint union of triangles.
Question: Is there a proper 3-coloring c : V (G) → {1, 2, 3} of G, such that
c(x) ∈ {1, 2} for all x ∈ X? We will refer to such a coloring as a 2-3-coloring of
the graph G, since two colors are used are used to color X , and three to color Y .

Lemma 3 The 2-3-Coloring with Triangle Split Decomposition problem is
NP-complete.

Proof It is easy to verify the problem is in NP. We will show that it is NP-hard by
giving a reduction from 3-nae-sat, which is known to be NP-complete [14]. Suppose
we are given formula F = C1 ∧C2 ∧ . . . ∧Cm over the set of variables U . Construct
graph G in the following way. For every variable x ∈ U , construct a gadget as depicted
in Fig. 3a containing vertices x and ¬x . For every clause Ci , construct a triangle on
vertices vi1, v

i
2 and vi3 as depicted in Fig. 3b. For each clause Ci = (�1 ∨ �2 ∨ �3) for

i ∈ [m], connect the vertex representing literal � j for j ∈ {1, 2, 3} to vertex vij in G.
It is easy to verify that G has a triangle split decomposition with X consisting of

the vertices representing literals and Y consisting of the remaining vertices. In Fig. 3,
triangles are shown with white vertices and the independent set is shown in black.

Suppose G is 2-3-colorable with color function c : V (G) → {1, 2, 3} such that
c(v) ∈ {1, 2} for all v in the independent set X . To satisfy F , let variable x be true if
and only if c(x) = 2, i.e., if the vertex representing the positive literal x is colored 2. To
show that this results in a satisfying assignment, consider any clause Ci for i ∈ [m].
Note that c(x) = 2 ⇔ c(¬x) = 1, as the gadget prevents x and ¬x from having
the same color and they are both colored with 1 or 2. The triangle {vi1, vi2, vi3} for
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x

¬x v2 v3

v1

(a) (b)

Fig. 3 The gadgets constructed for the variables (a) and the clauses (b) of formula F

clause Ci contains a vertex vij such that c(vij ) = 1 and a vertex vik such that c(vik) = 2

for j, k ∈ [3], otherwise it is not properly colored. Since vertex � j is connected to vij , it
follows that c(� j ) 
= 1, implying c(� j ) = 2. If � j is a positive literal this immediately
implies � j evaluates to true in our chosen assignment. If � j is a negative literal the same
conclusion follows from the fact that it is colored 2 if and only if the corresponding
positive literal is colored 1. Similarly, c(�k) 
= 2 implies that c(�k) = 1 and literal �k
evaluates to false. Therefore any clause Ci is NAE-satisfied by this assignment.

Suppose F is a yes-instance, with satisfying truth assignment S. Define color func-
tion c : V (G) → {1, 2, 3} as c(x) := 1 and c(¬x) := 2 if x is set to false in S, define
c(x) := 2 and c(¬x) := 1 otherwise. Color the remainder of the variable gadgets
consistently. We now need to show how to color the clause gadgets. Consider any
clause Ci = (�1 ∨ �2 ∨ �3). At least one of the literals evaluates to true and one to
false. By symmetry we assume �1 is true and �2 is false. We then set c(vi1) := 1,
c(vi2) := 2, and c(vi3) := 3 in the clause gadget of Ci . It is easy to check that c is a
proper 2-3-coloring of G. ��
Theorem 2 4- Coloring parameterized by the number of vertices n does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof By Theorem 1 and Lemma 3 it suffices to give a degree-2 cross-composition
from the 2-3-coloring problem defined above into 4- Coloring parameterized by the
number of vertices. For ease of presentation, we will actually give a cross-composition
into the 4-List Coloring problem, whose input consists of a graph G and a list
function that assigns every vertex v ∈ V (G) a list L(v) ⊆ [4] of allowed colors. The
question is whether there is a proper coloring of the graph in which every vertex is
assigned a color from its list. The 4-List Coloring problem reduces to the ordinary
4- Coloring by a simple transformation that adds a 4-clique to enforce the color lists,
which will prove the theorem. For now, we focus on giving a cross-composition into
4-List Coloring. ��

We start by defining a polynomial equivalence relation on inputs of 2-3-Coloring
with Triangle Split Decomposition. Let two instances be equivalent under
equivalence relation R when set Y induces the same number of triangles and the
independent sets X have the same size. It is easy to see that R is a polynomial equiv-
alence relation. By duplicating one of the inputs, we can ensure that the number of
inputs to the cross-composition is an even power of two; this does not change the value
of or, and increases the total input size by at most a factor four. We will therefore
assume that the input consists of t instances of 2-3-Coloring with Triangle Split
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{x,y}

S T

{x,y,a} {x,y,z,a}
{x,y,a}

{y,z}

{y,z,a}

{y,z}

S1

S2

S3

S4

rS rTGS GT

{x,y,z}

{y,z,a}

Fig. 4 The graph G′ for t ′ = 4, m = 3, and n = 2. Edges between vertices in S and T are left out for
simplicity

Decomposition such that t = 22i for some integer i , implying that
√
t and log

√
t

are integers. Let t ′ := √
t . Enumerate the instances as Xi, j for 1 ≤ i, j ≤ t ′. Each

input Xi, j consists of a graph Gi, j and a partition of its vertex set into sets U and V ,
such that U is an independent set of size m and Gi, j [V ] consists of n vertex-disjoint
triangles. Enumerate the vertices in U and V as u1, . . . , um and v1, . . . , v3n , such that
vertices v3�−2, v3�−1 and v3� form a triangle, for � ∈ [n]. We will create an instance G ′
of the 4-List Coloring problem, which consists of a graph G ′ and a list function L
that assigns each vertex a subset of the color palette {x, y, z, a}. Refer to Fig. 4 for a
sketch of G ′.

1. Initialize G ′ as the graph containing t ′ sets of m vertices each, called Si for
i ∈ [t ′]. Label the vertices in each of these sets as si� for i ∈ [t ′], � ∈ [m]
and let L(si�) := {x, y, a}.

2. Add t ′ sets of n triangular gadgets each, labeled Tj for j ∈ [t ′]. Label the corner

vertices in Tj as t j� for � ∈ [3n], such that vertices t j3�−2, t
j

3�−1 and t j3� are the

corner vertices of one of the gadgets for � ∈ [n]. Let L(t j� ) := {x, y, z} and for
any inner vertex v of a triangular gadget, let L(v) := {x, y, z, a}.

3. Connect vertex sik to vertex t j� if in graph Gi, j vertex uk is connected to v�, for
k ∈ [m] and � ∈ [3n]. By this construction, the subgraph of G ′ induced by Si ∪ Tj

is isomorphic to the graph obtained from Gi, j by replacing each triangle with a
triangular gadget.

4. Add a treegadget GS with t ′ leaves to G ′ and enumerate these leaves as 1, . . . , t ′;
recall that t ′ is a power of two. Connect the i’th leaf of GS to every vertex in Si .
Let the root of GS be rS and define L(rS) := {x, y}. For every other vertex v in
GS let L(v) := {x, y, a}.
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5. Add a treegadgetGT with 2t ′ leaves toG ′ and enumerate these leaves as 1, . . . , 2t ′.
For j ∈ [t ′], connect every inner vertex of a triangular gadget in group Tj to leaf
number 2 j − 1 of GT . For every leaf v with an even index let L(v) := {y, z} and
let the root rT have list L(rT ) := {y, z}. For every other vertex v of gadget GT let
L(v) := {y, z, a}.

Claim The graph G ′ is 4-list-colorable⇔ some input instance Xi∗ j∗ is 2-3-colorable.

Proof (⇒) Suppose we are given a 4-list coloring c for G ′. By definition, c(rS) 
= a.
From Lemma 1 it follows that there is a leaf v of GS such that c(v) = a. This leaf is
connected to all vertices in some Si∗ , which implies that none of the vertices in Si∗ are
colored using a. Therefore all vertices in Si∗ are colored using x and y. Similarly the
gadget GT has at least one leaf v such that c(v) = a, note that this must be a leaf with
an odd index. Therefore there exists Tj∗ where all vertices are colored using x , y or
z. Thereby in Si∗ ∪ Tj∗ only three colors are used, such that Si∗ is colored using only
two colors. Using Observation 1 and the fact that G ′[Si∗ ∪ Tj∗ ] is isomorphic to the
graph obtained from Gi∗, j∗ by replacing triangles by triangular gadgets, we conclude
that Xi∗ j∗ has a proper 2-3-coloring.

(⇐) Suppose c : V (Gi∗, j∗) → {x, y, z} is a proper 2-3-coloring for Xi∗, j∗ , such
that the U -partite set of Gi∗, j∗ is colored using only x and y. We will construct a
4-list coloring c′ : V (G ′) → {x, y, z, a} for G ′. For uk , k ∈ [m] in instance Xi∗, j∗

let c′(si∗k ) := c(uk) and for v� for � ∈ [3n] let c′(t j
∗

� ) := c(v�). Let c′(si�) := a

for i 
= i∗ and � ∈ [n], furthermore let c′(t j� ) := z for j 
= j∗ and � ∈ [3m]. For
triangular gadgets in Tj∗ the coloring c′ defines all corners to have distinct colors; by
Observation 1 we can color the inner vertices consistently using {x, y, z}. For Tj with
j ∈ [t ′] and j 
= j∗, the corners of triangular gadgets have color z and we can now
consistently color the inner vertices using {x, y, a}.

The leaf of gadget GS that is connected to Si∗ can be colored using a. Every other
leaf can use both x and y, so we can properly 3-color the leaves such that one leaf has
color a. From Lemma 2 it follows that we can consistently 3-color GS such that the
root rS does not receive color a, as required by L(rS). Similarly, in triangular gadgets
in Tj∗ the inner vertices do not have color a. As such, leaf 2 j∗ − 1 of GT can be
colored using a and we color leaf 2 j∗ with y. For j ∈ [t ′] with j 
= j∗ color leaf
2 j − 1 with z and leaf 2 j using y. Now the leaves of GT are properly 3-colored and
one is colored a. It follows from Observation 1 that we can color GT such that the
root is not colored a. This completes the 4-list coloring of G ′. ��

The claim shows that the construction serves as a cross-composition into 4-List
Coloring. To prove the theorem, we add four new vertices to simulate the list function.
Add a clique on four vertices {x, y, z, a}. If for any vertex v in G ′, some color is not
contained in L(v), connect v to the vertex corresponding to this color. As proper
colorings of the resulting graph correspond to proper list colorings of G ′, the resulting
graph is 4-colorable if and only if there is a yes-instance among the inputs. It remains
to bound the parameter of the problem, i.e., the number of vertices. Observe that a
treegadget has at least as many leaves as its corresponding binary tree, therefore the
graphG ′ has at most 12mt ′+nt ′+6t ′+12t ′+4 = O(t ′ ·(m+n)) = O(

√
t max |Xi, j |)

vertices. Theorem 2 now follows from Theorem 1 and Lemma 3. ��
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Path 0

IN0 IN1

Path 1

Fig. 5 Path gadget for Theorem 3

4 Hamiltonian Cycle

In this section we prove a sparsification lower bound for Hamiltonian Cycle and
its directed variant by giving a degree-2 cross-composition. The starting problem is
Hamiltonian s − t path on bipartite graphs.

Hamiltonian s − t path on bipartite graphs

Input: An undirected bipartite graph G with partite sets A and B such that
|B| = n = |A| + 1, together with two distinguished vertices b1 and bn
that have degree 1.
Question: Does G have a Hamiltonian path from b1 to bn?

It is known that Hamiltonian path is NP-complete on bipartite graphs [14] and it is
easy to see that is remains NP-complete when fixing a degree 1 start and endpoint.

Theorem 3 (Directed) Hamiltonian Cycle parameterized by the number of ver-
tices n does not have a generalized kernel of size O(n2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

Proof By a suitable choice of polynomial equivalence relation, and by padding the
number of inputs, it suffices to give a cross-composition from the s − t problem on
bipartite graphs when the input consists of t instances Xi, j for i, j ∈ [√t] (i.e.,

√
t

is an integer), such that each instance Xi, j encodes a bipartite graph Gi, j with partite
sets A∗

i, j and B∗
i, j with |A∗

i, j | = m and |B∗
i, j | = n = m + 1, for some m ∈ N. For each

instance, label all elements in A∗
i, j as a∗

1 , . . . , a∗
m and all elements in B∗

i, j as b∗
1, . . . , b∗

n
such that b∗

1 and b∗
n have degree 1.

The construction makes extensive use of the path gadget depicted in Fig. 5. Observe
that if G ′ contains a path gadget as an induced subgraph, while the remainder of the
graph only connects to its terminals in

0 and in
1, then any Hamiltonian cycle in G ′

traverses the path gadget in one of the two ways depicted in Fig. 5. We create an
instance G ′ of Directed Hamiltonian Cycle that acts as the logical or of the
inputs. A sketch of G ′ is shown in Fig. 6.

1. First of all construct
√
t groups of m path gadgets each. Refer to these groups as

Ai , for i ∈ [√t], and label the gadgets within group Ai as ai1, . . . , a
i
m . Let the

union of all created sets Ai be named A. Similarly, construct
√
t groups of n path

gadgets each. Refer to these groups as Bj , for j ∈ [√t], and label the gadgets

within group Bj as b j
1 , . . . , b j

n . Let B be the union of all Bj for j ∈ [√t].
2. For every input instance Xi, j , for each edge {a∗

k , b
∗
� } in Gi, j with k ∈ [m], � ∈ [n],

add an arc from in
0 of aik to in

1 of b j
� and an arc from in

0 of b j
� to in

1 of aik .

If some Gi, j has a Hamiltonian s − t path, it can be mimicked by the combination of
Ai and Bj , where for each vertex in Gi, j we traverse its path gadget in G ′, following
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B1 B2

A1 A2

y1

x2 y2 NEXT

x1START

END

Fig. 6 The general structure of the created graph, when given four inputs with n = 3 and m = 4. The gray
lines ( ) show a Hamiltonian cycle in the constructed graph. The black lines ( ) show arcs of G′
that are not used in the cycle. For readability, from the arcs between groups Ai and B j , only those between
A1 and B1 have been drawn

Path 1. The following construction steps are needed to ensure that such a path can be
extended to a Hamiltonian cycle in G ′.
3. Add an arc from the in1 terminal of ai� to the in0 terminal of ai�+1 for all � ∈ [m−1]

and all i ∈ [√t]. Similarly add an arc from the in1 terminal of bi� to the in0 terminal
of bi�+1 for all � ∈ [n − 1] and all i ∈ [√t].

4. Add a vertex start and a vertex end and the arc (end, start).
5. Let r := √

t − 1, add 2r tuples of vertices, xi , yi for i ∈ [2r ] and connect start
to x1. Furthermore, add the arcs (yi , xi+1) for i ∈ [2r − 1].

6. For i ≤ r we add arcs from xi to the in
0 terminal of the gadgets a j

1 , j ∈ [√t].
Furthermore we add an arc from in

1 of a j
m to yi for all j ∈ [√t] and i ∈ [r ]. When

i > r add arcs from xi to the in
0 terminal of b j

1 for j ∈ [√t] and connect in1 of

b j
n to yi .

7. Add a vertexnext and the arc (y2r ,next) and an arc fromnext to the in1 terminal
of all gadgets b j

1 for j ∈ [√t].
8. Furthermore, add arcs from in

0 of all gadgets b j
n to end for j ∈ [√t]. So for each

Bj , exactly one vertex has an outgoing arc to end and one has an incoming arc
from next. ��

This completes the construction of G ′. In order to prove that the created graph G ′
acts as a logical or of the given input instances, we first establish a number of auxiliary
lemmas.

Lemma 4 Any Hamiltonian cycle in G ′ traverses any path gadget in G ′ via directed
Path 0 or Path 1, as shown in Fig. 5.
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Proof Any Hamiltonian cycle in G ′ should visit the center vertex of the path gadget.
Since in

0 and in
1 are its only two neighbors in G ′, the only option is to visit them

consecutively. Path 0 and Path 1 are the only two options to do this. ��
Lemma 5 When any Hamiltonian cycle in G ′ enters path gadget ai1 at in0 for
some i ∈ [√t], the cycle then visits the gadgets ai2, a

i
3, . . . , a

i
m in order without

visiting other vertices in between. Similarly, if any Hamiltonian cycle in G ′ enters
path gadget b j

1 at in0, the cycle then visits the gadgets b
j
2 , b j

3 , . . . , b j
n in order without

visiting other vertices in between.

Proof Consider a Hamiltonian cycle in G ′ that enters path gadget ai1 at in0. By
Lemma 4 the cycle follows Path 0 and continues to the in

1 terminal of the path
gadget. Since that terminal has only one out-neighbor outside the gadget, which leads
to the in0 terminal of ai2, it follows that the cycle continues to that path gadget. As
the adjacency structure around the other path gadgets is similar, the lemma follows by
repeating this argument. The proof when entering group Bj at the vertex in0 of b j

1 is
equivalent. ��

In Step 6 we create a selection mechanism that leaves one group in A and one in B
unvisited. The following lemma formalizes this idea.

Lemma 6 Let C be a directed Hamiltonian cycle in G ′, such that its first arc is
(start, x1). There are indices i∗, j∗ ∈ [√t] such that subpath Cx1,y2r of the cycle
between x1 and y2r contains exactly the vertices

Ai∗ ∪ Bj∗ ∪ {xi , yi | i ∈ [2r ]}

where Ai∗ contains all vertices of all gadgets in Ai for i 
= i∗, and similarly B j∗
contains all vertices of all gadgets in B j for j 
= j∗.

Proof We will first show that when the cycle reaches any xi for i ∈ [r ], it traverses
exactly one group A� with � ∈ [r + 1] and continues to y j and x j+1 for some j ∈ [r ],
without visiting other vertices in between. Similarly, when the cycle reaches any xi
for r < i ≤ 2r , it traverses exactly one group B� with � ∈ [r + 1] and continues to y j
for some r < j ≤ 2r . For j < 2r , the cycle then continues to x j+1, for j = 2r the
cycle reached y2r , which is the last vertex of this subpath.

By Step 6 in the construction, all outgoing arcs of any xi for i ∈ [r ] lead to gadgets
a�

1 for some � ∈ [√t]. So for any xi in the cycle there must be a unique � ∈ [√t] such
that the arc from xi to the in

0 terminal of a�
1 is in C . By Lemma 5 the cycle visits all

vertices in A�, and no other vertices, before reaching gadget a�
m , which is traversed

by Path 0 to get to in
1 of this gadget. The only neighbors of in1 of gadget a�

m lying
outside this gadget are of type y j for j ∈ [r ]. As such, the cycle must visit some y j
next, and its only outgoing arc goes to x j+1.

The proof for i > r is similar. As such, visiting xi for i ∈ [r ] results in visiting
all vertices of exactly one group in A before continuing via y j to some x j+1 without
visiting any vertices in between. Visiting xi for r < i ≤ 2r results in visiting all
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vertices of exactly one group in B and returning via y j to either the end of the subpath
( j = 2r ) or some x j+1.

Every vertex xi for i ∈ [2r ] must be visited byC , it remains to show that it is visited
in subpath Cx1,y2r . Suppose there exists an xi for i ∈ [2r ] such that xi is not visited in
the subpath from x1 to y2r . As we have seen above, visiting some xi results in visiting
all vertices in some group in A or B, continued by visiting some y j for j ∈ [2r ]. Note
that no other vertices are visited in between. Therefore, if xi is not in subpath Cx1,y2r ,
then the corresponding y j is not in the subpath Cx1,y2r either. This implies j 
= 2r and
thus the next vertex in the cycle is x j+1. So, for xi not in subpath Cx1,y2r , one can find
a new vertex x j+1 (where j + 1 
= i), such that x j+1 is also not in subpath Cx1,y2r .
Note that we can not create a loop, by visiting a vertex xi seen earlier, as this would
not yield a Hamiltonian cycle in G ′. For example, the vertex start would never be
visited. This is however a contradiction since we only have finitely many vertices xi .

Thus in subpath Cx1,y2r , exactly r groups of A are visited and exactly r groups of
B are visited, and no other vertices than specified. As r = √

t − 1, this leaves exactly
one group Ai∗ and one group Bj∗ unvisited in Cx1,y2r . ��
Lemma 7 Let C be a Hamiltonian cycle in G ′, such that its first arc is (start, x1).

Let i∗ and j∗ satisfy the conditions of Lemma 6. Then cycle C enters gadget b j∗
1 at

terminal in1 and visits b j∗
1 before b j∗

n . Moreover, the subpath of the cycle C
b j∗

1 ,b j∗
n

between terminal in1 of b j∗
1 and in

0 of b j∗
n (inclusive) contains all vertices of the

gadgets in Ai∗ and B j∗ and no others.

Proof Vertex next is visited directly after y2r , since it is the only out-neighbor of y2r .
Furthermore, the arc from next to gadget b�

1 must be in the cycle for some � ∈ [√t],
since next only has outgoing arcs of this type. By Lemma 6, all gadgets in all Bj

for j 
= j∗ are visited in the path from x1 to y2r , and thus should not be visited after
vertex next. Therefore, the arc from next to the in

1 terminal of gadget b j∗
1 is in the

cycle, which also implies that b j∗
1 is visited before b j∗

n .
It is easy to see that (end, start) is the last arc in C . By considering the incoming

arcs of end it follows that some arc from terminal in0 of b�
n to end for � ∈ [√t] is in

the cycle. Since the vertices in gadgets b�
n for � 
= j∗ are already visited in Cx1,y2r by

Lemma 6, it follows that (b j∗
n , end) is in C .

By Lemma 6, none of the terminals of gadgets in Ai∗ and Bj∗ are visited in the
subpath Cx1,y2r or equivalently in the subpath C

start,next. Since C is a Hamiltonian
cycle these vertices must therefore be visited in C

next,start, which is equivalent to
saying that C

b j∗
1 ,b j∗

n
must contain all vertices in Ai∗ ∪ Bj∗ . It is easy to see that this

subpath cannot contain any other vertices, as all other vertices are present inC
start,next

or C
end,start. ��

Using the lemmas above, we can now prove that G ′ has a Hamiltonian cycle if and
only if one of the input instances has a Hamiltonian path.

Lemma 8 Graph G ′ has a directed Hamiltonian cycle if and only if at least one of
the instances Xi, j has a Hamiltonian s − t-path.
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Proof (⇐) Suppose G ′ has a Hamiltonian cycle C . By Lemma 7 there exist indices
i∗, j∗ ∈ [√t] such that the subpath of C from gadget b j∗

1 to b j∗
n visits exactly the

gadgets in Ai∗ ∪ Bj∗ . Since gadget b j∗
1 is entered at terminal in1, it is easy to see that

all gadgets in Ai∗ ∪ Bj∗ are traversed using Path 1. We now construct a Hamiltonian
path P for instance Xi∗, j∗ . Let {a∗

k (i
∗, j∗), b∗

� (i
∗, j∗)} ∈ P if the arc from in

0 of ai
∗
k

to in
1 of b j∗

� is in C . Similarly let {b∗
� (i

∗, j∗), a∗
k (i

∗, j∗)} ∈ P if the arc from in
0 of

b j∗
� to in

1 of ai
∗
k is in C , where k ∈ [m] and � ∈ [n]. Using that every gadget is visited

exactly once via Path 1 in C , we see that C is a Hamiltonian path.
(⇒) Suppose Xi∗, j∗ has a Hamiltonian s− t path P . Then we create a Hamiltonian

cycle C as follows. For each vertex a∗
� from instance Xi∗, j∗ in P we add Path 1 in

path gadget ai
∗

� to C and for each vertex b∗
� we add Path 1 in path gadget b j∗

� to C .
Let P be ordered such that b∗

1 is its first vertex. Now if a∗
k is followed by b∗

� in P , the

arc from terminal in0 of ai
∗
k to in

1 of b j∗
� is added to C . Similarly, if a vertex b∗

� is

followed by a∗
k in P , the arc from terminal in0 of b j∗

� to in
1 of ai

∗
k will be added to C .

Now the subpath C
b j∗

1 ,b j∗
n

contains all terminals in all gadgets in Ai∗ ∪ Bj∗ .

From b j∗
n the cycle goes to end, then to start and to x1. To visit all groups Ai for

i 
= i∗ and Bj for j 
= j∗, do the following.

– From xi where 1 ≤ i < i∗, the cycle continues to gadgets ai1, then to ai2, a
i
3, . . . , a

i
m

following Path 0, and continues to yi , followed by xi+1.
– From xi where i∗ ≤ i ≤ r it goes to ai+1

1 , ai+1
2 , . . . , ai+1

m and continues with
yi , xi+1.

– Similarly, from xi+r where 1 ≤ i < j∗, go through gadgets bi1, . . . , b
i
n and

continue to yi+r and xi+r+1.
– From xi+r where j∗ ≤ i ≤ r , go to gadgets bi+1

1 , . . . , bi+1
n and continue to yi+r ,

for i 
= 2r then add the arc (yi+r , xi+r+1).

From y2r , continue to next, after which the arc (next, b j∗
1 ) closes the cycle. By

definition, no vertex is visited twice, so it remains to check that every vertex of G ′ is
in the cycle. For vertices start,next, end and all vertices xi and yi this is obvious.
All vertices in Ai and Bj where i 
= i∗ and j 
= j∗ are in the cycle between some
x� and y�. All vertices in Ai∗ and Bj∗ are visited since P was a Hamiltonian path on
these vertices. ��

The number of vertices of G ′ is

3(m + n)
√
t + 4(

√
t − 1) + 3 = O(

√
t · (m + n)) = O(

√
t · max |Xi, j |).

By Lemma 8 the construction is a degree-2 cross-composition from Hamiltonian

s − t paths in bipartite graphs to Directed Hamiltonian cycle parameter-
ized by the number of vertices, proving the generalized kernel lower bound for the
directed problem. Karp [20] gave a polynomial-time reduction that, given an n-vertex
directed graph G, produces an undirected graph G ′ with 3n vertices such that G has a
directed Hamiltonian cycle if and only if G ′ has a Hamiltonian cycle. This is a linear
parameter transformation from Directed Hamiltonian cycle to Hamiltonian
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cycle. Since linear-parameter transformations transfer lower bounds [3,4], we con-
clude that (Directed) Hamiltonian cycle does not have a generalized kernel of
size O(n2−ε) for any ε > 0. ��

5 Dominating Set

In this section we discuss theDominating Set problem and its variants. Dom et al. [9]
proved several kernelization lower bounds for the variant Red- Blue Dominating

Set, which is the variant on bipartite (red/blue colored) graphs in which the goal is to
dominate all the blue vertices by selecting a small subset of red vertices. Using ideas
from their kernel lower bounds for the parameterization by either the number of red or
the number of blue vertices, we prove sparsification lower bounds for (Connected)
Dominating Set. Since we parameterize by the number of vertices, the same lower
bounds apply to the dual problems Nonblocker [6] and Max Leaf Spanning

Tree.
We will prove these sparsification lower bounds using a degree-2 cross-composition,

starting from a variation of the Colored Red- Blue Dominating Set problem
(Col- RBDS) as described by Dom et al.in [9].

Equal- Sized Colored Red/Blue Dominating Set (Eq- Col- RBDS)

Input: A bipartite graph G = (R ∪ B, E), where R is partitioned into k subsets
R1, . . . , Rk , such that |R1| = |R2| = . . . = |Rk |.
Question: Is there a set S ⊆ R such that for each i ∈ [k] the set S contains exactly
one vertex of Ri and every vertex in B is adjacent to at least one vertex from S?

We will think of the vertices in set Ri as having color i . Hence the question is
whether there is a set S ⊆ R containing exactly one vertex of each color, such that
every vertex in B is adjacent to at least one vertex in S.

Lemma 9 eq- Col- RBDS is NP-complete.

Proof Dom et al.[9] proved the NP-completeness of Colored RBDS without the con-
straint that all color sets have equal size. The NP-completeness for the equal-sized
version follows from the fact that we may repeatedly add isolated vertices to classes
Ri that are too small, without changing the answer. ��

Using this result, we can now give a degree-2 cross-composition and prove the
following.

Theorem 4 (Connected) Dominating Set, Nonblocker, and Max Leaf

Spanning Tree parameterized by the number of vertices n do not have a gener-
alized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof A graph has a nonblocker of size k if and only if it has a dominating set of
size n − k. Furthermore, the Maximum Leaf Spanning Tree problem is strongly
related to Connected Dominating Set. The internal vertices of any spanning tree
form a connected dominating set. Conversely, any connected dominating set contains
a subtree spanning the dominating set, which – by the domination property – can
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be greedily extended to a spanning tree for the entire graph in which the remaining
vertices are leaves. Hence a graph has a connected dominating set of size at most k if
and only if it has a spanning tree with at least n − k leaves. Therefore we will show
this result for (Connected) Dominating Set only.

Define a polynomial equivalence relationR on instances of eq- Col- RBDS by first
of all letting all instances where there is a vertex in B of degree 0 be in the same class,
note that these are always no-instances. Otherwise, let two instances (G = (R∪B), k)
and (G ′ = (R′ ∪ B ′), k′) of eq- Col- RBDS be equivalent if |R| = |R′| , |B| = |B ′|
and k = k′. It is easy to see that R indeed is a polynomial equivalence relation.

Suppose we are given t instances of eq- Col- RBDS, such that
√
t, log

√
t ∈ N

and such that all given instances are in the same equivalence class of R. Let t ′ := √
t .

If these instances are from the class where B contains a vertex of degree 0, output a
constant size no-instance.

Otherwise, label the given instances as Xi, j with i, j ∈ [t ′]. Let instance Xi, j

have graph Gi, j , which is bipartite with vertex set R∗
i, j ∪ B∗

i, j . Let |R∗
i, j | = m and

|B∗
i, j | = n and let R∗

i, j be partitioned into k color classes R∗p
i, j for all i, j ∈ [t ′]

and p ∈ [k]. Label all vertices in R∗p
i, j as r∗

p,q(i, j) with p ∈ [k] and q ∈ [m/k],
which means that this vertex is the q’th vertex of color p from instance Xi, j . Label
vertices in B∗

i, j as b∗
1(i, j), . . . , b∗

n(i, j) arbitrarily. We now create an instance (G, k′)
for Dominating Set using the following steps. A sketch of G can be found in
Fig. 7.

1. Add vertices r ip,q for p ∈ [k], q ∈ [m/k] and i ∈ [t ′]. The dominating set
problem does not use colored instances, however we will remember the color of
these vertices for simplicity. Let vertex r ip,q have color p, for i ∈ [t ′], q ∈ [m/k]
and p ∈ [k]. Define Ri := {r ip,q | p ∈ [k], q ∈ [m/k]} and let R := ⋃

i∈[t ′] Ri .
Give every set Ri a unique identifier id(Ri ), which is a subset of K := 2+k+log t ′
numbers in the range [2K ].

2. Add vertices b j
� for � ∈ [n] and j ∈ [t ′]. Define Bj and B as Bj := {b j

� | � ∈ [n]}
and B := ⋃

j∈[t ′] Bj .

3. For p ∈ [k], q ∈ [m/k], � ∈ [n], and i, j ∈ [t ′], add an edge between r ip,q and

b j
� if r∗

p,q(i, j) is adjacent to b∗
� (i, j) in instance Xi, j . This ensures that the graph

induced by Ri ∪ Bj is exactly Gi, j and the coloring of vertices in Ri matches the
coloring of R∗

i, j .
4. Add vertices s′ and s and add the edge {s′, s}. Furthermore, add edges between s

and all vertices in R. The degree-1 vertex s′ ensures there is a minimum dominating
set containing s, which covers all vertices in R “for free”.

5. In a similar way as given by Dom et al. in [9], for every pair of colors
(c1, c2) ∈ {1, . . . , k} × {1, . . . , k} with c1 
= c2 we add a vertex set
W(c1,c2) = {w(c1,c2)

1 , . . . , w
(c1,c2)
2K }.

For x ∈ [2K ] and i ∈ [t ′] connect w
(c1,c2)
x to all vertices of color c1 in Ri if

x ∈ id(Ri ), otherwise connect w
(c1,c2)
x to all vertices of color c2 in Ri . This con-

struction is used to choose which Ri is part of a solvable input instance Xi j for
some j ∈ [t ′]. This idea is formalized in Lemmas 12 and 13.
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6. Then, add log t ′ triangles, with vertices {t0
� , t1

� , t2
� } for � ∈ [log t ′]. Connect t0

� to
all vertices in Bj if the �’th bit of j equals 0, connect t1

� to all vertices in Bj if the
�’th bit of j equals 1. Define T to be the union of all these triangles. By choosing
exactly one of the vertices t0

� or t1
� in a dominating set for each �, all groups Bj

except one are dominated automatically. The non-dominated one should then be
part of a solvable input instance.

7. Finally, add the edges {{s, t i�} | � ∈ [log t ′], i ∈ {0, 1}}. This step ensures that
every vertex in T that is contained in the dominating set has s as a neighbor in the
dominating set, which implies that there is always a minimum dominating set that
is connected. ��

This concludes the construction of the graphG. We define k′ := k+1+log t ′, which
fully determines the output instance (G, k′) of the cross-composition. We develop a
series of lemmas to analyze the properties of the constructed graph G.

Lemma 10 If G has a dominating set D, then it also has a dominating set D′ of size
at most |D| that does not contain any vertices from B.

Proof Suppose we are given a minimum dominating set D of G, where vertex v ∈ B
is present. In any dominating set, s or s′ must be present. If s′ is present and s is not,
we replace s′ by vertex s, and still obtain a valid dominating set of the same size. As
such, all vertices in R are now dominated by s. Vertices t0

� and t1
� with � ∈ [log t ′]

are dominated by s. Since t2
� only has neighbors t1

� and t0
� , at least one of these three

vertices is present in D for every � ∈ [log t ′], hereby every vertex in T has a neighbor
in D.

Since B is an independent set in G, the vertex v does not dominate other vertices in
B. Since the polynomial equivalence relation ensures that there are no isolated vertices
in B, vertex v has at least one neighbor u in R. We can safely replace v by u to obtain
a valid dominating set that has the same size as D and contains fewer vertices from
B. The lemma follows by repeating this argument. ��
Lemma 11 Any dominating set of G of size at most k + 1 + log t ′ contains at least
1 + log t ′ vertices from {s, s′} ∪ {t0

� , t1
� , t2

� | � ∈ [log t ′]} and thus contains at most k
vertices from R.

Proof In a dominating set D of G, at least log t ′ vertices are needed from T , since t2
�

only has neighbors t1
� and t0

� , so one of these vertices must be in D for each � ∈ [log t ′].
Furthermore at least one of the vertices s′ or s must be present, therefore there are
1 + log t ′ vertices in the set that are not from R. ��
Lemma 12 Any dominating set of G of size at most k + 1 + log t ′ uses exactly one
vertex of each color from R.

Proof Lemma 11 implies that a dominating set of size at most k + 1 + log t ′ uses at
most k vertices from R, and hence at most k colors. In the other direction, suppose a
dominating set of G of size at most k + 1 + log t ′ uses less than k colors from R. If
at most k − 2 colors are used, there must be two colors c1 and c2 that are not present
in the set. However, this implies that all 2K vertices in W(c1,c2) are not dominated by
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R B
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t21

w(c1,c2)
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W(c1,c2)

W(c2,c1)

Fig. 7 A sketch of G, where t ′ = 2, m = 6 , n = 5 and k = 2. Thereby K should be 5 and W(c1,c2) should
contain 10 vertices. In this example we show the constructed graph when choosing K = 1 for simplicity.
We use the two colors c1 and c2, corresponding to white and black in the figure. Edges from R to B are left
out for simplicity

vertices in R and must therefore be in the set. This contradicts the maximum size of
the dominating set, since K = k + 2 + log t ′. So, we are left with the possibility of
using k − 1 colors. Consider some color c1 that was not used. Look at another color
c2 that is used exactly once, such a color exists by Lemma 11. Suppose the vertex
of color c2 in the dominating set was from set Ri for some i ∈ [t ′]. Then for any
x ∈ id(Ri ) we have that w

(c1,c2)
x is not connected to any vertex in the dominating set

and therefore must be in the dominating set itself. Since id(Ri ) contains K numbers,
there are K vertices that are not dominated by R, which contradicts the maximum size
of the dominating set. ��
Lemma 13 For any dominating set D of G of size at most k + 1 + log t ′, there exists
i ∈ [t ′] such that all vertices in D ∩ R are contained in set Ri .

Proof Suppose there exist two vertices u, v ∈ D such that u ∈ Ri and v ∈ R j for
some i 
= j . By Lemma 12, u and v have different colors and are the only vertices in D
with that color. Suppose u has color cu and v has color cv . Since Ri 
= R j , there exists
x ∈ [2K ] such that x /∈ id(Ri ) and x ∈ id(R j ). By Step 5 of the construction, this

means that none of the neighbors of vertex w
(cu ,cv)
x are contained in the dominating

set. By lemmas 11 and 12, none of the vertices of W is contained in D, implying
w

(cu ,cv)
x /∈ D. Therefore D is not a dominating set of G, which is a contradiction. ��
Using the previous lemmas, we obtain:

Lemma 14 1. If there is an input Xi∗, j∗ that has a col-RBDS of size k, then G has
a connected dominating set of size k + 1 + log t ′.

2. If G has a (not necessarily connected) dominating set of size k + 1 + log t ′, then
some input Xi∗, j∗ has a col-RBDS of size k.
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Proof (1) Let Xi∗, j∗ have a colored RBDS D of size at most k. We construct a
dominating set D′ of G in the following way. For any vertex r∗

p,q in D, add vertex r i
∗
p,q

to D′. Furthermore add the vertex s to D′. Then add vertex t0
� to D′ if the �’th bit of j∗

is 1, add vertex t1
� otherwise. Now s′ is dominated and all vertices in R have neighbor

s in D′. All vertices in Bj∗ are dominated by the vertices in the dominating set from
Ri∗ , since D was a col-RBDS of Xi∗, j∗ . All vertices in Bj for j 
= j∗ have neighbor
t0
� or t1

� in D′ for some � ∈ [log t ′], since the bit representation of j must differ from
the one of j∗ at some position. It now follows from Step 6 of the construction that all
vertices in Bj are adjacent to a vertex in the dominating set.

It remains to verify that all vertices in W have a neighbor in D′. Consider w
(c1,c2)
x

for x ∈ [2K ] and distinct c1, c2 ∈ [k]. If x ∈ id(Ri∗), then this vertex is connected to
all vertices of color c1 in Ri∗ and exactly one of them is contained in D′. If x /∈ id(Ri∗),
the vertex w

(c1,c2)
x is connected to all vertices of color c2 in Ri∗ and again one vertex

of this color in Ri∗ is contained in D′. So D′ is a dominating set of G and it is easy to
verify that |D′| = k + 1 + log t ′. Furthermore, D′ is constructed in such a way that
it is connected. We can show this by proving that every vertex in D′ is a neighbor of
s, since we chose s in D. Vertices in D′ ∩ R and D′ ∩ T are neighbors of s, by Steps
4 and 7 of the construction of G. The vertex s′ and vertices from W and B are not
contained in D′. Thus, D′ is a connected dominating set.

(2) Let D′ be a dominating set of G of size at most k+1+ log t ′. Using Lemma 10
we modify D′ such that it chooses no vertices from B, without increasing its size.
By Lemma 12 and 13, D′ contains exactly k vertices from R, all from the same Ri∗
for some i∗ and all of different colors. D′ has size at most k + 1 + log t of which k
are contained in R and one in {s, s′}. Combined with the fact that for any � ∈ [log t ′]
vertex t2

� has t1
� and t0

� as its only two neighbors, it follows that exactly one of these
three vertices is contained in D′ for all �. Therefore D′ contains at most one of the
vertices t0

� or t1
� for every � ∈ [log t ′].

We can now define x� ∈ {0, 1} for � ∈ [log t ′], such that t x�

� /∈ D′ for all � ∈ [log t ′].
Consider the index j∗ ∈ [t] given by the binary representation [x1 x2 . . . xlog t ′ ]2. It
follows from the bit representation of j∗ that the vertices in Bj∗ are not adjacent to
any of the vertices in D′ ∩ T . Since vertices in Bj∗ are only adjacent to vertices in R
and vertices of T , it follows that every vertex in Bj∗ has a neighbor in R that is in D′.
This implies that every vertex in Bj∗ has a neighbor in D′ ∩ Ri∗ . Since G[Ri∗ ∪ Bj∗ ]
is isomorphic to the graph of instance Xi∗, j∗ , it follows that Xi∗, j∗ has a col-RBDS of
size at most k, which are exactly the vertices in D′ ∩ Ri∗ . ��

Given t instances, the graph G constructed above has n · t ′ + m · t ′ + 2 +
3 · log t ′ +2

(k
2

) ·2K = O(
√
t max |Xi, j |2) vertices. It is straightforward to construct

G in polynomial time. It follows from Lemma 14 that G has a dominating set of size
k′ = k + 1 + log t ′, if and only if one of the input instances has a col-RBDS of size k.
Furthermore, G has a connected dominating set of size k+1+ log t ′ if and only if one
of the input instances has a col-RBDS of size k. Therefore we have given a degree-2
cross-composition to (Connected) Dominating Set. Using Theorem 1 it follows
that Dominating Set and Connected Dominating Set do not have a generalized
kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. ��
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Just as the sparsification lower bounds for Vertex Cover that were presented by
Dell and van Melkebeek [8] had implications for the parameterization by the solution
size k, Theorem 4 has implications for the kernelization complexity of k-Nonblocker
and k-Max Leaf. Since the solution size k never exceeds the number of vertices
in this problem, a kernel with O(k2−ε) edges would give a nontrivial sparsification,
contradicting Theorem 4. Hence our results show that the existing linear-vertex kernels
for k-Nonblocker [6] and k-Max Leaf [11] cannot be improved to O(k2−ε) edges
unless NP ⊆ coNP/poly.

6 d-Hypergraph 2-Colorability and d-NAE-SAT

The goal of this section is to give a nontrivial sparsification algorithm for nae-sat
and prove a matching lower bound. For ease of presentation, we start by analyzing the
closely related hypergraph 2-colorability problem. Recall that a hypergraph consists
of a vertex set V and a set E of hyperedges; each hyperedge e ∈ E is a subset of V .
A 2-coloring of a hypergraph is a function c : V → {1, 2}; such a coloring is proper
if there is no hyperedge whose vertices all obtain the same color. We will use d-
Hypergraph 2-Colorability to refer to the setting where hyperedges have size at
most d. The corresponding decision problem asks, given a hypergraph, whether it is
2-colorable.

A hypergraph is critically 3-chromatic if it is not 2-colorable, but for every hyper-
edge e there is a 2-coloring that is proper on all hyperedges except e. Lovász used linear
algebra to prove an upper bound of

( n
d−1

)
on the number of hyperedges in a critically

3-chromatic d-uniform hypergraph on n vertices. His proof can be made algorithmic
and leads to a nontrivial compression for d-Hypergraph 2-Colorability, as shown
in the following theorem.

Theorem 5 d-Hypergraph 2- Colorability parameterized by the number of ver-
tices n has a kernelwith nd−1+1hyperedges that can be encoded in O(nd−1 · d · log n)

bits.

Proof Suppose we are given a hypergraph with vertex set V and hyperedges E , where
each hyperedge contains at most d vertices. We show how to reduce the number of
hyperedges without changing the 2-colorability status. Let Er ⊆ E denote the set of
edges in E that contain exactly r vertices. For each Er we construct a set E ′

r ⊆ Er of
representative hyperedges. Enumerate the edges in Er as er1, . . . , e

r
k . We construct a

(0, 1)-matrix Mr with N := ( n
r−1

)
rows and k columns. Consider all possible subsets

A1, . . . , AN of size r − 1 of the set of vertices V . Define the elements mi, j for i ∈ N
and j ∈ k of Mr as follows.

mi, j :=
{

1 if Ai ⊆ erj ;
0 otherwise.

Using Gaussian elimination, compute a basis B of the columns of this matrix, which
is a subset of the columns that span the column space of Mr . Let E ′

r contain edge eri
if the i’th column of Mr is contained in B, and define E ′ := ⋃

r∈[d] E ′
r , which forms
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the kernel. Using a lemma due to Lovász [21], we can prove that E ′ preserves the
2-colorability status. ��

Lemma 15 ([21]) Let H be an r-uniform hypergraph with edges E1, . . . , Em. Let
α1, . . . , αm be real numbers such that for every (r − 1)-element subset A of V (H),

∑

Ei⊃A

αi = 0.

Then for every partition {V1, V2} of V (H) the following holds:

∑

Ei⊆V1

αi = (−1)r
∑

Ei⊆V2

αi .

Now we can prove the correctness of the presented kernel.

Lemma 16 (V, E) has a proper 2-coloring ⇔ (V, E ′) has a proper 2-coloring.

Proof (⇒) Clearly, if (V, E) has a proper 2-coloring, then the same coloring is proper
for the subhypergraph (V, E ′) since E ′ ⊆ E .

(⇐) Now suppose (V, E ′) has a proper 2-coloring. We will show that for each
r ∈ [d], no edge of Er is monochromatic under this coloring. All hyperedges contained
in E ′

r are 2-colored by definition. Suppose there exists r ∈ [d], such that Er contains
a monochromatic hyperedge. Let Er = er1, . . . , e

r
k and let ei∗ be a hyperedge in Er

whose vertices all receive the same color.
By reordering the matrix Mr , we may assume that the basis B of Mr contains the

first � columns, thus i∗ > �. Let mi denote the i’th column of Mr . Since mi∗ is not
contained in the basis, there exist coefficients α1, . . . , α� such that

�∑

i=1

αi · mi = mi∗ .

For i ∈ [k], define:

βi :=
⎧
⎨

⎩

αi if i ≤ �;
−1 if i = i∗;
0 otherwise.

From this definition of β it follows that

k∑

i=1

βi · mi =
�∑

i=1

αi · mi − mi∗ = 0.
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Let A j be any size (r − 1)-subset of V . Since mi, j = 1 exactly when ei ⊇ A j , and 0
otherwise, we have:

∑

ei⊃A j

βi =
k∑

i=1

βimi, j = 0.

By Lemma 15 we obtain that for any partitioning V1 ∪ V2 of the vertices in V ,

∑

ei⊆V1

βi = (−1)r
∑

ei⊆V2

βi . (1)

Consider however the partitioning (V1, V2) given by the 2-coloring of the vertices.
Then every edge ei ∈ E ′

r contains at least one vertex of each color and is thereby
not fully contained in V1 or V2. As such, these edges contribute 0 to both sides of
the equation. The edge ei∗ is the only remaining edge with a non-zero coefficient
and by assumption, it is contained entirely within one color class. Without loss of
generality, let ei∗ ⊆ V1. But then

∑
ei⊆V1

βi = −1 while (−1)r
∑

ei⊆V2
βi = 0,

which contradicts (1). ��
To bound the size of the kernel, consider the matrix Mr for r ∈ [d]. Its rank

is bounded by the minimum of its number of rows and columns, which is at most( n
r−1

)
. As such, we get |E ′

r | ≤ rank(Mr ) ≤ ( n
r−1

)
for each r ∈ [d], implying that

|E ′| ≤ ∑d
r=1

( n
r−1

) ≤ nd−1 + 1. In the last step we use the fact that
∑d

r=2

( n
r−1

) =
∑d−1

i=1

(n
i

) ≤ nd−1, which follows from the fact that the left-hand counts nonempty
subsets of [n] of size at most d − 1, and the right-hand counts tuples of size d − 1
over [n]. Since each nonempty subset can be extended to a unique tuple by repeating
an element, the number of nonempty subsets of size at most d−1 is at most the number
of (d − 1)-tuples.

We conclude that E ′ contains at most nd−1 + 1 hyperedges. Since a hyperedge
consists of at most d vertices, the kernel can be encoded in O(nd−1 · d · log n) bits. ��

By a folklore reduction, Theorem 5 gives a sparsification for nae-sat. Consider
an instance of d-nae-sat, which is a conjunction of clauses of size at most d over
variables x1, . . . , xn . The formula gives rise to a hypergraph on vertex set {xi ,¬xi |
i ∈ [n]} containing one hyperedge per clause, whose vertices correspond to the liter-
als in the clause. When additionally adding n hyperedges {xi ,¬xi } for i ∈ [n], it is
easy to see that the resulting hypergraph is 2-colorable if and only if there is a NAE-
satisfying assignment to the formula. The maximum size of a hyperedge matches the
maximum size of a clause and the number of created vertices is twice the number
of variables. We can therefore sparsify an n-variable instance of d-nae-sat in the
following way: reduce it to a d-hypergraph with n′ := 2n vertices and apply the
kernelization algorithm of Theorem 5. It is easy to verify that restricting the formula
to the representative hyperedges in the kernel gives an equisatisfiable formula con-
taining (n′)d−1 + 1 ∈ O(2d−1nd−1) clauses, giving a sparsification for nae-sat. As
mentioned in the introduction, the existence of a linear-parameter transformation [19]
from d-cnf-sat to (d + 1)-nae-sat also implies a sparsification lower bound for
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d-nae-sat, using the results of Dell and van Melkebeek [8]. Hence we obtain the
following theorem.

Theorem 6 For every fixed d ≥ 4, the d-nae-sat problem parameterized by the
number of variables n has a kernel with O(nd−1) clauses that can be encoded
in O(nd−1 · log n) bits, but admits no generalized kernel of size O(nd−1−ε) for ε > 0
unless NP ⊆ coNP/poly.

7 Conclusion

We have added several classic graph problems to a growing list of problems for which
non-trivial polynomial-time sparsification is provably impossible under the assump-
tion that NP � coNP/poly. Our results for (Connected) Dominating Set proved
that the linear-vertex kernels with Θ(k2) edges for k-Nonblocker and k-Max Leaf

Spanning Tree cannot be improved to O(k2−ε) edges unless NP ⊆ coNP/poly.
The graph problems for which we proved sparsification lower bounds can be defined

in terms of vertices: the 4-Coloring problem asks for a partition of the vertex set
into four independent sets, Dominating Set asks for a dominating subset of ver-
tices, and Hamiltonian Cycle asks for a permutation of the vertices that forms
a cycle. In contrast, not much is known concerning sparsification lower bounds for
problems whose solution is an edge subset of possibly quadratic size. For example,
no sparsification lower bounds are known for well-studied problems such as Max

Cut, Cluster Editing, or Feedback Arc Set in Tournaments. Difficulties
arise when attempting to mimic our lower bound constructions for such edge-based
problems. Our constructions all embed t instances into a 2 × √

t table, using each
combination of a cell in the top row and bottom row to embed one input. For problems
defined in terms of edge subsets, it becomes difficult to “turn off” the contribution of
edges that are incident on vertices that do not belong to the two cells that correspond to a
yes-instance among the inputs to the or-construction. This could be interpreted as evi-
dence that edge-based problems such asMax Cutmight admit non-trivial polynomial
sparsification. We have not been able to answer this question in either direction, and
leave it as an open problem. For completeness, we point out that Karp’s reduction [20]
from Vertex Cover to Feedback Arc Set (which only doubles the number of
vertices) implies, using existing bounds for Vertex Cover [8], that Feedback Arc

Set does not have a compression of size O(n2−ε) unless NP ⊆ coNP/poly.
Another problem whose compression remains elusive is 3-Coloring. In several

settings (cf. [12]), the optimal kernel size matches the size of minimal obstructions
in a problem-specific partial order. This is the case for d-nae-sat, whose kernel
with O(nd−1) clauses matches the fact that critically 3-chromatic d-uniform hyper-
graphs have at most O(nd−1) hyperedges. Following this line of reasoning, it is
tempting to conjecture that 3-Coloring does not admit subquadratic compressions:
there are critically 4-chromatic graphs with Θ(n2) edges [23].

The kernel we have given for d-nae-sat is one of the first examples of non-trivial
polynomial-time sparsification for general structures that are not planar or similarly
guaranteed to be sparse. Obtaining non-trivial sparsification algorithms for other prob-
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lems is an interesting challenge for future work. Are there natural problems defined
on general graphs that admit subquadratic sparsification?

Acknowledgements We are grateful to an anonymous referee of Algorithmica for suggesting a simplifi-
cation of the clause gadget used in Lemma 3 and for providing a tighter bound on the resulting size of the
sparsification of d-nae-sat.
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