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Abstract The existence of an on-line competitive algorithm for coloring bipartite
graphs is a tantalizing open problem. So far there are only partial positive results for
bipartite graphswith certain small forbidden graphs as induced subgraphs.We propose
an on-line competitive coloring algorithm for P9-free bipartite graphs.
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1 Introduction

A proper coloring of a graph is an assignment of colors to its vertices such that
adjacent vertices receive distinct colors. It is easy to devise a (linear time) algorithm
for 2-coloring bipartite graphs. Now, imagine that an algorithm receives vertices of a
graph one by one knowing only the adjacency status of the vertex to vertices presented
so far. The color of the current vertex must be fixed by the algorithm before the next
vertex is revealed and it cannot be changed afterwards. This kind of algorithm is called
an on-line coloring algorithm.

This paper is an extended version of [13] from the proceedings of ISAAC 2014.
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Formally, an on-line graph (G, π) is a graphG with a permutation π of its vertices.
An on-line coloring algorithm A takes an on-line graph (G, π), say π = (v1, . . . , vn),
as an input. It produces a proper coloring of the vertices ofG where the color of a vertex
vi , for i = 1, . . . , n, depends only on the subgraph of G induced by v1, . . . , vi . It is
convenient to imagine that consecutive vertices along π are revealed by some adaptive
(malicious) adversary and the coloring process is a game between that adversary and
the on-line algorithm.

Still, it is an easy exercise to show that if an adversary presents a bipartite graph and
all the time the graph presented so far is connected then there is an on-line algorithm
2-coloring these graphs. But if an adversary can present a bipartite graph without any
additional constraints then it can trick out any on-line algorithm to use an arbitrary
number of colors!

Indeed, there is a strategy for the adversary forcing any on-line algorithm to use at
least �log n�+1 colors on a forest of size n. On the other hand, the First-Fit algorithm
(that is an on-line algorithm coloring each incoming vertex with the least admissible
natural number) uses at most �log n� + 1 colors on forests of size n. When the game
is played on bipartite graphs, an adversary can easily force First-Fit to use � n

2 � colors
on a bipartite graph of size n. Lovász, Saks and Trotter [12] proposed a simple on-line
algorithm (in fact as an exercise; see also [8]) using at most 2 log n + 1 colors on
bipartite graphs of size n. This is best possible up to an additive constant as Gutowski
et al. [4] showed that there is a strategy for the adversary forcing any on-line algorithm
to use at least 2 log n − 10 colors on a bipartite graph of size n.

For an on-line algorithm A by A(G, π) we mean the number of colors that A uses
against an adversary presenting graph G with presentation order π .

An on-line coloring algorithm A is competitive on a class of graphs G if there
is a function f such that for every G ∈ G and permutation π of vertices of G we
have A(G, π) � f (χ(G)). As we have discussed, there is no competitive coloring
algorithm for forests. But there are reasonable classes of graphs admitting compet-
itive algorithms, e.g., interval graphs can be colored on-line with at most 3χ − 2
colors (where χ is the chromatic number of the presented graph; see [11]) and
cocomparability graphs can be colored on-line with a number of colors bounded
by a tower function in terms of χ (see [9]). Also classes of graphs defined in
terms of forbidden induced subgraphs were investigated in this context. For exam-
ple, P4-free graphs (also known as cographs) are colored by First-Fit optimally,
i.e. with χ colors, since any maximal independent set meets all maximal cliques
in a P4-free graph. Also P5-free graphs can be colored on-line with O(4χ ) col-
ors (see [10]). And to complete the picture there is no competitive algorithm for
P6-free graphs as Gyárfás and Lehel [6] showed a strategy for the adversary forc-
ing any on-line algorithm to use an arbitrary number of colors on bipartite P6-free
graphs.

Confronted with so many negative results, it is not surprising that Gyárfás, Király
and Lehel [5] introduced a relaxed version of competitiveness for on-line algorithms.
The idea is to measure the efficiency of an on-line algorithm by comparing it to the
best on-line algorithm for a given input. Hence, the on-line chromatic number of a
graph G is defined as
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χ∗(G) = inf
A
max

π
A(G, π),

where the infimumis takenover all on-line algorithms A and themaximumis takenover
all permutations π of vertices of G. An on-line algorithm A is on-line competitive for
a class of graphs G, if there is a function f such that for every G ∈ G and permutation
π of vertices of G we have A(G, π) � f (χ∗(G)).

Why are on-line competitive algorithms interesting? Imagine that you design an
algorithm and the input graph is not known in advance. If your algorithm is on-line
competitive then you have an insurance thatwhenever your algorithmusesmany colors
on some graph G with presentation order π then any other on-line algorithm may also
be forced to use many colors on the same graph G with some presentation order π ′.
This means that our algorithm is competing here also with those algorithms designed
only for the single graph G. (More precisely, algorithm may be designed for a single
graph G, thus knows in advance the graph that eventually will come on-line, but for
each arriving vertex v, it may not be able to guess where in the graph v belongs.) The
idea of comparing the outputs of two on-line algorithms directly (not via the optimal
off-line result) is present in the literature.We refer the reader to [1], where a number of
measures are discussed in the context of on-line bin packing problems. In particular,
the relative worst order ratio, introduced there, is closely related to our setting for
on-line colorings.

It may be true that there is an on-line competitive algorithm for all graphs. This is
open, even for the class of all bipartite graphs. To the best of the authors’ knowledge,
there is no promising approach for the negative answer for these questions. However,
there are some partial positive results. Gyárfás and Lehel [7] have shown that First-Fit
is on-line competitive for forests and it is even optimal in the sense that if First-Fit
uses k colors on G then the on-line chromatic number of G is k as well. They also
have shown [5] that First-Fit is competitive (with an exponential bounding function)
for graphs of girth at least 5. Finally, Broersma, Capponi and Paulusma [3] proposed
an on-line coloring algorithm for P7-free bipartite graphs using at most 8χ∗ +8 colors
on graphs with on-line chromatic number χ∗.

The contribution of this paper is the following theorem.

Theorem 1 There is an on-line competitive algorithm coloring P9-free bipartite
graphs and using at most 6(χ∗ +1)2 colors, where χ∗ is the on-line chromatic number
of the presented graph.

Note that this is a full version of [13] published in the proceedings of ISAAC 2014.
In [13], we discuss how our techniques simplify results for P7-free bipartite graphs.
Already in [13], we presented Algorithm1 with a proof that it is on-line competitive
for P8-free bipartite graphs. (This may be a good warmup or source of extra intuition
behind the arguments in this paper.)

2 Forcing Structure

In this section we introduce a family of bipartite graphs without long induced paths
(P6-free) and with arbitrarily large on-line chromatic number. Our on-line algorithm,
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X2 = X3 = X4 =

Xk Xk−1 Xk−1
=

Fig. 1 Family of bipartite graphs

Algorithm1, has the property that whenever it uses many colors on a graph G then G
has a large graph from our family as an induced subgraph and therefore G has a large
on-line chromatic number, as desired.

A connected bipartite graph G has a unique partition of vertices into two indepen-
dent sets. We call these partition sets the sides of G. A vertex v in a bipartite graph
G is universal to a subgraph C of G if v is adjacent to all vertices of C in one of the
sides of G.

Consider a family of connected bipartite graphs {Xk}k�1 defined recursively as
follows. Each Xk has a distinguished vertex called the root. The side of Xk containing
the root of Xk , we call the root side of Xk , while the other side we call the non-root
side. X1 is a single vertex being the root. X2 is a single edge with one of its vertices
being the root. Xk , for k � 3, is a graph formed by two disjoint copies of Xk−1, say
X1
k−1 and X2

k−1, with no edge between the copies, and one extra vertex v adjacent to
all vertices on the root side of X1

k−1 and all vertices on the non-root side of X
2
k−1. The

vertex v is the root of Xk . Note that for each k, the root of Xk is adjacent to the whole
non-root side of Xk , i.e., the root of Xk is universal in Xk . See Fig. 1 for a schematic
illustration of Xk for various k.

A family of P6-free bipartite graphs with arbitrarily large on-line chromatic number
was first presented in [6]. The family {Xk}k�1 was already studied in [2], in particular
Claim3 is proved there. Since we use this claim in the proof of our main theorem and
for the sake of completeness, we give a proof for it below. One can easily verify, by
induction, that Xk is P6-free for k � 1.

Claim 2 Let k � 2. Then, for every binary sequence α1, . . . , αk−1, there are copies
Y1, . . . ,Yk−1 of X1, . . . , Xk−1 contained as induced subgraphs in Xk satisfying the
following two properties. First, they are pairwise disjoint with no edges between them.
And second, for every i ∈ {1, . . . , k − 1} the root of Yi is on the root side of Xk if and
only if αi = 1.

Proof We prove the lemma by induction on k. For the base case k = 2, fix α1 ∈ {0, 1}.
Now, X2 is an edge and one can put Y1 as a single vertex being the root of X2 if α1 = 1,
and being the other vertex if α1 = 0. So suppose k � 3. By definition, Xk consists of
two independent copies X1

k−1 and X2
k−1 of Xk−1 and a root vertex that is universal to

the root side of X1
k−1 and to the non-root side of X2

k−1. Let us first consider the case
αk−1 = 0. Then X1

k−1 is a copy of Xk−1 with its root on the non-root side of Xk , as
required. On X2

k−1 we apply induction for the sequence α1, . . . , αk−2. Hence there
are copies Y1, . . . ,Yk−2 of X1, . . . , Xk−2 as induced subgraphs of X2

k−1 satisying
the following properties. They are pairwise disjoint with no edges between them and
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clearly with no edges to X1
k−1 as well. And for all i ∈ {1, . . . , k − 2}, the root of Yi is

on the root side of X2
k−1 if and only if αi = 1. Since the root of X2

k−1 is contained in
the rood side of Xk , the result follows.

The case αk−1 = 1 is similar with the difference that we use X2
k−1 as a copy of

Xk−1 and that we apply induction on X1
k−1 for the sequence α1, . . . , αk−2. 	


Claim 3 If G contains Xk as an induced subgraph, then χ∗(G) � k.

Proof Let A be any on-line coloring algorithm. We prove by induction on k that the
adversary can present the vertices of G such that A uses at least k colors. It is clear
that any coloring algorithm has to use one color for X1 and two colors for X2. So
suppose that k � 3. The adversary starts with presenting disjoint copies Y1, . . . ,Yk−1
of X1, . . . , Xk−1 one after another, with no edges between the copies, and by induction
he can do this in such away that A uses i colors onYi , for i ∈ {1, . . . , k − 1}. Therefore
there are distinct colors c1, . . . , ck−1 such that ci is used on Yi for every i . Let vi ∈ Yi
be a vertex colored with ci and set αi = 1 if vi is on the non-root side of Yi , and αi = 0
otherwise.

Now we explain how to embed Y1, . . . ,Yk−1 into G. Let v be the root of the
induced copy of Xk contained in G. By Claim2 there are pairwise disjoint copies
Y1, . . . ,Yk−1 of X1, . . . , Xk−1 in Xk with no edges between the copies, and such
that for all i ∈ {1, . . . , k − 1} the root of Yi is on the same side as v if and only if
αi = 1. By the choice of αi it follows that vi is on the non-root side of Xk , for all
i ∈ {1, . . . , k − 1}. Since v is universal in Xk , it is adjacent to vi for all i .

After presenting all Y1, . . . ,Yk−1 the adversary introduces vertex v being the root
of Xk in G, and forces A to use a color different from c1, . . . , ck−1. 	


3 The Algorithm

We present a new on-line algorithm for bipartite graphs, Algorithm1, and we prove
that this algorithm is on-line competitive for P9-free bipartite graphs. It builds on
the algorithm BicolorMax from [3], where it is shown that BicolorMax is on-line
competitive on P7-free graphs (see also [13] for a simple proof of this fact).BicolorMax
aims to force the existence of a large member of the family {Xk}k�1 in a P7-free graph
G whenever it uses many colors on G. Algorithm1 generalizes this behaviour to
P9-free graphs.

Algorithm1 uses three disjoint palettes of colors, {an}n�1, {bn}n�1 and {cn}n�1. In
the followingwhenever the algorithm fixes a color of a vertex v we are going to refer to
it by color(v). Also for any set of vertices X wedenote color(X) = {color(x) | x ∈ X}.
We say that v has color index i if color(v) ∈ {ai , bi , ci }.

Suppose an adversary presents a new vertex v of a bipartite graphG. Then letGi [v]
be the subgraph spanned by the vertices presented so far and colored with a color from
{a1, . . . , ai , b1, . . . , bi , c1, . . . , ci }, together with vertex v, which is uncolored yet.
With Ci [v] we denote the connected component of Gi [v] containing v. For conve-
nience put C0[v] = {v}. Furthermore, let Ci (v) be the graph Ci [v] without vertex v.
Note that by these definitions it already follows that ifw ∈ Ci (v) thenC j [w] ⊆ Ci (v)

for all j � i . We will use this fact throughout the rest of the paper. For a vertex x in
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Ci (v) it will be convenient to denote by Cx
i (v) the connected component of Ci (v) that

contains x . We say that a color c is mixed in a connected subgraph C of G if c is used
on vertices on both sides of C .

Now we are ready for a description of our algorithm. After Claim5 we give some
intuition about it.

Algorithm 1: On-line competitive for P9-free bipartite graphs
an adversary introduces a new vertex v

m ← max {i � 1 | ai is mixed in Ci [v]} + 1 // max {} := 0
let I1, I2 be the sides of Cm [v] such that v ∈ I1
if am ∈ color(I2) then color(v) = bm
else if cm ∈ color(I2) then color(v) = am
else if ∃u ∈ I1 ∪ I2 and ∃u′ ∈ I2 such that u has color index j � m − √

2m + 2 and u′ is universal
to C j−1[u] then color(v) = cm
else color(v) = am

Claim 4 Algorithm1 gives a proper coloring of on-line bipartite graphs.

Proof Suppose an adversary introduces a vertex v of a bipartite graph G. We have to
show that Algorithm1 colors v properly, i.e., no vertex presented before v and adjacent
to v has the same color as v. Let k � 1 be the color index of v and (I1, I2) be the
bipartition of Ck[v] such that v ∈ I1.

If v is colored with ak , then there is no vertex in I2 colored with ak because of the
first if-condition. In particular, no neighbor of v is colored with ak .

If v is colored with bk , then there is a vertex u ∈ I2 with color(u) = ak . Suppose
v is not colored properly, which means that there is a vertex w ∈ I2 with color bk .
When w was introduced, there must have been a vertex u′ on the other side of w in
Ck[w] with color(w) = ak . Since Ck[w] ⊆ Ck[v] it follows that u′ ∈ I1. But then u
and u′ certify that color ak is mixed in Ck[v], which contradicts the fact that the color
index of v is k.

We are left with the case that v is coloredwith ck . Because of the second if-condition
in the algorithm, a vertex can only get color ck if there is no vertex in I2 colored with
ck , so in particular no neighbor of v is colored with ck . 	


The following claim captures an idea behind maintaining the first two palettes of
colors (the ai ’s and bi ’s). Namely, to force a single ai -color to be mixed we need to
introduce a vertex merging two components. This idea is already present in previous
works [2,3].

Claim 5 Suppose an adversary presents a bipartite graph G to Algorithm1. Let v ∈
V (G) and let x, y be two vertices from opposite sides of Ci [v] both colored with ai
for some i � 1. Then x and y lie in different connected components of Ci (v).

Proof Let v, x and y be like in the statement of the claim. We are going to prove that
at any moment after the introduction of x and y, both x and y lie in different connected
components of the subgraph spanned by vertices coloredwith a1, b1, c1, . . . , ai , bi , ci .
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v

Cv1
k−1(v)

Ck−1[v1]

C
v1,1
k−2(v1)

v2

v1

v1,1

v2,2

Cv2
k−1(v)

Fig. 2 The top and the bottom sides are the two color classes of G. Suppose that vertex v has color index
k and the figure depicts the structure of Ck−1[v]. Vertices v1 and v2 are the children of v and hence they
lie on different sides and are colored with ak−1. Note that removing v from Ck−1[v] disconnects Cv1

k−1(v)

and Cv2
k−1(v)

Say x is presented before y. We claim that x /∈ Ci [y]. If not, then x and y are
on opposite sides in Ci [y] (because, by assumption, they are on opposite sides in
Ci [v]). Therefore, when Algorithm1 is processing vertex y then the first if-condition
is satisfied because of color(x) = ai , and hence y would have received color bi . This
is a contradiction to our assumptions and shows x /∈ Ci [y].

Nowconsider anyvertexw presented after y and suppose the statement is true before
w is introduced. If x /∈ Ci [w] or y /∈ Ci [w] then whatever color is used for w this
vertex does not merge the components of x and y in the subgraph spanned by vertices
presented so far and colored with a1, b1, c1, . . . , ai , bi , ci . Otherwise x, y ∈ Ci [w].
This means that color ai is mixed in Ci [w] and therefore w receives a color with
an index at least i + 1. Thus, the subgraph spanned by the vertices of the colors
a1, b1, c1, . . . , ai , bi , ci stays the same and x and y remain in different connected
components of this graph.

Since all vertices in Ci (v) are colored with a1, b1, c1, . . . , ai , bi , ci , we conclude
that x and y lie in different components of Ci (v). 	


We proceed with some useful definitions. Figure2 provides an illustration of them
and is also helpful to understand upcoming proofs.

Consider a vertex v with a color index k � 2. Let v1, v2 be the earliest introduced
vertices from the opposite sides ofCk−1(v) colored with ak−1 (so witnessing that ak−1
is mixed). We call v1 and v2 the children of v. By Claim5 it follows that Cv1

k−1(v) and
Cv2
k−1(v) are distinct, and hence they are disjoint and no edge is connecting them. In

other words, v is merging the components Cv1
k−1(v) and Cv2

k−1(v).
Somehow, an intermediate goal on our way to find a large forcing structure is to

find a vertex that is universal to two large and well-structured components. E.g., under
the assumption that the graph is P6-free, it would be straightforward to verify that v

is universal to both Cv1
k−1(v) and Cv2

k−1(v). In the case of P9-free graphs we have to
elaborate a bit more to see vertices that are universal to appropriate large components.
For each i � 1 and vertex x in Ci (v), let Cx

i [v] = Cx
i (v) ∪ {v} denote the component

of Ci (v) that contains x together with vertex v.
Suppose that an adversary presents a graphG which is P9-free. Consider v ∈ V (G)

with color index k � 3, and let v1 and v2 be children of v. Note that at least one of
Cv1
k−1[v] and Cv2

k−1[v] does not contain an induced P5 with one endpoint in v. Indeed,
the join of two such paths at v would end up in an induced P9, which is forbidden in
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Fig. 3 Claim6: situation in
which x has a neighbor z in
C j−1[y]

x

Cy
i−1(x)

yz

C ′

z′

G. Choose (arbitrarily) i ∈ {1, 2} such that the component Cvi
k−1[v] has no induced P5

ending at v, and let vi,1, vi,2 be the children of vi .We call vi,1 and vi,2 the grandchildren
of v.

The next claim describes a property of a component containing grandchildren of
a given vertex, namely, that under certain conditions we win a universal vertex to
a subcomponent. The way our algorithm uses the third palette of colors, the ci ’s, is
inspired by this property.

Claim 6 Suppose an adversary presents a bipartite graph G to Algorithm1. Let x be
a vertex with color index i � 2. Suppose that vertex y ∈ Ci−1(x), with color index j ,
lies on the other side of x in G and y is not adjacent to x. If there is no induced path
on 5 vertices in C y

i−1[x] with one endpoint in x, then x has a neighbor in C y
i−1(x) that

is universal to C j−1[y].

Proof We can assume that y has color index j � 2, as otherwise C j−1[y] = C0[y] =
{y} and vacuously any neighbor w of x is universal to C j−1[y], since w and y are on
the same side and hence the side of C j−1[y] that w should be adjacent to is empty.

Suppose for contradiction that x has a neighbor z in C j−1[y] ⊆ Cy
i−1(x) (see

Fig. 3). Since x and y are not adjacent we have y �= z. As Cz
j−1[y] is connected,

there is an induced path P connecting x and y that has only vertices of Cz
j−1(y) as

inner vertices. Clearly, P is a path on at least 4 vertices. Now the color index of y,
namely j � 2, assures from Algorithm1 the existence of a mixed pair colored with
a j−1 in C j−1[y] and with Claim5 it follows that C j−1(y) has at least two connected
components. In particular, there is a component C ′ of C j−1(y) other than Cz

j−1(y).
Clearly, y has a neighbor z′ in C ′, which we use to extend P at y. Since there is no
edge between Cz

j−1(y) and C
′, vertex z′ is not adjacent to the inner vertices of P . And

as G is bipartite z′ cannot be adjacent to x . We conclude the existence of an induced
path on at least 5 vertices inCy

i−1[x]with x and z′ being its endpoints, a contradiction.
So it may be assumed that x has no neighbor inC j−1[y]. Together with our assump-

tions a shortest path connecting x and y in Cy
i−1[x] contains exactly 4 vertices. Let

P = (x, r, s, y) be such a path.We claim that vertex r is universal toC j−1[y]. Suppose
to the contrary that there is a vertex s′ in C j−1[y] which is on the other side of y and
which is not adjacent to r . Let Q = (y, s1, r1, . . . , s�−1, r�−1, s� = s′) be a shortest
path connecting y and s′ in C j−1[y]. For convenience put s0 = s. Now we choose the
minimal m � 0 such that r is adjacent to sm but not to sm+1. Such an m exists since r
is adjacent to s0 = s but not to s�. If m = 0 then the path (x, r, s, y, s1) is an induced
path on 5 vertices, and if m > 0 then the path (x, r, sm, rm, sm+1) contains 5 vertices
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and is induced unless x and rm are adjacent. But the latter is not possible since x has
no neighbor in C j−1[y]. Thus, in both cases we get a contradiction and we conclude
that r is universal to C j−1[y]. 	


In the following we write v →i w for v,w ∈ V (G), if there is a sequence
v = x1, . . . , x j = w with j � i , such that x�+1 is a grandchild of x� for all
� ∈ {1, . . . , j − 1}. Moreover, we define Si (v) = {w ∈ V (G) | v →i w}. Thus,
S1(v) = {v} for every v ∈ V (G).

We make some immediate observations concerning this definition. Let v ∈ V (G)

be a vertex with color index k � 3. Then each w ∈ Si (v) has color index at least
k − 2i + 2 (this can be proved by induction on i) and the graph Cw

k−1[v] does not
contain an induced P5 with one endpoint in v (this follows by definition). Furthermore,
each vertex in Si (v) is connected to v by a path in G and all vertices in the path,
except v, have color index at most k − 1. This proves that Si (v) ⊆ Ck−1[v], for all
i � 1. Note also that if v1 and v2 are the grandchildren of v then we have Si (v) =
{v}∪ Si−1(v1)∪ Si−1(v2). By definition v1 and v2 are the children of a child v′ of v. It
follows that Si−1(v1) ⊆ Cv1

k−2(v
′) and Si−1(v2) ⊆ Cv2

k−2(v
′). By Claim5, we get that

Cv1
k−2(v

′) and Cv2
k−2(v

′) are distinct. In particular, Si−1(v1) and Si−1(v2) are disjoint
and there is no edge between them.

For a vertex v ∈ V (G), Si (v) is complete in G if for every u, w ∈ Si (v) such that
u →i w and u, w lying on opposite sides of G, we have u and w being adjacent in G.
Note that v is a universal vertex in Si (v), provided Si (v) is complete. 	

Claim 7 Suppose an adversary presents a bipartite graph G to Algorithm1. Let v ∈
V (G) be a vertex with color index k and let k � 2i � 2. If Si (v) is complete then
Si (v) contains an induced copy of Xi in G with v being the root of the copy.

Proof We prove the claim by induction on i . For i = 1 we work with S1(v) and X1
being graphs with one vertex only, so the statement is trivial. For i � 2, let v1 and
v2 be the grandchildren of v. Recall that Si (v) = {v} ∪ Si−1(v1) ∪ Si−1(v2). Since
Si (v) is complete it also follows that Si−1(v1) and Si−1(v2) are complete. So by the
induction hypothesis there are induced copies X1

i−1, X
2
i−1 of Xi−1 in Si−1(v1) and

Si−1(v2), respectively, and rooted in v1 and v2, respectively. Recall that Si−1(v1) and
Si−1(v2) are disjoint and there is no edge between them. Thus, the copies X1

i−1 and
X2
i−1 of Xi−1 are disjoint and there is no edge between them, as well. Since Si (v) is

complete v is universal to both of the copies, and since by definition v1 and v2 lie on
opposite sides in G we get that the vertices of X1

i−1 ∪ X2
i−1 ∪ {v} induce a copy of Xi

in G. 	

Claim 8 Suppose an adversary presents a P9-free bipartite graph G to Algorithm1
and suppose vertex v is colored with ak for some k � 2. Then Ck[v] contains an
induced copy of X�√k/2� such that its root lies on the same side as v in G.

Proof We prove the claim by induction on k. For k = 2 the statement is trivial. So
suppose that k � 3. If S�√k/2�(v) is complete then by Claim7 we get an induced copy
of X�√k/2� with a root mapped to v, as required.

From now on we assume that S�√k/2�(v) is not complete. Let (I1, I2) be the biparti-
tion of Ck[v] such that v ∈ I1. First, we will prove that there are vertices z, z′ ∈ Ck[v]
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such that z′ ∈ I1, z has color index � � k − √
2k + 2, and z′ is universal to C�−1[z].

To do so we consider the reason why Algorithm1 colors v with ak .
The first possibility is that the second if-condition of the algorithm is satisfied, that

is, there is a vertex u ∈ I2 colored with ck . Now from the third if-condition u can only
receive color ck if there are vertices w,w′ ∈ Ck[u] such that w′ is on the other side
of u in Ck[u], w has color index j � k − √

2k + 2, and w′ is universal to C j−1[w].
Since Ck(u) ⊆ Ck(v) and u ∈ I2 we have w′ ∈ I1. Therefore, z = w and z′ = w′ are
the vertices we are looking for.

The second reason for coloring v with ak could be that Algorithm1 reaches its last
line. In particular this means, that there is no vertex of color ak or ck in I2. Now we
are going to make use of the fact that S�√k/2�(v) is not complete. There are vertices
x, y ∈ S�√k/2�(v) ⊆ Ck[v] such that x →�√k/2� y, the vertices x and y lie on
different sides of Ck[v] and are not adjacent. Let i and j be the color indices of x
and y, respectively. Note that k � i > j � k − 2�√k/2� + 2. By the definition of a
grandchild it follows that Cy

i−1[x] does not contain an induced P5 with one endpoint
in x . Hence we can apply Claim6 and it follows that x has a neighbor r ∈ Cy

i−1(x) that
is universal to C j−1[y]. We set z′ = r and z = y. Then, we have that z′ is universal to
C j−1[z] with

j � k − 2�√k/2� + 2 � k − √
2k + 2.

Since z′ ∈ Ck[v] we have z′ ∈ I1 or z′ ∈ I2. However, the latter is not possible
as then z and z′ would fulfill the conditions of the third if-statement in Algorithm1,
which contradicts the fact that Algorithm1 reached the last line while processing v.
We conclude that z′ ∈ I1, which completes the proof of our subclaim.

Now fix z, z′ witnessing our subclaim. Let z1 and z2 be the children of z. Both
vertices received color a�−1 and they are on different sides of G. By the induction
hypothesis C�−1[z1] and C�−1[z2] each contain a copy of X�√(�−1)/2� such that the
roots are on the same side as z1 and z2, respectively. Since there is no edge between
C�−1[z1] and C�−1[z2] (this is a consequence of Claim5) and both are contained in
C�−1[z], it follows that z′ together with the copies of X�√(�−1)/2� induce a copy of
X�√(�−1)/2�+1 that has z

′ as its root (see Fig. 4). Since C�−1[z] is contained in Ck[v]
and z′ is on the same side as v and since

�√(� − 1)/2� + 1 �
⌊√

(k − √
2k + 1)/2

⌋
+ 1 �

⌊√
k/2 − √

k/2

⌋
+ 1 �

⌊√
k/2

⌋
,

for all k � 0, the proof is complete. 	

Now we are able to prove our main theorem.

Proof (of Theorem 1) Let k be the largest color index used by Algorithm1 while
coloring vertices of G. In particular, Algorithm1 uses at most 3k colors for G. If
k = 1 then the statement is obvious. Suppose k � 2. There must be a vertex in
G colored with ak . By Claim8 it follows that G contains X�√k/2� and by Claim3,
χ∗(G) � �√k/2� �

√
k/2 − 1. This together with 3k = 6(

√
k/2 − 1 + 1)2 �

6(χ∗(G) + 1)2 completes the proof. 	
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Fig. 4 Final step in Claim8.
The value m stands for
�√(� − 1)/2�

C�−1[z1]
Xm Xm

Ck[v] C�−1[z]z2

z1

v z′
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