
Algorithmica (2016) 74:1435–1452
DOI 10.1007/s00453-015-0004-z

Assigning Channels Via the Meet-in-the-Middle
Approach

Łukasz Kowalik1 · Arkadiusz Socała1

Received: 10 August 2014 / Accepted: 23 April 2015 / Published online: 13 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We study the complexity of the Channel Assignment problem. By
applying the meet-in-the-middle approach we get an algorithm for the �-bounded
Channel Assignment (when the edge weights are bounded by �) running in time
O∗((2

√
� + 1)n). This is the first algorithm which breaks the (O(�))n barrier. We

extend this algorithm to the counting variant, at the cost of slightly higher polynomial
factor. Very recently the second author showed that Channel Assignment does
not admit a O(cn)-time algorithm, for a constant c independent of �. We consider
a similar question for Generalized T -Coloring , a CSP problem that generalizes
Channel Assignment. We show that Generalized T -Coloring does not admit
a 22

o(
√
n)
poly(r)-time algorithm, where r is the size of the instance.

Keywords Channel Assignment · Meet-in-the-middle · Exponential time
hypothesis · T -Coloring · Hardness · Exponential time

1 Introduction

In the Channel Assignment problem, we are given a symmetric weight function
w: V 2 → N (we assume that 0 ∈ N). The elements of V will be called vertices

Research supported by National Science Centre of Poland, Grant Number UMO-2013/09/B/ST6/03136.
An extended abstract was presented at 14th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2014) in Copenhagen, Denmark.

B Arkadiusz Socała
a.socala@mimuw.edu.pl; as277575@students.mimuw.edu.pl; arkadiusz.socala@mimuw.edu.pl

Łukasz Kowalik
kowalik@mimuw.edu.pl

1 Institute of Informatics, University of Warsaw, Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0004-z&domain=pdf

1436 Algorithmica (2016) 74:1435–1452

(as w induces a graph on the vertex set V with edges corresponding to positive values
of w). We say that w is �-bounded when for every x, y ∈ V we have w(x, y) ≤ �.
An assignment c: V → {1, . . . , s} is called proper when for each pair of vertices x, y
we have |c(x) − c(y)| ≥ w(x, y). The number s is called the span of c. The goal is
to find a proper assignment of minimum span. Note that the special case when w is
1-bounded corresponds to the classical graph coloring problem. It is therefore natural
to associate the instance of the channel assignment problem with an edge-weighted
graph G = (V, E) where E = {uv: w(u, v) > 0} with edge weights wE : E → N

such that wE (xy) = w(x, y) for every xy ∈ E (in what follows we abuse the notation
slightly and use the same letter w for both the function defined on V 2 and E). The
minimum span is called also the span of (G, w) and denoted by span(G, w).

It is interesting to realize the place ofChannel Assignment in a kind of hierarchy
of constraint satisfaction problems. We have already seen that it is a generalization
of the classical graph coloring. It is also a special case of the constraint satisfaction
problem (CSP). In CSP, we are given a vertex set V , a constraint set C and a number
of colors d. Each constraint is a set of pairs of the form (v, t) where v ∈ V and
t ∈ {1, . . . , d}. An assignment c: V → {1, . . . , d} is proper if every constraint A ∈ C

is satisfied, i.e. there exists (v, t) ∈ A such that c(v) �= t . The goal is to determine
whether there is a proper assignment. Note that Channel Assignment corresponds
to CSP where d = s and every edge uv of weight w(uv) in the instance of Channel
Assignment corresponds to the set of constraints of the form {(u, t1), (v, t2)} where
|t1 − t2| < w(uv).

1.1 Previous Results for Channel Assignment and Related Problems

Since graph coloring (and hence also Channel Assignment) is an NP-complete
problem, polynomial algorithms are unlikely to exist. Instead, we focus on algorithms
running in time O∗(cn), for some constant c > 1. (The O∗ notation supresses poly-
nomial factors, i.e., f (n) = O∗(g(n)) when f (n) = g(n)nO(1).) The best algorithm
known so far for Channel Assignment runs in O∗(n!) time (see McDiarmid [14]).
Since graph coloring is solvable in time O∗(2n) [2] it is natural to ask whether Chan-
nel Assignment is solvable in time O∗(cn), for some constant c (see [5,9,13]).
This long-standing question has been recently answered in the negative by the second
author [15], under the assumption of the Exponential Time Hypothesis (ETH). ETH
was introduced by Impagliazzo and Paturi [10]. It states that 3- CNF- SAT cannot be
computed in time 2o(n), where n is the number of variables in the input formula. ETH
is a commonly used assumption for proving lower bounds for NP-hard problems, e.g.,
Traxler [16] showed under ETH that CSP does not have a O∗(cn)-time algorithm for
a constant c independent of d. The precise statement of the result of Socała [15] is that
there is no algorithm solving Channel Assignment in 2o(n log n) time, unless ETH
is false. Note that O∗(n!) = 2O(n log n) so the lower bound is tight.

Fortunately, the running time of Channel Assignment can be improved in the
�-bounded variant. McDiarmid [14] came up with an O∗((2� + 1)n)-time algorithm
which has been next improved by Král [13] to O∗((� + 2)n) and to O∗((� + 1)n) by
Cygan and Kowalik [5]. These are all dynamic programming (and hence exponential

123

Algorithmica (2016) 74:1435–1452 1437

space) algorithms, and the last one applies the fast zeta transform to get a minor
speed-up. Interestingly, all these works show also algorithms which count all proper
assignments of span at most s within the same running time (up to polynomial factors)
as the decision algorithm.

Even faster algorithms are known for some special cases of the problem. Perhaps the
most studied one is the L(2, 1)-labeling. An L(2, 1)-labeling of a graph is a mapping
from its vertex set into nonnegative integers such that the labels assigned to adjacent
vertices differ by at least 2, and labels assigned to vertices of distance 2 are different.
Note that the problem of finding an L(2, 1) of minimum span is a special case of
2-boundedChannel Assignment. Currently fastest algorithm for L(2, 1)-labelling,
due to Junosza-Szaniawski, Kratochvíl, Liedloff, Rossmanith and Rzążewski [11],
runs in time O(2.6488n).

Let us now consider somemore problems in the CSP hierarchy. In the T -Coloring
, introduced by Hale [7], we are given a graphG = (V, E), a set T ⊆ N, and a number
s ∈ N. An assignment c: V → {1, . . . , s} is proper when for every edge uv ∈ E we
have |c(u)−c(v)| /∈ T . As usual, the goal is to determine whether there exists a proper
assignment. Like Channel Assignment, T -Coloring is a special case of CSP and
generalizes graph coloring. However, T -Coloring is incomparable with Channel

Assignment.1 However, Fiala, Král’ and Škrekovski introduced Generalized List

T -coloring which is a common generalization of vertex list-coloring (a variant of
the classical graph coloring where each vertex has a list, i.e., a set of allowed colors),
Channel Assignment and T -Coloring . An instance of the Generalized List

T -coloring is a triple (G,Λ, t, s) where G = (V, E) is a graph, Λ: V → 2N,
t : E → 2N and s ∈ N. An assignment c: V → {1, . . . , s} is proper when for every
v ∈ V wehave c(v) ∈ Λ(v), and for every edge uv ∈ E wehave |c(u)−c(v)| /∈ t (uv).
As usual, the goal is to determinewhether there exists a proper assignment. Similarly as
in the case of Channel Assignment, we say that an instance ofGeneralized List

T -coloring is �-bounded if max
⋃

e∈E t (e) ≤ �. Very recently, the Generalized
List T -coloring was considered by Junosza-Szaniawski and Rzążewski [12]. They
show Generalized List T -coloring can be solved in O∗((� + 2)n) time, which
matches the time complexity of the algorithm of Cygan and Kowalik [5] for Channel
Assignment (note that an �-bounded instance ofChannel Assignment can be seen
as an (� − 1)-bounded instance of Generalized List T -coloring).

1.2 Our Results

Ourmain result is a new O∗((2
√

� + 1)n)-time algorithm for the �-boundedChannel
Assignment problem. Note that this is the first algorithm which breaks the (O(�))n

barrier. Our algorithm follows the meet-in-the-middle approach and is surprisingly

1 If in an instance (G, T, s) of T -Coloring the set T is not an interval [0, d] for any d ∈ N then there is no
way of defining a weight function w : V (G)2 → N such that (w, s) is an equivalent instance of Channel
Assignment. Here, we mean that two instances are equivalent if they impose the same sets of constraints
on every pair of vertices. Similarly, if the function w in an instance (w, s) of Channel Assignment has
at least two different non-zero values, there is no set of edges E and set of forbidden colors T such that
(G = (V, E), T, s) is an equivalent instance of Channel Assignment.

123

1438 Algorithmica (2016) 74:1435–1452

simple, so we hope it can become a yet another clean illustration of this beautiful
technique. At a high level, the meet-in-the-middle approach is to solve the problem
for (sometimes carefully defined) two halves of the input instance, and then merge the
results to get a solution for the original instance. Perhaps the most famous application
of this idea to an NP-hard problem is the O∗(2n/2) algortihm for Subset Sum by
Horowitz and Sahni [8]. For more recent applications, see e.g. [1,4].

We show also a (more technical) counting version of our decision algorithm for
Channel Assignment, which runs within the same time (up to a polynomial factor).

By the mentioned result of Socała [15], no algorithm solves Generalized List

T -coloring in 2o(n log n) time, unless ETH is false. The second result of this paper is a
much stronger lower bound forGeneralized List T -coloring . We even consider a
restricted case, i.e. the non-list version where every vertex is allowed to have any color,
so the instance is just a triple (G, t, s). We call it Generalized T -Coloring . We

show that, under ETH, Generalized T -Coloring does not admit a 22
o(

√
n)
poly(r)-

time algorithm, where r is the size of the instance (including all the bits needed to
represent the sets t (e) for all e ∈ E). Note that this rules out an O(n!) algorithm as
well.

1.3 Organization of the Paper

In Sect. 2 we describe an O∗((� + 2)n)-time dynamic programming algorithm
for �-bounded Channel Assignment. It is then used as a subroutine in the
O∗((2

√
� + 1)n)-time algorithm described in Sect. 3. In Sect. 4 we extend the algo-

rithm from Sect. 3 to counting proper assignments of given span. In Sect. 5 we discuss
hardness of Generalized T -Coloring under ETH. Finally, in Sect. 6 we briefly
mention some directions for further work.

1.4 Notation

Throughout the paper n denotes the number of the vertices of the graph under con-
sideration. For an integer k, by [k] we denote the set {1, 2, . . . , k}. We also use the
Iverson’s bracket notation, i.e., for a logical condition α, the expression [α] has value
1 if α holds and 0 otherwise. For a set S and an integer k by

(S
k

)
we denote the family of

all subsets of S of size k. Similarly,
(S
≤k

)
denotes the family of all subsets of S of size

at mist k. Let G = (V, E) be a graph. For a subset X ⊆ V consider the subgraph with
vertex set X and edge set {uv ∈ E : u, v ∈ X}. This subgraph is called the subgraph
of G induced by X and denoted by G[X]. Finally,
 is the disjoint sum of sets i.e. the
standard sum of sets ∪ but with an additional assumption that the sets are disjoint.

2 Yet Another O∗((� + 2)n)-Time Dynamic Programming

In this section we provide a O∗((� + 2)n)-time dynamic programming algorithm for
Channel Assignment. It uses a different approach than e.g. the algorithm of Kral,
and will be used as a subroutine in our faster algorithm.

123

Algorithmica (2016) 74:1435–1452 1439

For a subset X ⊆ V and a function f : X → [� + 1] let AX, f be the set of all
proper assignments c: X → N of the graph G[X] subject to the condition that for
every x ∈ X we have c(x) ≥ f (x).

For every subset X ⊆ V and f : X → [� + 1] we compute the value of T [X, f]
which is equal to theminimumspanof an assignment fromAX, f . Clearly, theminimum
span of (G, w) equals to T [V, f1] where f1 is the constant function which assigns 1
to every vertex.

The values of T [X, f] are computed by dynamic programming as follows. First
we initialize T [∅,∅] = 0 (note that the only function f : ∅ → [� + 1] is technically
the empty set). Next, we iterate over all non-empty subsets of V in the order of
nondecreasing cardinality. In order to determine the value of T [X, f] we use the
recurrence relation formulated in the following lemma.

Informally, it uses the observation that there is a minimum-span assignment c such
that the vertex v ∈ X with minimum color c(v) is left-shifted, i.e. c(v) = f (v). Hence
we can check all possibilities for v and then the colors of all the other vertices from X
have lower bounds in range { f (v), . . . , f (v) + �}, so we can translate the range back
down to {1, . . . , � + 1} and use the previously computed values of T [X \ {v}, ·].

Lemma 1 For a subset X ⊆ V , a function f : X → [�+1] and a vertex v ∈ X define
the function fv: X \ {v} → [� + 1] given by the formula

fv(x) = 1 + max{w(v, x), f (x) − f (v)} for every x ∈ X \ {v}.

Then,
T [X, f] = min

v∈X (f (v) + T [X \ {v}, fv] − 1), (1)

Proof Fix v ∈ X . Denote AX, f,v = {c ∈ AX, f : c(v) = f (v) = minx∈X f (x)}.
Then, for every assignment c ∈ AX, f,v , for every x ∈ X \ {v} we have c(x) ≥
f (v)+max{w(v, x), f (x)− f (v)}. Hence, the minimum span of an assignment from
AX, f,v is equal to f (v) + T [X \ {v}, fv] − 1. It suffices to show that there is an
assignment c∗ ∈ AX, f of minimum span such that c∗(v) ∈ AX, f,v for some v ∈ X .
Consider an arbitrary assignment c∗ ∈ AX, f ofminimumspan. Let x ∈ X be the vertex
of minimum color, i.e. c∗(x) is minimum. If c∗(x) = f (x) we are done. Otherwise
consider a new assignment c∗∗ which is the same as c∗ everywhere except for x and
c∗∗(x) = f (x); then c∗∗ is proper since c∗(x) is minimal and clearly c∗∗ ∈ AX, f .
The span of c∗∗ is not greater than the span of c∗ (actually they are the same since c∗
has minimal span), so the claim follows.
�

The size of the array T is
∑n

i=0

(n
i

)
(� + 1)i = (� + 2)n . Computing a single value

based on previously computed values for smaller sets takes O(n2) time, hence the
total computation takes O((�+ 2)nn2) time. As described, it gives the minimum span
only, but we can retrieve the corresponding assignment within the same running time
using standard techniques.

123

1440 Algorithmica (2016) 74:1435–1452

3 The Meet-in-the-Middle Speed-Up

In this section we present our main result, an algorithm for �-bounded Channel

Assignment that applies the meet-in-the-middle technique. Roughly, the idea is to
find partial solutions for all possible halves of the vertex set and then merge the partial
solutions efficiently to solve the full instance.

For the clarity of the presentation we assume n is even (otherwise we just add
a dummy isolated vertex). Before we describe the algorithm let us introduce some
notation. For a set X ⊆ V , by X we denote V \ X . Moreover, for a function f : X →
[� + 1] we define function f : X → [� + 1] such that for every v ∈ X ,

f (v) = 1 + max({1 + w(uv) − f (u): uv ∈ E, u ∈ X} ∪ {0}).

The values T [X, f] are defined as in Sect. 2. Our algorithm is based on the following
observation.

Lemma 2 The span of (G, w) is equal to

min(T [X, f] + T [X , f] − 1),

where the minimum is over all pairs (X, f) where X ∈ (V
n/2

)
and f : X → [� + 1].

Proof Let c∗: V → N be a proper assignment of minimum span s. Order the vertices
of V = {v1, . . . , vn} so that for every i = 1, . . . , n − 1 we have c∗(vi) ≤ c∗(vi+1).
Consider the subset X = {v1, . . . , vn/2}. Let s1 = c∗(vn/2). Define f : X → [� + 1]
such that f (x) = 1 + min{s1 − c∗(x), �} for every x ∈ X . From the definition of T
we have T [X, f] ≤ s1 (because the assignment x �→ 1+ s1 − c∗(x) belongs toAX, f

and has span s1). Moreover, note that for every v ∈ X it holds that

c∗(v) ≥ max({c∗(u) + w(uv): uv ∈ E, u ∈ X} ∪ {s1})
= max({s1 + w(uv) − f (u) + 1: uv ∈ E, u ∈ X} ∪ {s1})
= s1 − 1 + f (v).

It follows that s = maxv∈X c∗(v) ≥ s1 − 1 + T [X , f] ≥ T [X, f] + T [X , f] − 1.
Finally we show that s > T [X, f] + T [X , f] − 1 contradicts the optimality of c∗.

Let c1 ∈ AX, f be an assignment of span T [X, f] and let c2 ∈ AX , f be an assignment

of span T [X , f]. Consider the following assignment c: V → N.

c(x) =
{
1 + T [X, f] − c1(x) for x ∈ X

T [X, f] + c2(x) − 1 for x ∈ X

One can check that from the definition of f it follows that c is a proper assignment.
Moreover, the span of c is equal to T [X, f] + T [X , f] − 1. Hence, if s > T [X, f] +
T [X , f] − 1 then c∗ is not optimal, a contradiction.
�

123

Algorithmica (2016) 74:1435–1452 1441

From Lemma 2 we immediately obtain the following algorithm for computing the
span of (G, w):

1. Compute the values of T [X, f] for all X ∈ (V
≤n/2

)
and f : X → [� + 1] using the

algorithm from Sect. 2.
2. Find the span of (G, w) using the formula from Lemma 2.

Note that Step 1 takes time proportional to
∑n/2

i=0

(n
i

)
(� + 1)i n2 = O(2n(� +

1)n/2n2). The size of array T is clearly O(2n(� + 1)n/2). In Step 2 we compute
a minimum of

(n
n/2

)
(� + 1)n/2 = O(2n(� + 1)n/2) values. Hence the total time is

O(2n(� + 1)n/2n2). As described, the above algorithm gives the minimum span only,
but we can retrieve the corresponding assignment within the same running time using
standard techniques. We have just proved the following theorem.

Theorem 1 For every �-bounded weight function the channel assignment problem
can be solved in O(2n(� + 1)n/2n2) time.

4 An Extension to Counting

In this section we present an extension of our meet-in-the-middle algorithm which
finds the number of proper assignments of span s. This is slightly more technical than
the decision algorithm because we need to avoid counting the same assignment more
than once. We assume here that V = {1, . . . , n} (we will use the fact that V is linearly
ordered).

For X ∈ (V
n/2

)
, function f : X → [�+1] and value r = 1, . . . , s denote the set of all

assignments from AX, f with span r by AX, f,r . Let us denote Q[X, f, r] = |AX, f,r |.
For a subset X ∈ (V

≤n/2

)
, a function f : X → [�+1] and a vertex v define the function

fv: X \ {v} → [� + 1] given by the formula

fv(x) = max{ f (x), 1 + w(vx), 1 + [x < v]} for every x ∈ X \ {v}.

Also, for a function f : X → {2, . . . , � + 1} define the function f↓: X → [� + 1]
given by the formula

f↓(x) = max{ f (x) − 1, 1} for every x ∈ X.

We will use the recurrence relation formulated in the following lemma.

Lemma 3 For every X ∈ (V
n/2

)
, f : X → [� + 1] and r = 1, . . . , s

Q[X, f, r] =
{∑

v∈ f −1(1) Q[X \ {v}, fv, r] + [r > 1]Q[X, f↓, r − 1] if X �= ∅
[r = 1] otherwise

(2)

Proof The proof is by induction on |X |+r . The formula (2) clearly holdswhen X = ∅,
since there is exactly one assignment with empty domain, it is proper and its span is 1.

123

1442 Algorithmica (2016) 74:1435–1452

Assume X �= ∅. The set AX, f,r partitions into two subsets B and C, where B con-
tains the assignments which assign color 1 to some vertex andC contains the remaining
assignments.

We can further partition B = ⋃
v∈ f −1(1) Bv , where

Bv = {c ∈ B: min c−1(1) = v}.

DefineB′
v = {c|X\{v}: c ∈ Bv}. Then |B′

v| = |Bv|. Consider an arbitrary c ∈ Bv . Then
for every x ∈ X \{v}we have c(x) ≥ f (x), c(x) ≥ f (v)+w(vx) = 1+w(vx), and if
x < v then c(x) ≥ 2. In other words, for every x ∈ X \ {v} we have c(x) ≥ fv(x) and
hence c|X\{v} ∈ AX\{v}, fv,r . It follows that B′

v ⊆ AX\{v}, fv,r . It is also easy to verify
that every assignment c′ ∈ AX\{v}, fv,r can be extended to a proper assignment c ∈ Bv

by putting c(v) = 1 and c|X\{v} = c′. Hence AX\{v}, fv,r ⊆ B′
v . It follows that B

′
v =

AX\{v}, fv,r and hence |Bv| = |AX\{v}, fv,r | = Q[X \{v}, fv, r], where the last equality
follows from the induction hypothesis. We get |B| = ∑

v∈ f −1(1) Q[X \ {v}, fv, r].
If r = 1 then C = ∅. Assume r > 1. It is clear that the assignments in C are in 1–1

correspondence with the assignments in C′ = {c↓: c ∈ C} and the assignments in C′
have span r − 1. Hence |C| = |AX, f↓,r−1| = Q[X, f↓, r − 1], where the last equality
follows from the induction hypothesis.

To sum up,

|AX, f,r | = |B| + |C| =
∑

v∈ f −1(1)

Q[X \ {v}, fv, r] + [r > 1] · Q[X, f↓, r − 1],

as required.
�
With Lemma 3 it is easy to describe a dynamic programming algorithm which

for every subset X ∈ (V
n/2

)
, function f : X → [� + 1] and value r = 1, . . . , s

computes the value of Q[X, f, r]. First we initialize Q[∅,∅, r] = [r = 1] for every
r = 1, . . . , s and next the values of Q[X, f, r] are computed according to Formula (2),
using previously computed values of array Q; to this end we iterate over the triples
(X, f, r) in nondecreasing order of |X |+ r (note that by Eq. 2 the value of Q[X, f, r]
depends only from the entries of array Q with smaller value of |X | + r). The number
of triples considered is O(2n(�+1)n/2s) and processing each triple takes O(n2) time.
We have just shown the following.

Lemma 4 There is an O(2n(� + 1)n/2sn2)-time O(2n(� + 1)n/2s)-space algorithm
which finds the values of Q[X, f, r] for all subsets X ∈ (V

n/2

)
, functions f : X → [�+1]

and values r = 1, . . . , s.

If we use just the values of Q[X, f, r] in the merge phase of the meet-in-the-
middle approach, it is unclear how to avoid double-counting the same assignments.
To overcome this problem, for a subset X ⊆ V , a function f : X → [� + 1] and a
value r = 1, . . . , s define A∗

X, f,r as the set of all proper assignments c: X → N

of the graph G[X] such that c has span r and for every x ∈ X , if f (x) ≤ � then
c(x) = f (x) and otherwise c(x) ≥ f (x). Denote Q∗[X, f, r] = |A∗

X, f,r |.

123

Algorithmica (2016) 74:1435–1452 1443

For a subset X ⊆ V and a function f : X → [� + 1] define the function f←�: X \
f −1([�]) → [� + 1] given by the formula

f←�(x) = max({ f (y) + w(yx) − �: y ∈ f −1([�])} ∪ {1}),

for every x ∈ X \ f −1([�]). Observe the following.
Observation 2 For every X ⊆ V , f : X → [� + 1] and r = 1, . . . , s

(i) if f | f −1([�]) is not a proper assignment then Q∗[X, f, r] = 0;
(i i) if f | f −1([�]) is a proper assignment and r ≤ � then

Q∗[X, f, r] = [f −1({r}) �= ∅ and f −1({r + 1, . . . , � + 1}) = ∅];

(i i i) if f | f −1([�]) is a proper assignment and r ≥ � + 1 then

Q∗[X, f, r] = Q[X \ f −1([�]), f←�, r − �]. (3)

Proof Claim (i) follows from the definition of A∗
X, f,r . The condition in (i i) makes

all the values of the assignment fixed, so there is exactly one assignment, unless
f −1({r}) = ∅ (the assignment has span smaller than r) or f −1({r + 1, . . . , � +
1}) �= ∅ (the assignment has span bigger than r). Once (i) and (i i) are excluded,
there is a natural one-to-one correspondence between the elements of A∗

X, f,r and
A∗

X\ f −1([�]), f←�,r−�. Hence (i i i) follows.
�
Now we proceed to the merge phase of our meet-in-the-middle algorithm. For a

function f : X → [� + 1] we define function f̃ : X → [� + 1] such that for every
v ∈ X ,

f̃ (v) = 1 + max({1 + w(uv) − f (u): uv ∈ E, u ∈ X} ∪ {[v < max f −1(1)]}).

The role of the function f̃ is similar as f in determining the span using the meet-in-
the-middle approach; the only difference is that if for some x ∈ X we have f (x) = 1
then for every v ∈ X , if v < x then f̃ (v) ≥ 2. Informally, this helps us to avoid
counting the same assignment once for every partition of the “middle color” into parts
of relevant sizes. Now we can formulate the counting counterpart of Lemma 2.

Lemma 5 For a given graph G, weight function w and integer s ∈ N the number of
proper assignments of span s is equal to

s∑

s∗=1

∑

X∈(V
n/2)

∑

f :X→[�+1]
f −1(1) �=∅

Q∗[X, f, s∗] · Q[X , f̃ , s − s∗ + 1].

Proof LetD be the set of all proper assignments of span s. For an assignment c ∈ D

define a total order of V as follows: for i, j ∈ V we have i ≺ j iff (c(i), i) ≤lex

123

1444 Algorithmica (2016) 74:1435–1452

(c(j), j), where ≤lex is the lexicographic order. Then c defines a permutation of the
vertices vc1 ≺ vc2 ≺ · · · ≺ vcn . Then D = ⊎s

s∗=1Ds∗ , where

Ds∗ = {c ∈ D: c(vcn/2) = s∗}

Moreover, Ds∗ = ⊎
X∈(V

n/2)
Ds∗,X , where

Ds∗,X = {c ∈ Ds∗ : {vc1, . . . , vcn/2} = X}.

Finally,

Ds∗,X =
⊎

f : X→[�+1]
f −1(1) �=∅

Ds∗,X, f ,

where Ds∗,X, f is the set of assignments c ∈ Ds∗,X such that for every x ∈ X , if
f (x) ≤ � then c(x) = s∗ − f (x)+ 1 and if f (x) = �+ 1 then c(x) ≤ s∗ − f (x)+ 1.
Note that the condition f −1(1) �= ∅ is necessary to satisfy the defining condition of
Ds∗ ; in particular vcn/2 = max f −1(1).

Consider an arbitrary c ∈ Ds∗,X, f . Now observe that for every v ∈ X and u ∈ X
such that uv ∈ E , we have c(v) ≥ max{c(u) + w(uv), s∗}. Moreover, if v < vcn/2,

i.e. v < max f −1(1), then c(v) ≥ s∗ + 1. Hence,

c(v) ≥ max({c∗(u) + w(uv): uv ∈ E, u ∈ X} ∪ {s∗ + [v < max f −1(1)]})
= max({s∗ + w(uv) − f (u) + 1: uv ∈ E, u ∈ X} ∪ {s∗ + [v < max f −1(1)]})
= s∗ − 1 + f̃ (v).

It follows that |Ds∗,X, f | = Q∗[X, f, s∗] · Q[X , f̃ , s − s∗ + 1], as required.
�
From Lemma 4, Observation 2 and Lemma 5 we infer the following theorem.

Theorem 3 For every �-bounded weight function the number of all proper assign-
ments of a given span can be computed in O∗(2n(� + 1)n/2) time.

5 Hardness of Generalized T -Coloring

In this section we give a lower bounds for the time complexity of Generalized
T -Coloring , under ETH. To this end we present a reduction from Set Cover.
The instance of the decision version of Set Cover consists of a family of sets S =
{S1, . . . , Sm} and a number k. The set U = ⋃

S is called the universe and we denote
n = |U |. The goal is to decide whether there is a subfamily C ⊆ S of size at most k
such that

⋃
C = U (then we say the instance is positive).

In the following lemma we reduce Set Cover to the decision version of Gener-
alized T -Coloring , where for a given instance (G, w, s) we ask whether there is a
proper assignment of span at most s (then we say the instance is positive). We say that

123

Algorithmica (2016) 74:1435–1452 1445

an instance (S, k) of Set Cover is equivalent to an instance (G, w, s) of General-
ized T -Coloring when (S, k) is positive iff (G, w, s) is positive. For every edge e
of G, every pair (e, d) for d ∈ t (e) is called a constraint.

Lemma 6 Let (S, k) be an instance of Set Cover with m sets and universe of
size n and let A ∈ [1,m] and B ∈ [1, n] be two reals. Then we can generate in
polynomial time an equivalent instance of Generalized T -Coloring which has
O

(n
B + m

A · max{1, log A}) vertices, O∗ (
2A · mB

)
constraints and is O

(
2A · mB

)
-

bounded.

Proof For convenience we assume that A and B are natural numbers, since otherwise
we round A and B down and the whole construction and its analysis is the same, up
to some details.

In the proof we consider coloring of the vertices as placing the vertices on a number
line in such a way that every vertex is placed in the coordinate equal to its color.

Let S = {S1, . . . , Sm}. We are going to construct a complex instance (G =
(V, E), t, s) of Generalized T -Coloring . We describe it step-by-step and show
some of its properties.

We begin by putting vertices vL and vR in V and t (vLvR) = {0, . . . , s − 2}, i.e. in
every proper assignment vL has color 1 and vR has color s, or the other way around;
w.l.o.g. we assume the first possibility. We specify s later.

In what follows, whenever we put a new vertex v in V , we will specify the set
A(v) of its allowed colors. Formally, this corresponds to putting t (vLv) = {d ∈
{0, . . . , s − 1}: d + 1 /∈ A(v)}.

Our instance will consist of three separate modules (the set choice module, the
witnessmodule and the parsimoniousmodule). By separatewemean they have disjoint
sets of vertices VS , VU and VP and moreover they have disjoint sets of allowed colors,
i.e. for i, j ∈ {S,U, P}, when x ∈ Vi and y ∈ Vj for i �= j then A(x) ∩ A(y) = ∅.
However the modules will interfere with each other by forbidding some distances
between pairs of vertices from two different modules.

The set choice module The first module represents the sets in S. For every i =
1, . . . ,

⌈m
A

⌉
the set VS contains a vertex si . Vertex si represents the A sets

Si = {S(i−1)·A+1, S(i−2)·A+2, . . . , Si ·A}

(and the last vertex s�m/A� represents S�m/A� = S(�m/A�−1)A+1, . . . , Sm). We also put
A(si) = {1, . . . , 2A} for every si ∈ VS . The intuition is that the color c ∈ [2A] of
a vertex si corresponds to a subset Si (c) ⊆ Si , i.e. the choice of sets from Si to the
solution of Set Cover (Fig. 1).

The witness module Let denote the elements of the universe as e1, e2, . . . , en . For
every i = 1, . . . ,

⌈ n
B

⌉
the set VU contains a vertex ui . Vertex ui represents the B

elements

Ui = {e(i−1)·B+1, e(i−2)·B+2, . . . , ei ·B}

123

1446 Algorithmica (2016) 74:1435–1452

Fig. 1 The set choice module

Fig. 2 The witness module (the
grey areas are the gaps between
the mB potentially allowed
positions)

(and the last vertex u�n/B� represents U�n/B� = e(�n/B�−1)B+1, . . . , en).
This time vertices VU do not need to have the same sets of allowed colors, but for

every u ∈ VU we have A(u) ⊆ {1 + i · 2A: i = 1, . . . ,mB}. Note that every vertex
has at most mB allowed colors and there are gaps of length 2A − 1 where no vertex is
going to be assigned.

We say that a sequence (Sw1 , . . . , SwB) ∈ SB is a witness for a vertex ui ∈ VU
when

Ui ⊆
B⋃

j=1

Sw j .

For every i = 1, . . . ,mB color 1 + i · 2A corresponds to the i-th sequence in the set
SB (say, in the lexicographic order of indices); we denote this sequence byWi . Then,
for every u ∈ VU ,

A(u) = {1 + i · 2A: Wi is a witness for u, i = 1, . . . ,mB}.

The intuition should be clear: color of a vertex ui ∈ VU in a proper assignment
represents the choice of at most B sets in the solution of Set Cover which cover Ui

(Fig. 2).

The interaction between the set choice module and the witness module As we have
seen, every assignment c of colors to the vertices determines a choice of a subfamily

123

Algorithmica (2016) 74:1435–1452 1447

Fig. 3 The interaction between a vertex si in the set choice module and a vertex u in the witness module.
All the drawn arcs are forbidden distances between si and u. Note that for every possible color 1 + j · 2A
of u the subset of [2A] excluded by the forbidden distances in t (usi) is exactly Fi, j

S(c) ⊆ S, where S(c) = ⋃�m/A�
i=1 Si (c(i)). Similarly, c determines a choice of a

subfamily S′(c) ⊆ S, where S′(c) = ⋃
u∈VU Wc(u). It should be clear that we want to

force that in every proper assignment S′(c) ⊆ S(c). To this end we introduce edges
between the two modules.

For i = 1, . . . ,
⌈m
A

⌉
and j = 1, . . . ,mB define the following set of forbidden

colors

Fi, j = {c ∈ [2A]: W j ∩ Si � Si (c)}.

The intuition is the following: If a proper assignment colors a vertex ui ∈ VU with
color 1 + j · 2A (i.e. it assigns the witness W j to the set Ui) then it cannot color the
vertex si with colors from Fi, j (i.e. choose this subsets of Si corresponding to these
colors), for otherwise S′(c) � S(c) (Fig. 3).

Claim 1 Consider any proper assignment c: V → [s]. If for every i = 1, . . . ,
⌈m
A

⌉

we have c(si) /∈ ⋃
u∈VU Fi,c(u), then S′(c) ⊆ S(c).

Proof of the claim: Consider a set St ∈ Wc(u) for an arbitrary u ∈ VU . Then St ∈ Si
for some i . From the assumption, c(si) /∈ Fi,c(u), so Wc(u) ∩ Si ⊆ Si (c). Hence,
St ∈ S(c), as required.

Hence we would like to add some forbidden distances to our instance to make the
assumption of Clam 1 hold. To this end, for every u ∈ VU and every si ∈ VS we put

t (usi) =
mB
⋃

j=1

{1 + j · 2A − f : f ∈ Fi, j }.

In otherwords, for every possible color 1+ j ·2A of uwe forbid all distances between
u and si that would result in coloring si with Fi, j . Then indeed the assumption from
Claim 1 holds.
�
Claim 2 For any proper assignment c: V → [s] we have S′(c) ⊆ S(c).

123

1448 Algorithmica (2016) 74:1435–1452

Proof of the claim: We need to verify the assumption in Claim 1. Assume for the
contradiction that for some i and some u ∈ VU we have c(si) ∈ Fi,c(u). Recall
that in a proper assignment c(u) = 1 + j · 2A for some j = 1, . . . ,mB . Then
|c(u) − c(si)| = 1 + j · 2A − c(si) ∈ t (usi), a contradiction.
�
Claim 3 For any proper assignment c: V → [s] we have S(c) covers the universe.

Proof of the claim: This is an immediate corollary from Claim 2 and the fact that
every vertex u ∈ VU is colored with a color from A(u).
�
Claim 4 For every cover C ⊆ S of the universe, there is a proper assignment c: V →
[s] such that S(c) = C.

Proof of the claim: We color vL and vR with 1 and s, and every vertex si with the
color from [2A] corresponding to the subset Si ∩ C of Si . For every set Ui for every
e ∈ Ui we pick a set Se ∈ C that contains e and we build a witness W from the
sets Se. We color ui with the color 1 + j · 2A, where j is the number of W in the
lexicographic order of all witnesses. It remains to check that the resulting assignment
c is proper. The only nontrivial issue is whether for every u ∈ VU and si ∈ VS we have
|c(u)−c(si)| /∈ t (usi). It is clear that |c(u)−c(si)| /∈ {c(u)− f : f ∈ Fi, j }, where j is
such that c(u) = 1+ j ·2A. However, for every j ′ �= j the set {1+ j ′ ·2A− f : f ∈ Fi, j ′ }
is disjoint from 2A (this is where we make use of the ‘gaps’ of length 2A − 1).
�

Bounding the number of sets chosen to the solution The last thing we need in a proper
assignment c is to keep the number of the sets in S(c) bounded by k. To this end we
use the parsimonious module with the vertex set VP .

The third parsimonious module consists of
⌈m
A

⌉
consecutive submodules and an

additional free space of length 2k (meaning that for every v ∈ VP the set of allowed
colors A(v) contains this free space). Between those submodules and the additional
free space we put a gap of length 2A, where no vertex can be assigned. The intuition
is that in a proper assignment c the i-th submodule represents the number of sets from
Si chosen to the solution, i.e. |Si (ci)|.

More precisely, VP = ⊎�m/A�
i=1 Vi , where Vi is a set of 1 + �log A� vertices repre-

senting numbers 20, 21, . . . , 2�log A�. For a vertex x ∈ VP let r(x) denote the number
represented by x . For every two vertices x, y ∈ VP we define

t (xy) = {0, . . . , r(x) + r(y) − 1}.

It follows that we can interpret those vertices as disjoint disks with radii equal to the
represented numbers (see Fig. 4). Let q = (1+mB)2A, i.e. q is the number of colors
used by the first two modules. For every i , we define i-th slot as the set of colors
{q + 1+ (i − 1) · 4A, . . . , q + i · 4A}. Note that the length of each slot is 4A. Define
also the free space as Q = {q+�m/A�·4A+2A+1, . . . , q+�m/A�·4A+2A+2k}.
Each vertex x ∈ Vi is either in i-th slot or in the free space Q. However, x has exactly
one allowed color in the i-th slot chosen so that we can put all the disks in the i-th slot
and they will be disjoint. Let j be such that r(x) = 2 j . Then we denote the allowed
color by ax = q + (i −1) ·4A+∑

r< j 2 ·2r +2 j . In precise terms, A(x) = {ax }∪Q.

123

Algorithmica (2016) 74:1435–1452 1449

Fig. 4 The parsimonious module

Fig. 5 The interaction between the set choice module and one of the submodules of the parsimonious
module. Note that colors in [2A] are ordered according to the cardinality of the chosen collection of sets
(0, 1, 1, 1, 2, 2, 2, 3)

Vertices of the i-th submodule have some edges to the vertex si of the set choice
module. As we mentioned, for a proper assignment c the i-th submodule is going to
be a counter representing the number of sets in Si (c); in fact the vertex representing
2 j corresponds to the j-th bit of the counter. So if r(x) = 2 j for x ∈ Vi , then t (si x)
contains all distances d such that ax − d is a color b from 2A such that the j-th bit of
|Si (b)| is 1. Hence, in a proper assignment c, if the j-th bit of the number of sets in
Si (c) is 1 then x is thrown away from the i-th slot and it is colored by a color from the
free space Q. However, the |Q| = 2k so the sum of the radii of the disks thrown out
from its slots is at most k. It follows that the total number of the chosen sets is also at
most k. Also, if there is a cover C ⊆ S of the universe such that |C| ≤ k, then for every
i , if |C∩Si | has 1 on the j-th bit we put the vertex of Vi representing 2 j in Q. It is clear
that since |C| ≤ k we have enough space for them in Q. Moreover, we do not violate
any edge between these vertices and VS because of the gap 2A inside the parsimonious
module. Together with Claim 4 it implies that (S, k) is a YES-instance of Set Cover

iff (G, t, s) is a YES-instance of Generalized T -Coloring , provided that s is
sufficiently large to provide disjoint intervals of colors for all the modules. From the
construction we infer that it is sufficient to put s = 2A+2A ·mB +4A ·⌈m

A

⌉+2A+2k
(Fig. 5).

Calculating the parameters Note that s = O(2AmB) and in particular our instance
is O(2AmB)-bounded. Moreover, |V | = ⌈ n

B

⌉ + ⌈m
A

⌉ + ⌈m
A

⌉ · (1 + �log A�) + 2 =
O

(n
B + m

A · (1 + log A)
) = O

(n
B + m

A · max {1, log A}). Finally, the total number of

123

1450 Algorithmica (2016) 74:1435–1452

constraints is bounded by O∗((n
B + m

A ·max {1, log A})2 · (2A ·mB)) = O∗ (
2A · mB

)
,

i.e., the number of pairs of the vertices times the maximum forbidden distance s − 1.
It ends the proof.
�
Corollary 1 Let (G, k) be an instance of Dominating Set where G is a graph
on n vertices and k ∈ N. Then, for any real number A ∈ [1, n] we can gener-
ate in polynomial time an equivalent instance of Generalized T -Coloring with
O

(n
A · max{1, log A}) vertices and with O∗ (

(2n)A
)
constraints and such that all the

numbers in the instance have O (A · max {1, log n}) bits.
Proof The instance of Dominating Set with n vertices can be transformed to an
equivalent instance of Set Cover with n sets and also n elements of the universe in
a standard way (the sets are exactly the neighborhoods of the vertices). The number k
stays the same. Therefore we can use the Lemma 6 with A = B and m = n.
�
Theorem 4 If there exists an algorithm solving Generalized T -Coloring in one
of the following time complexities:

(i) 22
o(

√
n)
poly(r),

(i i) 2n·o(log �/log2 log �
)

poly(r),

where n is the number of vertices in the input graph, r is the bit size of the input and
� is the maximum edge weight, then there exists an algorithm solving Dominating

Set in time 2o(n).

Proof We begin with proving (i). Let us assume that we have an algorithm solving
Generalized T -Coloring in time 22

f (n)
poly(r) where f is some function such

that f (n) = o
(√

n
)
. We can assume without loss of generality that f is positive and

nondecreasing. Let C be a constant such that Corollary 1 will give us always at most
C · n

A · max {1, log A} vertices. Let α be a positive nondecreasing function such that

α(n) ≤
√
n

f (Cn)
and α(n) = ω(1). Such a function always exists because

√
n

f (Cn)
=

1√
C

·
√
Cn

f (Cn)
= ω(1). For every instance of Dominating Set with n vertices we can

take A = n
α
(
log2 n

)
log n

and use Corollary 1 to obtain an instance of Generalized

T -Coloring with O
(n
A log A

) = O
(
α

(
log2 n

)
log2 n

)
vertices and

O∗ (
(2n)A

)
= O∗ (

2A+A log n
)

= O∗ (
2O

(
n/

(
α log2 n

)))
= 2o(n)

constraints. Moreover the numbers in the instance have polynomial size, so the size
of the whole instance is 2o(n). Thus this instance can be built in poly

(
n, 2o(n)

)

= 2o(n) time. Then we can solve this instance in 22
f (C · nA log A)

poly
(
2o(n)

)
time.

But f
(
C · n

A log A
) ≤ f

(
C · α

(
log2 n

)
log2 n

) ≤
√

α
(
log2 n

)
log2 n

α
(
α
(
log2 n

)
log2 n

) = log n ·
√

α
(
log2 n

)

α
(
α
(
log2 n

)
log2 n

) = log n ·
√

α
(
log2 n

)

α
(
log2 n

) · α
(
log2 n

)

α
(
α
(
log2 n

)
log2 n

) ≤ log n√
α
(
log2 n

) = o (log n).

So the time of the whole procedure is 2o(n) + 22
o(log n)

poly
(
2o(n)

) = 2o(n).

123

Algorithmica (2016) 74:1435–1452 1451

Now we focus on (i i). Let us assume we have an algorithm solving Gener-

alized T -Coloring in time 2n· f (�)poly(m) where f is a positive function such

that f (�) = o
(

log �

log2 log �

)
. Let A = n

log2 n
. For every instance of Dominating Set

we can use Corollary 1 to obtain an instance of Generalized T -Coloring with

O
(
log2 n · log n

log2 n

)
= O

(
log3 n

)
vertices, O∗

(

(2n)
n

log2 n

)

= 2
O

(
n

log n

)

= 2o(n)

constraints and every number with O
(

n
log n

)
bits. We can obtain it in poly

(
n, 2o(n)

)

= 2o(n) time. Note that then log � ≤ C n
log n for some constant C. The function

x/log2 x is nondecreasing for big values of x so for big values of n we have

log �/log2 log � ≤ C n
log n /log2

(
C n

log n

)
. So we can solve our instance of Gener-

alized T -Coloring in time

2
O

(
log3 n

)·o
(
C n

log n /log2
(
C n

log n

))

· poly
(
2o(n)

)
= 2

o
(
n log2 n/log2

(
C n

log n

))

· 2o(n)

= 2o
(
n log2 n/(logC+log n−log log n)2

)

· 2o(n) = 2
o

(

n/
(
logC
log n +1− log log n

log n

)2
)

· 2o(n)

= 2o(n) · 2o(n) = 2o(n).

Sowehave solved the given instance of Dominating Set in time2o(n)+2o(n) = 2o(n).

�
Corollary 2 There is no algorithm solving an n-vertex instance of Generalized T -
Coloring with bit size r and the maximum edge weight �, in any of the listed time
complexities

– 22
o(

√
n)
poly(r),

– 2n·o(log �/log2 log �
)

poly(r),

unless the Exponential Time Hypothesis fails.

Proof Under the ETH assumption there is no algorithm solving Dominating Set in
time 2o(n) where n is a number of the vertices (See [6]). Therefore the claim follows
immediately from Theorem 4.
�

Regarding the second claim the theorem above, we note that there is a 2O(n log �)

poly(r)-time algorithm for Generalized T -Coloring , see [12].

6 Further Research

An obvious open problem is to improve the upper bound for �-bounded Channel

Assignment even more. For a lower bound, Socała [15] has shown that unless ETH
fails there is no algorithm solving Channel Assignment in time 2n·o(log log �)r O(1)

where r is the bit size of the instance. It would be very intersting to get an O(log �)n-
time algorithm, or to rule it out under ETH or some other resonable complexity

123

1452 Algorithmica (2016) 74:1435–1452

assumption. For a less impressive improvements, it is natural to ask whether parti-
tioning the instance in, say, thirds rather than halves leads to a better running time. A
direct modification of our approach from this paper does not seem to lead anywhere,
since the size of the interface for the middle third is of size O(l)2/3n . However, we
cannot rule out the possibility that there is some tricky way out, like in the related
work of Björklund, Kaski and Kowalik [3].

Acknowledgments The authors thank anonymous reviewers for careful reading and helpful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting paths and packings in halves. In:
Fiat, A., Sanders, P. (eds.) Algorithms - ESA 2009. Lecture Notes in Computer Science, vol. 5757,
pp. 578–586. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04128-0_52

2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion. SIAM J. Comput.
39(2), 546–563 (2009)

3. Björklund, A., Kaski, P., Kowalik, Ł.: Counting thin subgraphs via packings faster than meet-in-
the-middle time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’14, pp. 594–603. SIAM (2014)

4. Chen, J., Kneis, J., Lu, S., Mölle, D., Richter, S., Rossmanith, P., Sze, S.H., Zhang, F.: Random-
ized divide-and-conquer: improved path, matching, and packing algorithms. SIAM J. Comput. 38(6),
2526–2547 (2009)

5. Cygan, M., Kowalik, L.: Channel assignment via fast zeta transform. Inf. Process. Lett. 111(15),
727–730 (2011)

6. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set
problem. In: Proceedings of the WG’04. Lecture Notes in Computer Science, vol. 3353, pp. 245–256
(2004)

7. Hale, W.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980).
doi:10.1109/PROC.1980.11899

8. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM
21(2), 277–292 (1974)

9. Husfeldt, T., Paturi, R., Sorkin, G.B.,Williams, R.: Exponential algorithms: algorithms and complexity
beyond polynomial time (Dagstuhl Seminar 13331). Dagstuhl Rep. 3(8), 40–72 (2013)

10. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
11. Junosza-Szaniawski, K., Kratochvíl, J., Liedloff, M., Rossmanith, P., Rzążewski, P.: Fast exact algo-

rithm for labeling of graphs. Theor. Comput. Sci. 505, 42–54 (2013)
12. Junosza-Szaniawski, K., Rzążewski, P.: An exact algorithm for the generalized list t-coloring problem.

Discrete Math. Theor. Comput. Sci. 16(3), 77–94 (2014)
13. Král, D.: An exact algorithm for the channel assignment problem. Discrete Appl. Math. 145(2),

326–331 (2005)
14. McDiarmid, C.J.H.: On the span in channel assignment problems: bounds, computing and counting.

Discrete Math. 266(1–3), 387–397 (2003)
15. Socała, A.: Tight lower bound for the channel assignment problem. In: Proceedings of the Twenty-Sixth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15), pp. 662–675. SIAM (2015)
16. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Niedermeier, R. (eds.)

IWPEC. Lecture Notes in Computer Science, vol. 5018, pp. 190–201. Springer (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/978-3-642-04128-0_52
http://dx.doi.org/10.1109/PROC.1980.11899

	Assigning Channels Via the Meet-in-the-Middle Approach
	Abstract
	1 Introduction
	1.1 Previous Results for Channel Assignment and Related Problems
	1.2 Our Results
	1.3 Organization of the Paper
	1.4 Notation

	2 Yet Another O*((ell+2)n)-Time Dynamic Programming
	3 The Meet-in-the-Middle Speed-Up
	4 An Extension to Counting
	5 Hardness of Generalized T-Coloring
	6 Further Research
	Acknowledgments
	References

