
Algorithmica (2015) 73:589–606
DOI 10.1007/s00453-015-0001-2

Computing the Greedy Spanner in Linear Space

Sander P. A. Alewijnse1 · Quirijn W. Bouts1 ·
Alex P. ten Brink1 · Kevin Buchin1

Received: 31 December 2013 / Accepted: 4 April 2015 / Published online: 20 April 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The greedy spanner is a high-quality spanner: its total weight, edge count
and maximal degree are asymptotically optimal and in practice significantly better
than for any other spanner with reasonable construction time. Unfortunately, all known
algorithms that compute the greedy spanner on n points use Ω(n2) space, which is
impractical on large instances. To the best of our knowledge, the largest instance for
which the greedy spanner was computed so far has about 13,000 vertices. We present
a linear-space algorithm that computes the same spanner for points in R

d running in
O(n2 log2 n) time for any fixed stretch factor and dimension.We discuss and evaluate a
number of optimizations to its running time, which allowed us to compute the greedy
spanner on a graph with a million vertices. To our knowledge, this is also the first
algorithm for the greedy spanner with a near-quadratic running time guarantee that
has actually been implemented.

Keywords Geometric spanner · Dilation · Stretch factor · Greedy algorithm ·
Computational geometry

1 Introduction

A t-spanner on a set of points, usually in the Euclidean plane, is a graph on these points
that is a ‘t-approximation’ of the complete graph, in the sense that shortest routes in
the graph are at most t times longer than the direct geometric distance. The spanners

B Quirijn W. Bouts
q.w.bouts@tue.nl

Kevin Buchin
k.a.buchin@tue.nl

1 Eindhoven University of Technology, Eindhoven, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0001-2&domain=pdf
http://orcid.org/0000-0002-1101-0904

590 Algorithmica (2015) 73:589–606

considered in literature have only O(n) edges as opposed to the O(n2) edges in the
complete graph, or other desirable properties such as bounded diameter or bounded
degree, which makes them a lot more pleasant to work with than the complete graph.

Spanners are used in wireless network design [8]: for example, high-degree routing
points in such networks tend to have problems with interference, so using a spanner
with boundeddegree as network avoids these problemswhilemaintaining connectivity.
They are also used as a component in various other geometric algorithms, and are
used in distributed algorithms. Spanners were introduced in network design [13] and
geometry [6], and have since been subject to a considerable amount of research [10,12].

There exists a large number of constructions of t-spanners that can be parameter-
ized with arbitrary t > 1. They have different strengths and weaknesses: some are
fast to construct but of low quality (Θ-graph, which has no guarantees on its total
weight), others are slow to construct but of high quality (greedy spanner, which has
low total weight andmaximumdegree), some have an extremely low diameter (various
dumbbell based constructions) and some are fast to construct in higher dimensions
(well-separated pair decomposition spanners). See for example [12] for detailed expo-
sitions of these spanners and their properties.

The greedy spanner is one of the first spanner algorithms that was considered, and
it has been subject to a considerable amount of research regarding its properties and
more recently also regarding computing it efficiently. This line of research resulted in
a O(n2 log n) algorithm [2] for metric spaces of bounded doubling dimension (and
therefore also for Euclidean spaces). A different algorithm which has proven to work
well in practice is the so called FG-Greedy algorithm introduced in [7]. Although
a Θ(n3 log n) bound was proven for this algorithm, experiments show that it tends
to have near-quadratic behaviour in practice.1 Among the many spanner algorithms
known, the greedy spanner is of special interest because of its exceptional quality: its
size, weight and degree are asymptotically optimal, and also in practice better than
those of any other spanner construction algorithms with reasonable running times.
For example, it produces spanners with about ten times as few edges, twenty times
smaller total weight and six times smaller maximum degree than its closest well-
known competitor, the Θ-graph, on uniform pointsets. The contrast is clear in Fig. 1.
Therefore, a method of computing it more efficiently is of considerable interest.

We present an algorithm whose space usage is Θ(n) whereas existing algorithms
use Θ(n2) space, while being only a logarithmic factor slower than the fastest known
algorithm, thus answering a question left open in [2]. Our algorithm makes the greedy
spanner practical to compute for much larger inputs than before: previously instances
of up to 13,000 vertices have been calculated at which point these algorithms already
usedmultiple gigabytes ofmemory. In contrast, we tested our algorithmon instances of
up to 1,000,000 points using less than 8GB of memory for the largest set. For previous
algorithms calculations on these large pointsets would require multiple terabytes of
memory. Furthermore, with the help of several optimizations we will present, the
algorithm is also fast in practice, as our experiments show.

1 In subsequent work [3] we have shown that a bound of O(n2 log2 n) on the running time can be achieved
when restricted to pointsets with polynomial spread, explaining this good performance in practice.

123

Algorithmica (2015) 73:589–606 591

Fig. 1 The left rendering shows the greedy spanner on the USA, zoomed in on Florida, with t = 2. The
dataset has 115,475 vertices, so it was infeasible to compute this graph before. The right rendering shows
the Θ-graph on the USA, zoomed in on Florida, with k = 6 for which it was recently proven it achieves a
dilation of two

The method used to achieve this consists of two parts: a framework that uses lin-
ear space and near-linear time, and a subroutine using linear space and (amortized)
near-linear time, which is called a near-linear number of times by the framework. The
subroutine solves the bichromatic closest pair with dilation larger than t problem.
If there is an algorithm with a sub-linear running time for this subproblem (possibly
tailored to our specific scenario), then our framework immediately gives an asymp-
totically faster algorithm than is currently known. This situation is reminiscent to that
of the minimum spanning tree, for which it is known that it is essentially equivalent
to the bichromatic closest pair problem.

The rest of the paper is organized as follows. In Sect. 2 we review a number of
well-known definitions, algorithms and results. In Sect. 3 we give the properties of the
WSPD and the greedy spanner on which our algorithm is based. In Sect. 4 we present
our algorithm and analyze its running time and space usage. In Sect. 5 we discuss our
optimizations of the algorithm. Finally, in Sect. 6 we present our experimental results
and compare it to other algorithms.

2 Notation and Preliminaries

Let V be a set of points in R
d , and let t ∈ R be the intended dilation (t > 1). Let

G = (V, E) be a graph on V . For two points u, v ∈ V , we denote the Euclidean

123

592 Algorithmica (2015) 73:589–606

distance between u and v by |uv|, and the distance in G by δG(u, v). If the graph G is
clear from the context we will simply write δ(u, v). The dilation of a pair of points is t
if δ(u, v) ≤ t · |uv|. A graph G has dilation t if t is an upper bound for the dilations of
all pairs of points. In this case we say that G is a t-spanner. To simplify the analysis,
we assume without loss of generality that t < 2.

We will often say that two points u, v ∈ V have a t-path if their dilation is t . A
pair of points is without t-path if its dilation is not t . When we say a pair of points
(u, v) is the closest or shortest pair among some set of points, we mean that |uv| is
minimal among this set. We will talk about a Dijkstra computation from a point v by
which we mean a single execution of the single-source shortest path algorithm known
as Dijkstra’s algorithm from v.

Consider the following algorithm that was introduced by Keil [11]:

Algorithm GreedySpannerOriginal(V, t)
1. E ← ∅
2. for every pair of distinct points (u, v) in ascending order of |uv|
3. do if δ(V,E)(u, v) > t · |uv|
4. then add (u, v) to E
5. return E

Obviously, the result of this algorithm is a t-spanner for V . The resulting graph is
called the greedy t-spanner for V (or just the greedy spanner, with the parameter t
implied), for which we shall present a more efficient algorithm than the above.

We will make use of the well-separated pair decomposition, or WSPD for short,
as introduced by Callahan and Kosaraju in [4,5]. A WSPD is parameterized with a
separation constant s ∈ Rwith s > 0. This decomposition is a set of pairs of nonempty
subsets of V . Let m be the number of pairs in a decomposition. We can number the
pairs, and denote every pair as {Ai , Bi }with 1 ≤ i ≤ m. Let u and v be distinct points,
then we say that (u, v) is ‘in’ a well-separated pair {Ai , Bi } if u ∈ Ai and v ∈ Bi or
v ∈ Ai and u ∈ Bi . A decomposition has the property that for every pair of distinct
points u and v, there is exactly one i such that (u, v) is in {Ai , Bi }.

For two nonempty subsets Xk and Xl of V , we definemin(Xk, Xl) to be the shortest
distance between the two circles (or balls in higher dimensions) around the bounding
boxes of Xk and Xl and max(Xk, Xl) to be the longest distance between these two
circles. Let diam(Xk) be the diameter of the circle around the bounding box of Xk .
Let �(Xk, Xl) be the distance between the centers of these two circles, also named the
length of this pair. For a given separation constant s ∈ R with s > 0 as parameter
for the WSPD, we require that all pairs in a WSPD are s-well-separated, that is,
min(Ai , Bi) ≥ s · max(diam(Ai), diam(Bi)) for all i with 1 ≤ i ≤ m.

It is easy to see that max(Xk, Xl) ≤ min(Xk, Xl) + diam(Xk) + diam(Xl) ≤
(1 + 2/s)min(Xk, Xl). As t < 2 and as we will pick s = 2t

t−1 later on, we
have s > 4, and hence max(Xk, Xl) ≤ 3/2min(Xk, Xl). Similarly, �(Xk, Xl) ≤
min(Xk, Xl) + diam(Xk)/2 + diam(Xl)/2 ≤ (1 + 1/s)min(Xk, Xl) and hence
�(Xk, Xl) ≤ 5/4min(Xk, Xl).

For any V and any s > 0, there exists a WSPD of size m = O(sdn) that can be
computed in O(n log n+ sdn) time and can be represented in O(sdn) space [4]. Note

123

Algorithmica (2015) 73:589–606 593

that the above four values (min, max, diam and �) can easily be precomputed for all
pairs with no additional asymptotic overhead during the WSPD construction.

3 Properties of the Greedy Spanner and the WSPD

In this section we will give the idea behind the algorithm and present the properties
of the greedy spanner and the WSPD that make it work. We assume we have a set of
points V of size n, an intended dilation t with 1 < t < 2 and a WSPD with separation
factor s = 2t

t−1 , for which the pairs are numbered {Ai , Bi } with 1 ≤ i ≤ m, where
m = O(sdn) is the number of pairs in the WSPD.

Similar to the original greedy spanner algorithm, other algorithms consider all
possible edges in ascending order and focus on reducing the amount ofwork done in the
shortest path computations through caching previous results [7] or undoing and redoing
parts of dijkstra computations [2]. We use a completely different approach, instead of
working on edges, we change the original greedy algorithm to work on well-separated
pairs. We will end up adding the edges in the same order as the greedy spanner. To
achieve this, we maintain a set of ’candidate’ edges for every well-separated pair
such that the shortest of these candidates is the next edge that needs be added. We then
recompute a candidate for some of these well-separated pairs tomaintain this property.
We use two requirements to decide on which pairs we perform a recomputation, that
together ensure that we do not do too many recomputations, but also that we do not
fail to update pairs which needed updating.

We now give the properties on which our algorithm is based.

Observation 1 (Bose et al. [2, Observation 1])For every i with 1 ≤ i ≤ m, the greedy
spanner includes at most one edge (u, v) with (u, v) in {Ai , Bi }.
Proof In [2] this is proven by assuming that there are two edges in a well-separated
pair and then considering the edge which was added last. According to the definition
of the greedy spanner this edge could only be added if there was no t-path between its
endpoints. They continue by showing that there is actually a valid t-path via the first
edge and can hence derive a contradiction. It is important to note that our observation is
not fully identical to the one from [2] as our definition of well-separatedness is slightly
different than theirs. However, their proof uses only properties of their Lemma2,which
still holds true using our definitions as proven in Sect. 2. Their Lemma 2 is almost
Lemma 9.1.2 in [12], whose definitions of well-separatedness is near identical to ours,
except that they use radii rather than diameters and hence have different constants. ��

An immediate corollary is:

Observation 2 (Bose et al. [2, Corollary 1]) The greedy spanner contains at most

O
(

1
(t−1)d

n
)
edges.

Lemma 3 Let E be some edge set for V . For every i with 1 ≤ i ≤ m, we can compute
the closest pair of points (u, v) ∈ Ai × Bi among the pairs of points with dilation
larger than t in G = (V, E) in O(min(|Ai |, |Bi |)(|V | log |V |+|E |)) time and O(|V |)
space.

123

594 Algorithmica (2015) 73:589–606

Proof Assume without loss of generality that |Ai | ≤ |Bi |. We perform a Dijkstra
computation for every point a ∈ Ai , maintaining the closest point in |Bi | such that its
dilation with respect to a is larger than t over all these computations. To check whether
a point that is considered by the Dijkstra computation is in |Bi |, we precompute a
boolean array of size |V |, in which points in |Bi | are marked as true and the rest as
false. This costs O(|V |) space, O(|V |) time and achieves a constant lookup time. A
Dijkstra computation takes O(|V | log |V |+|E |) time and O(|V |) space, but this space
can be reused between computations. ��

Fact 4 (Callahan [4, Chapter 4.5])
∑m

i=1 min(|Ai |, |Bi |) = O(sdn log n)

Proof This is not stated explicitly in [4], but it is a direct consequence of the con-
struction of what they call the one-to-many realization, a special variant of the WSPD
where all pairs are of the form {{a}, B}. It is proven that this one-to-many realization
consists of O(sdn log n) pairs, and the construction splits every pair in the canonical
realization into min(|Ai |, |Bi |) pairs, hence the lemma follows. ��

Observation 5 Let E be some edge set for V . Let (a, b) ∈ E. Let c ∈ V and d ∈ V
be points such that |ac|, |ad|, |bc|, |bd| > t |cd|. Then any t-path between c and d
will not use the edge (a, b).

Proof This directly follows from the fact that c and d are so far away from a and b
that just getting to a or b is already longer than allowed for a t-path. ��

Let Box(S) denote the bounding box of the points in S. To prove our next lemma
we first quote a Lemma from [12]. They use an elaborate packing argument to show
the following (slightly paraphrased to use our notation)

Fact 6 (Narasimhan and Smid [12, Lemma 11.3.4]) Let γ and � be positive real
numbers, and let D(U, V) be a dumbbell whose length is in the interval [�, 2�]. The
number of dumbbells D(a, b) such that

1. The length of D(A, B) is in the interval [�, 2�] and
2. At least one of Box(A) and Box(B) is within distance γ � of either Box(U) or

Box(V).

is less than or equal to cs y := O(sd(1 + γ s)d).

The dumbbells mentioned in Fact 6 are basically the same as our well-separated
pairs, but with the separation defined based on the radius instead of the diameter.
Through this similarity we can prove the following lemma about our well-separated
pairs.

123

Algorithmica (2015) 73:589–606 595

Lemma 7 Let γ and � be positive real numbers, and let {Ai , Bi } be a well-separated
pair in the WSPD with length �(Ai , Bi) = �. The number of well-separated pairs
{A′

i , B
′
i } such that

1. The length of the pair is in the interval [�/2, 2�] and
2. At least one of Box(A′

i) and Box(B ′
i) is within distance γ � of either Box(Ai) or

Box(Bi)

is less than or equal to csγ = O
(
sd(1 + γ s)d

)
.

Proof This follows easily from the very similar Fact 6 which we paraphrased from
Lemma 11.3.4 of [12]. We first note the differences between their definitions and ours.
Their statement involves dumbbells, but these are really the same as our well-separated
pairs with a slightly different definition of well-separatedness: their dumbbells use the
radius and we use the diameter. We can easily amend this by observing that a WSPD
with separation factor s using our definitions is identical to their dumbbellWSPDwith
separation factor 2s. This means our constant csγ is larger than their constant because
our s is doubled, but this is asymptotically irrelevant.

Nowwe shall see howwe can prove our statement using Fact 6. In Fact 6 the interval
for values of D(A, B) is [�, 2�], but our interval for lengths of pairs is [�/2, 2�]. Let
�′ = �(A′

i , B
′
i), then we can obtain our lemma by invoking Fact 6 twice, first by setting

� = �′ (resulting in an upper bound on the number such pairs n1) and then by setting
� = �′/2 (resulting in an upper bound on the number of such pairs n2). This counts
the number of pairs with lengths in the interval [�/2, 2�]. These are exactly the pairs
we are interested in, and hence the constant we obtain is n1 + n2, thus proving the
lemma. ��

This concludes the theoretical foundations of the algorithm. We will now present
the algorithm and analyze its running time.

4 Algorithm

We will now describe the algorithm GreedySpanner in detail. It first computes the
WSPD for V with s = 2t

t−1 and sorts the resulting pairs according to their smallest
distance min(Ai , Bi). It then alternates between calling the FillQueue procedure that
attempts to add well-separated pairs to a priority queue Q, and removing an element
from Q and adding a corresponding edge to E . If Q is empty after a call to FillQueue,
the algorithm terminates and returns E .

We assume we have a procedure ClosestPair(i) that for the i th well-separated pair
computes the closest pair of points without t-path in the graph computed so far, as
presented in Lemma 3, and returns this pair, or returns nil if no such pair exists. For
the priority queue Q, we let min(Q) denote the value of the key of the minimum of
Q. Recall that m = O(sdn) denotes the number of well-separated pairs in the WSPD
that we compute in the algorithm.

We maintain an index i into the sorted list of well-separated pairs. It points to
the smallest untreated well-separated pair—we treat the pairs in ascending order of
min(Ai , Bi) in the FillQueue procedure. When we treat a pair {Ai , Bi }, we call Clos-
estPair(i) on it, and if it returns a pair (u, v), we add it to Q with key |uv|. We link

123

596 Algorithmica (2015) 73:589–606

entries in the queue, its corresponding pair {Ai , Bi } and (u, v) together so they can
quickly be requested. We stop treating pairs and return from the procedure if we have
either treated all pairs, or if min(Ai , Bi) is larger than the key of the minimal entry in
Q (if it exists).

After extracting a pair of points (u, v) from Q, we add it to E . Then, we update
the information in Q: for every pair {A j , Bj } having an entry in Q for which either
bounding box is at most t |uv| away from {Ai , Bi }, we recompute ClosestPair(j) and
updates its entry in Q as follows. If the recomputation returns nil , we remove its entry
from Q. If it returns a pair (u′, v′), we link the entry of j in Q with this new pair and
we increase the key of its entry to |u′v′|.
Algorithm FillQueue(Q, i)
1. while i ≤ m, and either min(Ai Bi) ≤ min(Q) or Q is empty
2. do p ← ClosestPair(i)
3. if p is not nil , but a pair (u, v)

4. then add (u, v) to Q with key |uv|, and associate this entry with {Ai , Bi }
5. i ← i + 1

Algorithm GreedySpanner(V, t)
1. Compute theWSPDW for V with s = 2t

t−1 , and let {Ai , Bi } be the resulting pairs,
1 ≤ i ≤ m

2. Sort the pairs {Ai , Bi } according to min(Ai , Bi)
3. E ← ∅
4. Q ← an empty priority queue
5. i ← 1
6. FillQueue(Q, i)
7. while Q is not empty
8. do extract the minimum from Q, let this be (u, v)

9. add (u, v) to E
10. for all pairs {A j , Bj } with an entry in Q for which either bounding box is

at most t · min(A j , Bj) away from either u or v

11. do p ← ClosestPair(j)
12. if p is nil , remove the entry in Q associated with {A j , Bj } from Q
13. if p is a pair (u′, v′), update the entry in Q associated with {A j , Bj }

to contain (u′, v′) and increase its key to |u′v′|
14. FillQueue(Q, i)
15. return E

We now prove correctness and a bound on the running time of the algorithm.

Theorem 8 Algorithm GreedySpanner computes the greedy spanner for dilation t.

Proof We will prove that if the algorithm adds (u, v) to E on line 9, then (u, v) is the
closest pair of points without a t-path between them in the graph computed so far. The
greedy spanner consists of exactly these edges and hence this is sufficient to prove the
theorem.

It is obvious that if we call ClosestPair(i) on every well-separated pair and take
the closest pair of the non-nil results, then that would be the closest pair of points

123

Algorithmica (2015) 73:589–606 597

without a t-path between them. Our algorithm essentially does this, except it does not
recalculate ClosestPair(i) for every pair after every added edge, but only for specific
pairs. We will prove that the calls which are not made due to this optimization do not
change the values in Q. Our first optimization is that if a call ClosestPair(i) returns
nil it will always return nil , so we need not callClosestPair(i) again, which is therefore
a valid optimization.

The restriction ‘for which either bounding box is at most t ·min(A j , Bj) away from
either u or v’ from the for-loop on line 10 is the second optimization. Its validity is a
direct consequence of Observation 5: all pairs of points in well-separated pairs more
than t min(A j , Bj) away from either u or v are too far away to use the newly-added
edge to gain a t-path. Therefore re-runningClosestPair(i) and performing lines 12 and
13 will not change any entries in Q as claimed.

As min(Ai Bi) is a lower bound on the minimal distance between any two points
(a, b) in {Ai , Bi }, it immediately follows that callingFillQueue(Q, i) on a pair {Ai , Bi }
with min(Ai Bi) > min(Q) cannot possibly yield a pair that can cause min(Q) to
become smaller. As the pairs are treated in order of min(Ai Bi), this means the opti-
mization that is the condition on line 1 in FillQueue(Q, i) is a valid optimization. This
proves the theorem. ��

We will now analyze the running time and space usage of the algorithm. We will
use the observations in Sect. 3 to bound the amount of work done by the algorithm.

Lemma 9 For any well-separated pair {Ai , Bi } (1 ≤ i ≤ m), the number of times
ClosestPair(i) is called is at most 1 + cst .

Proof ClosestPair(i) is called once for every i in the FillQueue procedure. Closest-
Pair(i) may also be called after an edge is added to the graph. We will show that if
a well-separated pair {A j , Bj } causes ClosestPair(i) to be called, then �(A j , Bj) ∈
[�(Ai , Bi)/2, 2�(Ai , Bi)]. Then, by the condition of line 10, the collection of pairs
that call ClosestPair(i) satisfy the requirements of Lemma 7 by setting γ = t , so we
can conclude this happens only cst times. The lemma follows.

Wewill now show that �(A j , Bj) ∈ [�(Ai , Bi)/2, 2�(Ai , Bi)]. Recall the following
from Sect. 2:

max(Ai , Bi) ≤ 3

2
min(Ai , Bi)

max(A j , Bj) ≤ 3

2
min(A j , Bj)

min(Ai , Bi) ≤ �(Ai , Bi) ≤ 5

4
min(Ai , Bi)

min(A j , Bj) ≤ �(A j , Bj) ≤ 5

4
min(A j , Bj)

The algorithm ensures the following:

min(A j , Bj) ≤ min(Q) ≤ max(Ai , Bi)

min(Ai , Bi) ≤ min(Q) ≤ max(A j , Bj)

123

598 Algorithmica (2015) 73:589–606

Combining these we have:

�(Ai , Bi) ≤ 5

4
min(Ai , Bi) ≤ 5

4

3

2
min(A j , Bj) < 2�(A j , Bj)

�(Ai , Bi) ≤ 2�(A j , Bj)

�(A j , Bj) ≤ 5

4
min(A j , Bj) ≤ 5

4

3

2
min(Ai , Bi) < 2�(Ai , Bi)

�(A j , Bj)/2 ≤ �(Ai , Bi)

It follows that �(A j , Bj) ∈ [�(Ai , Bi)/2, 2�(Ai , Bi)]. ��
Theorem 10 Algorithm GreedySpanner computes the greedy spanner for dilation t

in O
(
n2 log2 n 1

(t−1)3d
+ n2 log n 1

(t−1)4d

)
time and O

(
1

(t−1)d
n
)
space.

Proof We can easily precompute which well-separated pairs are close to a particular
well-separated pair as needed in line 10 in O(m2) time, without affecting the running
time. By Lemma 7 there are only at most cst such well-separated pairs per well-

separated pair, so this uses O
(

1
(t−1)d

n
)
space.

Combining Observation 2 with Lemma 3 we conclude that we can compute Clos-
estPair(i) in

O

(
min(|Ai |, |Bi |)

(
n log n + 1

(t − 1)d
n

))

time and O(n) space. By Lemma 9 the time taken by all ClosestPair(i) calls is
therefore

O

(
m∑
i=1

(1 + cst)min(|Ai |, |Bi |)
(
n log n + 1

(t − 1)d
n

))

and its space usage is O(n) by reusing the space for the calls. Using Fact 4, this is
at most

O

(
1

(t − 1)d

(
1 + t

t − 1

)d 1

(t − 1)d
n log n

(
n log n + 1

(t − 1)d
n

))

which simplifies to

O

(
n2 log2 n

1

(t − 1)3d
+ n2 log n

1

(t − 1)4d

)
.

The time taken by all other steps of the algorithm is insignificant compared to the
time used by ClosestPair(i) calls. These other steps are: computing the WSPD and

all actions with regard to the queue. All these other actions use O
(

1
(t−1)d

n
)
space.

Combining this with Theorem 8, the theorem follows. ��

123

Algorithmica (2015) 73:589–606 599

5 Making the Algorithm Practical

Experiments suggested that implementing the above algorithm as-is does not yield a
practical algorithm. With the four optimizations described in the following sections,
the algorithm attains running times that are a small constant slower than the algorithm
introduced in [7] called FG-greedy, which is considered the fastest practical algorithm
known in literature.

5.1 Finding Close-By Pairs

The algorithm at some point needs to knowwhich pairs are ‘close’ to the pair for which
we are currently adding an edge. In our proof above, we suggested that these pairs be
precomputed in O(m2) time. Unfortunately, this precomputation step turns out to take
much longer than the rest of the algorithm. If n = 100, then (on a uniform pointset)
m ≈ 2000 and m2 ≈ 4000000 while the number of edges e in the greedy spanner
is about 135. Our solution is to simply find them using a linear search every time we
need to know this information. This only takes O(e · m) time, which is significantly
faster.

5.2 Reducing the Number of Dijkstra Computations

After decreasing the time taken by preprocessing, the next part that takes the most
time is the Dijkstra computations, whose running time dwarfs the rest of the oper-
ations. We would therefore like to optimize this part of the algorithm. For every
well-separated pair, we save the length of the shortest path found by any Dijkstra
computation performed on it, that is, its source s, target t and distance δ(s, t). Then,
if we are about to perform a Dijkstra computation on a vertex u, we first check
if the saved path is already good enough to ‘cover’ all nodes in Bi . Let c be the
center of the circle around the bounding box of Bi and r its radius. We check if
t · |us| + δ(s, t)+ t · (|tc| + r) ≤ t · (|uc| − r) and mark it as ‘irrelevant for the rest of
the algorithm’. This optimization roughly improves its running time by a factor three.

5.3 Sharpening the Bound of Observation 5

The bound given in Observation 5 can be improved. Let {Ai , Bi } be the well-separated
pair for which we just added an edge and let {A j , Bj } be the well-separated pair under
consideration in our linear search. First, some notation: let Xk, Xl be sets belonging
to some well-separated pair (not necessarily the same pair), then min(Xk, Xl) denotes
the (shortest) distance between the two circles around the bounding boxes of Xk and
Xl andmax(Xk, Xl) the longest distance between these two circles. Let � = �(Ai , Bi).
We can then replace the condition of Lemma 5 by the sharper conditionmin(Ai , A j)+
�+min(Bj , Bi) ≤ t ·max(A j , Bj)∨min(Ai , Bj)+�+min(A j , Bi) ≤ t ·max(Bj , A j)

The converse of the condition implies that the edge just added cannot be part of a t-path

123

600 Algorithmica (2015) 73:589–606

between a node in {A j , Bj }, so the correctness of the algorithm is maintained. This
leads to quite a speed increase.

5.4 Miscellaneous Optimizations

There are two further small optimizations we have added to our implementation.
Firstly, rather than using the implicit linear space representation of the WSPD, we

use the explicit representation where every node in the split tree stores the points
associated with that node. For pointsets where the ratio of the longest and the short-
est distance is bounded by some polynomial in n, this uses O(n log n) space rather
than O(n) space. This is true for all practical cases, which is why we used it in our
implementation. For arbitrary pointsets, this representation uses O(n2) space. In prac-
tice, this extra space usage is hardly noticeable and it speeds up access to the points
significantly.

Secondly, rather than performing Dijkstra’s algorithm, we use the A∗ algorithm.
This algorithm uses geometric estimates to the target to guide the computation to its
goal, thus reducing the search space of the algorithm [9].

We have tried a number of additional optimizations, but none of them resulted in a
speed increase. We describe them here.

We have tried to replace A∗ by ALT , a shortest path algorithm that uses
landmarks—see [9] for details on ALT—which gives better lower bounds than the
geometric estimates used in A∗. However, this did not speed up the computations at
all, while costing some amount of overhead.

We have also tried to further cut down on the number of Dijkstra computations.
We again used that we store the lengths of the shortest paths found so far per well-
separated pair. Every time after calling ClosestPair(i) we checked if the newly found
path is ‘good enough’ for other well-separated pairs, that is, if the path combined
with t-paths from the endpoints of the well-separated pairs would give t-paths for all
pairs of points in the other well-separated pair. This decreased the number of Dijkstra
computations performed considerably, but the overhead from doing this for all pairs
was greater than its gain.

We tried to speed up the finding of close-by pairs by employing range trees. We
also tried using the same range trees to perform the optimization of the previous
paragraph only to well-separated pairs ‘close by’ our current well-separated pair.
Both optimizations turned out to give a speed increase and in particular the second
retained most of its effectiveness even though we only tried it on close-by pairs, but
the overhead of range trees was vastly greater than the gain—in particular the space
usage of range treesmade the algorithm use about asmuch space as the original greedy
algorithms.

6 Experimental Results

We have run our algorithm on pointsets whose size ranged from 100 to 1,000,000
vertices on several distributions. If the set contained at most 10,000 points, we have
also run the FG-greedy algorithm to compare the two algorithms. We have recorded

123

Algorithmica (2015) 73:589–606 601

both space usage and running time (wall clock time).We have also performed a number
of tests with decreasing values of t on datasets of size 10,000 and 50,000. Finally, as
this is the first time we can compute the greedy spanner on large graphs,2 we have
compared it to theΘ-graph and theWSPD-based spanner algorithmon large instances.
Note that the construction of this WSPD-based spanner is unrelated to our use of the
WSPD. Their approach simply choses the separation constant to be sufficiently high
to guarantee the desired dilation when adding a single edge per well-separated pair.
Although this approach also results in a linear number of edges their constants are
much bigger (see Sect. 6.4).

Similar to [7] we have used three kinds of distributions from which we draw our
points: a uniform distribution, a gamma distribution with shape parameter 0.75, and a
distribution consisting of

√
n uniformly distributed pointsets of

√
n uniformly distrib-

uted points. The results from the gamma distribution were nearly identical to those of
the uniformpointset, sowedidnot include them.All our pointsets are two-dimensional.

6.1 Experiment Environments

The algorithms have been implemented in C++. We have implemented all data struc-
tures not already in the std. The random generator used was the Mersenne Twister
PRNG—we have used a C++ port by J. Bedaux of the C code by the designers of the
algorithm, M. Matsumoto and T. Nishimura.

We have used two servers for the experiments. Most experiments have been run on
the first server, which uses an Intel Core i5-3470 (3.20GHz) and 4GB (1600MHz)
RAM. It runs the Debian 6.0.7 OS and we compiled for 32 bits using G++ 4.7.2 with
the -O3 option. For some tests we needed more memory, so we have used a second
server. This server uses an Intel Core i7-3770k (3.50GHz) and 32GB RAM. It runs
Windows 8 Enterprise and we have compiled for 64 bits using the Microsoft C++
compiler (17.00.51106.1) with optimizations turned on.

6.2 Dependence on Instance Size

Our first set of tests compared FG-greedy and our algorithm for different values of n.
The results are plotted in Fig. 2. As FG-greedy could only be ran on relatively small
instances, its data points are difficult to see in the graph, so we added a zoomed-in
plot for the bottom-left part of the plot.

We have used standard fitting methods to our data points: the running time of all
algorithms involved fits a quadratic curve well, the memory usage of our algorithm is
linear and the memory usage of FG-greedy is quadratic. This nicely fits our theoretical
analysis. In fact, the constant factors seem to be much smaller than the bound we gave
in our proof. We do note a lack of ‘bumps’ that often occur when instance sizes
start exceeding caches: this is probably due to the cache-unfriendly behavior of our

2 Other linear space algorithms for computing the greedy spanner have been proposed and compared to
our algorithm in subsequent work [1,3].

123

602 Algorithmica (2015) 73:589–606

Fig. 2 The left plot shows the running time of our algorithm on uniform and clustered data for variously
sized instances. The right plot shows thememory usage of our algorithmon the same data. The lines are fitted
quadratic (right) and linear (left) curves. The outlier at the right side was from an experiment performed
on a different server. Results for FG-greedy are also shown but in the main plots but are near-impossible
to see, so a zoomed-in view of the leftmost corner of both plots is included in the top-left of each plot. The
memory usage explosion of FG-greedy is visible in the zoomed-out part of the right plot

algorithm and the still significant constant factor in our memory usage that fills up
caches quite quickly.

Comparing our algorithm to FG-greedy, it is clear that the memory usage of our
algorithm is vastly superior. The plot puts into perspective just how much larger the
instances are that we are able to deal with using our new algorithm compared to the
old algorithms. Furthermore, our algorithm is about twice as fast as FG-greedy on
the clustered datasets, and only about twice as slow on uniform datasets. On clustered
datasets the number of computedwell-separated pairs is much smaller than on uniform
datasets so this difference does not surprise us. These plots suggest that our aim—
roughly equal running times at vastly reduced space usage— is reached with this
algorithm.

6.3 Dependence on t

We have tested our algorithms on datasets of 10,000 and 50,000 points, setting t to
1.1, 1.2, 1.4, 1.6, 1.8 and 2.0 to test the effect of this parameter. The effects of the
parameter ended up being rather different between the uniform and clustered datasets.

On uniform pointsets, see Figs. 3 and 4, our algorithm is about as fast as FG-greedy
when t = 2, but its performance degrades quite rapidly as t decreases compared to
FG-greedy. A hint to this behavior is given by the memory usage of our algorithm:
it starts vastly better but as t decreases it becomes only twice as good as FG-greedy.
This suggests that the number of well-separated pairs grows rapidly as t decreases,
which explains the running time decrease.

On clustered pointsets, see Figs. 5 and 6, the algorithms compare very differently.
FG-greedy starts out twice as slow as our algorithmwhen t = 2 and when t = 1.1, our

123

Algorithmica (2015) 73:589–606 603

t

D
ur

at
io

n
(s

ec
)

Greedy Linspace
FG−Greedy

1.2 1.4 1.6 1.8 2.0

0
50

0
10

00
15

00
20

00

t

M
em

or
y

us
ag

e
(M

B
)

Greedy Linspace
FG−Greedy

1.2 1.4 1.6 1.8 2.0

50
0

10
00

15
00

Fig. 3 The left plot shows the running time of our algorithm on a dataset of 10,000 uniformly distributed
points for various values of t . The right plot shows the memory usage of our algorithm for the same settings

t

D
ur

at
io

n
(s

ec
)

Greedy Linspace
Greedy Linspace (PC 2)

1.2 1.4 1.6 1.8 2.0

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

t

M
em

or
y

us
ag

e
(M

B
)

Greedy Linspace
Greedy Linspace (PC 2)

1.2 1.4 1.6 1.8 2.0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Fig. 4 The left plot shows the running time of our algorithm on a dataset of 50,000 uniformly distributed
points for various values of t . The right plot shows the memory usage of our algorithm for the same settings.
The outlier at the left side was from an experiment performed on a different server. Note that we could not
run the FG algorithm on this dataset because it uses too much memory

algorithm is only slightly faster than FG-greedy. Thememory usage of our algorithm is
much less dramatic than in the uniform point case: it hardly grows with t and therefore
stays much smaller than FG-greedy. The memory usage of FG-greedy only depends
on the number of points and not on t or the distribution of the points, so its memory
usage is the same.

6.4 Comparison with Other Spanners

We have compared the greedy spanner, the WSPD-spanner and the Θ-graph on three
big data sets for a dilation of 2. The first set contains geographical data from the
USA, it contains 115,475 points and is partly shown in Fig. 1.The other two sets
contain synthetic data. The first set consists of 500,000 uniformly distributed points
and second set contains 1,000,000 clustered points. Both synthetic sets are generated

123

604 Algorithmica (2015) 73:589–606

t

D
ur

at
io

n
(s

ec
)

Greedy Linspace
FG−Greedy

1.2 1.4 1.6 1.8 2.0

20
40

60
80

10
0

t

M
em

or
y

us
ag

e
(M

B
)

Greedy Linspace
FG−Greedy

1.2 1.4 1.6 1.8 2.0

0
50

0
10

00
15

00

Fig. 5 The left plot shows the running time of our algorithm on a dataset of 10,000 clustered points for
various values of t . The right plot shows the memory usage of our algorithm for the same settings

t

D
ur

at
io

n
(s

ec
)

Greedy Linspace

1.2 1.4 1.6 1.8 2.0

10
00

20
00

30
00

40
00

t

M
em

or
y

us
ag

e
(M

B
)

Greedy Linspace

1.2 1.4 1.6 1.8 2.0

20
0

30
0

40
0

50
0

Fig. 6 The left plot shows the running time of our algorithm on a dataset of 50,000 clustered points for
various values of t . The right plot shows the memory usage of our algorithm for the same settings. Note
that we could not run the FG algorithm on this dataset because it uses too much memory

using the method discussed at the start of Sect. 6. We compared the number of edges,
the maximum degree and the total weight of the spanners computed by these methods.
We were unable to compute the WSPD-spanner on the synthetic sets since our PC ran
out of memory. The results are shown in Table 1.

We have also compared the performance of these three spanners when t is small.
Specifically we have computed the greedy spanner on a pointset of 50,000 uniformly
distributed points with t = 1.1. On this instance the greedy spanner has 225,705
edges, a maximum degree of 18 and a weight of 15,862,195. On the same instance,
the Θ-graph with k = 73 (which, to our knowledge, is the smallest k for which a
guarantee of t = 1.1 has been proven) has 2,396,361 edges, a maximum degree of
146 and a weight of 495,332,746. We were unable to run the WSPD-based spanner
algorithm on this pointset with t = 1.1 due to its memory usage.

123

Algorithmica (2015) 73:589–606 605

Table 1 We computed 2-spanners using different algorithms on big data sets, the WSPD-spanner ran out
of memory on the last two sets

Spanner Dataset |V | |E | Max degree Weight

Greedy USA 115,475 171,456 5 11,086,417

Θ-graph USA 115,475 465,230 62 53,341,205

WSPD USA 115,475 16,636,489 1,271 20,330,193,426

Greedy Uniform 500,000 720,850 6 9,104,690

Θ-graph Uniform 500,000 2,063,164 22 39,153,380

WSPD Uniform 500,000 – – –

Greedy Clustered 1,000,000 1,409,946 6 4,236,016

Θ-graph Clustered 1,000,000 4,157,016 135 59,643,264

WSPD Clustered 1,000,000 – – –

These results show that the greedy spanner really is an excellent spanner, even on
large instances and for low t , as predicted by its theoretical properties.

7 Conclusion

We have presented an algorithm that computes the greedy spanner in Euclidean space
in O(n2 log2 n) time and O(n) space for any fixed stretch factor and dimension. Our
algorithm avoids computing all distances by considering well-separated pairs instead.
It consists of a framework that computes the greedy spanner given a subroutine for a
bichromatic closest pair problem.We give such a subroutine which leads to the desired
result.

We have presented several optimizations to the algorithm. Our experimental results
show that these optimizations make our algorithm have a running time close to the
fastest known algorithms for the greedy spanner, while massively decreasing space
usage. It allowed us to compute the greedy spanner on very large instances of a
million points, compared to the earlier instances of at most 13,000 points. Given that
our algorithm is the first algorithm with a near-quadratic running time guarantee that
has actually been implemented, that it has linear space usage and that its running time
is comparable to the best known algorithms, we think our algorithm is the method of
choice to compute greedy spanners.

We leave open the problem of providing a faster subroutine for solving the bichro-
matic closest pair with dilation larger than t problem in our framework, which may
allow the greedy spanner to be computed in sub-quadratic time for certain distance
measures. Particularly the case of the Euclidean plane seems interesting, as the closely
related ‘ordinary’ bichromatic closest pair problem can be solved quickly in this set-
ting.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

123

http://creativecommons.org/licenses/by/4.0/

606 Algorithmica (2015) 73:589–606

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alewijnse, S.P., Bouts, Q.W., ten Brink, A.P.: Distribution-sensitive construction of the greedy span-
ner. In: 22nd Annual European Symposium on Algorithms (ESA), volume 8737 of Lecture Notes in
Computer Science, pp. 61–73. Springer (2014)

2. Bose, P., Carmi, P., Farshi, M., Maheshwari, A., Smid, M.: Computing the greedy spanner in near-
quadratic time. Algorithmica 58(3), 711–729 (2010)

3. Bouts, Q.W., ten Brink, A.P., Buchin, K.: A framework for computing the greedy spanner. In: Proceed-
ings of the Thirtieth Annual Symposium on Computational Geometry, SOCG ’14, pp. 11–19. ACM
(2014)

4. Callahan, P.B.: Dealing with higher dimensions: the well-separated pair decomposition and its appli-
cations. PhD thesis, Johns Hopkins University, Baltimore, Maryland (1995)

5. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. J. ACM 42(1), 67–90 (1995)

6. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. Compute. Syst. Sci. 39(2),
205–219 (1989)

7. Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners. ACM J. Exp. Algorithm.
14, 3 (2009)

8. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanners for routing in mobile
networks. IEEE J. Sel. Areas Commun. 23(1), 174–185 (2005)

9. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph theory. In: 16th
ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165. SIAM (2005)

10. Gudmundsson, J., Knauer, C.: Dilation and detours in geometric networks. In: Gonzales, T. (ed.)
Handbook onApproximationAlgorithms andMetaheuristics, pp. 52–1–52–16. Chapman&Hall/CRC,
Boca Raton (2006)

11. Keil, J.M.: Approximating the complete euclidean graph. In: 1st ScandinavianWorkshop onAlgorithm
Theory (SWAT), volume 318 of LNCS, pp. 208–213. Springer (1988)

12. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, New York
(2007)

13. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

123

	Computing the Greedy Spanner in Linear Space
	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Properties of the Greedy Spanner and the WSPD
	4 Algorithm
	5 Making the Algorithm Practical
	5.1 Finding Close-By Pairs
	5.2 Reducing the Number of Dijkstra Computations
	5.3 Sharpening the Bound of Observation 5
	5.4 Miscellaneous Optimizations

	6 Experimental Results
	6.1 Experiment Environments
	6.2 Dependence on Instance Size
	6.3 Dependence on t
	6.4 Comparison with Other Spanners

	7 Conclusion
	References

