Algorithmica (2015) 71:859-888
DOI 10.1007/s00453-013-9830-z

Fast Distance Multiplication of Unit-Monge Matrices

Alexander Tiskin

Received: 3 November 2011 / Accepted: 21 August 2013 / Published online: 19 September 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Monge matrices play a fundamental role in optimisation theory, graph and
string algorithms. Distance multiplication of two Monge matrices of size n can be per-
formed in time O (n?). Motivated by applications to string algorithms, we introduced
in previous works a subclass of Monge matrices, that we call simple unit-Monge ma-
trices. We also gave a distance multiplication algorithm for such matrices, running in
time O (n'-). Landau asked whether this problem can be solved in linear time. In the
current work, we give an algorithm running in time O (nlogn), thus approaching an
answer to Landau’s question within a logarithmic factor. The new algorithm implies
immediate improvements in running time for a number of algorithms on strings and
graphs. In particular, we obtain an algorithm for finding a maximum clique in a circle
graph in time O (nlog?n), and a surprisingly efficient algorithm for comparing com-
pressed strings. We also point to potential applications in group theory, by making
a connection between unit-Monge matrices and Coxeter monoids. We conclude that
unit-Monge matrices are a fascinating object and a powerful tool, that deserve further
study from both the mathematical and the algorithmic viewpoints.

Keywords String comparison - Unit-Monge matrices - Seaweed braids - 0-Hecke
monoid - Circle graphs

1 Introduction

A matrix is called Monge, if its density matrix is nonnegative. Monge matrices play a
fundamental role in optimisation theory, graph and string algorithms. Distance multi-
plication (also known as min-plus or tropical multiplication) of two Monge matrices

Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP),
University of Warwick, EPSRC award EP/D063191/1.

A. Tiskin ()
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
e-mail: tiskin@dcs.warwick.ac.uk

@ Springer

mailto:tiskin@dcs.warwick.ac.uk

860 Algorithmica (2015) 71:859-888

of size n can be performed in time O (n?). Motivated by applications to string compar-
ison, we introduced (using different terminology) in [60, 61] the following subclass
of Monge matrices. A matrix is called unit-Monge, if its density matrix is a permu-
tation matrix; we further restrict our attention to a subclass of simple unit-Monge
matrices, which satisfy a straightforward boundary condition. In [60, 61], we gave
an algorithm for distance multiplication of such matrices, running in time O (n'?).
Landau [43] asked (again using different terminology) whether this problem can be
solved in linear time. In the current work, we give an algorithm for distance multipli-
cation of simple unit-Monge matrices, running in time O (nlogn), thus approaching
an answer to Landau’s question within a logarithmic factor.

Our study of unit-Monge matrices is motivated primarily by their applications
to string comparison and approximate pattern matching in strings. We presented a
number of such algorithmic applications in [41, 42, 61-63, 65], and two biological
applications in [7, 52]. Our new distance multiplication algorithm implies immedi-
ate improvements in running time for a number of string comparison and graph al-
gorithms: semi-local longest common subsequences between permutations; longest
increasing subsequence in a cyclic permutation; maximum clique in a circle graph;
longest common subsequence between a grammar-compressed string and an uncom-
pressed string. In the current work, we give a brief overview of these applications
and the improvements brought about by faster distance multiplication of simple unit-
Monge matrices.

This paper is a revised and extended version of [64]. Further details and applica-
tions can be found in [57].

2 Terminology and Notation

For indices, we will use either integers, or half-integers

(.., =2,—1,0,1,2,...)

for any integer or half-integer i. The set of all half-integers can now be written as
{3 T (=n* 0t %27, .}
We denote integer and half-integer intervals by

L:jl={,i+1,....j—1,j}

Q) .+1 .+3 .3 1
iphy=li+=,i4+=,...,j—=,j—=
J R R A

@ Springer

Algorithmica (2015) 71:859-888 861

A function of an integer argument will be called unit-monotone increasing, if for
every successive pair of values, the difference between the successor and the prede-
cessor is either 0 or 1.

We will make extensive use of matrices with integer elements, and with integer
or half-integer indices.! Given two index ranges I, J, it will be convenient to denote
their Cartesian product by (I | J). We extend this notation to Cartesian products of
intervals:

lio =it | jo: jil= (Lio:i1]] Ljo: j1])
(o it | jo: ji) = (Giozi1) | (o: j1))

Given index ranges I, J, a matrix over (I | J) isindexed by i € I, j € J. A matrix is
nonnegative, if all its elements are nonnegative.

The matrices we consider can be implicit, i.e. represented by a compact data struc-
ture that supports access to every matrix element in a specified (typically small, but
not necessarily constant) time. If the query time is not given, it is assumed by default
to be constant.

We will use the parenthesis notation for indexing matrices, e.g. A(Z, j). We will
also use a straightforward notation for selecting subvectors and submatrices: for ex-
ample, given a matrix A over [0:n | O: n], we denote by Alig : i1 | jo: j1] the sub-
matrix defined by the given sub-intervals. A star * will indicate that for a particular
index, its whole range is used, e.g. A[x | jo: j1]=A[0:n| jo: j1].

We will denote by AT the transpose of matrix A, and by AR the matrix obtained
from A by counterclockwise 90-degree rotation. Given a matrix A over [0:n | 0: n]
or (0:n]0:n), we have

ATG, py=AG, D) ARG,) =AG,n—i)

forall i, j.

We now introduce two fundamental combinatorial operations on matrices. The
first operation obtains an integer-indexed matrix from a half-integer-indexed matrix
by summing up, for each of the integer points, all matrix elements that lie below and
to the left of the given point.

Definition 1 Let D be a matrix over (ig : i1 | jo : j1). Its distribution matrix D% over
[io : i1] jo: j1] is defined by

D¥G.jy= Y, DG
ie(izin),j€(jo:)

forall i € [ig:i1l, j € [jo: j1l-

'When integers and half-integers are used as matrix indices, it is convenient to imagine that the matrices are
written on squared paper. The entries of an integer-indexed matrix are at integer points of line intersections;
the entries of a half-integer-indexed matrix are at half-integer points within the squares.

@ Springer

862 Algorithmica (2015) 71:859-888

The second operation obtains a half-integer-indexed matrix from an integer-
indexed matrix, by taking a four-point difference around each given point.

Definition 2 Let A be a matrix over [ig : i1 | jo : j1]. Its density matrix AU over
(fo i1 jo: j1) is defined by

ADG D =AGT) - A F) - AGT T +AGL T
forall7 € {(ip:i1), J € {Jo: j1)-

The operations of taking the distribution and the density matrix are close to be
mutually inverse. For any finite matrices D, A as above, and for all i, j, we have

p*H=p
ADE (i,) = A, j) — A,) — AG. jo) + A1, jo)

When matrix A is restricted to have all zeros on its bottom-left boundary (i.e. in
the leftmost column and the bottom row), the two operations become truly mutually
inverse. We introduce special terminology for such matrices.

Definition 3 Matrix A will be called simple, if A(i1, j) = A(i, jo) =0 for all i, j.
Equivalently, A is simple if AHZ = 4.

The following class of matrices plays an important role in optimisation theory
(see Burkard et al. [13] for an extensive survey), and also arises in graph and string
algorithms.

Definition 4 Matrix A is called a Monge matrix, if
AG, D +AG) <AL)+ A))
foralli <i’, j < j'. Equivalently, matrix A is a Monge matrix, if AU s nonnegative.

Our techniques will rely on structures that have permutations as their basic build-
ing blocks. We will be dealing with permutations in matrix form, exploiting the sym-
metry between indices and elements of a permutation.

Definition 5 A permutation (respectively, subpermutation) matrix is a zero-one ma-
trix containing exactly one (respectively, at most one) nonzero in every row and every
column.

Typically, permutation and subpermutation matrices will be indexed by half-
integers. An identity matrix is a permutation matrix Id over an interval range
(i 111 |ig :i1), such that Id(z, j) = 1, iff 1 = J.

When dealing with (sub)permutation matrices, we will write “nonzeros” for “in-
dex pairs corresponding to nonzeros”, as long as this does not lead to confusion.

@ Springer

Algorithmica (2015) 71:859-888 863

Due to the extreme sparsity of (sub)permutation matrices, it would obviously be
wasteful and inefficient to store them explicitly. Instead, we will normally assume that
a permutation matrix P of size n is given implicitly by the underlying permutation
and its inverse, i.e. by a pair of arrays 7, 7!, such that P(7, (7)) = 1 for all 7, and
P(m~'(}),) =1 for all j. This compact representation has size O(n), and allows
constant-time access to each nonzero of P by its row index, as well as by its column
index. The implicit representation for subpermutation matrices is analogous.

The following subclasses of Monge matrices will play a crucial role in this work.

Definition 6 Matrix A is called a unit-Monge (respectively, subunit-Monge) matrix,
if AHisa permutation (respectively, subpermutation) matrix.

By Definitions 4, 6, any unit-Monge matrix is subunit-Monge, and any subunit-
Monge matrix is Monge (since the corresponding density matrix AYisa (sub)permu-
tation matrix, and hence nonnegative).

Our particular focus will be on square matrices A that are both simple and unit-
Monge. By Definitions 3, 6, this holds if and only if A = P¥, where P is a permu-
tation matrix. Matrix P can be regarded as an implicit representation of the simple
unit-Monge matrix A = P>,

Example The following matrix is simple unit-Monge:

b))

S = O
S O =
—_ o O
S =W

01 2
01 1
0 0 0
0 0 0
In our algorithms, we will need to access matrix elements via incremental queries.
Given an element of an implicit simple (sub)unit-Monge matrix, such a query returns
the value of a specified adjacent element.
Theorem 1 Given a permutation matrix P of size n, and the value P¥ (i, j), i, j €
[0 : n], the values Pz(i +1,)), Px(i,j =+ 1), where they exist, can be queried in
time O(1).

Proof Straightforward from the definitions; see [57] for details. O

3 Matrix Distance Multiplication

3.1 Distance Multiplication Monoids

The (min, 4)-semiring of integers is one of the fundamental structures in algorithm
design. In this semiring, the operators min and 4, denoted by @ and ©, play the role
of addition and multiplication, respectively. The (min, +)-semiring is often called

distance (or tropical) algebra. For a detailed introduction into this and related topics,

@ Springer

864 Algorithmica (2015) 71:859-888

see e.g. Rote [54], Gondran and Minoux [30], Butkovi¢ [14]. An application of the
distance algebra to string comparison has been previously suggested by Comet [16].

Throughout this section, vectors and matrices will be indexed by integers begin-
ning from 0, or half-integers beginning from 0" = % All our definitions and state-
ments can easily be generalised to indexing over arbitrary integer or half-integer in-
tervals.

Multiplication in the (min, +)-semiring of integers can be naturally extended to
integer matrices.

Definition 7 Let A, B, C be matrices over [0:n1 |0:n2], [0:n2|0:n3], [0:n |
0: n3] respectively. The matrix distance product A © B = C is defined by

Cib= @ (46.)0BG.L)= min (AG.)+B.K)
jel0:mns] "

foralli € [0:n1],k€[0:n3].

We now consider three different monoids of integer matrices with respect to matrix
distance multiplication.

Monoid of All Nonnegative Matrices Consider the set of all square matrices with
elements in [0 : +o00] over a fixed index range. This set forms a monoid with zero with
respect to distance multiplication. The identity and the zero element in this monoid
are respectively the matrices

0 ifi=j

ldo (i, j) =) Ox(i, j) =400
oli.J) {—l—oo otherwise o, J)

for all i, j. For any matrix A, we have
AQldp=1do OA=A AOOp=050A=0g

Monge Monoid 1t is well-known (see e.g. [6]) that the set of all Monge matrices is
closed under distance multiplication.

Theorem 2 Let A, B, C be matrices, such that A® B =C. If A, B are Monge, then
C is also Monge.

Proof Let A, B be over [0:n1|0:n2], [0:ny]0: n3], respectively. Let i’,i” €
[0:n1],i’ <i”,and k', k" € [0: n3], kK’ <k”. By definition of matrix distance multi-
plication, we have

C@¢0=@MMﬂﬁ+Buyw

Ci"K) =min(A(".) + B(K)

@ Springer

Algorithmica (2015) 71:859-888 865

Let j/, j” respectively be the values of j on which these minima are attained. Suppose
j' < j”. We have

C(i', k') + C(i", k") (definition of ®)
=min(A(i’, j) + B(j. k') + min(A(i”, j) + B(j. k")) (minimisation over j)
j

j
<(A(".j)+B(j". k) + (A", ;") + B(j".k")) (term rearrangement)
=(A(i", j') + A", j")) + (B(j'.k') + B(j". k")) (A is Monge)
<(A(". j")+A(".j) + (B(j'. k') + B(j". k")) (term rearrangement)
=(A(".j")+B(j". k")) + (A(i". j') + B(j’. k")) (definition of j’, ;")

The case j' > j” is treated symmetrically, making use of the Monge property of B.
Hence, matrix C is Monge. O

Theorem 2 implies that the set of all square nonnegative Monge matrices over a
fixed index range forms a submonoid (the Monge monoid) in the distance multipli-
cation monoid of all nonnegative matrices (where the range of elements has to be
formally extended by +00).

The ambient monoid’s identity Ids and zero Og are inherited by the Monge
monoid. Indeed, in the expansion of their density matrices Idg and Og by Defini-
tion 2, all indeterminate expressions of the form 400 — 0o can be formally considered
to be nonnegative. Therefore, matrices Idn and Og can be formally considered to be
Monge matrices.

Unit-Monge Monoid 1t is somewhat surprising, but crucial for the development of
our techniques, that the set of all simple (sub)unit-Monge matrices is also closed
under distance multiplication.

Theorem 3 Let A, B, C be matrices, such that A® B =C. If A, B are simple
unit-Monge (respectively, simple subunit-Monge), then C is also simple unit-Monge
(respectively, simple subunit-Monge).

Proof Let A, B be simple unit-Monge matrices over [0:n | 0:n]. We have A = P,
B = PBE , where P4, Pp are permutation matrices. It is easy to check that matrix C
is simple, therefore C = PCE for some matrix Pc.

‘We now have Pf O PZ = PCZ , and we need to show that P¢ is a permutation
matrix. Clearly, matrices C and Pc¢ are both integer. Furthermore, matrix C is Monge
by Theorem 2, and therefore matrix cH = Pc is nonnegative.

Since Pp is a permutation matrix, we have

PF(j,00=0 Py(j,m)=n—j

@ Springer

866 Algorithmica (2015) 71:859-888

for all j € [0: n]. Hence
C(i,0) =min(Py (i, j) + P3 (j, 0)) = min(P (i, j) +0) =0
J J
C(i,n) =min(PZ (i, j) + P§ (j,n)) =min(PF (i, j) +n — j)=n—i
J J

for all i € [0 : n], since the minimum is attained respectively at j =0 and j = n.
Therefore, we have

Z Pc(i, k) (definition of ¥ and [J)
k

= Z(C (f+, 12_) — C(f_, 12_) - C(i+, /2"") + C(i_, l€+)) (term cancellation)
k

=C(i*,0)—c(i~,0)—C(i*.,n)+C(i".n)
=0-0-(n—i")+(n—i")=1

forall 7 € (0: n). Symmetrically, we have
> Pel =1
7

for all k € (0 : n). Taken together, the above properties imply that matrix Pc is a
permutation matrix. Therefore, C is a simple unit-Monge matrix.

Finally, let A, B be simple subunit-Monge matrices over [0:n1 | 0: n3], [0: 1y |
0 : n3], respectively. We have A = PY B= PBE , where P4, Pp are subpermutation
matrices. As before, let C = PCE , for some matrix Pc; we have to show that Pc is
a subpermutation matrix. Suppose that for some 7, row P4 (7, *) contains only zeros.
Then, it is easy to check that the corresponding row P¢ (7, *) also contains only zeros,
and that upon deleting rows Pa(Z, %) and Pc (7, *) from the respective matrices, the
equality Py’ © P3 = PZ still holds. Symmetrically, a zero column Pg (%, k) results
in a zero column P (, k), and upon deleting both these columns from the respec-
tive matrices, the equality P f O Py = PCZ still holds. Therefore, we may assume
without loss generality that n; < ny, ny > n3, and that subpermutation matrix Py
(respectively, Pp) does not have any zero rows (respectively, zero columns).

Let us now extend matrix P4 to a square np X np matrix [;A] where the top
ny — np rows are filled by zeros and ones so that the resulting matrix is a permutation
matrix. Likewise, let us extend matrix Pp to an ny X ny permutation matrix [Pp *].

‘We now have
« 1% D) —
et =[]

where [: - :] is an ny X ny permutation matrix, with matrix Pc occupying its lower-
left corner. Hence, matrix Pc is a subpermutation matrix, and the original matrix C
is a simple subunit-Monge matrix. O

@ Springer

Algorithmica (2015) 71:859-888 867

Theorem 3 implies that the set of all simple unit-Monge matrices over a fixed
index range forms a submonoid (the unit-Monge monoid) in the Monge monoid.

Without loss of generality, let the matrices be over [0: n | O : n]. The Monge
monoid’s identity Ido and zero Og are neither simple nor unit-Monge matrices, and
therefore are not inherited by the unit-Monge monoid. Instead, its identity and zero
elements are given respectively by the matrices

1d* (i, j) =max(j —i,0) I1d®* (i, j) =min(n — i, j)

(recall that Id® is the matrix obtained by 90-degree rotation of the identity permuta-
tion matrix Id). For any permutation matrix P, we have

P> 0 ld* =1d* 0 P* = P*¥ P> 0 1dR* = 1dR* o P¥ = 1aR*

Theorem 3 gives us the basis for performing distance multiplication of simple
(sub)unit-Monge matrices implicitly, by taking the density (sub)permutation matri-
ces as input, and producing a density (sub)permutation matrix as output. It will be
convenient to introduce special notation for such implicit distance matrix multiplica-
tion.

Definition 8 Let P4, Pp, Pc be (sub)permutation matrices. The implicit matrix dis-
tance product P4] Pp = Pc is defined by Pf O P = PCE.

The set of all permutation matrices over (0:n | 0:n) is therefore a monoid with
respect to implicit distance multiplication [-]. This monoid has identity element /d and
zero element IdX, and is isomorphic to the unit-Monge monoid. Note that, although
defined on the set of all permutation matrices of size n, this monoid is substantially
different from the symmetric group S,, defined by standard permutation composi-
tion (equivalently, by standard multiplication of permutation matrices). In particu-
lar, the implicit distance multiplication monoid has a zero element IdR, whereas S,,,
being a group, cannot have a zero. More generally, the implicit distance multiplica-
tion monoid has plenty of idempotent elements (defined by involutive permutations),
whereas S, has the only trivial idempotent Id. However, both the implicit distance
multiplication monoid and the symmetric group S, still share the same identity ele-
ment Id.

Example Figure la shows a triple of 6 x 6 permutation matrices P4, Pg, Pc, such
that P4 [Pg = Pc. Nonzeros are indicated by green” circles.

3.2 Seaweed Braids

Further understanding of the unit-Monge monoid (and, by isomorphism, of the im-
plicit distance multiplication monoid of permutation matrices) can be gained via an

2For colour illustrations, the reader is referred to the online version of this work. If the colour version is
not available, all references to colour can be ignored.

@ Springer

868 Algorithmica (2015) 71:859-888

Pa P Pc
(a) As permutation matrices

——0—0—0—0 90~ 0600 0 0 0 o6 0 0 0 0 o

Pa

Pg

a9 90 0 9 0 6 0 6 6 0 o O 06 6 0 0 o
(b) As seaweed braids

Fig. 1 Implicit matrix distance product P4 [Pgp = Pc

algebraic formalism closely related to braid theory. While this formalism is not nec-
essary for obtaining the main results of this paper, we believe it to be of substantial
independent interest. We refer the reader to [38] for the background on classical braid
theory.

Consider two sets of n nodes each, drawn on two parallel horizontal lines in the
Euclidean plane. We put the two node sets into one-to-one correspondence by con-
necting them pairwise, in some order, with continuous monotone curves. (Here, a
curve is called monotone, if its vertical projection is always directed downwards.)
These curves will be called seaweeds.> We call the resulting configuration a seaweed
braid of width n.

Example Figure 1b shows three different seaweed braids.

There is remarkable similarity between seaweed braids and classical braids. How-
ever, there is also a crucial difference: all crossings between seaweeds are “level
crossings”, i.e. a pair of crossing seaweeds are not assumed to pass under/over one
another as in classical braids. We will also assume that all crossings are between ex-
actly two seaweeds, hence three or more seaweeds can never meet at a single point.

In a seaweed braid, a given pair of seaweeds may cross an arbitrary number of
times. We call a seaweed braid reduced, if every pair of its seaweeds cross at most
once (i.e. either once, or not at all).

Similarly to classical braids, two seaweed braids of the same width can be multi-
plied. The product braid is obtained as follows. First, we draw one braid above the
other, identifying the bottom nodes of the top braid with the top nodes of the bottom

3A tongue-in-cheek justification for this term is that seaweed braids are like ordinary braids, except that
they are sticky: a pair of seaweeds, once they have crossed, cannot be fully untangled.

@ Springer

Algorithmica (2015) 71:859-888 869

braid. Then, we join up each pair of seaweeds that became incident in the previous
step. Note that, even if both original seaweed braids were reduced, their product may
in general not be reduced.

Example In Fig. 1b, the left-hand side is a product of two reduced seaweed braids.
In this product braid, some pairs of seaweeds cross twice, hence it is not reduced.

Seaweed braids can be transformed (and, in particular, unreduced braids can be
reduced) according to a specific set of algebraic rules. These rules are incorporated
into the following formal definition.

Definition 9 The seaweed monoid T, is a finitely presented monoid on n generators:
id (the identity element), g, g2, ..., g,—1. The presentation of monoid 7, consists
of the idempotence relations

gt=g tell:in—1] ()
the far commutativity relations
818&u=28ug tucl[l:n—1l, u—t>2 2)
and the braid relations
88u8t =8u&&u tucllin—1lu—r=1 3

Traditionally, this structure is also known as the 0-Hecke monoid of the symmetric
group Ho(Sy), or the Richardson—Springer monoid (for details, see e.g. Denton et al.
[20], Mazorchuk and Steinberg [49], Deng et al. [19]).

The correspondence between elements of the seaweed monoid and seaweed braids
is as follows. The monoid multiplication (i.e. concatenation of words in the genera-
tors) corresponds to the multiplication of seaweed braids. The identity element id
corresponds to a seaweed braid where the top nodes are connected to the bottom
nodes in the left-to-right order, without any crossings. Each of the remaining gen-
erators g; corresponds to an elementary crossing, i.e. to a seaweed braid where the
only crossing is between a pair of neighbouring seaweeds in half-integer positions ¢~
and tT. Figure 2 shows the defining relations of the seaweed monoid (1)—(3) in terms
of seaweed braids.

Example InFig. 1b, the left-hand side is an unreduced product of two seaweed braids.
We now comb the seaweeds by running through all their crossings, respecting the top-
to-bottom partial order of the crossings. For each crossing, we check whether the two
crossing seaweeds have previously crossed above the current point. If this is the case,
then we undo the current crossing by removing it from the braid and replacing it by
two non-crossing seaweed pieces. The correctness of this combing procedure is easy
to prove by the seaweed monoid relations (1)—(3). After all the crossings have been
combed, we obtain a reduced seaweed braid shown in the middle of Fig. 1b. Another
equivalent reduced seaweed braid in shown in the right-hand side.

@ Springer

870 Algorithmica (2015) 71:859-888

(a) Idempotence relations (1)

(b) Far commutativity relations (2)

(c) Braid relations (3)

Fig. 2 Defining relations of the seaweed monoid

A permutation matrix P over (O:n |0 :n) can be represented by a seaweed braid
as follows. The row and column indices correspond respectively to the top and the
bottom nodes, ordered from left to right. A nonzero P(i, j) = 1 corresponds to a
seaweed connecting top node 7 and bottom node ;. For a given permutation, it is
always possible to draw the seaweeds so that the resulting seaweed braid is reduced.
In general, this reduced braid will not be unique; however, it turns out that all the
reduced braids corresponding to the same permutation are equivalent. We formalise
this observation by the following lemma.

Lemma 1 The seaweed monoid T, consists of at most n! distinct elements.

Proof 1Tt is straightforward to see that any seaweed braid can be transformed into
a reduced one, using relations (1)—(3). Then, any two reduced seaweed braids cor-
responding to the same permutation can be transformed into one another, using far
commutativity (2) and the braid relations (3). Therefore, each permutation corre-
sponds to a single element of 7,,. This mapping is surjective, therefore the number of
elements in 7, is at most the total number of permutations n!. 0

We now establish a direct connection between elements of the seaweed monoid
and permutation matrices. The identity generator id corresponds to the identity ma-
trix /d. Each of the remaining generators g, corresponds to an elementary transposi-
tion matrix G;, defined as

1—1d@,) ifi,je{t,t*}

G,)=
() Id@,)) otherwise

@ Springer

Algorithmica (2015) 71:859-888 871

Lemma 2 The set {Gtx}, t € [1:n — 1], generates the full distance multiplication
monoid of simple unit-Monge matrices.

Proof Let P be a permutation matrix. Consider an arbitrary reduced seaweed braid
corresponding to P, and let ¢ be the position of its first elementary crossing. Consider
the truncated seaweed braid, obtained by removing this seaweed crossing. This braid
is still reduced, and such that the pair of seaweeds originating in 7~ , t* do not cross.
Let this pair of seaweeds terminate at indices ko, kl, where ko < k1 Let Q be the
permutation matrix corresponding to the truncated seaweed braid. We have

P(t" k1) =P(t" ko) =1
Q(I_,i&o) = Q(t+,/21) =1

We will now show that P = G, [J Q or, equivalently P* = G¥ © Q. The lemma
statement then follows by induction.

Note that G¥ (i, j) = Id* (i, j) and Q¥ (i, j) = P¥ (i, j) foralli € [0:n], i #1,
and for all j € [0 : n]. Therefore, we have

(GF © 0%, k) = (Id* © Q%) (i, k) = Q% (i,k) = P¥ (i, k)

foralli € [0:n],i #¢, and for all k € [0 : n].
It remains to consider the case i = ¢. Note that GtE @, j)= 1d* (, j) forall j e
[0:n], j #t.Let k € [0:n]. We have

(GF © 0%)(t, k) = min (GE @, j)+ 0% (j. b)) 4

By definition of the distribution matrix (Definition 1), we have
GE(t,t—1)=0
GE(t,)=GF(t,t+ 1) =1
0<0%(t-1,b-0%1, k<1
0=0%t,k—-0%+1,b=1
Hence, we have

G, + 0%t k) =1+ 0%, k)
>0+ Q%1 —1,k)=GZ(t,t =)+ 0¥t —1,k)

and, analogously,
GE(t,0)+ Q% (t,k) =G (t,t + 1)+ Q¥ (t + 1,k)

We have established that the value under the minimum operator in (4) for j =1t is
always no less than the values for both j =7 — 1 and j =t + 1. Therefore, the

@ Springer

872 Algorithmica (2015) 71:859-888

minimum is never attained solely at j = ¢, so we may assume j 7 . We now consider
two cases: either j € [0:¢t —1],0r j €[t + 1:n].
For j € [0: ¢ — 1], we have GZ (¢, j) = 0. Therefore,

. b . Y, .
t k
jcmin (GF (@) + Q7 (j.K)

= min (0+ 0%,k ttained at j =1 — 1
jeH)l:llell(+ 0% (j.k)) (attained at j)

=0% (- 1L k=P @ —1,k)
Similarly, for j € [t + | : n], we have GtE(t, j) = j —t. Therefore,

. GZ t b ik
jeglil?;n](T)+ 0% (k)

= min (j—t+0%(j,k) (attainedat j=1+1)
jelt+1:n]

=1+0*(t+1,b=1+P*t+ 1,k
Substituting into (4), we now have
(GF © 0%)(t,k) =min(P*(t — 1,k), 1 + P*(t + 1,k))
Recall that P(t—, k1) = P(tT, ko) = 1. We have
Pt —1,k)=P¥(t,k)=PF(t+1,k) fork <k
PXt—1,k)=P¥t,k)=1+P% (@ +1,k) forko<k <k
PPt—1,k)—1=P (t,k)=1+P¥(@+1,k) fork; <k
In all three above cases, we have
min(P>(t — 1,k), 1+ P¥(t + 1,k)) = P¥(1,k)
which completes the proof. O

We are now able to establish a formal connection between the unit-Monge monoid
and the seaweed monoid.

Theorem 4 The distance multiplication monoid of n x n simple unit-Monge matrices
is isomorphic to the seaweed monoid T, .

Proof We have already established a bijection between the generators of both
monoids: a generator simple unit-Monge matrix G corresponds to a generator g
of the seaweed monoid 7. It is straightforward to check that relations (1)—(3) are
verified by matrices GZE , therefore the bijection on the generators defines a homo-
morphism from the seaweed monoid to the unit-Monge matrix monoid. By Lemma 2,
this homomorphism is surjective, hence the cardinality of 7, is at least the number

@ Springer

Algorithmica (2015) 71:859-888 873

of all simple unit-Monge matrices of size n, equal to n!. However, by Lemma 1, the
cardinality of 7, is at most n!. Thus, the cardinality of 7, is exactly n!, and the two
monoids are isomorphic. O

Example In Fig. 1, the seaweed braids shown in Fig. 1b correspond to the implicit
matrix distance product P4 [J Pp = Pc in Fig. la.

The seaweed monoid is closely related to some other well-known algebraic struc-
tures:

e by replacing the idempotence relations (1) with involution relations g,2 =id, we
obtain the Coxeter presentation of the symmetric group;

e by removing the idempotence relations (1), and keeping far commutativity (2) and
braid relations (3), we obtain the classical positive braid monoid (see e.g. [38,
Sect. 6.5]);

e by removing the braid relations (3), and keeping idempotence (1) and far commu-
tativity (2), we obtain the locally free idempotent monoid [67] (see also [24]);

e by introducing the generators’ inverses g; ! and replacing the idempotence re-
lations (1) with cancellation relations g,g; I = id, we obtain the classical braid

group.

A generalisation of the seaweed monoid is given by 0-Hecke monoids of general
Coxeter groups, also known as Coxeter monoids. These monoids arise naturally as
subgroup monoids in groups. The theory of Coxeter monoids can be traced back to
Bourbaki [11], and was developed in [12, 26, 53, 66]. A further generalisation to 7 -
trivial monoids has been studied by Denton et al. [20]. The contents of this and the
following sections can be regarded as the first step in the algorithmic study of such
general classes of monoids.

3.3 Fast Implicit Distance Multiplication

For generic, explicitly presented matrices, direct application of Definition 7 gives an
algorithm for matrix distance multiplication of size n, running in time O (). Slightly
subcubic algorithms for this problem have also been obtained. The fastest currently
n3(loglogn)?)

log?n ’

For Monge matrices, distance multiplication can easily be performed in time
O (n?), using the standard row-minima searching technique of Aggarwal et al. [1] to
perform matrix-vector multiplication in linear time (see also [6, 57]). Alternatively,
an algorithm with the same quadratic running time can be obtained directly by the
divide-and-conquer technique (see e.g. [5]).

While the quadratic running time is trivially optimal for explicit matrices, it is pos-
sible to break through this time barrier in the case of implicitly represented matrices.
Subquadratic distance multiplication algorithms for implicit simple (sub)unit-Monge
matrices were given in [58, 61], running in time O (n'-3). We now show an even faster
algorithm for this problem.

known algorithm is by Chan [15], running in time O (

@ Springer

874 Algorithmica (2015) 71:859-888

Theorem 5 Let P4, Pp, Pc be n x n permutation matrices, such that P4 L1 Pp =
Pc. Given the nonzeros of Pa, Pp, the nonzeros of Pc can be computed in time
O(nlogn).

Proof Let P4, Pp, Pc be permutation matrices over (O:n |0:n). The algorithm
follows a divide-and-conquer approach, in the form of recursion on .

Recursion base: n = 1. The computation is trivial.

Recursive step: n > 1. Assume without loss of generality that n is even. Informally,
the idea is to split the range of index j in the definition of matrix distance prod-
uct (Definition 7) into two sub-intervals of size 7. For each of these half-sized
sub-intervals of j, we use the sparsity of the input permutation matrix P4 (respec-
tively, Pp) to reduce the range of index i (respectively, k) to a (not necessarily con-
tiguous) subset of size 7; this completes the divide phase. We then call the algorithm
recursively on the two resulting half-sized subproblems. Using the subproblem so-
lutions, we reconstruct the output permutation matrix Pc; this is the conquer phase.
We now describe each phase of the recursive step in more detail.

Divide phase. By Definition 8, we have
P ory=prF

Consider the partitioning of matrices P4, Pp into subpermutation matrices

Pg.io
Py=[Pato Pani] Pp= |:PB’M1|

where P4 1o, Pa i PB.1o>» Pp.pi are over (0:n|0:5),(0:n|5:n), (0:5]0:n),
(% :n | 0:n), respectively; in each of these matrices, we maintain the indexing of
the original matrices P4, Pp. We now have two implicit matrix multiplication sub-
problems

b S _ py > s _ py
Py O P, =Pc, Piyi © Pgpi=Pcp

where Pc j,, Pc,pi are of size n x n. Each of the subpermutation matrices P4 o,
P4 hi> PB.1os PB.hi> Pc.io. Pcni has exactly 5 nonzeros.
Recall from the proof of Theorem 3 that a zero row in P4 j, (respectively, a zero
column in Pp j,) corresponds to a zero row (respectively, column) in their implicit
distance product Pc j,. Therefore, we can delete all zero rows and columns from
P4 10> PB.10> Pc.l0, Obtaining, after appropriate index remapping, three 5 x 5 per-
mutation matrices. Consequently, the first subproblem can be solved by first per-
forming a linear-time index remapping (corresponding to the deletion of zero rows
and columns from P4 1,, Pp.1o), then making a recursive call on the resulting half-
sized problem, and then performing an inverse index remapping (corresponding to
the reinsertion of the zero rows and columns into Pc j,). The second subproblem
can be solved analogously.

Conquer phase. We now need to combine the solutions for the two subproblems to
a solution for the original problem. Note that we cannot simply put together the

@ Springer

Algorithmica (2015) 71:859-888 875

nonzeros of the subproblem solutions. The original problem depends on the sub-
problems in a more subtle way: some elements of P AZ depend on elements of both
P4 1o and Pa j;, and therefore would not be accounted for directly by the solution
to either subproblem on its own. A similar observation holds for elements of Pl;: .
However, note that the nonzeros in the two subproblems have disjoint index ranges,
and therefore the direct combination of subproblem solutions Pc j, 4+ Pc,pi, although
not a solution to the original problem, is still a permutation matrix.

In order to combine correctly the solutions of the two subproblems, let us consider
the relationship between these subproblems in more detail. First, we split the range
of index j in the definition of matrix distance product (Definition 7) into a “low”
and a “high” sub-interval, each of size %

P& (i,k) = min (Py @,)+ Pg (j. b))
j€l0:n]

=min(.mir}1 (P¥ (. j)+ PF(j.k), min (Pf(i,j)+P,§(j,k)))
J€l0:5] J€l5:n]
©)

for all i,k € [0 : n]. Let us denote the two arguments in (5) by M;,(i, k) and
My;(i, k), respectively:
PE (i, k) = min(Mo (i, k), Myi(i, k) (6)

for all i, k € [0 : n]. The first argument in (5), (6) can be expressed via the solutions
of the two subproblems as follows:

Mi,(i, k) = min (PAE(i, Jj)+ PBE(j, k)) (definition of X)
jelo:2]

. . . . n
= min (PAZ:IO(Z,])-F Pélo(],k)-i- Péhi<—,k>)
jel0:5] 2

(term rearrangement)

. . . . n
= min (Py,G. j)+ Pg,(j. k) + Pghi(—,k>
Jj€l0:51] 2

(definition of ©)
= PZ,(i.k) + P& (0. k) @)

Here, the final equality is due to

PEO. k) = min (PE)0.)+ Pii(j. b))
JElzn

= min (] 3 +P§hi(],k)) = Pﬁhi<§,k>

Jjel5n]

@ Springer

876 Algorithmica (2015) 71:859-888

since the minimum is attained at j = '7' The second argument in (5), (6) can be
expressed analogously as

MyiGi, k)= min (PG, j)+ Py (j.k))
J€l5:n]
= P& (i, k) + P&, (i, n) 8)

The minimisation operator in (5), (6) is equivalent to evaluating the sign of the
difference of its two arguments:

8@, k) = Mo (i, k) — Mp;i(i, k) (by (7), (3))
= (P&, k) + P& (0, k) — (P& i, k) + P&, (i, m))
(term rearrangement)

= (P&1i(0,k) — P&, k) — (P& (i, n) — P&, k)

(definition of X)
= > Peulh— Y Pk
7€(0:i), ke (0:k) fe(in),kelkn)

(definition of X', R)
RX . RRRYZ ,
= Pcyi(n—k,i) = Pcp, ~(k,n—1i)
Since Pc iy, Pc,ni are subpermutation matrices, and Pc j, + Pc p; a permutation ma-
trix, it follows that function § is unit-monotone increasing in each of its arguments.
The sign of function § determines the positions of nonzeros in Pc as follows. Let
us fix some half-integer point 7, k € (0 : n) in Pc, and consider the signs of the four

values §(i%, k%) at neighbouring integer points. Due to the unit-monotonicity of &,
only three cases are possible.

Case §(i*, lgi) <0 for all four sign combinations. We have
Mo (1%, k%) < My (1%, k%)
for each sign combination taken consistently on both sides of the inequality, and,
by (6),
PE (1%, k%) = My, (i%, k%)
Hence, we have

P, k)= PEDG k)= MG, k)= Pco(i,k) (definition of X, J, (7), (8))

Thus, in this case Pc(7, k) = 1 is equivalent to Pc j,(7, k) = 1. Note that this also
implies 8(7, 12_) < 0, since otherwise we would have (i T, Igi) = 0 for all four
sign combinations, and hence, by symmetry, also Pc p;i(7, 12) = 1. However, that
would imply Pc 1, (7, k) + Pc.ni(d, k) =1+ 1 =2, which is a contradiction to
Pc 1o + Pc.pi being a permutation matrix.

@ Springer

Algorithmica (2015) 71:859-888 877

Case §(i*,k¥) >0 for all four sign combinations. Symmetrically to the previous
case, we have

Pc(i, k) = Pe (i, k)

Thus, in this case Pc(f,k) = 1 is equivalent to Pc,h,(i,lg) =1, and implies
st kT > 0.
Case §G~, k™) <0,8G~, kT)=8G+, k") =0,8GT, k*) > 0. By (6), we have

Hence,
Pe(i k) =PEPG k) > MJ G, k)= Pcio(i,k) (definition of X, I, (7), (8))

Since both Pc and Pc j, are zero-one matrices, the strict inequality implies that
Pc(i, k) =1and Pc,(1, k) = 0. Symmetrically, also Pc 4i(i, k) =0.

Summarising the above three cases, we have Pc¢ (7, 12) = 1, if and only if one of the
following conditions holds:

8(i7.k7) <0 and PciGh) =1 ©9)
§(iT,kT)>0 and Pcpii k) =1 (10)
8(i7,k7) <0 and 8(iT,kT)>0 (11)

By the discussion above, these three conditions are mutually exclusive.

In order to check the conditions (9)—(11), we need an efficient procedure for de-
termining the sign of function § in points of the integer square [0:n | O : n]. In-
formally, low (respectively, high) values of both i and k correspond to negative
(respectively, positive) values of §(i, k). By unit-monotonicity of §, there must exist
a pair of monotone rectilinear paths from the bottom-left to the top-right corner of
the half-integer square (—1:n+ 1| —1:n+ 1), that separate strictly negative and
nonnegative (respectively, strictly positive and nonpositive) values of §.

We now give a simple efficient procedure for finding such a pair of separating paths.
By symmetry we only need to the consider the lower separating path. For all integer
points (i, k) above-left (respectively, below-right) of this path, we have §(i, k) <0
(respectively, §(i, k) > 0).

We start at the bottom-left corner of the square, with (7, 12) = (n",07) as the initial
point on the lower separating path. We have §(i~, 12+) =46(n,0)=0.

Let (7, k) now denote any current point on the lower separating path, and suppose
that we have evaluated § (71—, I€+). The sign of this value determines the next point

@ Springer

878 Algorithmica (2015) 71:859-888

on the path:
G, k+1) ifs(i=,kT) <0
G -1,k ifs(E=,kT)=0

Following this choice, we then evaluate either (i, (k + 1), or (G — 1)~, k™)
from 87—, k™) by an incremental query of Theorem 1 in time O(1). The computa-
tion is now repeated with the new current point.

The described path-finding procedure runs until either 7 = 0™, or k =n*t. We then
complete the path by moving in a straight horizontal (respectively, vertical) line to
the final destination (7, 12) = (07, n™"). The whole procedure of finding the lower
separating path runs in time O(n). A symmetric procedure with the same running
time can be used to find the upper separating path, for which we have §(i, k) <0
on the above-left, and 6 (i, k) > 0 on the below-right.

Given a value d € [—n + 1 : n — 1], let us now consider the set of points (7, 12) with
k—i=d ; such a set forms a diagonal in the half-integer square. Let (i}, 1210), where
1210 — Ij, = d, be the unique intersection point of the given diagonal with the lower
separating path. Let ri,(d) = 1}, + kio. Define ryi(d) analogously, using the upper
separating path. Conditions (9)—(11) can now be expressed in terms of arrays ry,, rpi
as follows:

i+k<rpk—1) and Pcp(.k)=1 (12)
P +k=rytk—1) and Pcpi(i k) =1 (13)
Ptk =riok — i) =itk — 1) (14)

Here, we make use of the fact that 7 + k < Tlo (k —1) is equivalent to I~ + k<
rio(k —1), and T+ k > rpi(k = 1) to it + kT > rpik — 1).

The nonzeros of Pc satisfying either of the conditions (12), (13) can be found in
time O(n) by checking directly each of the nonzeros in matrices Pc,j, and Pc p;.
The nonzeros of Pc satisfying condition (14) can be found in time O (n) by a linear
sweep of the points (7, k) on the two separating paths. We have now obtained all the
nonzeros of matrix Pc.

(End of recursive step)

Time analysis. The recursion tree is a balanced binary tree of height logn. In the root
node, the computation runs in time O (n). In each subsequent level, the number of
nodes doubles, and the running time per node decreases by a factor of 2. Therefore,
the overall running time is O (nlogn). U

Example Figure 3 illustrates the proof of Theorem 5 on a problem instance with a
solution generated by the Wolfram Mathematica software. Figure 3a shows a pair of
input 20 x 20 permutation matrices P4, Pp, with nonzeros indicated by green circles.
Figure 3b shows the partitioning of the implicit 20 x 20 matrix distance multiplica-
tion problem into two 10 x 10 subproblems. The nonzeros in the two subproblems are
shown respectively by filled red squares and hollow blue squares. Figure 3c shows a
recursive step. The lower and the upper separating paths are shown respectively in red

@ Springer

Algorithmica (2015) 71:859-888 879

and in blue (note that the lower path is visually above the upper one; the lower/upper
terminology refers to the relative values of §, rather than the visual position of the
paths). The nonzeros in the output matrix Pc satisfying (12), (13), (14) are shown
respectively by filled red squares, hollow blue squares, and green circles; note that
overall, there are 20 such nonzeros, and that they define a permutation matrix. Fig-
ure 3d shows the output matrix Pc.

Having proved Theorem 3, it is natural to ask whether a similar fast algorithm
exists for implicit distance multiplication of general (not necessarily simple) unit-
Monge matrices. Unfortunately, there does not appear to be an easy reduction from
this more general problem to the case of simple matrices. A related problem is the dis-
tance multiplication of an implicit simple unit-Monge matrix by an arbitrary vector.
Even this, more basic problem appears to be highly non-trivial. An optimal algorithm
for this problem, running in time O (n), was recently given by Gawrychowski [28].

3.4 Bruhat Order

Given a permutation, it is natural to ask how well-sorted it is. In particular, a permu-
tation may be either fully sorted (the identity permutation), or fully anti-sorted (the
reverse identity permutation), or anything in between. More generally, given two per-
mutations, it is natural to ask whether, in some sense, one is “more sorted” than the
other.

Let P4, Pp be permutation matrices over (O:n |0:n). A classical “degree-of-
sortedness” comparison is given by the following partial order (see e.g. Béna [10],
Hammett and Pittel [33], and references therein).

Definition 10 Matrix P, is lower than matrix Pp in the Bruhat order, P4 < Pg, if

P4 can be transformed to Pp by a sequence of anti-sorting steps. Each such step
10

substitutes a (not necessarily contiguous) submatrix of the form [0 1

of the form [?(1)]

] by a submatrix

Informally, P4 < Pp, if P4 defines a “more sorted” permutation than Pg. More
precisely, P4 < Pp, if the permutation defined by P4 can be transformed into the
one defined by Pp by successive pairwise anti-sorting between arbitrary pairs of el-
ements. Symmetrically, the permutation defined by Pp can be transformed into the
one defined by P4 by successive pairwise sorting (or, equivalently, by an application
of a comparison network; see e.g. Knuth [39]).

Bruhat order is an important group-theoretic concept, which can be generalised
to arbitrary Coxeter groups (see Bjorner and Brenti [9], Denton et al. [20] for more
details and further references).

Many equivalent definitions of the Bruhat order on permutations are known; see
e.g. [9, 22, 31, 36, 71] and references therein. A classical combinatorial character-
isation of the Bruhat order, known as Ehresmann’s criterion or dot criterion, is as
follows.

Theorem 6 We have P4 < Pp, if and only ifPAE < PBE elementwise.

@ Springer

880

Algorithmica (2015) 71:859-888

Pg

Pa Pc

(a) Input matrices Py, Pp

Ps. o, PB i

Pa o, Pa hi Pc

(c) Conversion of P¢ ;,+ Pc,p; into Po

Fig. 3 Proof of Theorem 5: P4 [J Pgp = Pc

Proof Straightforward from the definitions; see e.g. [9].

Example We have

1 00 01 2 3
00 1 2

0 0 1]|=

01 0 0 0 1 1
00 00

@ Springer

IA

Ps.jo, PB i

Pa o, Pahi

Pc.io + Pc hi

(b) Subproblems P4 ;, O Pg 1, = Pc.io
and Pa p; U P pi = Pohi

Ps

(=N el e)

O O ==

Pa

Pc

(d) Output matrix Po

S = NN

S = N W

o = O
—_— o O
S O =

Algorithmica (2015) 71:859-888 881

Note that the permutation matrix on the right can be obtained from the one on the left
by anti-sorting the 2 x 2 submatrix at the intersection of the top two rows with the
leftmost and rightmost columns.

We also have

O |
1 00 01 2 3 01 0 01 2 3
0 0 1 2 01 1 2
01 0 0 0 1 1 00 1 0 0 0 1
0 0 0O 00 00

The above two permutation matrices are incomparable in the Bruhat order.

Theorem 6 immediately gives one an algorithm for deciding whether two permu-
tations are Bruhat-comparable in time O (n?). To the author’s knowledge, no asymp-
totically faster algorithm for deciding Bruhat comparability has been known so far.

To demonstrate an application of our techniques, we now give a new characteri-
sation of the Bruhat order in terms of the unit-Monge monoid (or, equivalently, the
seaweed monoid). This characterisation will give us a substantially faster algorithm
for deciding Bruhat comparability.

Intuitively, the connection between the Bruhat order and seaweeds is as follows.
Consider matrix P4 and the rotated matrix P /f. The matrix rotation induces a one-to-
one correspondence between the nonzeros of P /f and Py, and therefore also between
individual seaweeds in their reduced seaweed braids. A pair of seaweeds cross in a
reduced braid of P f , if and only if the corresponding pair of seaweeds do not cross in
areduced braid of P4. Now consider the product braid P f (] P4, where each seaweed
is made up of two mutually corresponding seaweeds from Pf and P4, respectively.
Every pair of seaweeds in braid Pf [] P4 either cross in the top sub-braid PX, or in
the bottom sub-braid P4, but not in both. Therefore, the product braid is a reduced
seaweed braid, in which every pair of seaweeds cross exactly once. Thus, we have
PRE Py =1dR.

Now suppose P4 < Pg. By Theorem 6, we have P f < PBZ elementwise. There-
fore, by Definition 7, PR* © Pf < PR* © P} elementwise, hence by Theorem 6,
we have Pf [Py < Pf L1 Pp. However, as argued above, Pf [0 P4 = Id®, which
is the highest possible permutation matrix in the Bruhat order, corresponding to the
reverse identity permutation. Therefore, P f’f [P = IdR. We thus have a necessary
condition for P4 < Pp. It turns out that this condition is also sufficient, giving us a
new, computationally efficient criterion for Bruhat comparability.

Theorem 7 We have P4 < Pg, if and only if PR [Pg = IdX.
Proof Leti, j € [0:n]. We have
PR>(i, j)+ P (j,n—i) (definition of R)
= (n —i— PAE(j, n— i)) + PBE(j, n —1i) (term rearrangement)

=(P5(.n—i)—Py(jin—D)+n—i (15)

@ Springer

882 Algorithmica (2015) 71:859-888

We now prove the implication separately in each direction.

Necessity. Let P4 < Pp. By (15) and Theorem 6, we have
PREG 4+ PF(jon—i)=n—i

This lower bound is attained at j = 0 (and, symmetrically, j = n): we have
PR¥(i,0)+ Py (0,n —i) =0+ (n—i) =n — i. Therefore,

(PREIPg)*(i,n—i) (definition of [J)

=min(PX* (i, j)+ P§ (jn—i))=n—i (attained at j = 0)
J

It is now easy to prove (e.g. by induction on n) that Pf [Pg = IdR is the only
permutation matrix satisfying the above equation for all 7.
Sufficiency. Let Pf [Pg = IdR. By Definition 7, we have

min(PR* (i, j) + Py (jyn—i)) =1a"* (i,n—i)=n—i
J

for all i. Therefore, for all i, j, PR* (i, j) + P7 (j,n —i) > n —i. By (15), this
is equivalent to PBE(j,n —i)— Py (j,n—i) >0, therefore PAE(j,n —i) < Pg(j,
n — i), hence by Theorem 6, we have P4 < Pp. Il

The combination of Theorems 5 and 7 gives us an algorithm for deciding Bruhat
comparability of permutations in time O (nlogn).

4 Applications in String Comparison

The longest common subsequence (LCS) problem is a classical problem in computer
science. Given two strings a, b of lengths m, n respectively, the LCS problem asks
for the length of the longest string that is a subsequence of both a and b. This length
is called the strings” LCS score. The classical dynamic programming algorithm for
the LCS problem [51, 68] runs in time O (mn); the best known algorithms improve
on this running time by some (model-dependent) polylogarithmic factors [8, 17, 47,
70]. We refer the reader to monographs [18, 32] for the background on this problem
and further references.

The semi-local LCS problem is a generalisation of the LCS problem, arising nat-
urally in the context of string comparison. Given two strings a, b as before, the semi-
local LCS problem asks for the LCS score of each string against all substrings of the
other string, and of all prefixes of each string against all suffixes of the other string.

In [60, 61], we introduced the semi-local LCS problem, described its connections
with unit-Monge matrices and seaweed braids, and gave a number of its algorithmic
applications. Many of these applications use distance multiplication of simple unit-
Monge matrices as a subroutine. In these cases, we can immediately obtain improved
algorithms by plugging in the new multiplication algorithm given by Theorem 5. The
rest of this section gives a few examples of such improvements. For further applica-
tions of our method, we refer the reader to [57].

@ Springer

Algorithmica (2015) 71:859-888 883

4.1 Semi-Local LCS Between Permutations

An important special case of string comparison is where each of the input strings a, b
is a permutation string, i.e. a string that consists of all distinct characters. Without loss
of generality, we may assume that m = n, and that both strings are permutations of a
given totally ordered alphabet of size n. The semi-local LCS problem on permutations
is equivalent to finding the length of the longest increasing subsequence (LIS) in
every substring of a given permutation string.

In [61], we gave an algorithm for the semi-local LCS problem on permutation
strings, running in time O (n'-). By using the algorithm of Theorem 5, the running
time improves to O (nlog” n).

4.2 Cyclic LCS Between Permutations

The cyclic LCS problem on permutation strings is equivalent to the LIS problem on
a circular string. This problem has been considered by Albert et al. [2], who gave a
Monte Carlo randomised algorithm, running in time O (n'?logn) with small error
probability.

In [61], we gave an algorithm for the cyclic LCS problem on permutation strings,
running in deterministic time O(n'?). By using the algorithm of Theorem 5, the
running time improves to O (nlog® n).

4.3 Maximum Clique in a Circle Graph

A circle graph [25, 29] is defined as the intersection graph of a set of chords in a
circle, i.e. the graph where each node represents a chord, and two nodes are adja-
cent, whenever the corresponding chords intersect. We consider the maximum clique
problem on a circle graph.

The interval model of a circle graph is obtained by cutting the circle at an arbitrary
point and laying it out on a line, so that the chords become (closed) intervals. The
original circle graph is isomorphic to the overlap graph of its interval model, i.e. the
graph where each node represents an interval, and two nodes are adjacent, whenever
the corresponding intervals intersect but do not contain one another.

Figure 4 shows an instance of the maximum clique problem on a six-node cir-
cle graph. Figure 4a shows the set of chords defining a circle graph, with one of the
maximum cliques highlighted in bold red. The cut point is shown by scissors. Fig-
ure 4b shows the corresponding interval model; the dotted diagonal line contains the
intervals, each defined by the diagonal of a square. The squares corresponding to the
maximum clique are highlighted in bold red.

It has long been known that the maximum clique problem in a circle graph on n
nodes is solvable in polynomial time [27]. A number of algorithms have been pro-
posed for this problem [4, 35, 48, 55]; the problem has also been studied in the context
of line arrangements in the hyperbolic plane [23, 37]. Given an interval model of a
circle graph, the running time of the above algorithms is O (%) in the worst case, i.e.
when the input graph is dense.

In [59, 61], we gave an algorithm running in time O (n'-). By using the algorithm
of Theorem 5, the running time improves to O (n log2 n).

@ Springer

884 Algorithmica (2015) 71:859-888

(a) The chord model (b) An interval model

Fig. 4 A circle graph and its maximum clique

4.4 Compressed String Comparison

String compression is a classical paradigm, touching on many different areas of com-
puter science. From an algorithmic viewpoint, it is natural to ask whether compressed
strings can be processed efficiently without decompression. Early examples of such
algorithms were given e.g. by Amir et al. [3] and by Rytter [56].

We consider the following general model of compression. Let ¢ be a string of
length n (typically large). String ¢ will be called a grammar-compressed string (GC-
string), if it is generated by a context-free grammar, also called a straight-line pro-
gram (SLP). An SLP of length 1, n < n, is a sequence of n statements. A statement
numbered k, 1 < k <n, has one of the following forms:

t =« where « is an alphabet character

ty =t;t; wherel <i,j<k

We identify every symbol ¢, with the string it expands to; in particular, we have ¢ = ;.
In general, the plain string length n can be exponential in the GC-string length 7.

As a special case, grammar compression includes the classical LZ78 and LZW
compression schemes by Ziv, Lempel and Welch [69, 73]. It should also be noted
that certain other compression methods, such as e.g. LZ77 [72] and run-length com-
pression, do not fit directly into the grammar compression model.

The LCS problem on two GC-strings has been considered by Lifshits and Lohrey
[45, 46], and proven to be PP-hard (and therefore NP-hard).

We consider the LCS problem between a plain (uncompressed) pattern string p of
length m, and a grammar-compressed text string ¢ of length n, generated by an SLP of
length 7. In the special case of LZ77 or LZW compression of the text, the algorithm
of Crochemore et al. [17] solves the LCS problem in time O (mn). Thus, LZ77 or
LZW compression of one of the input strings only slows down the LCS computation
by a constant factor relative to the classical dynamic programming LCS algorithm,
or by a polylogarithmic factor relative to the best known LCS algorithms.

The general case of an arbitrary GC-text appears more difficult. A GC-text is a
special case of a context-free language, which consists of a single string. Therefore,
the LCS problem between a GC-text and a plain pattern can be regarded as a special

@ Springer

Algorithmica (2015) 71:859-888 885

case of the edit distance problem between a context-free language given by a gram-
mar of size 7, and a pattern string of size m. For this more general problem, Myers
[50] gave an algorithm running in time O (m3ii + m?> - iilogn). In [62], we gave an
algorithm for another generalisation of LCS problem between a GC-text and a plain
pattern, running in time O (m'7). Lifshits [44] asked whether the LCS problem in
the same setting can be solved in time O (mn). Our new method gives an algorithm
for the LCS problem between a GC-string and an uncompressed string running in
time O (mlogm - n), thus approaching an answer to Lifshits’ question within a loga-
rithmic factor.

Hermelin et al. [34] and Gawrychowski [28] refined the application of our tech-
niques as follows. They consider the rational-weighted alignment problem (equiva-
lently, the LCS or Levenshtein distance problems) on a pair of GC-strings a, b of
total compressed length 7 = m + 1, parameterised by the strings’ total plain length
r = m + n. The algorithm of [34] runs in time O(r log(r/r) - r), which is improved
in [28] to O(r logl/2 (r/7) - r). In both cases, our algorithm of Theorem 5 is used as a
subroutine.

5 Conclusion

In this work, we have given a fast algorithm for distance multiplication of simple unit-
Monge matrices, running in time O (nlogn). The only known lower bound is trivial
£2(n). Therefore, Landau’s question whether the problem can be solved in time O (n)
is still open, although we have now approached an answer within a logarithmic factor.

Our approach unifies and gives improved solutions to a number of algorithmic
problems. It is likely that the scope of the applications can be widened still further,
e.g. by considering new kinds of approximate matching and approximate repeat prob-
lems in strings.

The algebraic structure underlying our method is the distance-multiplication
monoid of simple unit-Monge matrices, which we call the seaweed monoid. Tra-
ditionally, this structure is known as the 0-Hecke monoid of the symmetric group; it
is a special case of a Coxeter monoid. Therefore, one may expect implications of our
work in computational (semi)group theory. There are also potential connections with
tropical mathematics, e.g. the tropical rank theory (see e.g. [21]).

In [40], we used distance multiplication of simple unit-Monge matrices to obtain
the first parallel LCS algorithm with scalable communication. It would be interesting
to see whether the fast distance multiplication algorithm given in the current work
can be efficiently parallelised, and whether this can be used to achieve further im-
provement in the communication efficiency of parallel LCS computation.

Acknowledgement This work was conceived in a discussion with Gad Landau in Haifa. The imagi-
native term “seaweeds” was coined by Yuri Matiyasevich during a presentation by the author in St. Pe-
tersburg. I thank Elzbieta Babij, Philip Bille, Pawet Gawrychowski, Tim Griffin, Dima Grigoriev, Peter
Krusche, Gad Landau, Victor Levandovsky, Sergei Nechaev, Luis Russo, Andrei Sobolevski, Nikolai Vav-
ilov, Oren Weimann, and Michal Ziv-Ukelson for fruitful discussions, and many anonymous referees for
their comments that helped to improve this work.

@ Springer

886 Algorithmica (2015) 71:859-888

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-
searching algorithm. Algorithmica 2(1), 195-208 (1987)

2. Albert, M.H., Atkinson, M.D., Nussbaum, D., Sack, J.-R., Santoro, N.: On the longest increasing
subsequence of a circular list. Inf. Process. Lett. 101, 55-59 (2007)

3. Amir, A., Benson, G., Farach, M.: Let sleeping files lie: Pattern matching in Z-compressed files.
J. Comput. Syst. Sci. 52(2), 299-307 (1996)

4. Apostolico, A., Atallah, M.J., Hambrusch, S.E.: New clique and independent set algorithms for circle
graphs. Discrete Appl. Math. 36, 1-24 (1992)

5. Apostolico, A., Atallah, M.J., Larmore, L.L., MacFaddin, S.: Efficient parallel algorithms for string
editing and related problems. SIAM J. Comput. 19(5), 968-988 (1990)

6. Atallah, M.J., Kosaraju, S.R., Larmore, L.L., Miller, G.L., Teng, S.-H.: Constructing trees in parallel.
In: Proceedings of the 1st ACM SPAA, pp. 421-431 (1989)

7. Baxter, L., Jironkin, A., Hickman, R., Moore, J., Barrington, C., Krusche, P., Dyer, N.P., Buchanan-
Wollaston, V., Tiskin, A., Beynon, J., Denby, K., Ott, S.: Conserved noncoding sequences highlight
shared components of regulatory networks in dicotyledonous plants. Plant Cell 24(10), 3949-3965
(2012)

8. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching. Theor. Comput. Sci.
409(3), 486-496 (2008)

9. Bjorner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231.
Springer, Berlin (2005)

10. Boéna, M.: Combinatorics of Permutations. Discrete Mathematics and Its Applications. Chapman &
Hall, London (2004)

11. Bourbaki, N.: Groupes et Algebres de Lie. Chapitres 4, 5 et 6. Hermann, Paris (1968)

12. Buch, A.S., Kresch, A., Shimozono, M., Tamvakis, H., Yong, A.: Stable Grothendieck polynomials
and K-theoretic factor sequences. Math. Ann. 340(2), 359-382 (2008)

13. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discrete Appl.
Math. 70(2), 95-161 (1996)

14. Butkovié, P.: Max-Linear Systems: Theory and Algorithms. Springer Monographs in Mathematics.
Springer, Berlin (2010)

15. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proceedings of the
39th ACM STOC, pp. 590-598 (2007)

16. Comet, J.-P.: Application of max-plus algebra to biological sequence comparisons. Theor. Comput.
Sci. 293(1), 189-217 (2003)

17. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence alignment algorithm for
unrestricted score matrices. STAM J. Comput. 32(6), 1654—-1673 (2003)

18. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford (1994)

19. Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups. Mathe-
matical Surveys and Monographs, vol. Number 150. Am. Math. Soc., Providence (2008)

20. Denton, T., Hivert, F., Schilling, A., Thiéry, N.M.: On the representation theory of finite J-trivial
monoids. Sémin. Lothar. Comb. 64(B64d) (2011)

21. Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix. In: Combinatorial and Compu-
tational Geometry. MSRI Publications, vol. 52, pp. 213-242. Cambridge University Press, Cambridge
(2005)

22. Drake, B., Gerrish, S., Skandera, M.: Two new criteria for comparison in the Bruhat order. Electron.
J. Comb. 11(1) (2004)

23. Dress, A., Koolena, J.H., Moulton, V.: On line arrangements in the hyperbolic plane. Eur. J. Comb.
23(5), 549-557 (2002)

24. Esyp, E.S., Kazachkov, I.V., Remeslennikov, V.N.: Divisibility theory and complexity of algorithms in
free partially commutative groups. In: Groups, Languages, Algorithms. Contemporary Mathematics,
vol. 378, pp. 319-348. Am. Math. Soc., Providence (2005)

@ Springer

Algorithmica (2015) 71:859-888 887

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.

53.

54.
55.

Even, S, Itai, A.: Queues, stacks and graphs. In: Theory of Machines and Computations, pp. 71-86.
Academic Press, San Diego (1971)

Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193(1—
3), 179-200 (1998). Reprinted in Discrete Math. 306(10-11), 1080-1096 (2006)

Gavril, E.: Algorithms for a maximum clique and a maximum independent set of a circle graph.
Networks 3, 261-273 (1973)

Gawrychowski, P.: Faster algorithm for computing the edit distance between SLP-compressed strings.
In: Proceedings of SPIRE. Lecture Notes in Computer Science, vol. 7608, pp. 229-236 (2012)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Number 57 in Annals of Discrete
Mathematics, 2nd edn. Elsevier, Amsterdam (2004)

Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Operations Research/Computer Science
Interfaces Series, vol. 47. Springer, Berlin (2008)

Grigor’ev, D.Yu.: Additive complexity in directed computations. Theor. Comput. Sci. 19, 39-67
(1982)

Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology. Cambridge University Press, Cambridge (1997)

Hammett, A., Pittel, B.: How often are two permutations comparable? Trans. Am. Math. Soc. 360(9),
4541-4568 (2008)

Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: Unified compression-based acceleration of
edit-distance computation. Algorithmica 65, 339-353 (2013)

Hsu, W.-L.: Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM J.
Comput. 14(1), 224-231 (1985)

Johnson, C.R., Nasserasr, S.: TP, = Bruhat. Discrete Math. 310(10-11), 1627-1628 (2010)
Karzanov, A.: Combinatorial methods to solve cut-determined multi-flow problems. In: Combinato-
rial Methods for Flow Problems, vol. 3, pp. 6-69 (1979). VNIISI, in Russian

Kassel, C., Turaev, V.: Braid Groups. Graduate Texts in Mathematics, vol. 247. Springer, Berlin
(2008)

Knuth, D.E.: The Art of Computer Programming: Sorting and Searching vol. 3. Addison-Wesley,
Reading (1998)

Krusche, P., Tiskin, A.: Efficient parallel string comparison. In: Proceedings of ParCo. NIC Series
(John von Neumann Institute for Computing), vol. 38, pp. 193-200 (2007)

Krusche, P, Tiskin, A.: Longest increasing subsequences in scalable time and memory. In: Proceed-
ings of PPAM 2009, Revised Selected Papers, Part I. Lecture Notes in Computer Science, vol. 6067,
pp. 176-185 (2010)

Krusche, P, Tiskin, A.: New algorithms for efficient parallel string comparison. In: Proceedings of
ACM SPAA, pp. 209-216 (2010)

Landau, G.: Can DIST tables be merged in linear time? An open problem. In: Proceedings of the
Prague Stringology Conference, p. 1 (2006). Czech Technical University in Prague

Lifshits, Y.: Processing compressed texts: a tractability border. In: Proceedings of CPM. Lecture Notes
in Computer Science, vol. 4580, pp. 228-240 (2007)

Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Proceedings of MFCS. Lec-
ture Notes in Computer Science, vol. 4162, pp. 681-692 (2006)

Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex. Cryptol. 4(2), 241—
299 (2012)

Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci.
20, 18-31 (1980)

Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Efficient algorithms for finding maximum
cliques of an overlap graph. Networks 20, 157-171 (1990)

Mazorchuk, V., Steinberg, B.: Double Catalan monoids. J. Algebr. Comb. 36(3), 333-354 (2012)
Myers, G.: Approximately matching context-free languages. Inf. Process. Lett. 54, 85-92 (1995)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443-453 (1970)

Picot, E., Krusche, P., Tiskin, A., Carré, 1., Ott, S.: Evolutionary analysis of regulatory sequences
(EARS) in plants. Plant J. 164(1), 165-176 (2010)

Richardson, R.W., Springer, T.A.: The Bruhat order on symmetric varieties. Geom. Dedic. 35(1-3),
389436 (1990)

Rote, G.: Path problems in graphs. Computing, Suppl. 7, 155-189 (1990)

Rotem, D., Urrutia, J.: Finding maximum cliques in circle graphs. Networks 11, 269-278 (1981)

@ Springer

888 Algorithmica (2015) 71:859-888

56. Rytter, W.: Algorithms on compressed strings and arrays. In: Proceeedings of SOFSEM. Lecture
Notes in Computer Science, vol. 1725, pp. 48—65 (1999)

57. Tiskin, A.: Semi-local string comparison: Algorithmic techniques and applications. Technical report.
arXiv:0707.3619

58. Tiskin, A.: All semi-local longest common subsequences in subquadratic time. In: Proceedings of
CSR. Lecture Notes in Computer Science, vol. 3967, pp. 352-363 (2006)

59. Tiskin, A.: Longest common subsequences in permutations and maximum cliques in circle graphs.
In: Proceedings of CPM. Lecture Notes in Computer Science, vol. 4009, pp. 271-282 (2006)

60. Tiskin, A.: Semi-local longest common subsequences in subquadratic time. J. Discrete Algorithms
6(4), 570-581 (2008)

61. Tiskin, A.: Semi-local string comparison: Algorithmic techniques and applications. Math. Comput.
Sci. 1(4), 571-603 (2008)

62. Tiskin, A.: Faster subsequence recognition in compressed strings. J. Math. Sci. 158(5), 759-769
(2009)

63. Tiskin, A.: Periodic string comparison. In: Proceedings of CPM. Lecture Notes in Computer Science,
vol. 5577, pp. 193-206 (2009)

64. Tiskin, A.: Fast distance multiplication of unit-Monge matrices. In: Proceedings of ACM-SIAM
SODA, pp. 1287-1296 (2010)

65. Tiskin, A.: Towards approximate matching in compressed strings: Local subsequence recognition. In:
Proceedings of CSR. Lecture Notes in Computer Science, vol. 6651, pp. 401-414 (2011)

66. Tsaranov, S.: Representation and classification of Coxeter monoids. Eur. J. Comb. 11(2), 189-204
(1990)

67. Vershik, A.M., Nechaev, S., Bikbov, R.: Statistical properties of locally free groups with applications
to braid groups and growth of random heaps. Commun. Math. Phys. 212(2), 469-501 (2000)

68. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168-173 (1974)

69. Welch, T.A.: A technique for high-performance data compression. Computer 17(6), 8-19 (1984)

70. Wu, S., Manber, U., Myers, G.: A subquadratic algorithm for approximate limited expression match-
ing. Algorithmica 15, 50-67 (1996)

71. Zhao, Y.: On the Bruhat order of the symmetric group and its shellability. Technical report (2007)

72. Ziv, G., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory
23, 337-343 (1977)

73. Ziv, G., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf.
Theory 24, 530-536 (1978)

@ Springer

http://arxiv.org/abs/arXiv:0707.3619

	Fast Distance Multiplication of Unit-Monge Matrices
	Abstract
	Introduction
	Terminology and Notation
	Matrix Distance Multiplication
	Distance Multiplication Monoids
	Monoid of All Nonnegative Matrices
	Monge Monoid
	Unit-Monge Monoid

	Seaweed Braids
	Fast Implicit Distance Multiplication
	Bruhat Order

	Applications in String Comparison
	Semi-Local LCS Between Permutations
	Cyclic LCS Between Permutations
	Maximum Clique in a Circle Graph
	Compressed String Comparison

	Conclusion
	Acknowledgement
	References

