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Abstract In this paper, we consider multi-objective evolutionary algorithms for the
VERTEX COVER problem in the context of parameterized complexity. We consider
two different measures for the problem. The first measure is a very natural multi-
objective one for the use of evolutionary algorithms and takes into account the num-
ber of chosen vertices and the number of edges that remain uncovered. The second
fitness function is based on a linear programming formulation and proves to give bet-
ter results. We point out that both approaches lead to a kernelization for the VERTEX

COVER problem. Based on this, we show that evolutionary algorithms solve the ver-
tex cover problem efficiently if the size of a minimum vertex cover is not too large,
i.e., the expected runtime is bounded by O(f (OPT) ·nc), where c is a constant and f

a function that only depends on OPT. This shows that evolutionary algorithms are
randomized fixed-parameter tractable algorithms for the vertex cover problem.

Keywords Evolutionary algorithms · Fixed-parameter tractability · Vertex cover ·
Randomized algorithms

1 Introduction

General purpose algorithms, such as evolutionary algorithms [8] and ant colony op-
timization [6], have been shown to be successful problem solvers for a wide range of
combinatorial optimization problems. Such techniques make use of random decisions
which allows to consider them as a special class of randomized algorithms. Espe-
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cially, if the problem is new and there are not enough resources such as time, money,
or knowledge about the problem to develop specific algorithms, general purpose al-
gorithms often produce good results without a large development effort. Usually, it
is just necessary to think about a representation of possible solutions, a function to
measure the quality of solutions, and operators that produce from a solution (or a set
of solutions) a new solution (or a set of solutions).

The general approach of an evolutionary algorithm is to start with a set of candi-
date solutions for a given problem. The solutions of this set can be constructed by
some heuristics or chosen randomly from the underlying search space. Such solu-
tions are improved iteratively over time. In each iteration, the current set of solutions
(called parent population) constructs a new set of solutions (called offspring popu-
lation) by variation operators such as crossover and mutation. Based on a selection
method which is motivated by Darwin’s principle of the survival of the fittest, a new
parent population is constituted by selecting solutions from the parent and the off-
spring population. The process is iterated until a stopping criteria is fulfilled.

Taking such a general approach to solve a given problem, it is clear that we can-
not hope to beat techniques that are tailored to the given task. However, such gen-
eral approaches find many applications when no good problem specific algorithm is
available. In addition to many experimental studies that confirm the success of these
techniques on problems from different domains, there has been increasing interest
in understanding such algorithms also in a rigorous way. This line of research treats
such algorithms as a class of randomized algorithms and analyzes them in a classi-
cal fashion, i.e., with respect to their runtime behavior and approximation ability in
expected polynomial time. The results obtained in this research area confirm that gen-
eral purpose approaches often come up with optimal solutions quickly even if they do
not use problem specific knowledge. Problems that have been studied among many
others within this line of research are the shortest path problem [5, 25], maximum
matchings [14], minimum spanning trees [18, 21], minimum (multi-)cuts [19, 20],
covering and scheduling problems [28]. A comprehensive presentation of the differ-
ent results obtained in the field of combinatorial optimization can be found in [22].
Additionally, recent theoretical studies have investigated the learning ability of evo-
lutionary algorithms [9, 26].

For NP-hard problems we cannot hope to prove practicality in the sense of a poly-
nomial upper-bound on the worst-case runtime, even though an algorithm might per-
form very well in practice. Nevertheless, the notion of fixed-parameter tractability
may be helpful to explore that situation as well as guiding further algorithm design.
Fixed-parameter tractability is a central concept of parameterized complexity. In this
field, the complexity of input instances is measured in a two-dimensional way con-
sidering not only the size of the input but also one or more parameters, e.g., solution
size, structural restrictions, or quality of approximation. One hopes to confine the in-
evitable combinatorial explosion in the runtime to a function in the parameter, with
only polynomial dependence on the input size. The idea is that even large instances
may exhibit a very restricted structure and can therefore be considered easy to solve,
despite their size. Let us briefly introduce the central notions (following Flum and
Grohe [10]).

A parameterized problem (Q, κ) consists of a language Q over a finite alphabet Σ

and a parameterization κ : Σ∗ → N. The problem Q is fixed-parameter tractable
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(FPT) if there is an algorithm that decides whether x ∈ Q in time f (κ(x)) · |x|O(1),
i.e., in time with arbitrary (but computable) dependence on the parameter but only
polynomial dependence in the input size. Such an algorithm is called an fpt-algorithm
for (Q, κ). A Monte Carlo fpt-algorithm for (Q, κ) is a randomized fpt-algorithm
with runtime f ′(κ(x)) · |x|O(1) that will on input x ∈ Σ∗ accept with probability at
least 1/2 if x ∈ Q and with probability 0 if x /∈ Q. For an introduction to parameter-
ized complexity we point the interested reader to [7, 10].

In this paper we want to adopt a parameterized view on evolutionary algorithms
for VERTEX COVER and consider their expected runtime behavior related to the min-
imum cardinality of a vertex cover of the input graph, denoted by OPT. We examine
when evolutionary algorithms compute a solution quickly if OPT is small, i.e., in ex-
pected time O(f (OPT) · nc). We call an evolutionary algorithm with such a runtime
bound fixed-parameter evolutionary algorithm.

An important stepping stone in the analysis of our algorithms will be the fact that
they create partial solutions that can be considered problem kernels of the original
instance, given a feasible secondary measure. A kernelization or reduction to a prob-
lem kernel is a special form of polynomial-time data reduction for parameterized
problems that produces an equivalent (and usually smaller) instance whose size is
bounded by a function in the original parameter. It is known that a parameterized
problem is fixed-parameter tractable if and only if there exists a kernelization for the
problem (cf. [10]). A well known fixed-parameter tractable problem is the (standard)
parameterized VERTEX COVER problem. Given an undirected graph and an inte-
ger k, one has to decide whether there exists a set of at most k vertices such that each
edge contains at least one of these vertices, parameterized by k. This problem can be
solved in time O(1.2738k + kn) via kernelization followed by a bounded search tree
algorithm [3].

The VERTEX COVER problem has also been studied in the field of evolutionary
computation from a theoretical point of view. Rigorous runtime analysis has been
given for the well-known (1 + 1) EA and population based algorithms for single-
objective optimization [11, 23, 24]. Additionally, it has been shown that a multi-
objective model can help the optimization process of an evolutionary algorithm to
find good solutions quicker than in a single-objective one [12]. Due to the results
obtained in [12] we consider two different multi-objective models for the VERTEX

COVER problem. Both models take as the first objective the goal to minimize the
number of chosen vertices. The second criteria should be a penalty function which
has to be minimized such that a feasible vertex cover is obtained.

Minimizing the number of uncovered edges as the second objective has already
been investigated in [12] and we study this approach with respect to the approxima-
tion quality depending on the value of OPT. Afterwards, we examine this approach
with respect to the expected runtime in dependence of OPT and show that this ap-
proach leads to fixed-parameter evolutionary algorithms. Our second approach is to
take the minimum cost of a fractional vertex cover for the uncovered edges as the sec-
ond objective. We show that this approach leads to a 2-approximation for VERTEX

COVER in expected polynomial time and to fixed-parameter evolutionary algorithms
of runtime O(n2 · logn+ OPT ·n2 +n · 4OPT). For the case where one is interested in
computing a (1 + ε)-approximation, we reduce the runtime bound of this approach
to O(n2 · logn + OPT ·n2 + n · 4(1−ε)·OPT).
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Algorithm 1 (1 + 1) EA

1: Choose x ∈ {0,1}n uniformly at random.
2: loop
3: Create x′ by flipping each bit xi of x with probability 1/n.
4: If f (x′) ≤ f (x), set x := x′.
5: end loop

The outline of the paper is as follows. In Sect. 2, we introduce the VERTEX COVER

problem as well as the algorithms and problem formulations that are subject to our
investigations. In Sects. 3 and 4 we consider two different multi-objective models for
VERTEX COVER. In Sect. 5 we summarize our results and give possible directions
for further research.

2 Preliminaries

The VERTEX COVER problem is one of the well-known NP-hard combinatorial
optimization problems. Given an undirected graph G = (V ,E) where |V | = n

and |E| = m the aim is to find a subset V ′ ⊆ V of minimum cardinality such that
for each e ∈ E, e ∩ V ′ 	= ∅ holds. Many simple approximation algorithms achieve a
worst-case approximation ratio of 2 (cf. [4]). For example such an approximation can
be achieved in polynomial time by computing a maximal matching in the given graph
and choosing for each edge of the matching the corresponding two vertices.

The VERTEX COVER problem can be formulated as an integer linear program
(ILP) in the following way:

min
n∑

i=1

xi

s.t. xi + xj ≥ 1 ∀{i, j} ∈ E

xi ∈ {0,1}
Relaxing the integrality constraint xi ∈ {0,1} to fractional values between 0 and 1,

i.e., xi ∈ [0,1], yields a linear program formulation of the FRACTIONAL VERTEX

COVER problem. Clearly, for any graph, the cost of an optimal fractional vertex cover
is a lower bound on the cardinality of a minimum (integral) vertex cover. The dual
problem of FRACTIONAL VERTEX COVER is FRACTIONAL MAXIMUM MATCH-
ING, i.e., MAXIMUM MATCHING with relaxed integrality.

Often the (1 + 1) evolutionary algorithm ((1 + 1) EA for short) is taken as a
baseline algorithm in the theoretical analysis of evolutionary algorithms. Algorithm 1
shows the (1 + 1) EA for the minimization of a fitness function f : {0,1}n → R. It
starts with a solution chosen uniformly at random from the underlying search space
and produces in each iteration one offspring by mutation. The offspring replaces the
parent iff the offspring is not worse than the parent according to the used fitness
function. It has been pointed out that simple evolutionary algorithms cannot achieve a
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Algorithm 2 Global SEMO

1: Choose x ∈ {0,1}n uniformly at random.
2: Determine f (x).
3: P ← {x}.
4: loop
5: Choose x ∈ P uniformly at random.
6: Create x′ by flipping each bit xi of x with probability 1/n.
7: Determine f (x′).
8: If x′ is not dominated by any other search point in P , include x′ into P and

delete all other solutions z ∈ P which are weakly dominated by x′, i.e., f (x′) ≤
f (z), from P .

9: end loop

non-trivial approximation guarantee. There are instances where the (1+1) EA cannot
obtain a better approximation than a factor Θ(n) in expected polynomial time [12].
In contrast to this a multi-objective model in conjunction with a simple evolutionary
algorithm leads to an O(logn)-approximation on the much broader class of set cover
problems.

In the case of multi-objective optimization, the fitness function maps from the
search space X to a vector of real values, i.e. f : X → R

k . We consider the case
where each of the k objectives should be minimized. For two search points x ∈ X and
x′ ∈ X, f (x) ≤ f (x′) holds iff fi(x) ≤ fi(x′), 1 ≤ i ≤ k. In this case, we say that x
weakly dominates x′. A search point x dominates a search point x′ iff f (x) ≤ f (x′)
and f (x) 	= f (x′). In this case x is considered strictly better than x′. The notion
of dominance and weak dominance transfers to the corresponding objective vectors.
A Pareto optimal search point x is a search point that is not dominated by any other
search point in X. The set of non-dominated search points is called the Pareto optimal
set and the set of the corresponding objective vectors is called the Pareto front.

We follow this approach and examine the multi-objective model for VERTEX

COVER in conjunction with the simple multi-objective evolutionary algorithm called
Global SEMO (Global Simple Evolutionary Multi-Objective Optimizer). This algo-
rithm has already been studied for a wide range of multi-objective optimization prob-
lems and can be considered as the generalization of the (1 + 1) EA to the multi-
objective case.

Global SEMO (see Algorithm 2) keeps at each time step for each non dominated
objective vector found so far one single solution. In this way it preserves an approxi-
mation of the Pareto front. The algorithm starts with an initial solution that is chosen
uniformly at random from the underlying search space. In each iteration, a solution x
from the current population P is chosen uniformly at random. A mutation operator
flipping each bit of x with probability 1/n is applied to obtain an offspring x′. This
solution x′ is introduced into the population iff it is not dominated by any other solu-
tion in the population. If this is the case, all solutions that are weakly dominated by x′
are deleted from P .

Denote by E(x) ⊆ E the set of edges for which at least one vertex is chosen by x.
As each edge e ∈ E has to be covered by at least one vertex to obtain a vertex cover, it
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Algorithm 3 Alternative mutation operator

1: Choose b ∈ {0,1} uniformly a random.
2: if b = 1 then
3: for all i ∈ {1, . . . , n} do
4: If there exists an edge {vi, vj } ∈ E \ E(x), flip xi with probability 1/2.

Otherwise flip xi with probability 1/n.
5: end for
6: else
7: for all i ∈ {1, . . . , n} do
8: Flip xi with probability 1/n.
9: end for

10: end if

may be helpful to flip vertices which are incident with uncovered edges with a larger
probability. This leads to the following alternative mutation operator.

In the alternative mutation operator vertices that are incident with an uncovered
edge may be flipped with a larger probability of 1/2. These are exactly the non-
isolated vertices of G(x) = (V ,E \E(x)). Replacing the mutation operator of Global
SEMO by Algorithm 3 we call this algorithm Global SEMOalt. The fitness function

f1(x) = (|x|1, u(x)
)
,

where |x|1 denotes the number of chosen vertices and u(x) denotes the number of
edges that are not covered by any vertex chosen by x, has already been considered
in [12]. Additionally, we also examine the fitness function

f2(x) = (|x|1,LP(x)
)
,

where LP(x) denotes the optimum value of the relaxed VERTEX COVER ILP for
G(x), i.e., the cost of an optimal fractional vertex cover of G(x).

Our goal is to analyze our algorithms until they have found an optimal solution or a
good approximation of an optimal one. Our algorithms using the function f1 (or f2)
have produced an r-approximation for the VERTEX COVER problem iff they have
produced a solution x with objective vector f1(x) = (|x|1,0) (or f2(x) = (|x|1,0))
where |x|1

OPT ≤ r .
To measure the runtime of our algorithms, we consider the number of fitness eval-

uations T until a minimum vertex cover or a good approximation of such a solution
has been obtained. We define T (k) as the random variable that measures the number
of fitness evaluations until a vertex cover of size at most k appears in the popula-
tion. The expected optimization time refers to the expected number of fitness evalua-
tions E[T (OPT)] until an optimal solution has been obtained. Often we consider the
expected time to achieve intermediate goals, e.g., partial solutions that fulfill certain
properties.

If OPT ≤ k, then the probability that an evolutionary algorithm, whose expected
optimization time is upper bounded by E[T (OPT)], finds an optimal solution within
at most 2 ·E[T (k)] is at least 1/2, using Markov’s inequality [16]. Clearly, if OPT > k
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then no solution of cost at most k can be found. Thus running a fixed-parameter
evolutionary algorithm for twice the expected optimization time for OPT = k yields
a Monte Carlo fpt-algorithm for the decision version.

For both introduced fitness functions, the search point 0n is Pareto optimal as the
first objective for all functions is to minimize the number of ones in the bitstring. In
the remaining part of the paper we will proceed from this solution towards a minimum
vertex cover or a vertex cover of a certain approximation quality.

Lemma 1 The expected number of iterations of Global SEMO or Global SEMOalt

until the population contains the search point 0n is O(n2 logn) for the fitness func-
tions f1 and f2.

Proof The size of the population is upper bounded by n + 1 as the population keeps
at most one solution x for each fixed number of ones in the bitstring. We consider in
each step the individual y = argminz∈P |z|1. The probability to choose this individual
in the next step is at least 1

n+1 . Let i = |y|1 be the number of ones in this bitstring.
The probability that Global SEMO produces a solution with a smaller number of ones
is lower bounded by

1

n + 1
· i

n
·
(

1 − 1

n

)n−1

≥ 1

n + 1
· i

n
· 1

e
= Ω

(
i

n2

)
,

where i
n

is the probability of flipping a single one, and (1− 1
n
)n−1 is the probability of

not flipping any other bit. (Note that for Global SEMOalt there is an extra factor of 1
2

for choosing the mutation operator which flips each bit with probability 1
n

.) Hence,
the expected waiting time until a solution with at most i − 1 ones has been produced
is therefore O(n2/i). Using the method of fitness based partitions [27] and summing
up over the different values of i, the expected time until the search point 0n has been
included into the population is

∑n
i=1 O(n2/i) = O(n2 logn). �

After an expected number of O(n2 logn) iterations both algorithms working on
the fitness function f1 or f2 introduce the search point 0n into the population. Af-
terwards, this search point stays in the population. The population size of both algo-
rithms is upper bounded by n + 1. This may be used to give a bound on the expected
time to reach a minimum vertex cover depending on OPT.

Let x be an arbitrary solution that remains in the population during the optimiza-
tion process. The probability of producing a specific solution x′ that has Hamming-
distance c to x in the next step is lower bounded by

1

2(n + 1)
·
(

1

n

)c

·
(

1 − 1

n

)n−c

= Ω
(
n−(c+1)

)
,

which implies that the expected time to produce such a solution is O(nc+1). Hence,
both algorithms obtain an optimal solution in expected time O(nOPT+1) after they
have obtained the search point 0n. Note, that this time bound is not sufficient for our
definition of fixed-parameter evolutionary algorithms.
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3 Minimizing the Number of Uncovered Edges

In this section we consider the effect of minimizing the number of uncovered edges
as the second criteria by investigating the fitness function f1. Note, that this approach
has already been investigated in [12]. Friedrich et al. [12] show that there are bi-
partite graphs where the (1 + 1) EA cannot achieve a good approximation in ex-
pected polynomial time. Running Global SEMO on these instances solves the prob-
lem quickly. For general graphs, it has been showed that Global SEMO achieves
a logn-approximation in expected polynomial time.

In the following, we show a bound on the approximation quality depending on
the value of OPT that Global SEMO or Global SEMOalt can achieve in polynomial
time. Furthermore, we prove that under this secondary measure the expected number
of iterations until Global SEMOalt finds a minimum vertex cover is bounded by

O
(
OPT ·n4 + n · 2OPT2+OPT)

.

A central idea in our proofs is to consider a solution x ∈ P where the set of vertices
is a subset of a minimum vertex cover and such that G(x) does not contain vertices
of degree greater than OPT. The following lemma shows that Global SEMO and
Global SEMOalt spend an expected number of O(OPT ·n4) steps on producing such
solutions during the run of the algorithm.

Lemma 2 Using the fitness function f1, the expected number of iterations of Global
SEMO and Global SEMOalt where the population does not contain a solution x that
fulfills the properties that

1. the vertices chosen by x constitute a subset of a minimum vertex cover of G and
2. the vertices of G(x) have degree at most OPT,

is upper bounded by O(OPT ·n4).

Proof We know that the search point 0n is introduced into the population after
an expected number of O(n2 logn) iterations. Assuming that the search point 0n

has already been introduced into the population, we show that an expected number
of O(OPT ·n4) iterations occur where the population does not contain a solution with
the desired properties.

We denote by V ′ ⊆ V the set of vertices that have degree larger than OPT in G.
Observe that every vertex cover of cardinality OPT contains V ′. A vertex cover that
does not select a vertex of degree greater than OPT must contain all neighbors of
the vertex, which leads to a cardinality greater than OPT. We assume that V ′ 	= ∅ as
otherwise 0n has the desired properties.

The idea to prove the lemma is to investigate a potential taking O(|E| · OPT)

different values. If the population does not contain a solution with properties 1 and 2,
the potential is decreased with probability Ω(1/n2) which leads to the stated upper
bound on the number of steps that have a population where each solution does not
fulfill the desired properties.

Let s0, s1, . . . , sOPT be integer values such that sj is the smallest value of u(x) for
any search point x in P choosing at most j vertices, i.e., |x|1 ≤ j . Note, that each sj
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cannot increase during the run of the algorithm as only non-dominated solutions are
accepted.

We investigate the potential of a population P given by

pot(P ) =
OPT∑

j=1

sj ≤ |E| · OPT .

Let i be the largest integer such that P contains solutions x0, . . . ,xi with fit-
ness (0, s0), . . . , (i, si) that select only vertices of V ′. We will now consider differ-
ent cases to show that either xi has the desired properties or that, with probabil-
ity Ω(1/n2), a solution is generated that improves at least one of the sj .

1. If the graph G(xi ) contains no vertex of degree larger than OPT then xi fulfills
properties 1 and 2 by selection of i. For the other cases we assume that G(xi )

contains a vertex of degree greater than OPT, say v.
2. If si − si+1 ≤ OPT (note: this includes the case when P does not contain any so-

lution x with |x|1 = i + 1, implying that si+1 = si ) then with probability Ω(1/n2)

Global SEMO or Global SEMOalt chooses the search point xi and mutates it into
a point x′

i+1 that additionally selects v. Clearly

u
(
x′
i+1

) = u(xi ) − degG(xi )
(v) < si − OPT .

Thus u(x′
i+1) < si+1, implying that si+1 is decreased by at least one.

3. If si − si+1 > OPT then P contains a solution xi+1 of fitness (i + 1, si+1)

and xi+1 selects at least one vertex u ∈ V \ V ′ by choice of i. With probability at
least Ω(1/n2) the search point xi+1 is chosen and is mutated into a solution x′

i by
flipping only the bit corresponding to u. Thus

u
(
x′
i

) = u(xi+1) + degG(x′
i )
(u) ≤ si+1 + OPT .

Therefore u(x′
i ) < si , so si is improved by at least one.

In each case we get that either P contains a solution as claimed in the lemma or
with probability Ω(1/n2) the potential decreases by at least one. The potential can
take on only O(OPT ·|E|) different values which completes the proof. �

We have seen that in all but expected O(OPT ·n4) iterations of Global SEMO
or Global SEMOalt the population contains a solution x that is a subset of some
minimum vertex cover and such that G(x) has maximum degree OPT. Such partial
solutions will be useful when proving an upper bound on the expected number of it-
erations of Global SEMOalt to generate a minimum vertex cover, while also implying
that an OPT-approximate vertex cover is produced in expected polynomial number
of iterations of Global SEMO or Global SEMOalt. One can easily see that G(x) has
at most (OPT−|x|1) · OPT uncovered edges, since (OPT−|x|1) vertices of degree at
most OPT suffice to cover all of them.

Though these partial solutions are obtained in a randomized fashion aiming to
cover as many edges as possible with few vertices, they are strongly related to de-
terministic preprocessing for the parameterized VERTEX COVER problem. To decide
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whether a given graph has a vertex cover of size at most k one may greedily select
all vertices of degree larger than k. In fact, if v is a vertex of degree larger than k

then G has a vertex cover of cardinality k if and only if G − v has a vertex cover
of cardinality k − 1. In conjunction with deleting isolated vertices this leads to an
equivalent reduced instance with at most O(k2) vertices, this technique being known
as Buss’ kernelization (cf. [7]).

These structural insights can be used to show that our algorithms achieve an OPT-
approximation in expected polynomial time when using the fitness function f1.

Theorem 1 Using the fitness function f1, the expected number of iterations of Global
SEMO or Global SEMOalt until an OPT-approximation is computed is O(OPT ·n4).

Proof According to Lemma 1 and Lemma 2, we already know that the expected
number of steps where the population does not contain a solution with the properties
stated in Lemma 2 is O(OPT ·n4). In the following, we consider only steps where
such a solution exists.

Thus it is ensured that there is a solution x in the population for which |x|1 ≤
OPT and the maximum degree of G(x) is at most OPT. This implies u(x) ≤
(OPT−|x|1) · OPT and |x|1 +u(x) ≤ OPT2. If x is dominated by any solution x′ then
clearly |x′|1 + u(x′) ≤ OPT2. Therefore, in all later steps the population contains at
least one solution y with |y|1 + u(y) ≤ OPT2.

Let u denote the minimum value of u(x) among solutions x ∈ P with |x|1 +u(x) ≤
OPT2. Let y ∈ P be a solution with |y|1 + u(y) ≤ OPT2 and u(y) = u. If u(y) = 0 it
follows that y selects at most OPT2 vertices which are a vertex cover. Otherwise at
least one vertex v of G(y) is incident with an (uncovered) edge.

The probability that y is selected and that it is mutated into a solution y′ that
additionally selects v is Ω(1/n2) for Global SEMO and Global SEMOalt. Clearly
the solution y′ fulfills |y′|1 + u(y′) ≤ |y|1 + u(y) and u(y′) < u(y). Observe that y′
cannot be dominated by any solution in P due to |y′|1 + u(y′) ≤ |y|1 + u(y) and by
choice of y, implying that it is added to P , decreasing u by at least 1.

If the solution y with u(y) = u and |y|1 + u(y) ≤ OPT2 is removed from the
population then there must be a solution, say z, that dominates it. By u(z) ≤ u(y)

and |z|1 ≤ |y|1 this cannot increase the value of u. Clearly 0 ≤ u ≤ OPT2, hence it
can be decreased at most OPT2 times.

Thus after expected O(OPT2 ·n2 +OPT ·n4) iterations of Global SEMO or Global
SEMOalt a solution with fitness (S,0) with S ≤ OPT2 is obtained. �

After having shown that both algorithms achieve an OPT-approximation in ex-
pected polynomial time, we will bound the time until Global SEMOalt achieves an
optimal solution.

Theorem 2 Using the fitness function f1, the expected number of iterations of
Global SEMOalt until it has computed a minimum vertex cover is O(OPT ·n4 + n ·
2OPT+OPT2

).

Proof As in the proof of Theorem 1, we assume that P contains a solution x such
that G(x) has maximum degree at most OPT and there exists a minimum vertex
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cover S that contains the vertices selected by x. Due to Lemma 2 the expected number
of iterations where Global SEMOalt does not fulfill the properties is O(OPT ·n4), i.e.,
adding this term to the obtained bound covers the assumption.

The probability of choosing x in the next mutation step is Ω(1/n). Choosing
all the remaining vertices of S and not flipping any other bit in x leads to a mini-
mum vertex cover. The graph G(x) has maximum degree OPT and it has a vertex
cover of size (OPT−|x|1). Each vertex in such a vertex cover can be adjacent to at
most OPT non-isolated vertices (and each edge is incident with at least one vertex of
the vertex cover), implying that G(x) has at most (OPT−|x|1)+(OPT−|x|1) ·OPT ≤
OPT+OPT2 non-isolated vertices.

We consider the mutation of x which flips vertices adjacent to non-covered edges
with probability 1/2. Note that with probability (1 − 1/n)n

′ ∈ Ω(1) no bit corre-
sponding to any of the n′ ≤ n isolated vertices of G(x) is flipped. The probabil-
ity of flipping only the bits corresponding to the missing vertices of S is there-
fore Ω(2−(OPT+OPT2)), since there are at most OPT+OPT2 non-isolated vertices.
Hence, the expected time until a minimum vertex cover has been computed is upper
bounded by O(OPT ·n4 + n · 2OPT+OPT2

). �

4 Fractional Vertex Covers

In this section, we use the minimum cost of a fractional vertex cover for the uncovered
edges as the second criteria. For every search point x this gives an estimate on how
many vertices are needed to complete the set of selected vertices to a vertex cover
of G (or of G(x)). We denote this cost by LP(x), as it is the optimal cost of solutions
to the VERTEX COVER ILP with relaxed integrality constraints, i.e., 0 ≤ xi ≤ 1 in
place of xi ∈ {0,1}. Balinski [1] showed that all basic feasible solutions (or extremal
points) of the FRACTIONAL VERTEX COVER LP are half-integral.

Theorem 3 [1] Every basic feasible solution x of the relaxed VERTEX COVER ILP
is half-integral, i.e., x ∈ {0,1/2,1}n.

Due to this result, optimal fractional vertex covers can be computed very effi-
ciently via a maximum matching of an auxiliary bipartite graph (cf. [2]). Throughout
the section we will implicitly assume that chosen fractional vertex covers are half-
integral.

Nemhauser and Trotter [17] proved a very strong relation between optimal frac-
tional vertex covers and minimum vertex covers.

Theorem 4 Let x∗ be an optimal fractional vertex cover and let P0,P1 ⊆ V be the
vertices whose corresponding components of x∗ are 0 or 1 respectively, then there
exists a minimum vertex cover that contains P1 and no vertex of P0.

We start with a simple lemma that gives insights into the structure of the objective
space.
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Lemma 3 For every x ∈ {0,1}n it holds that

1. |x|1 + LP(x) ≥ LP(0n).
2. |x|1 + 2 · LP(x) ≥ OPT.

Proof Let y be an optimal fractional vertex cover of G(x) of cost LP(x).

1. One can obtain a fractional vertex cover of G from y by adding the vertices that
are selected by x. The cost of this cover, i.e., |x|1 + LP(x), cannot be smaller than
the minimum cost of a fractional vertex cover, i.e., LP(0n).

2. Similarly, a vertex cover of G can be obtained by adding all vertices that have
value 1/2 or 1 in y to the vertices selected by x, since each edge of G(x) must
be incident with vertices of total value of at least one. The cardinality of this ver-
tex cover is bounded by 2 · LP(x) (i.e., the maximum number of vertices with
value 1/2 or 1) plus |x|1. Clearly, this vertex cover cannot be smaller than a mini-
mum vertex cover (with cardinality OPT). �

Hence, each solution for which equality holds in one of the inequalities stated in
Lemma 3 is Pareto optimal. The following lemma relates a search point x ∈ {0,1}n
to an optimal fractional solution x∗ ∈ [0,1]n. For x,y ∈ [0,1]n, we denote by x ≤ y
the fact that xi ≤ yi , 1 ≤ i ≤ n.

Lemma 4 Let y be an optimal fractional vertex cover of G. Every x ∈ {0,1}n
with x ≤ y, is a Pareto optimal solution.

Proof Let y′ be obtained from y by setting the value of all vertices that are selected
by x to 0. The graph G(x) contains all edges that are not incident to any vertex
that is selected by x. Thus y′ is a fractional vertex cover of G(x). Therefore we
have |y|1 − |x|1 = |y′|1 ≥ LP(x), implying that LP(0n) = |y|1 ≥ LP(x) + |x|1. Thus,
by Lemma 3, we can conclude that |x|1 + LP(x) = LP(0n) and that x is a Pareto
optimal solution. �

We state a simple property that describes search points that are subsets of a mini-
mum vertex cover. Such solutions are of particular interest as they can be turned into
a minimum vertex cover by adding vertices.

Lemma 5 If x ∈ {0,1}n is a solution with LP(x) = LP(0n) − |x|1, then there exists
a minimum vertex cover z ∈ {0,1}n with x ≤ z (i.e., every vertex selected by x is also
selected by z).

Proof Consider an optimal fractional vertex cover y of G(x) of cost LP(0n) − |x|1.
We can obtain a fractional vertex cover z of G by also selecting the |x|1 vertices that
are selected by x (i.e., setting the corresponding components of y to 1). Hence z is a
fractional vertex cover of G of cost LP(0n), implying that it is optimal. By Theorem 4
it follows that there exists a minimum vertex cover of G that contains all vertices with
value 1 in z which includes all vertices that are selected by x. �
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After having pointed out some basic properties about fractional vertex covers and
Pareto optimal solutions, we can now analyze our algorithms with respect to the ap-
proximation that they can achieve in expected polynomial time. It is easy to see that,
for every optimal fractional vertex cover, the vertices of value 1/2 and 1 form a 2-
approximate vertex cover, since the fractional vertex cover has cost at most OPT.

Theorem 5 Using the fitness function f2, the expected number of iterations of Global
SEMO or Global SEMOalt until the population P contains a 2-approximate vertex
cover is O(n2 logn + OPT ·n2).

Proof The expected number of iterations until the search point 0n is added to the
population is O(n2 logn) due to Lemma 1.

Let x ∈ P be a solution that minimizes LP(x) under the constraint that |x|1 +
2 · LP(x) ≤ 2 · LP(0n) ≤ 2 · OPT. Note, that 0n fulfills the constraint. If LP(x) = 0
then x is a vertex cover of G and |x|1 ≤ 2 · LP(0n) ≤ 2 · OPT as claimed. Otherwise,
every optimal fractional vertex cover of G(x) assigns at least 1/2 to some vertex,
say v. Therefore, LP(x′) ≤ LP(x) − 1/2 where x′ is obtained from x by additionally
selecting v. With probability 1/n2 · (1 − 1/n)n−1 = Ω(1/n2) the solution x is picked
in the mutation step and exactly the bit corresponding to v is flipped, leading to
the solution x′. Clearly, |x′|1 = |x|1 + 1 and LP(x′) ≤ LP(x) − 1/2. Thus |x′|1 + 2 ·
LP(x′) ≤ |x|1 + 2 · LP(x) ≤ 2 · LP(0n), implying that x′ fulfills the constraint while
having a smaller value LP(x′). Thus, x′ is added to the population since no solution
in P dominates it, by selection of x.

As LP(x) ≤ OPT, this can happen at most 2 ·OPT times since each time the small-
est value of LP(x) among solutions x that fulfill |x|1 + 2 · LP(x) ≤ 2 · OPT is reduced
by at least 1/2. Thus, the expected number of steps until the population contains
a 2-approximate vertex cover is at most O(n2 logn + OPT ·n2). �

Having shown that using the minimum cost of a fractional vertex cover as the sec-
ond criteria leads to a 2-approximation, we will now examine the number of iterations
until Global SEMOalt has obtained an optimal solution.

To prove an upper bound on that number we consider solutions choosing r ver-
tices such that the subgraph consisting of the non-covered edges has at most 2 ·
(LP(0n) − r) non-isolated vertices. Therefore we are interested in solutions x of
fitness (|x|1,LP(0n) − |x|1) such that optimal fractional vertex covers of G(x) as-
sign 1/2 to each non-isolated vertex, implying that there are exactly 2 ·(LP(0n)−|x|1)
non-isolated vertices in G(x).

Lemma 6 Using the fitness function f2, the expected number of iterations during the
run of Global SEMO and Global SEMOalt where the population does not contain a
solution x that fulfills the properties that

1. LP(x) = LP(0n) − |x|1 and
2. each optimal fractional vertex cover assigns 1/2 to each non-isolated vertex

of G(x)

is upper bounded by O(n2 · logn + OPT ·n2).
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Proof After expected O(n2 logn) iterations the population contains the solution 0n

of fitness (0,LP(0n)), by Lemma 1. Let r be the largest integer such that P con-
tains solutions of fitness values (0,LP(0n)), . . . , (r,LP(0n) − r) and let x ∈ P be the
solution of fitness (r,LP(0n) − r). There are two possible cases:

1. Optimal fractional vertex covers for G(x) assign 1/2 to each non-isolated vertex.
2. There is an optimal fractional vertex cover z of G(x) which assigns 1 to at least

one non-isolated vertex of G(x), say v. With probability at least Ω(1/n2) Global
SEMO or Global SEMOalt chooses the solution x for mutation and flips exactly
the bit corresponding to v, obtaining a solution x′.

Observe that LP(x′) ≤ LP(x) − 1 since z′, i.e., z but with 0 assigned to v, is
a fractional vertex cover of G(x′). Clearly, x′ is added to the population since
solutions of fitness (i,LP(0n)− i) are Pareto optimal, according to Lemma 3 (this
also implies that r can never decrease). This increases the value of r by 1.

Since 0 ≤ r ≤ LP(0n) ≤ OPT, the value can be increased at most OPT times.
Therefore the expected number of steps in which case 2 happens is at most O(n2 ·
logn + OPT ·n2). �

Both algorithms generate a search point x that selects a subset of a minimum
vertex cover and such that G(x) has at most 2 · (OPT−|x|1) non-isolated vertices in
expected polynomial time and, similar to Lemma 2, the population contains such a
solution in all but expected O(n2 · logn + OPT ·n2) iterations.

In the following, we show that Global SEMOalt is able to produce from such a
solution an optimal one in total expected time O(n2 · logn + OPT ·n2 + n · 4OPT)

which implies that it is a fixed-parameter evolutionary algorithm for the VERTEX

COVER problem.

Theorem 6 Using the fitness function f2, the expected number of iterations of Global
SEMOalt until it has computed a minimum vertex cover is O(n2 · logn + OPT ·n2 +
n · 4OPT).

Proof We consider iterations of Global SEMOalt where the population contains x
with LP(x) = LP(0n)−|x|1 such that each optimal fractional vertex cover assigns 1/2
to each non-isolated vertex of G(x). The expected number of iterations where this is
not the case is at most O(n2 · logn + OPT ·n2), by Lemma 6 .

According to Lemma 5 there exists a minimum vertex cover y with x ≤ y, i.e.,
y contains the vertices that are selected by x. Let V ′ be the set of vertices that are se-
lected by y but not by x. Observe that every vertex of V ′ is non-isolated in G(x), i.e.,
incident to an uncovered edge, since y is a minimum vertex cover. With probability
at least 1

n+1 the solution x is picked in the mutation step. The probability that y is
obtained in that case can be easily lower bounded:

– With probability 1/2 Global SEMOalt chooses the mutation proves that flips every
bit that corresponds to a non-isolated vertex of G(x) with probability 1/2.

– In that case, the probability that exactly the bits corresponding to V ′ are flipped
(to 1) is Ω(2−2·(OPT−|x|1)) since there are at most 2 · (OPT−|x|1) vertices that are



768 Algorithmica (2013) 65:754–771

incident to uncovered edges in G(x). This includes a factor of Ω(1) for the prob-
ability that Global SEMOalt does not flip bits corresponding to isolated vertices
of G(x), which is (1 − 1/n)n

′
for n′ ≤ n isolated vertices.

Thus with probability at least 1/n · 1/2 · (1/4)OPT the solution y of fitness (OPT,0)

is obtained. Therefore, the expected number of iterations of Global SEMOalt until the
population contains a minimum vertex cover is bounded by O(n2 · logn+ OPT ·n2 +
n · 4OPT). �

In the final theorem of this section we prove that the expected number of iterations
until Global SEMOalt has generated a (1 + ε)-approximate vertex cover is bounded
by O(n2 · logn + OPT ·n2 + n · 4(1−ε)·OPT). This implies that the expected approx-
imation ratio of the vertex cover generated by Global SEMOalt improves over time
(that is to say, the upper bound on that ratio decreases) to the point where it reaches 1
at expected time O(n2 · logn + OPT ·n2 + n · 4OPT).

Theorem 7 Using the fitness function f2, the expected number of iterations of Global
SEMOalt until it has generated a (1 + ε)-approximate vertex cover, i.e., a solution of
fitness (r,0) with r ≤ (1 + ε) · OPT, is O(n2 · logn + OPT ·n2 + n · 4(1−ε)·OPT).

Proof Again we consider iterations where the population of Global SEMOalt con-
tains a solution x with LP(x) = LP(0n) − |x|1 such that each optimal fractional ver-
tex cover assigns 1/2 to each non-isolated vertex of G(x). The expected number of
iterations where this is not the case is at most O(n2 · logn + OPT ·n2), by Lemma 6.

Let X denote the set of non-isolated vertices in G(x), let S ⊆ X be any minimum
vertex cover of G(x), and let T = X \ S. Observe that T is an independent set and
that |T | < |S|; otherwise, if |S| ≤ |T |, assigning 1 to each vertex of S and 0 to each
vertex of T would yield a fractional vertex cover of cost at most 1/2 · |X| but which
does not assign 1/2 to each non-isolated vertex. Let OPT′ = OPT−|x|1, i.e., the
size of minimum vertex covers of G(x). Let s1, . . . , sOPT′ and t1, . . . , t|T | be any two
numberings of the vertices in S and T , respectively.

With probability Ω(1/n) Global SEMOalt selects the solution x and applies
the mutation that flips bits corresponding to non-isolated vertices of G(x) with
probability 1/2. With probability Ω((1/4)(1−ε)·OPT′

) all bits corresponding to
s1, . . . , s�(1−ε)·OPT� are flipped and those corresponding to t1, . . . , tα , with α =
min{|T |, �(1 − ε) · OPT�}, are not flipped. With probability greater than 1/2 the
mutation flips bits of at least as many of the remaining vertices of S as of the remain-
ing vertices of T , since |T | < |S|. Thus with probability Ω(1/n · (1/4)(1−ε)·OPT′

)

the solution x is mutated into a solution x′ that additionally selects subsets S′ ⊆ S

and T ′ ⊆ T with |S′| ≥ (1 − ε) · OPT′ +|T ′|. Again this includes a factor of Ω(1)

accounting for the probability that Global SEMOalt does not flip bits corresponding
to isolated vertices of G(x).

We will now prove an upper bound of (1+ε) ·OPT on the value of |x′|+2 ·LP(x′).
Observe that LP(x′) ≤ OPT′ −|S′| since S \S′ is a vertex cover of G(x′). We also use
the fact that |T ′| ≤ |S′| − (1 − ε) · OPT′.
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∣∣x′∣∣
1 + 2 · LP

(
x′) = |x|1 + ∣∣S′∣∣ + ∣∣T ′∣∣ + 2 · LP

(
x′)

≤ |x|1 + ∣∣S′∣∣ + ∣∣T ′∣∣ + 2 · (OPT′ −∣∣S′∣∣)

≤ |x|1 + ∣∣S′∣∣ + ∣∣S′∣∣ − (1 − ε) · OPT′ +2 · OPT′ −2 · ∣∣S′∣∣

= |x|1 + (1 + ε) · OPT′

= |x|1 + (1 + ε) · (OPT−|x|1
)

≤ (1 + ε) · OPT

Should a solution y ∈ P dominate x′ then this would imply |y|1 + 2 · LP(y) ≤
|x′|1 + 2 · LP(x′). Thus after expected O(n2 · logn + OPT ·n2 + n · 4(1−ε)·OPT) steps
the population contains a solution x′ with |x′|1 + 2 · LP(x′) ≤ (1 + ε) · OPT.

Finishing the proof we show that such a solution leads to a (1 + ε)-approximate
vertex cover in expected polynomial time. Let y ∈ P be a solution with minimum
value of LP(y) under the constraint that |y|1 +2 ·LP(y) ≤ (1+ ε) ·OPT. If LP(y) = 0
then y is a (1 + ε)-approximate vertex cover. Otherwise there exists at least one
vertex v that has value at least 1/2 in some optimal fractional vertex cover of G(y).
With probability Ω(1/n2) the solution y is selected for mutation and exactly the bit
corresponding to v is flipped, producing the solution y′.

Clearly |y′|1 = |y|1 + 1 and LP(y′) ≤ LP(y) − 1/2. Thus
∣∣y′∣∣

1 + 2 · LP
(
y′) ≤ |y|1 + 2 · LP(y) ≤ (1 + ε) · OPT .

Since y′ fulfills the constraint and LP(y′) < LP(y), it follows that no solution
in P can dominate y′; otherwise, this solution would have been chosen in place
of y. Thus with probability Ω(1/n2) the minimum value of LP(y) among solu-
tions y that fulfill |y|1 + 2 · LP(y) ≤ (1 + ε) · OPT is decreased by at least 1/2.
Since 0 ≤ LP(y) ≤ OPT the expected number of steps (from the point that x′ was
introduced) until the population contains a (1 + ε)-approximate vertex cover is
bounded by O(OPT ·n2). Hence the total expected number of iterations of Global
SEMOalt until the population contains a (1+ε)-approximate vertex cover is bounded
by O(n2 · logn + OPT ·n2 + n · 4(1−ε)·OPT). �

5 Conclusion

We have introduced the notion of fixed-parameter evolutionary algorithms to exam-
ine how the runtime of search heuristics depend on structural properties of a given
problem. Using this approach we have examined the runtime and approximation be-
havior of evolutionary algorithms with respect to the value of an optimal solution.
Intuitively, our analyses on different multi-objective models show that additional cri-
teria, such as minimizing the number of uncovered edges or the value of a fractional
solution for the uncovered part of the graph, can lead to a preprocessing phase similar
to a kernelization of the problem. Adding a random search component to the evolu-
tionary algorithm by using the alternative mutation operator, we have shown that this
gives fixed-parameter evolutionary algorithms.
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There are several topics for future research. On the one hand, it seems to be in-
teresting to analyze search heuristics in dependence of a given parameter on some
other problems as well. The parameter can be the value of an optimal solution as
considered in this paper but also a parameter which restricts the given input to certain
classes of the problem. Examples include CLUSTER EDITING and 3-HITTING SET,
both are FPT when parameterized by solution size, as well as MAXIMUM KNAPSACK

parameterized by the capacity of the knapsack. Additionally, many graph problems,
such as INDEPENDENT SET or DOMINATING SET, are FPT when parameterized by
the treewidth of the input graph. Showing that an evolutionary algorithm profits from
small values of treewidth might be a rather challenging problem, as the FPT algo-
rithms for the two mentioned problems employ dynamic programming. On the other
hand, the use of the ILP relaxation as the second criteria to guide the search pro-
cess may be of independent interest and we expect this criteria to be applicable for
other problems as well. A very interesting candidate might be the MULTIWAY CUT

problem which is known to have a halfintegral LP formulation [13].

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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