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Abstract Euclidean optimization problems such as TSP and minimum-length
matching admit fast partitioning algorithms that compute near-optimal solutions on
typical instances.

In order to explain this performance, we develop a general framework for the ap-
plication of smoothed analysis to partitioning algorithms for Euclidean optimization
problems. Our framework can be used to analyze both the running-time and the ap-
proximation ratio of such algorithms. We apply our framework to obtain smoothed
analyses of Dyer and Frieze’s partitioning algorithm for Euclidean matching, Karp’s
partitioning scheme for the TSP, a heuristic for Steiner trees, and a heuristic for
degree-bounded minimum-length spanning trees.

1 Introduction

Euclidean optimization problems are a natural class of combinatorial optimization
problems. In a Euclidean optimization problem, we are given a set X of points in R?.
The topology used is the complete graph of all points, where the Euclidean distance
|lx — yll is the length of the edge connecting the two points x, y € X.

A preliminary version has been presented at the 12th Algorithms and Data Structures Symposium
(WADS 2011) [5]. Supported by DFG grant BL 511/7-1.
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Many such problems, like the Euclidean traveling salesman problem [22] or
the Euclidean Steiner tree problem [14], are NP-hard. For others, like minimum-
length perfect matching, there exist polynomial-time algorithms. However, these
polynomial-time algorithms are sometimes too slow to solve large instances. Thus,
fast heuristics to find near-optimal solutions for Euclidean optimization problems are
needed.

A generic approach to design heuristics for Euclidean optimization problems are
partitioning algorithms: They divide the Euclidean plane into a number of cells such
that each cell contains only a small number of points. This allows us to compute
quickly an optimal solution for our optimization problem for the points within each
cell. Finally, the solutions of all cells are joined in order to obtain a solution to the
whole set of points.

Although this is a rather simple ad-hoc approach, it works surprisingly well and
fast in practice [16, 24]. This is at stark contrast to the worst-case performance of
partitioning algorithms: They can both be very slow and output solutions that are
far from being optimal. Thus, as it is often the case, worst-case analysis is too pes-
simistic to explain the performance of partitioning algorithms. The reason for this is
that worst-case analysis is dominated by artificially constructed instances that often
do not resemble practical instances.

Both to explain the performance of partitioning algorithms and to gain probabilis-
tic insights into the structure and value of optimal solutions of Euclidean optimization
problems, the average-case performance of partitioning algorithms has been studied a
lot. In particular, Steele [31] proved complete convergence of Karp’s partitioning al-
gorithm [18] for Euclidean TSP. Also strong central limit theorems for a wide range
of optimization problems are known. We refer to Steele [32] and Yukich [35] for
comprehensive surveys.

However, also average-case analysis has its drawback: Random instances usually
have very specific properties with overwhelming probability. This is often exploited
in average-case analysis: One shows that the algorithm at hand performs very well if
the input has some of these properties. But this does not mean that typical instances
share these properties. Thus, although a good average-case performance can be an
indicator that an algorithm performs well, it often fails to explain the performance
convincingly.

In order to explain the performance of partitioning schemes for Euclidean opti-
mization problems, we provide a smoothed analysis. Smoothed analysis has been
introduced by Spielman and Teng [27] in order to explain the performance of the
simplex method for linear programming. It is a hybrid of worst-case and average-
case analysis: An adversary specifies an instance, and this instance is then slightly
randomly perturbed. The perturbation can, for instance, model noise from measure-
ment. Since its invention in 2001, smoothed analysis has been applied in a variety
of contexts [3, 4, 6, 12, 26]. We refer to two recent surveys [20, 28] for a broader
picture.

We develop a general framework for smoothed analysis of partitioning algo-
rithms for optimization problems in the Euclidean plane (Sect. 3). We consider a
very general probabilistic model where the adversary specifies n density functions
fis-oos fu 1 1O, 11?2 — [0, ¢], one for each point. Then the actual point set is ob-
tained by drawing x; independently from the others according to f;. The parameter ¢
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Table 1 Smoothed bounds for some Euclidean optimization problems

Problem Running-time Approximation ratio Reference

matching [10] 0 (n¢?log* n) 1+ O0J/$/logn) Corollaries 4.2 & 4.5
TSP [18] poly(n) 1+ O0(/¢/logn) Corollary 5.2
Steiner tree [17] poly(n) 14+ O(J/¢/logn) Corollary 6.2
degree-bounded MST poly(n) 14+ O(J/¢loglogn/logn) Corollary 7.2

controls the adversary’s power: The larger ¢, the more powerful the adversary. (See
Sect. 2.2 for a formal explanation of the model.) We analyze the expected running-
time and approximation performance of a generic partitioning algorithm under this
model. The smoothed analysis of the running-time for partitioning algorithms de-
pends crucially on the convexity of the worst-case bound of the running-time of the
problem under consideration. The main tool for the analysis of the expected approx-
imation ratio is Rhee’s isoperimetric inequality [25]. Let us note that, even in the
average case, convergence to the optimal value for large n does not imply a bound
on the expected approximation ratio. The reason is that if we compute a very bad
solution with very small probability, then this allows convergence results but it dete-
riorates the expected approximation ratio.

We apply the general framework to obtain smoothed analyses of partitioning
algorithms for Euclidean matching (Sect. 4), Karp’s partitioning scheme for the
TSP (Sect. 5), Steiner trees (Sect. 6), and degree-bounded minimum spanning trees
(Sect. 7) in the Euclidean plane. Table 1 shows an overview. To summarize, for
¢ < logO(l) n, Dyer and Frieze’s partitioning algorithm for computing matchings [10]
has an almost linear running-time, namely O (nlog®" n). For ¢ € o(log? n), its ex-
pected approximation ratio tends to 1 as n increases. The approximation ratios of
the partitioning algorithms for TSP and Steiner trees tend to 1 for ¢ € o(logn). For
degree-bounded spanning trees, this is the case for ¢ € o(logn/loglogn). Our gen-
eral framework is applicable to many other partitioning algorithms as well, but we
focus on the aforementioned problems in this work.

2 Preliminaries

Forn e N, let [n] = {1, 2, ...,n}. We denote probabilities by P and expected values
by E.

2.1 Euclidean Functionals

A Euclidean functional is a function F : ([0, 11%)* = R that maps a finite point set
X C [0, 1] to a real number F(X). The following are examples of Euclidean func-
tionals:

— MM maps a point set to the length of its minimum-length perfect matching (length
means Euclidean distance, one point is left out if the cardinality of the point set is
odd).
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— TSP maps a point set to the length of its shortest Hamiltonian cycle, i.e., to the
length of its optimal traveling salesman tour.

— MST maps a point set to the length of its minimum-length spanning tree.

— ST maps a point set to the length of its shortest Steiner tree.

— dbMST maps a point set to the length of its minimum-length spanning tree, re-
stricted to trees of maximum degree at most b for some given bound b.

The Euclidean functionals that we consider in this paper are all associated with
an underlying combinatorial optimization problem. Thus, the function value F(X)
is associated with an optimal solution (minimum-length perfect matching, optimal
TSP tour, ...) to the underlying combinatorial optimization problem. In this sense,
we can design approximation algorithms for F: Compute a (near-optimal) solution
(where it depends on the functional what a solution actually is; for instance, a perfect
matching), and compare the objective value (for instance, the sum of the lengths of
its edges) to the function value.

We follow the notation of Frieze and Yukich [13, 35]. A Euclidean functional F is
called smooth [25, 35] if there is a constant ¢ such that

[F(XUY)—FX)| <c/IY]

for all finite X, ¥ C [0, 1]2. The constant ¢ may depend on the function F, but not on
the sets X and Y or their cardinality.

Let Cy,...,Cs be a partition of [0, 172 into rectangles. We call each Cy a cell.
Note that the cells are not necessarily of the same size. For a finite set X C [0, 1]2 of
n points, let X, = X N C; be the points of X in cell Cy. Let ny = | X¢| be the number
of points of X in cell Cy. Let diameter(Cy) be the diameter of cell Cy.

We call F sub-additive if

F(X) < Z(F(Xe) + diameter(Cy))
=1

for all finite X C [0, 1]? and all partitioning of the square. F is called super-additive
if

F(X) = Y F(Xo)

=1

for all finite X C [0, 1]*> and all partitioning of the square. A combination of sub-
additivity and super-additivity for a Euclidean functional F is a sufficient (but not a
necessary) condition for the existence of a partitioning heuristic for approximating F.
We will present such a generic partitioning heuristic in Sect. 3.

Following Frieze and Yukich [13], we define a slightly weaker additivity condition
that is sufficient for the performance analysis of partitioning algorithms. Frieze and
Yukich [13] call a Euclidean function F near-additive if, for all partitions Cy, ..., C
of [0, 1]2 into cells and for all finite X C [0, 1]2, we have

=0 (Z diameter(CU) .

=1

F(X) — Y F(Xe)

=1

If F is sub-additive and super-additive, then F is also near-additive.
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Unfortunately, the Euclidean functionals TSP, MM and MST are smooth and sub-
additive but not super-additive [31, 32, 35]. However, these functionals can be ap-
proximated by their corresponding canonical boundary functionals, which are super-
additive [13, 35]. We obtain the canonical boundary functional of a Euclidean func-
tional by considering the boundary of the domain as a single point [35]. This means
that two points can either be connected directly or via a detour along the boundary.
In the latter case, only the lengths of the two edges connecting the two points to the
boundary count, walking along the boundary is free of charge. Yukich [35] has shown
that this is a sufficient condition for a Euclidean functional to be near-additive.

Proposition 2.1 (Yukich [35, Lemma 5.7]) Let F be a sub-additive Euclidean func-
tional. Let Fg be a super-additive functional that well-approximates F. (This means
that |F(X) — Fg(X)| = O(1) for all finite X C [0, 1]2.) Then F is near-additive.

The functionals MM, TSP, MST, ST, and doMST are near-additive.

Limit theorems are powerful tools for the analysis of Euclidean functionals.
Rhee [25] proved the following limit theorem for smooth Euclidean functionals over
[0, 1]1%. We will mainly use it to bound the probability that F assumes a too small
function value.

Theorem 2.2 (Rhee [25]) Let X be a set of n points drawn independently according
to identical distributions from [0, 112. Let F be a smooth Euclidean functional. Then
there exist constants ¢ and ¢’ such that for all t > 0, we have

, ct*
P[[FX) ~ E[F0]| > 1] < ~exp<—7>_

Remark 2.3 Rhee proved Theorem 2.2 for the case that xy, ..., x, are identically dis-
tributed. However, as pointed out by Rhee herself [25], the proof carries over to the
case when x1, ..., x, are drawn independently but their distributions are not neces-
sarily identical.

2.2 Smoothed Analysis

In the classical model of smoothed analysis [27], an adversary specifies a point set X,
and then this point set is perturbed by independent identically distributed random
variables in order to obtain the input set X. A different view-point is that the adver-
sary specifies the means of the probability distributions according to which the point
set is drawn. This model has been generalized as follows [4]: Instead of only speci-
fying the mean, the adversary can specify a density function for each point, and then
we draw the points independently according to their density functions. In order to
limit the power of the adversary, we have an upper bound ¢ for the densities: The
adversary is allowed to specify any density function [0, 17> — [0, ¢]. If ¢ = 1, then
this boils down to the uniform distribution on the unit square [0, 1]%. If ¢ gets larger,
the adversary becomes more powerful and can specify the location of the points more
and more precisely. The role of ¢ is the same as the role of 1 /o in classical smoothed
analysis, where o is the standard deviation of the perturbation. We summarize this
model formally in the following assumption.
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Assumption 2.4 Let ¢ > 1. An adversary specifies n probability density functions
fis-oos fu 2 1O, 1? > [0, ). We write f = (fi1,..., fn) for short. Let x1,...,x, €
[0, 11 be n random vectors where x; is drawn according to f;, independently from
the other points. Let X = {x1, ..., X}

If the actual density functions f matter and are not clear from the context, we
write X ~ f to denote that X is drawn as described above. If we have a performance
measure P for an algorithm (P will be either running-time or approximation ratio
in this paper), then the smoothed performance is max y (Ex~ [P (X)]). Note that the
smoothed performance is a function of the number n of points and the parameter ¢.

Let F be a Euclidean functional. For the rest of this paper, let ur(n, ¢) be a
lower bound for the expected value of F if X is drawn according to the proba-
bilistic model described above. More precisely, g is some function that fulfills
ur(, ¢) < ming(Ex~¢[F(X)]). The function ur comes into play when we have
to bound the objective value of an optimal solution, i.e., F(X), from below in order
to analyze the approximation ratio.

3 Framework

In this section, we present our framework for the performance analysis of partition-
ing heuristics for Euclidean functionals. Let Aope be an optimal algorithm for some
smooth and near-additive Euclidean functional F, and let Ajoiy be an algorithm that
combines solutions for each cell into a global solution. We assume that Ao, Tuns in
time linear in the number of cells. Then we obtain the following algorithm, which we
call A.

Algorithm 3.1 (Generic algorithm A)
Input: set X C [0, 1]2 of n points.

1. Divide [0, 1] into s cells C, ..., Cy.
2. Compute optimal solutions for each cell using Agpt.
3. Join the s partial solutions to a solution for X using Ajoin.

The cells in the first step of Algorithm 3.1 are rectangles. They are not necessarily
of the same size (in this paper, only the algorithm for matching divides the unique
square into cells of exactly the same size, the other algorithms choose the division
into squares depending on the actual point set). We use the following assumptions in
our analysis and mention explicitly whenever they are used.

Assumption 3.2

1. ¢ € O(s). This basically implies that the adversary cannot concentrate all points
in a too small number of cells.

2. ¢ € w(slogn/n). This provides a lower bound for the probability mass in a “full”
cell, where full is defined in Sect. 3.1.

3. ¢ € o(/n/logn). With this assumption, the tail bound of Theorem 2.2 becomes
sub-polynomial.

@ Springer



Algorithmica (2013) 66:397-418 403

These assumptions are not too restrictive: For the partitioning algorithms we an-
alyze here, we have s = O(n/log?" n) (for matching, we could also use smaller
s while maintaining polynomial, albeit worse, running-time; for the other problems,
we even need s = O (n/log?™")). Ignoring poly-logarithmic terms, the first and third
assumption translate roughly to ¢ = O(n) and ¢ = o(/n), respectively. The sec-
ond assumption roughly says ¢ = w(1). But for ¢ = O(1), we can expect roughly
average-case behavior because the adversary has only little influence on the positions
of the points.

3.1 Smoothed Running-Time

Many of the schemes that we analyze choose the partition in such a way that we have
a worst-case upper bound on the number of points in each cell. Other algorithms, like
the one for matching [10], have a fixed partition independent of the input points. In
the latter case, the running-time also depends on ¢.

Let T'(n) denote the worst-case running-time of Aoy on n points. Then the
running-time of A is bounded by Z;zl T (ng) + O(s), where ny is the number of
points in cell Cy. The expected running-time of A is thus bounded by

N

> E[T(nn)]+ 0s). 1)

=1
For the following argument, we assume that 7' (the running-time of Agp) is @ mono-
tonically increasing convex function and that the locations of the cells are fixed and
all their volumes are equal. (The assumption about the cells is not fulfilled for all par-
titioning heuristics. For instance, Karp’s partitioning scheme [18] chooses the cells
not in advance but based on the actual point set. However, in Karp’s scheme, the cells
are chosen in such a way that there is a good worst-case upper bound for the number
of points per cell, so there is no need for a smoothed analysis.) By slightly abusing
notation, let f;(Cy) = sz fi(x)dx be the cumulative density of f; in the cell Cy.
Since f; is bounded from above by ¢, we have f;(C¢) < ¢/s (this requires that the
cells are of equal size, thus their area is 1/s). Let f(C¢) =Y 7_, fi(Ce). Note that
fi(Ce) =Plx; € C¢] and f(Ce¢) = E[ng].

We call a cell C; full with respect to f if f(Cy) = ne¢/s. We call Cy empty
if f(C¢) = 0. Our bound (1) on the running-time depends only on the values
J1(Cy), ..., fu(Cp), but not on where exactly within the cells the probability mass
is assumed.

The goal of the adversary is to cause the partitioning algorithm to be slow. We will
show that, in order to do this, the adversary will make as many cells as possible full.
Note that there are at most |s/¢ | full cells. Assume that we have |s/¢| full cells and
at most one cell that is neither empty nor full. Then the number of points in any full
cell is a binomially distributed random variable B with parameters n and ¢/s. By
linearity of expectation, the expected running-time is bounded by

Q%J + 1) E[T(B)] + 0(s).

Since ¢ = O (s) by Assumption 3.2(1), this is bounded by 0(% -E[T(B)]+s).If T is
bounded by a polynomial, then this evaluates to O (% -T(n¢/s)+ s) by the following
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Lemma 3.3. This lemma can be viewed as “Jensen’s inequality in the other direction”
with p = ¢/s for ¢ € w(slogn/n). The latter is satisfied by Assumption 3.2(2).

Lemma 3.3 (Inverse Jensen’s inequality) Let T be any convex, monotonically in-
creasing function that is bounded by a polynomial, and let B be a binomially dis-
tributed random variable with parameters n € N and p € [0, 1] with p € w(logn/n).
Then E[T (B)] = & (T (E[B))).

Proof We have E[B] = np. Jensen’s inequality yields E[T (B)] > T (np). Thus, what
remains to be proved is E[T (B)] = O(T (np)). Chernoft’s bound [21, Theorem 4.4]
says

np
P[B > 2np] < (2) .

This allows us to bound
np
E[T(B)] < T(2np) + (Z) T(n).

Since T is bounded by a polynomial, we have T (2np) = O(T(np)). Since
p € w(logn/n) and T is bounded by a polynomial, we have (e/4)"” - T'(n) € o(1).
Thus, E[T (B)] = O(T (np)), which proves the lemma. Il

What remains to be done is to show that the adversary will indeed make as many
cells as possible full. This follows essentially from the convexity of the running-time.
In the following series of three lemmas, we make the argument rigorous.

The first lemma basically says that we maximize a convex function of a sum of
independent 0/1 random variables if we balance the probabilities of the random
variables. This is similar to a result by Le6n and Perron [19]. But when we apply
Lemma 3.4 in the proof of Lemma 3.5, we have to deal with the additional constraint
pi € [ei, 1 — &;]. This makes Le6n and Perron’s result [19] inapplicable.

Lemma 3.4 Let p € (0,1). Let X1, X be independent 0/1 random variables with
PIX1=1]1=p—-36and P[Xo=1]1=p+6. Let X = X1 + X». Let f be any convex
function, and let g(§) = E[ f (X)].

Then g is monotonically decreasing in § for § > 0 and monotonically increasing
for § <0 and has a global maximum at § = 0.

Proof A short calculation shows that
E[f(X)]=(1—-2p+p*—=82)- £(O)+ (2p —2p* +28%) - F(1)
+(p*=8%) - 2.
Abbreviating all terms that do not involve § by z yields
g®) =z + (=82 £(0) +28 F(1) — 82 (2)).

The lemma follows now by the convexity of f. O
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With Lemma 3.4 above, we can show the following lemma: If we maximize a
convex function of n 0/1 random variables and this function is symmetric around
n/2, then we should make all probabilities as small as possible (or all as large as
possible) in order to maximize the function.

Lemma 3.5 Let f be an arbitrary convex function. Let X1, X2, ..., X, be inde-
pendent 0/1 random variables with P[X; = 1] = p; € [&i, 1 — &;], and let X =
Z?:l Xi.Let g(p1,..., pn) =E[f(X)+ f(n — X)]. Then g has a global maximum
at (e1,...,&n).

Proof In the following, let X' = er'l:_ll X;. Without loss of generality, we can assume
that Y!'_, pi <n/2. Otherwise, we replace p; by 1 — p;, which does not change the
function value of g by symmetry.

First, we want to eliminate p; with p; > 1/2. If there is a p; > 1/2, then there
must be a p; < 1/2 since > i, pi <n/2. Leti =n and i’ =n — 1 without loss
of generality. Our goal is to shift “probability mass” from X, to X,_j. To do this,
let ¢ = (pu—1 + pn)/2. We consider two new functions g and 4. The function g is
defined by

where the expected value is taken only over X1, ..., X,,_>. The function # is defined
by
h(8) =g(p1,...» P29 — 8,4 +8) =Ex,_, x,[Z(Xnt1, Xn)].

By definition, we have h(%) =g(p1, ..., pn). The function 4 is convex and we
can apply Lemma 3.4: We should choose |§| as small as possible in order to maximize
it. We decrease 6 from (p, — p,—1)/2 > O until ¢ — 6 or g + § becomes 1/2. Then we
set p,—1 and p, accordingly. In this way, we guarantee that p,_| € [g,—1, | — &,_1]
and p, € [&,, 1 — &,]. We iterate this process until we have p; < 1/2 for all i € [n].
This only increases F'.

Now we can assume that py, ..., p, < 1/2. We finish the proof by showing that
decreasing any p; as much as possible only increases g(pi, ..., pn). Let A(x) =
f(x+1)— f(x). Since f is convex, A is non-decreasing. By symmetry, it suffices
to consider p,. We have

Pty b)) =pu E[f(X' + 1)+ f(n— X' —1)]

+ (1= pa) E[f(X') + f(n - X)]
=po E[f(X)+AX')+ f(n— X —1)]

+ (A =p) E[f(X)+f(n—X 1)+ A(n—X —1)]
=E[f(X)+ f(n—X"—1)]

+E[pn - AX') + 1= pu)- A = X' = 1)]
=E[f(X)+ f(n—X"—1)]

+ pn-E[A(X)]+ (1 = po) -E[A(n — X" —1)].
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Only the term in the last line depends on p,. Since p; < 1/2 forall i € [n — 1], X’ is

stochastically dominated by n — X’ — 1. Since A is non-decreasing, this yields

E[A(n — X" —1)] = E[A(X)].

Hence, decreasing p, will never decrease the value of g. |

Lemma 3.5 above is the main ingredient for the proof that the adversary wants as
many full cells as possible. Lemma 3.6 below makes this rigorous.

Lemma 3.6 Let Cyr and Cg// be any two cells. Let f1,..., fn : 10, 11?2 - [0, ¢] be
any density functions. Let f1, ..., f : [0, 11> — [0, ¢] be density functions with the
following properties for all i € [n]:

L. fi(Cy)=min(@/s, f;(Cy) + f:(Con).

2. fi(Cp) = (fi(Cy) + fi(Cer)) = fi(Cp).

(Note that there are densities f], ey f,, with these properties: First, all fl are non-
negative and, second, f[o,l]z ﬁ(x) dx = 1. Furthermore, fl el f,, can be chosen
such that they are bounded by ¢ since we have f;(Cy), fi(Cer) < ¢/s by construc-
tion.) Let ny be the (random) number of points in X, with respect to ]i = (]i] s ]31),

and let ny be the (random) number of points in X, with respectto f = (f1,..., fn)-
Then

> E[T(no)] <Y _E[TGip)]-
=1 =1

Proof First, we note that E[T (ng)] = E[T (7i;)] for £ # €', £”. Without loss of gener-
ality, let £/ = 1 and £” = 2. Thus, we have to prove
E[T ()] +E[T (n2)] <E[T )] + E[T (2)].
Let M ={i | x; € C1 U C3} be the (random) set of indices of points in the two cells.
To prove this, we prove the inequality
E[T () +T(n2) | M =1] <E[T (1) + T (2) | M = 1]
for any set I C [n]. This is equivalent to
E[T(m)+T(IM|—m)|M=1]<E[T@)+T(IM|~n1)|M=1]

Without loss of generality, we restrict ourselves to the case I = [n]. This gives us
the following setting: Any point x; is either in Cy or in C,. Under this condition, the

probability that x; is in C\ is p; = /4, and the probability that x; is in C3 is 1 —
£:(C2)

Pi = 7{¢:0c;y- We can choose p; arbitrarily such that p; < min{l, m} =
1 —¢&; and p; > max{0, 1 — m} = ¢g;. This is precisely the setting that we

need to apply Lemma 3.5. 0
Let f1,..., fu : [0, 11> — [0, ¢] be the given distributions. By applying Lemma 3.6

repeatedly for pairs of non-full, non-empty cells Cs and C¢», we obtain distributions
fi,.. f,, with the following properties:
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1. f] ey fn have |s/¢] full cells and at most one cell that is neither full nor empty.
2. The expected value of T on X sampled according to fi, ... f; is not smaller than
the expected value of T on X sampled according to fi, ..., f.

This shows that the adversary, in order to slow down our algorithm, will concentrate
the probability in as few cells as possible. Thus, we obtain the following theorem.

Theorem 3.7 Assume that the running-time of Aop can be bounded from above by
a convex function T that is bounded by a polynomial. Then, under Assumptions 2.4,
3.2(1), and 3.2(2), the expected running-time of A on input X is bounded from above

by o))

Proof The expected running-time is maximized if we have |s/¢] cells that are full
plus possibly one cell containing all the remaining probability mass. The expected
running-time for each such cell is O(T (n¢/s)) by Lemma 3.3 and because of As-
sumption 3.2(2). Thus, the expected running-time of A is bounded from above by

P—‘ 0 (T(@» +0(s).
1) s
The theorem follows as ¢ = O(s) by Assumption 3.2(1). O

3.2 Smoothed Approximation Ratio

The value computed by A can be bounded from above by

AC) =Y F(X0) +
=1

where J' is an upper bound for the cost incurred by joining the solution for the cells.
Since F is a near-additive Euclidean functional, we have A(X) < F(X) + J for J =
J'+ 03", diameter(Cy)). Dividing by F(X) yields

—A(X) <140 J 2
FoO = <%) @

Together with E[F(X)] > ur(n, ¢), we obtain a generic upper bound of

E[A(X)] <1+0( J )
E[F(X)] — ur(, @)

for the ratio of expected output of A and expected function value of F. While this
provides some guarantee on the approximation performance, it does not provide a
bound on the expected approximation ratio, which is in fact our goal.

For estimating the expected approximation ratio E[A(X)/F(X)] for some algo-
rithm A, the main challenge is that F(X) stands in the denominator. Thus, even if
we have a good (deterministic) upper bound for A(X) that we can plug into the ex-
pected ratio in order to get an upper bound for the ratio that only depends on F(X),
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we are basically left with the problem of estimating E[1/F(X)]. Jensen’s inequality
yields E[1/F(X)] > 1/E[F(X)]. But this does not help, as we need upper bounds
for E[1/F(X)]. Unfortunately, such upper bounds cannot be derived easily from
1/E[F(X)]. The problem is that we need strong upper bounds for the probability
that F(X) is close to 0. Theorem 2.2 is too weak for this. This problem of bounding
the expected value of the inverse of the optimal objective value arises frequently in
bounding expected approximation ratios [11, 12].

There are two ways to attack this problem: The first and easiest way is if A comes
with a worst-case guarantee «(n2) on its approximation ratio for instances of n points.
Then we can apply Theorem 2.2 to bound F(X) from below. If F(X) > ur(n, ¢)/2,
then we can use (2) to obtain a ratio of 1+ O(W). Otherwise, we obtain a ratio of
a(n). If a(n) is not too large compared to the tail bound obtained from Theorem 2.2,
then this contributes only little to the expected approximation ratio. The following
theorem formalizes this.

Theorem 3.8 Assume that A has a worst-case approximation ratio of a(n) for any
instance consisting of n points. Then, under Assumption 2.4, the expected approxi-
mation ratio of A is

A(X) J cur(n, $)*
E[F(XJSHO(MF@,@+“(")'exp<_ n ))

for some positive constant ¢ > 0.

Proof We have

Mfmin{l—l-O(L),a(n)} (€)
F(X) F(X)

By Theorem 2.2 and Remark 2.3, we have

IE”|:F(X) < L:(n,d))} <c exP<—7ch(n’¢)4)
> <

n

for some constants c, ¢’ > 0. Together with (3), this allows us to bound the expected
approximation ratio as

A(X) J cur(n, ¢)*
]E|:—F(X)i| < 1+0<7MF(’1»¢) +a(n)~exp<—7n )),

which completes the proof. |

Now we turn to the case that the worst-case approximation ratio of A cannot be
bounded by some « (7). In order to be able to bound the expected approximation ratio,
we need an upper bound on E[1/F(X)]. Note that we do not explicitly provide an
upper bound for [E[1/F(X)], but only a sufficiently strong tail bound #,, for 1/F(X).
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Theorem 3.9 Assume that there exists a § < J and a function h,, such that P[F(X) <
x] < hy(x) for all x € [0, B]. Then, under Assumption 2.4, the expected approxima-
tion ratio of A is

S R A — exp(— L) en)
F(XO) | ™ ur(n, @) B g \x '

Proof If F(X) > ug(n, ¢)/2, then the approximation ratio is

J
1+0{ —— ),
- <MF(’77¢)>

which is good. By Theorem 2.2, the probability that this does not hold is bounded

from above by exp(—%fﬁ) for some constant C > 0. If we still have F(X) > S,
then we can bound the ratio from above by

o)} J o)t J
oo -76) (1+0(3)) e (-G ) o (5)

to the expected value, where the inequality follows from B8 < J. We are left with the
case that F(X) < 8. This case contributes

J~/‘OOIF’|:L in|dx.
178 LF(X)

to the expected value. By definition, we have

P[# > x} - P[F(X) < 1} < h(l)
F(X) X X

which completes the proof. g

4 Matching

As afirst example, we apply our framework to the matching functional MM defined by
the Euclidean minimum-length perfect matching problem. A partitioning algorithm
for approximating MM was proposed by Dyer and Frieze [10]. For completeness, let
us describe their algorithm.

Algorithm 4.1 (DF; Dyer, Frieze [10])
Input: set X C [0, l]2 of n points, n is even.
1. Partition [0, 1]2 into s = k2 equal-sized sub-squares Cfi, ..., Cy2, each of side

length 1/, where k = %

2. Compute minimum-length perfect matchings for X, for each £ € [k?].

@ Springer



410 Algorithmica (2013) 66:397-418

3. Compute a matching for the unmatched points from the previous step using the
strip heuristic [33].

Let DF(X) be the cost of the matching computed by the algorithm above on input
X ={x1,...,x,}, and let MM(X) be the cost of a perfect matching of minimum total
length. Dyer and Frieze showed that DF(X) converges to MM(X) with probability
1 if the points in X are drawn according to the uniform distribution on [0, 1]? (this
corresponds to Assumption 2.4 with ¢ = 1). We extend this to the case when X is
drawn as described in Assumption 2.4.

4.1 Smoothed Running-Time

A minimum-length perfect matching can be found in time O(n) [1]. By Theo-
rem 3.7, we get the following corollary.

Corollary 4.2 Under Assumptions 2.4, 3.2(1), and 3.2(2), the expected running-time

of DF on input X is at most
3.2
n ¢ 2
If we plug in k = /n/logn, we obtain an expected running-time of at most

0 (n¢*log* n).
4.2 Smoothed Approximation Ratio

To estimate the approximation performance, we have to specify the function
umm(n, ¢). To obtain a lower bound for umm(n, @), let NN(X) denote the total edge
length of the nearest-neighbor graph for the point set X C [0, 1]%. This means that

NN(X) = i —y|.
(X) Zyer;g:lyn#u vl
xeX

We use NN to bound MM from below: First, we have MM(X) > NN(X)/2. Second,
E[NN(X)] is easier to analyze than E[MM(X)]. Thus, according to the following

lemma, we can choose umm(, ¢) = 2(/n/p).

Lemma 4.3 Under Assumption 2.4, we have

E[NN(X)] = .Q(\/g)

Proof By linearity of expectation, we have E[NN(X)] = n - E[min;>7 ||x; — x;||].
Thus, we have to prove E[min;> ||x; — x;[|] = £2(1/4/n¢). To bound this quantity
from below, we assume that x; is fixed by an adversary and that only x7, ..., x, are
drawn independently according to their density functions. Then we obtain
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o
E[min lx1 —xi||] / ]P’[min”xl — x| Zr] dr

/ Bl — il < r]) dr

/1/«/¢nn n

]‘[ (1 =P[llx1 — x; || <r])dr.

The probability that ||x; — x;|| <r can be bounded from above by ¢ times the area of
a circle of radius r, which is ¢nr2. Thus,

1//¢pmn el
E[mi?nxl —xi||] Z/ (1— ¢mr?)" " dr
1> 0

1/Jomn 1 n—1 1
o R (A
0 n es/omn

The second inequality holds because 1 — ¢nr2 >1-— % for r € [0, 1/4/¢pmn]. The
third inequality exploits (1 — 1)"~1 > 1/e. O

Since MM is near-additive and the diameter of each cell is O(1/k), we can use

k2 N
. n
J=0 (Z dlameter(Cg)) =0k)=0 <1ogn)' 4)

=1

Unfortunately, we cannot bound the worst-case approximation ratio of Dyer and
Frieze’s partitioning algorithm. Thus, we cannot apply Theorem 3.8, but we have to
use Theorem 3.9. Thus, we first need a tail bound for 1/MM(X). The bound in the
following lemma suffices for our purposes.

Lemma 4.4 Under Assumption 2.4, we have
P[MM(X) < c] < 2¢c)"/?

1
forall c < 3

Proof Let us first analyze the probability that a specific fixed matching M has a
length of at most c. We let an adversary fix one end-point of each edge. Then the
probability that a specific edge of M has a length of at most ¢ is bounded from above
by ¢mc?. Thus, the density of the length of a particular edge is bounded from above
by 2¢mc < ¢ as ¢ < 5. Furthermore, the lengths of the edges of M are independent
random variables. Thus the probability that the sum of the edge lengths of all n/2

edges of M is bounded from above by c is at most (¢E” I which can be proved
by the following induction: Let m = n/2, and let ay, ..., a, be the (random) edge
lengths of the edge of M. For m = 1, the statement follows from Pla; < c¢] < ¢c. For
larger m, assume that the claim holds for m — 1, and let & be the density of a,,. This
density is bounded by ¢ as argued above. Thus,
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C
P[a1+~~+am§c]§/ h(am)Play + - -+ am—1 <c—aylday,
0

c _ m—1 m
- / é- (¢(c —am)) day, = (¢c) '
0 (m—1)! m!
The number of perfect matchings of a complete graph on n vertices is (n — 1)!! =
nmn—=1-(m—=3)-(n—15)--- (“!!” denotes the double factorial). A union bound over
all matchings yields

— DI (pc)/? "
s ()’1/2§<!Pc) = (nn/z)! (@) = 290)"?,

which completes the proof. g

P[MM(X) <c] <

With this tail bound for 1/MM(X), we can prove the following bound on the
smoothed approximation ratio.

Corollary 4.5 Under Assumptions 2.4 and 3.2(3), the expected approximation ratio
of DF is 1+ 0(%).

Proof We apply Theorem 3.9. To do this, let 8 = ﬁ (this is exactly the value at
which Lemma 4.4 becomes non-trivial). Lemma 4.4 allows us to choose %, (x) =
(2¢pmx)™/? and yields

00 o) n/2 noan_q
[on(on () a2y s
/8 X 1/p\ X n—2 (n—2)

Assumption 3.2(3) with (4) yields

7 =5~ o) =)
m—2) \/n-logn) ~“\logn

by Assumption 3.2(3).

We can choose umm(n, ¢) = 2(/n/¢) as MM(X) > NN(X)/2 = 2(/n/¢p) by
Lemma 4.3. Theorem 2.2 together with Assumption 3.2(3) thus yields that the prob-
ability that MM(X) < umm(n, @) /2 is bounded from above by

4
exp(—%) = exp(—Q (q%)) = exp(—a)(logn))

This bound decreases faster than any polynomial in n. Thus, also by Assump-
tion 3.2(3),

J

exp(~ GO0 <¢ﬁ ( (i (n, ¢>)4>>
. = cexpl ———
B logn Cn

decreases faster than any polynomial in 7.
Altogether, Theorem 3.9 yields a bound of

1+0<7J )+o<*@)=1+o<ﬂ)
umm(n, @) logn logn

for the expected approximation ratio. O
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Remark 4.6

1. There exist other partitioning schemes for Euclidean matching [2], which can be
analyzed in a similar way.

2. Instead of a standard cubic-time algorithm, we can use Varadarajan’s matching
algorithm [34] for computing the optimal matchings within each cell. This al-
gorithm has a running-time of O (m'>1log>m) for m points, which improves the
running-time bound to O (n/@ log(n) log5 (plogn)).

5 Karp’s Partitioning Scheme for Euclidean TSP

Karp’s partitioning scheme [18] is a heuristic for Euclidean TSP that computes near-
optimal solutions on average. It proceeds as follows:

Algorithm 5.1 (KP, Karp’s partitioning scheme)
Input: set X C [0, 1]2 of n points.

1. Partition [0, 1]% into k = /n/Togn stripes such that each stripe contains exactly
n/k = /nlogn points.
2. Partition each stripe into k cells such that each cell contains exactly n/k> = logn
points.
. Compute optimal TSP tours for each cell.
4. Join the tours to obtain a TSP tour for X.

(98]

We remark that the choice of k in Karp’s partitioning scheme is optimal in the
following sense: On the one hand, more than & (logn) points per cell would yield a
super-polynomial running-time as the running-time is exponential in the number of
points per cell. On the other hand, less than & (logn) point per cell would yield a
worse approximation ratio as the approximation ratio gets worse with increasing k.

For a point set X C [0, 1]2, let KP(X) denote the cost of the tour through X com-
puted by Karp’s scheme. Steele [31] has proved complete convergence of KP(X) to
TSP(X) with probability 1, if the points are chosen uniformly and independently.
Using our framework developed in Sect. 3, we extend the analysis of KP to the case
of non-uniform and non-identical distributions.

Since Karp’s scheme chooses the cells adaptively based on the point set X, our
framework for the analysis of the running-time cannot be applied. However, the total
running-time of the algorithm is 7 (n) = 2"/¥* poly(n/k?) + O (k?), which is, inde-
pendent of the randomness, polynomial in n for k> =n/logn.

The nearest-neighbor functional NN is a lower bound for TSP. Thus, we can use
Lemma 4.3 to obtain u1sp(n, ¢) = $2(/n/P). We can use the bound [18, 30]

KP(X) <TSP(X) 4+ 6k =TSP(X) 4+ 6/n/logn
to obtain J = O(y/n/logn).

The nice thing about the TSP is that every tour has a worst-case approximation
guarantee: Consider any two points x, y € X. Since any tour must visit both x and
v, its length is at least 2||x — y|| by the triangle inequality. Since a tour consists of n
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edges, any tour has a length of at most 5 - TSP(X). Thus, we can use Theorem 3.8
together with o(n) = n/2 and obtain the following result.

Corollary 5.2 Under Assumptions 2.4 and 3.2(3), the expected approximation ratio

of KP is El{gprgy] < 1+ O(/§/Togn).

Proof We plug J = O(/nlogn) and utsp(n, ¢) = ©(/n/¢) and a(n) = n/2 into

the bound of Theorem 3.8 and obtain an upper bound of

o2 )rofe el o2)

for the expected approximation ratio. By Assumption 3.2(3), the exponential term
decreases faster than any polynomial. Thus, O (s/¢/logn) is an upper bound for the
last term. 0

6 Euclidean Steiner Trees

Kalpakis and Sherman [17] proposed a partitioning algorithm for the Euclidean min-
imum Steiner tree problem analogous to Karp’s partitioning scheme for Euclidean
TSP. The solution produced by their algorithm converges to the optimal value with
probability 1 — o(1). Also, their algorithm [17] is known to produce near-optimal
solutions in practice too [24]. Let us now describe Kalpakis and Sherman’s algo-
rithm [17].

Algorithm 6.1 (KS, Kalpakis, Sherman [17])
Input: set X C [0, 1]% of n points.

1. Let s = n/logn. Partition [0, 172 into O (s) cells such that each cell contains at
most n/s = logn points.

2. Solve the Steiner tree problem optimally within each cell.

3. Compute a minimum-length spanning tree to connect the forest thus obtained.

The running-time of this algorithm is polynomial for the choice of s = n/logn [8].
For the same reason as for Karp’s partitioning scheme, we cannot use our framework
to estimate the running-time, because the choice of cells depends on the actual point
set.

Let KS(X) denote the cost of the Steiner tree computed Kalpakis and Sherman’s
algorithm [17]. For the analysis of the approximation performance, let ST(X) denote
the cost of a minimum Steiner tree for the point set X, and let MST(X) denote the cost
of a minimum-length spanning tree of X. Kalpakis and Sherman [17] have shown that

KS(X) <ST(X) + O(y/n/logn).
Thus, J = O(y/n/logn).
Since minimum spanning trees are 2/+/3 approximations for Euclidean Steiner

trees [9], we have ST(X) > g - MST(X). Furthermore, we have MST(X) > % .

NN(X). Thus, we can choose ust(n, ¢) = @ (/n/¢) by Lemma 4.3.
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As KP for the traveling salesman problem, KS comes with a worst-case approxi-
mation ratio of «(n) = O (n). The reason is that, for any two points x, y € X, we have
lx — y|| < ST(X). Since Kalpakis and Sherman’s partitioning algorithm [17] out-
puts at most a linear number of edges, we have KS(X) < O(n - ST(X)). This gives
us a worst-case approximation ratio of O(n) and yields the following corollary of
Theorem 3.8.

Corollary 6.2 Under Assumptions 2.4 and 3.2(3), the expected approximation ratio

of KS is
|: : )i|<1 ( )
ST(X) logn

Proof The proof is almost identical to the proof of Corollary 5.2. g

7 Degree-Bounded Minimum Spanning Tree

A b-degree-bounded minimum spanning tree of a given set of points in [0, 1]% is a
spanning tree in which the degree of every point is bounded by b. For 2 < b <4, this
problem is NP-hard, and it is solvable in polynomial time for » > 5 [23]. Let dbMST
denote the Euclidean functional that maps a point set to the length of its shortest
b-degree-bounded minimum spanning tree.

Proposition 7.1 dbMST is a smooth, sub-additive and near-additive Euclidean func-
tional.

Proof The smoothness and sub-additivity properties have been proved by Srivastav
and Werth [29]. They have also defined a canonical super-additive boundary func-
tional that well-approximates dbMST [29, Lemmas 3 and 4]. This, together with
Proposition 2.1 proves that dbMST is near-additive. 0

Naturally, near-additivity implies that Karp’s partitioning scheme can be extended
to the b-degree-bounded minimum spanning tree problem. Let P — bMST be the
adaptation of Karp’s partitioning algorithm to doMST with parameter k> = %
With this choice of k&, P —bMST runs in polynomial-time as a degree-bounded
minimum-length spanning tree on m nodes can be found in time 201°2™ ysing

brute-force search. Then, for any X, we have

nloglogn
P-bMST(X) <dbMST(X) + O .| ——— |,
logn

which yields J = O (y/nloglogn/logn).

Again, we have ||x — y|| < dbMST(X) for all X and x,y € X, which im-
plies that any possible tree is at most a factor n worse than the optimal tree.
This implies in particular that the worst-case approximation ratio of P-bMST is
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O(n): P-bMST(X) = O(n - dbMST(X)). Furthermore, we can use ugpmst (2, ) =
2(/n/¢) by Lemma 4.3 as dbMST(X) = £2(NN(X)).
We can apply Theorem 3.8 to obtain the following result.

Corollary 7.2 Under Assumptions 2.4 and 3.2(3), the expected approximation ratio
is

POMSTOO) | _ + 0(/¢loglogn/logn)

—_—— oglogn/logn).

dbMST(X) | = glogn/iog
Proof The proof is almost identical to the proof of Corollary 5.2. The only difference
is we now have to use J = O (y/nloglogn/logn), which leads to the slightly worse
bound for the approximation ratio. g

Again, we cannot use our framework for the running-time, but the running-time is
guaranteed to be bounded by a polynomial.

8 Concluding Remarks

We have provided a smoothed analysis of partitioning algorithms for Euclidean op-
timization problems. The results can be extended to distributions over R? by scal-
ing down the instance so that the inputs lie inside [0, 1]>. The analysis can also be
extended to higher dimensions. However, the value of ¢ for which our results are
applicable will depend on the dimension d.

Even though solutions computed by most of the partitioning algorithms achieve
convergence to the corresponding optimal value with probability 1 under uniform
samples, in practice they have constant approximation ratios close to 1 [16, 24].
Our results show that the expected function values computed by partitioning algo-
rithms approach optimality not only under uniform, identical distributions, but also
under non-uniform, non-identical distributions, provided that the distributions are not
sharply concentrated.

One prominent open problem for which our approach does not work is the func-
tional defined by the total edge weight of a minimum-weight triangulation in the
Euclidean plane. The main obstacles for this problem are that, first, the functional
corresponding to minimum-weight triangulation is not smooth and, second, the value
computed by the partitioning heuristic depends on the number of points in the convex
hull of the point set [15]. Damerow and Sohler [7] provide a bound for the smoothed
number of points in the convex hull. However, their bound is not strong enough for
analyzing triangulations.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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