
Algorithmica (2013) 65:868–884
DOI 10.1007/s00453-012-9630-x

Fast Polynomial-Space Algorithms Using
Inclusion-Exclusion
Improving on Steiner Tree and Related Problems

Jesper Nederlof

Received: 26 October 2010 / Accepted: 21 February 2012 / Published online: 10 March 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Given a graph with n vertices, k terminals and positive integer weights not
larger than c, we compute a minimum STEINER TREE in O�(2kc) time and O�(c)

space, where the O� notation omits terms bounded by a polynomial in the input-size.
We obtain the result by defining a generalization of walks, called branching walks,
and combining it with the Inclusion-Exclusion technique. Using this combination
we also give O�(2n)-time polynomial space algorithms for DEGREE CONSTRAINED

SPANNING TREE, MAXIMUM INTERNAL SPANNING TREE and #SPANNING FOR-
EST with a given number of components. Furthermore, using related techniques, we
also present new polynomial space algorithms for computing the COVER POLYNO-
MIAL of a graph, CONVEX TREE COLORING and counting the number of perfect
matchings of a graph.

Keywords Inclusion-Exclusion · Fixed parameter tractability · Exact algorithms ·
Polynomial space · Steiner tree

1 Introduction

Since P is believed to be not equal to N P , it is accepted that algorithms solving
N P -hard problems use super-polynomial, or even exponential, time. This justifies
the study of moderately exponential time algorithms: algorithms that solve N P -hard
problems exactly, but run in exponential time in the worst case. Naturally the chal-
lenge still is to get the worst-case complexity as low as possible, and this question

A preliminary version of parts this work appeared in the Proceedings of ICALP 2009.

This work is supported by the Research Council of Norway.

J. Nederlof (�)
Department of Informatics, University of Bergen, PBOX 7803, 5020 Bergen, Norway
e-mail: jesper.nederlof@ii.uib.no

mailto:jesper.nederlof@ii.uib.no

Algorithmica (2013) 65:868–884 869

Table 1 The results of this work compared to the relevant previous results. The number of vertices on the
input graph is denoted by n. The running times of the algorithms of this work are given in the last column.
These new algorithms use polynomial space, except the ones indicated with the ∗, which use O�(c) space

Problem Poly-space By Exp-space By Results

STEINER TREE with unit weights 5.96knO(log k) [11] O�(2k) [4] O�(2k)

O�(1.60n) [11] O�(1.36n) [11] O�(1.36n)

STEINER TREE 5.96knO(log k) [11] O�((2 + ε)k) [12] O�(2kc)∗
O�(2kc) [4]

DEGREE CONSTRAINED SPANNING TREE O�(5.92n) [1] O�(2n)

MAXIMUM INTERNAL SPANNING TREE O�(3n) [10] O�(2n)

#SPANNING FORESTS O�(2n) [5] O�(2n)

COVER POLYNOMIAL O�(3n) [5] O�(2n) [5] O�(2n)

CONVEX TREE COLORING O�(2kc) [19] O�(2kc)∗
#PERFECT MATCHING O�(2n) [2] O�(1.62n) [16] O�(1.95n)

already has given rise to many non-trivial algorithms. See for example the survey by
Woeginger [20].

Many of these algorithms also use exponential space. In fact, the time/space-usage
ratio is polynomial in the input (i.e. the running time is bounded by a polynomial
function of the space usage). It is expected that these algorithms are not practical
even for small problem-instances, since they tend to run out of memory, require lot of
(slow) disk access, and hardly allow parallel execution. Therefore polynomial-space
exact algorithms have already been studied for several N P -hard problems [3, 7, 11,
14, 15, 20]. In this paper we focus on space usage and give improved algorithms for
several problems.

In 2009, Björklund et al. [3] drew new attention to the well-known principle
of Inclusion-Exclusion: They gave O∗(2n)-time algorithms for several set partition
problems, the most prominent one being k-COLORING. They also mention a simple
adjustment to their algorithm to achieve an O∗(2.24n)-time algorithm with polyno-
mial space for k-COLORING. Also related to this are the O∗(2n)-time polynomial-
space algorithms for #HAMILTONIAN PATH by Karp [14] and (implicitly) Kohn et
al. [15], and for #PERFECT MATCHING by Björklund and Husfeldt [2].

Our algorithms heavily rely on the work of Björklund et al. [2–6]. The results can
be read from Table 1.

STEINER TREE is one of the most well-studied N P -complete problems. For
this problem, the Dreyfus-Wagner [9] dynamic programming algorithm has been the
fastest exact algorithm for over 30 years. However, recently Björklund et al. [4] gave
an O�(2k)-time algorithm for the variant with bounded integer weights with k ter-
minals, and Fuchs et al. [12] gave an O�(ck)-time algorithm for the general case,
for any c > 2. Both algorithms use �(2k) space. In 2008, Fomin et al. [11] initiated
the study of polynomial space algorithms for STEINER TREE. They gave polynomial
space algorithms with running times bounded by 5.96knO(logk) and O�(1.60n) where
n is the number of vertices in the graph. They pose the question whether STEINER

TREE is fixed parameter tractable with respect to k when there is a polynomial space
restriction. We answer this question affirmatively by providing an algorithm that runs

870 Algorithmica (2013) 65:868–884

in O∗(2k) time and meets the restriction. Using the techniques of [11], this also leads
to a polynomial-space O∗(1.36n)-time algorithm.

The MAX INTERNAL SPANNING TREE (MIST) and DEGREE CONSTRAINED

SPANNING TREE (DCST; also called MIN-MAX DEGREE SPANNING TREE) prob-
lems are natural generalizations of HAMILTONIAN PATH. In [10], Fernau et al. ask if
there exists an O�(2n)-time algorithm to solve MIST. In [13], Gaspers et al. ask if
there exists an O�(2n)-time algorithm solving DCST. We answer both questions by
giving polynomial-space algorithms with this running time.

The COVER POLYNOMIAL of a directed graph, introduced by Graham and Chung
[8], generalizes all problems that can be solved using two operations named deletion
and contraction of edges, and is designed to be the directed analogue of the Tutte
polynomial. We improve the O�(3n)-time polynomial-space algorithm of Björklund
et al. [5] to an O�(2n)-time polynomial-space algorithm. We also give the same im-
provement for #SPANNING FORESTS, which is one particular case of the Tutte poly-
nomial. For more information about the Tutte polynomial we refer to [5].

Finally, we give two new algorithms for CONVEX TREE COLORING and
#PERFECT MATCHING (counting the number of perfect matchings of a graph).
(A special case of) the CONVEX TREE COLORING problem was studied in [19],
where a O�(2kc) time and O�(c) space algorithm was given. We will continue this
study by emphasizing the space usage aspect. Finally, we show that # PERFECT

MATCHING can be solved in O�(1.95n) time and polynomial space, improving over
the previous O�(2n) time polynomial space algorithm of Björklund and Husfeldt [2].
It is worth to mention that with exponential space, one can count perfect matchings
of general graphs even in O�(1.62n) time due to Koivisto [16].

The paper is organized as follows: After the preliminaries in Sect. 2, we revisit the
principle of Inclusion-Exclusion and the well-known Hamiltonian path algorithm in
Sect. 3. After this we provide in Sect. 4 a natural extension by introducing the concept
of branching walks and give the resulting algorithms. In the remaining sections we
prove the remaining results that are not primarily based on branching walks.

2 Preliminaries and Notation

We will use the O� notation that suppresses any factor that is polynomial in the
input size. For an integer i, we use [i] to denote {1, . . . , i}. We also use Iverson’s
bracket notation: for a proposition p, [p] denotes 1 if p is true and 0 otherwise.
Let G = (V ,E) be a graph. We will use V (G) and E(G) for the vertices V of G

and the edges E of G, respectively. The number of vertices of the input graphs is
denoted by n. The graph G[X] induced by X is (i) (X, (X × X) ∩ E) where X ⊆ V ,
and (ii) (

⋃
e∈X e,X) if X ⊆ E. For v ∈ V (G), NG(v) are all vertices adjacent to v

in G and dG(v) = |NG(v)|; The subscript G is omitted if the graph is clear from
the context. A walk of length k in G is a tuple W = (v1, . . . , vk+1) ∈ V k+1 such that
(vi, vi+1) ∈ E for each 0 < i ≤ k. We say W is from v if v1 = v, and W is cyclic if
v1 = vk+1. Furthermore, v ∈ V is said to be visited by W if vi = v for some 1 ≤ i ≤ k.
For a rooted tree T we will use rt(T) to denote the root of T . For a vertex v ∈ V (T)

we will also use pa(v) to denote the parent of v.

Algorithmica (2013) 65:868–884 871

Also given a graph G1 = (V1,E1), a homomorphism from G1 to G is a function
ϕ : V1 → V such that (u, v) ∈ E1 implies (ϕ(u),ϕ(v)) ∈ E. Note that ϕ directly
corresponds to a walk in the case that G1 is a path. We will use the notation ϕ(X) =
{ϕ(u) | u ∈ X} and ϕ(Y) = {(ϕ(u),ϕ(v)) | (u, v) ∈ Y } for X ⊆ V1 and Y ⊆ E1. If
G2 = (V2,E2) is a third graph with V1 ∩ V2 = ∅ and ϕ1 : V1 → V and ϕ2 : V2 → V

are homomorphisms, we will use ϕ1 ∪ϕ2 to denote the homomorphism V1 ∪V2 → V

defined by ϕ(v) = ϕ1(v) and ϕ(w) = ϕ2(w) with v ∈ V1 and w ∈ V2.

2.1 Model

We assume integers in the input are given in binary, and we will prove our results
for the RAM computation model where any arithmetic operation and storing any
integer is assumed to take constant time and space. However, all our results also
hold in the (more realistic) RAM computation model where arithmetic operations
and storing integers only take constant time and space if they are constant-sized. To
see the significance, note for example that in the first model two n-bits integers can
be added in constant time, while in the second it takes linear time.

3 Inclusion-Exclusion

Theorem 1 (Folklore) Let U and R be sets and for every v ∈ R, let Pv be a subset
of U . Use Pv to denote U \Pv . With the convention

⋂
i∈∅ Pi = U , the following holds:

∣
∣
∣
∣

⋂

v∈R

Pv

∣
∣
∣
∣ =

∑

F⊆R

(−1)|F |
∣
∣
∣
∣

⋂

v∈F

Pv

∣
∣
∣
∣. (1)

In this work, we call any application of the above theorem an Inclusion-Exclusion-
formulation (IE-formulation). In the context of this paper it is convenient to use the
following terminology: We refer to the set U as the universe, to R as the requirement
space and to Pv as a property. Moreover, given a set F ⊆ R, we call the task of
computing |⋂v∈F Pv|, the simplified problem. Note that if the simplified problem
can be solved in O�(t (n)) time and O�(s(n)) space, the left-hand side of (1) can be
determined in O�(2nt (n))-time and O�(s(n)) space in the straightforward manner.
All algorithms in this paper will exploit this observation.

3.1 Hamiltonian Paths

To illustrate Theorem 1, we will first recall the following IE-formulation due to Karp
[14] for counting Hamiltonian paths. Given a (possibly directed) graph G = (V ,E),
a Hamiltonian path is a walk that contains each vertex of G exactly once.1

Theorem 2 ([14]) Hamiltonian paths of a graph of n vertices can be counted in
O�(2n) time and polynomial space.

1Note that this is slightly different from the usual definition, since a path corresponds to two walks in both
directions. So we will actually obtain a number that is exactly twice the number of Hamiltonian paths.

872 Algorithmica (2013) 65:868–884

Proof Let G = (V ,E). In the context of Theorem 1, define the universe U as all
walks of length n − 1 in G, the requirement space R = V , and Pv as all walks of
length n − 1 that visit vertex v, for every v ∈ V . With these definitions, the left-hand
side of (1), |⋂v∈V Pv|, is the number of Hamiltonian paths in G. Now it remains to
show how to solve the simplified problem. Given F ⊆ V and x ∈ V \F , let wF (x, k)

be the number of walks from x of length k in G[V \ F]. Then wF (x, k) admits the
following recurrence:

wF (x, k) =
{

1 if k = 0,
∑

t∈N(x)\F wF (t, k − 1) otherwise.
(2)

Also, notice that
∣
∣
∣
∣

⋂

v∈F

Pv

∣
∣
∣
∣ =

∑

s∈V \F
wF (s, n − 1),

and hence the simplified problem can be solved in polynomial time using dynamic
programming on (2) (the parameter F is fixed but is added for clarity). Thus it takes
O�(2n) time and polynomial space to evaluate (1), and the theorem follows. �

4 Branching Walks

Definition 1 A branching walk B in G = (V ,E) is a pair (T ,ϕ) where T is an
ordered rooted tree and ϕ : V (T) → V is a homomorphism from T to G. For a vertex
x ∈ V , B is from x if ϕ(rt(T)) = x. B visits a vertex v ∈ V if v ∈ ϕ(V (T)). The
length of B is |E(T)|.

A branching walk is a natural generalization of a walk: Notice that a branching
walk (T ,ϕ) is a walk in the special case that T is a path rooted at an endpoint.
Since we will count distinct branching walks, we emphasize that two branching walks
(T1, ϕ1) and (T2, ϕ2) are distinct if there is no isomorphism ψ : T1 → T2 such that
ϕ1(v) = ϕ2(ψ(v)) for every v ∈ V (T1).

4.1 Steiner Tree

In this section we will give an extension of the technique in the previous section to
obtain a new IE-formulation for the STEINER TREE problem, which is defined as
follows:

STEINER TREE

Input G = (V ,E), c ∈ Z
+, weight function w : E → [c] \ 0 and terminals K ⊆ V .

Question Is there a subtree (V ′,E′) of G such that K ⊆ V ′ and
∑

e∈E′ w(e) ≤ c?

Given a branching walk (T ,ϕ), the quantity
∑

e∈E(T) w(ϕ(e)) is said to be its
weight.

Lemma 1 Let s0 ∈ K . There exists a subtree S = (V ′,E′) of G such that K ⊆ V ′
and w(E′) ≤ c if and only if there exists a branching walk B = (T ,ϕ) from s0 of
weight at most c such that K ⊆ ϕ(V (T)).

Algorithmica (2013) 65:868–884 873

Proof For the forward direction, assume S to be ordered by fixing an arbitrary order.
Then define B = (S,ϕ), with ϕ : V ′ → V ′ the identity function, and let rt(S) =
s0 (this is possible since s0 ∈ K ⊆ V (S)). Then, clearly w(ϕ(E(S))) ≤ c. For the
backward direction, notice that (ϕ(V (T)),ϕ(E(T))) is connected and if we let S be
a spanning tree of (ϕ(V (T)),ϕ(E(T))), it has the required properties. �

Consider the following IE-formulation: Let s0 ∈ K be an arbitrarily chosen ter-
minal, and define the universe U to be the set of all branching walks (T ,ϕ) from s0
of weight at most c. Let the requirement space R be K . For every v ∈ K , define a
property Pv ⊆ U that consists of all branching walks in U that visit v. It follows that
the left-hand side of (1), |⋂v∈K Pv|, is the number of branching walks of weight at
most c that contain all terminals. By Lemma 1, this quantity is larger than 0 if and
only if the instance of STEINER TREE is a yes-instance. Hence we can restrict our
goal to determining |⋂v∈K Pv|. For this we use Theorem 1.

Before we proceed, first let us recall a basic combinatorial problem: Let Tn be the
set of all distinct ordered rooted trees on n edges (also called the Catalan numbers).
We will give a recurrence for |Tn|. Let

γ :
⋃

i,j

(Ti × Tj) ↔ Ti+j+1 (3)

be the gluing operation such that T = γ (T1, T2) is obtained by connecting rt(T1)

and rt(T2), setting rt(T) = rt(T2), letting the first child of rt(T) be rt(T1),
being followed by the children of rt(T) in T2. Clearly γ is a bijection so |Tn| =∑n−i−1

i=0 |Ti ||Tn−i−1|.
We now continue applying Theorem 1 by showing how the simplified problem can

be solved in O�(c) time and space. For F ⊆ K , define BF (x,W) to be all branching
walks (T ,ϕ) of weight at most W from x in G[V \ F], where x ∈ V \ F . Hence
U = B∅(x, c). Let bF (x,W) = |BF (x,W)|. First, note that the simplified problem is
to compute

∣
∣
∣
∣

⋂

v∈F

Pv

∣
∣
∣
∣ = bF (s0,W)

for a given set F ⊆ K of terminals. Now bF (s0,W) can be computed in polynomial
time using the following lemma in combination with dynamic programming:

Lemma 2 Let F ⊆ K and x ∈ V \ F , then

bF (x,W) =
⎧
⎨

⎩

1 if W = 0, (4a)
∑

t∈N(x)\F
∑

W1+W2=W−w(x,t) bF (t,W1)bF (x,W2)

otherwise. (4b)

Proof There is one branching walk B of weight 0, B = (T ,ϕ), from x with T being
a single vertex and ϕ mapping this single vertex to x, hence Case 4a. For the second
case, define a function

γ ′ :
⋃

t∈N(x)\F

⋃

W1,W2

(
BF (t,W1) × BF (x,W2)

) ↔ BF

(
x,W1 + W2 + w(x, t)

)

874 Algorithmica (2013) 65:868–884

by γ ′((T1, ϕ1), (T2, ϕ2)) = (γ (T1, T2), ϕ1 ∪ ϕ2). Now γ ′ is a bijection since γ is a
bijection as stated in (3) and for the branching walk (γ (T1, T2), ϕ) it must hold that
ϕ(rt(T1)) ∈ N(ϕ(rt(T2))). Hence Case 4b follows. �

Theorem 3 The STEINER TREE problem can be solved in O�(2kc) time and O�(c)

space.

Proof Due to Lemma 1 the considered IE-formulation solves STEINER TREE, and we
can use dynamic programming on (4b) to compute the simplified problem in O�(c2)

time. This can be further reduced to O�(c) time in a standard manner with the Fast
Fourier Transform. Then the theorem follows from Theorem 1. �

The following result is a consequence of Theorem 3 and the considerations of
Sect. 4.2 in [11]:

Theorem 4 The STEINER TREE problem with unit weights can be solved in
O�(1.36n) time using polynomial space.

Proof Modify Algorithm steiner as described in Sect. 4.2 in [11], except that we
replace Step 4 of steiner with the algorithm due to Theorem 3. This clearly does
not change the worst-case running time as claimed in Theorem 5 of [11], and it is
easy to see that the new algorithm uses polynomial space. �

4.2 Degree Constrained Spanning Tree

DEGREE CONSTRAINED SPANNING TREE (DCST)

Input G = (V ,E), 1 ≤ c ≤ n.
Question Is there a spanning tree of G with maximum degree at most c?

Analogous to Lemma 1, we will use the following lemma to reduce our problem
to computing some quantity involving branching walks:

Lemma 3 There exists a spanning tree of G of maximum degree at most c if and only
if there exists a branching walk B = (T ,ϕ) of length n − 1 such that ϕ(V (T)) = V

and the maximum degree of T is at most c.

Proof For the forward direction, assume S to be a spanning tree of G of maximum
degree at most c and order it by fixing an arbitrary order. Then define B = (S,ϕ),
with ϕ : V (S) → V (S) the identity function, and choose rt(S) arbitrarily. For the
backward direction, notice that (ϕ(V (T)),ϕ(E(T))) is a tree of maximum degree at
most c. �

Now we can use the following IE-formulation: Define the universe U as all
branching walks (T ,ϕ) of length n − 1 such that the maximum degree of T is at
most c. Define the requirement space R = V and Pv to be all branching walks in U

visiting v, for every v ∈ V . That is, let Pv = {(T ,ϕ) ∈ U : v ∈ ϕ(V (T))}. For F ⊆ V ,

Algorithmica (2013) 65:868–884 875

define DF (x, j, g) as all branching walks (T ,ϕ) ∈ U from x of length j in G[V \F]
such that the degree of the root of T is at most g and the degree of every other vertex
is at most c. Hence U = ⋃

x∈V \F D∅(x,n − 1, c). Let dF (x, j, g) = |DF (x, j, g)|.
We apply Theorem 1, and conclude that the simplified problem is to compute the
number of branching walks in the universe that avoid F , and hence

∣
∣
∣
∣

⋂

v∈F

Pv

∣
∣
∣
∣ =

∑

x∈V \F
dF (x,n − 1, c).

This can be done in polynomial time with dynamic programming using the following
lemma:

Lemma 4

dF (x, j, g) =

⎧
⎪⎪⎨

⎪⎪⎩

[g ≥ 0] if j = 0, (5a)
∑

t∈N(x)\F
∑

j1+j2=j−1 dF (t, j1, c − 1) dF (x, j2, g − 1)

otherwise. (5b)

Proof To see that Case 5a holds, notice that dF (x,0, g) = 0 if g is negative since
the root has a non-negative degree, and otherwise there is one branching walk (T ,ϕ)

of length zero obtained by letting T be the tree on one vertex and letting ϕ be the
function mapping this vertex to x.

For Case 5b, define γ ′((T1, ϕ1), (T2, ϕ2)) to be the branching walk (γ (T1, T2),

ϕ1 ∪ϕ2), where γ is the gluing operation from (3). Then we claim that γ ′ is a bijection

γ ′ :
⋃

t∈N(x)\F

⋃

j1,j2

(
DF (t, j1, c − 1) × DF (x, j2, g)

) ↔ DF (x, j1 + j2 + 1, g + 1).

To see this, define a (c, g)-tree as a tree of maximum degree c with the degree of
its root at most g, and notice that γ (T1, T2) is a (c, g)-tree if and only if T1 is a
(c, c − 1)-tree and T2 is a (c, g − 1)-tree. Then Case 5b follows by combining with
the arguments in the proof of Lemma 2. �

Theorem 5 The DEGREE CONSTRAINED SPANNING TREE problem can be solved
in O�(2n) time and polynomial space.

Proof Due to Lemma 3 the considered IE-formulation solves DCST, and we can use
dynamic programming on (4) to compute the simplified problem in polynomial time.
Then the theorem follows from Theorem 1. �

4.3 Maximum Internal Spanning Tree

A vertex of a tree is called internal if its degree is at least 2.

MAXIMUM INTERNAL SPANNING TREE

Input G = (V ,E), 1 ≤ c ≤ n.
Question Is there a spanning tree of G with at least c internal vertices?

876 Algorithmica (2013) 65:868–884

Lemma 5 There exists a spanning tree of G with at least c internal vertices if and
only if there exists a branching walk B = (T ,ϕ) of length n− 1 such that ϕ(V (T)) =
V and T has at least c internal vertices.

Proof For the forward direction, assume S to be a spanning tree of G with at least
c internal vertices and order it by fixing an arbitrary order. Define B = (S,ϕ), with
ϕ : V (S) → V (S) the identity function. It clearly has the required properties. For
the backward direction, notice that (V ,ϕ(E(T))) is a spanning tree with at least c

internal vertices since φ(E(T)) = n − 1. �

Consider the following IE-formulation: Define the universe U to be all branching
walks (T ,ϕ) of length n − 1 such that T has at least c internal vertices. For v ∈
V , let Pv = {(T ,ϕ) ∈ U : v ∈ ϕ(V (T))}. For F ⊆ V and δ ∈ Z− ∪ {0,1,2}, define
Mδ

F (x, j, g) as all branching walks (T ,ϕ) in G[V \ F] of length j from x such
that |{v ∈ V (T) \ rt(T) : v is internal}| + [d(rt(T)) ≥ δ] = g. Let mδ

F (x, j, g) =
|Mδ

F (x, j, g)|, then

Lemma 6

mδ
F (x, j, g) =

⎧
⎪⎪⎨

⎪⎪⎩

[
g = [δ ≤ 0]] if j = 0, (6a)

∑
t∈N(x)\F

∑
g1+g2=g

∑
j1+j2=j−1 m1

F (t, j1, g1)

× mδ−1
F (x, j2, g2) otherwise. (6b)

Proof To see that Case 6a holds, notice that there is only one branching walk of
length 0 from x and its tree-part is a single vertex, so g must be equal to 1 if δ ≤ 0
and equal to 0 otherwise by definition. For Case 6b, first define γ ′((T1, ϕ1), (T2, ϕ2))

as the branching walk (γ (T1, T2), ϕ1 ∪ ϕ2), where γ is the gluing operation from (3).
Then we claim that γ ′ is a bijection

γ ′ :
⋃

t∈N(s)\F

⋃

g1,g2

⋃

j1,j2

(
M1

F (t, j1, g1) × Mδ−1
F (s, j2, g2)

)

↔ Mδ
F (s, j1 + j2 + 1, g1 + g2).

To see this, note that γ (T1, T2) has g′ internal vertices not equal to the root if and only
if T1 has g′

1 and T2 has g′
2 internal vertices not equal to the root with g′

1 + g′
2 = g′

and

dγ (T1,T2)

(
rt

(
γ (T1, T2)

)) = 1 + dT2

(
rt(T2)

)
.

Hence the δ and g accumulators are modified correctly. Then Case 6b follows by
combining with the arguments in the proof of Lemma 2. �

Theorem 6 The MAXIMUM INTERNAL SPANNING TREE problem can be solved in
O�(2n) time and polynomial space.

Proof Use the IE-formulation as described above. The simplified problem is to com-
pute |⋂v∈F Pv|, which is equal to

∑
s∈V \F m2

F (s, n − 1, c) since the root needs at
least two neighbors in order to be an internal vertex. It follows from Lemma 5 that
there exists B ∈ ⋂

v∈V Pv if and only if there exists a spanning tree with at least c

leaves. �

Algorithmica (2013) 65:868–884 877

4.4 Counting Spanning Forests

Define a c-spanning forest to be an acyclic spanning subgraph with exactly c con-
nected components. In this section we will address the following problem:

#SPANNING FORESTS

Input G = (V ,E), 1 ≤ c ≤ n.
Question The number of acyclic spanning subgraphs of G with exactly c connected

components.

Assume that a total ordering ≺ on the vertex set V is given. Given a subset X ⊆ V ,
let minX be the minimum element of X with respect to ≺.

Definition 2 A sorted branching walk is a branching walk (T ,ϕ) such that for every
v ∈ V (T) with children c1, . . . , cl , numbered with respect to the order of T , ϕ(ci) ≺
ϕ(cj) for every i < j and ϕ(rt(v)) = minϕ(V (T)).

It can be noted that the definition implies no two children of vertex v ∈ V (T) can
be mapped to same vertex in G.

Lemma 7 There is a bijection between the set of all subtrees S of G, and the set of all
sorted branching walks B = (T ,ϕ) of length |ϕ(E(T))| such that ϕ(E(T)) induces
a subtree.

Proof Note that it is sufficient to show that for every subtree S of G, there is exactly
one a sorted branching walk B = (T ,ϕ) of length |ϕ(E(T))| such that ϕ(E(T)) =
E(S).

Since ϕ(V (T)) = V (S) and B is sorted, we know that ϕ(rt(T)) = minV (T).
Since |E(S)| = |E(T)|, ϕ is a bijection and hence S and T are isomorphic. Moreover
ϕ(ci) ≺ ϕ(cj) whenever ci occurs before cj as a child of a vertex in T since B is
sorted. This implies that T and ϕ are uniquely determined by S. �

Define BF (l) to be all sorted branching walks (T ,ϕ) of length l in G such that
F ∩ ϕ(V (T)) = ∅. Also, define bF (l) = |BF (l)|.

Lemma 8 The number of c-spanning forests is equal to

∑

F⊆V

(−1)|F | 1

c!
∑

l1+···+lc=n−c

c∏

j=1

bF (lj). (7)

Proof We apply Theorem 1. Define U to be the set of all families f of sorted branch-
ing walks of total length n − c (that is, the sum of the length of all members of f is
n − c). Let the requirement space be V , and for every v ∈ V define Pv to be all ele-
ments f ∈ U such that there is (T ,ϕ) ∈ f with v ∈ ϕ(V (T)). It is not hard to see that
a term of the summation of (7) (ignoring (−1)|F |) is equal to |⋂v∈F Pv|.

Applying Theorem 1, it remains to show that the number of c-spanning forests
is |⋂v∈V Pv|. To see this, notice that for a family of sorted branching walks f =

878 Algorithmica (2013) 65:868–884

{(T1, ϕ1), . . . , (Tc, ϕc)}, ⋃c
i=1 ϕi(Vi) = V if and only if

⋃c
i=1 ϕi(Ei) is a c-spanning

forest. Then every c-spanning forest corresponds to exactly one set of branching
walks of total length n − c due to Lemma 7. The lemma follows. �

Define BF (x, j, g) as all sorted branching walks (T ,ϕ) from x of length j such
that ϕ(V (T)) ∩ F = ∅ and no child of the root of T is mapped to one of the first
g−1 neighbors of x in G[V \F] with respect to the ordering ≺. Define bF (x, j, g) =
|BF (x, j, g)|. Use N

q
F (x) to denote the qth element of the set N(x) \ F with respect

to the ordering ≺.

Lemma 9

bF (x, j, g) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if j = 0, (8a)

0 else if g > |N(x) ∩ F |, (8b)

bF (x, j, g + 1) + ∑
j1+j2=j−1 bF

(
N

g
F (x), j1,1

)

× bF (x, j2, g + 1) otherwise. (8c)

Proof For Case 8a, notice there is exactly one branching walk (T ,ϕ) with T being a
single vertex and with ϕ mapping this vertex to x.

To see Case 8b, notice that since g > |N(x) ∩ F |, in any branching walk in
BF (x, j, g) the root can not have any children but since j > 0 this must be the case,
and hence such a branching walk does not exist.

For Case 8c, first notice that BF (x, j, g + 1) are exactly all branching walks
(T ,ϕ) ∈ BF (x, j1 + j2 + 1, g) where no child of the root of T is mapped to N

g
F (x).

Define γ ′((T1, ϕ1), (T2, ϕ2)) as the branching walk (γ (T1, T2), ϕ1 ∪ ϕ2), where γ is
the gluing operation from (3). Then it is not too hard to see that γ ′ is a bijection

γ ′ :
⋃

j1,j2

(
BF

(
N

g
F (x), j1,1

) × BF (x, j2, g + 1)
)

↔ BF (x, j1 + j2 + 1, g) \ BF (x, j1 + j2 + 1, g + 1)

since γ ′(B1,B2) and γ ′(B ′
1,B

′
2) are distinct whenever either B1 and B

′
1 or B2 and

B ′
2 are distinct. Then Case 8c follows by combining with the arguments in the proof

of Lemma 2. �

Theorem 7 The #SPANNING FORESTS problem can be solved in O�(2n) time and
polynomial space.

Proof Let F = V \F and bF (l) = ∑
x∈F bF [x](x, l,1), where F [x] stands for the set

of all elements e in F such that x ≺ e. Using dynamic programming in combination
with Lemma 9, the values bF (l) can be computed for every 1 ≤ l ≤ n for a fixed F .
Also using standard dynamic programming, the simplified problem (that is, the sum-
mand of (8a) ignoring the (−1)|F |) can be computed in polynomial time. Hence (8a)
can be evaluated within the claimed resource bounds and the theorem follows from
Lemma 8. �

Algorithmica (2013) 65:868–884 879

5 Cover Polynomial

We use xi for the falling factorial x!
(x−i)! . The cover polynomial of a directed graph

D = (V ,A) can be defined as (see also [5, 8]):
∑

i,j

c(i, j)xiyj

where c(i, j) is defined as the number of ways to partition V into i directed paths and
j directed cycles of D. In this section we will address the following problem:

COVER POLYNOMIAL

Input A graph G.
Question The coefficients c(i, j) for every 0 ≤ i, j ≤ n.

Since paths and cycles with l edges contain l + 1 and l vertices respectively, the
sum of the lengths of the paths and cycles in such a partition will be n− i. Moreover,
if V is covered by i paths and j cycles with lengths summing up to n−1, the path and
cycles are disjoint because of the size restriction. Recall from Sect. 3.1 that wF (s, j)

is the number of walks starting from s of length j avoiding F . Similarly, define
wF (j) as all walks of length j avoiding F and ŵF (j) as the number of cyclic walks
of length j avoiding F .

Lemma 10

c(i, j) =
∑

F⊆V

(−1)|F | 1

i!j !
∑

l1+···+li+j =n−i

(
i∏

k=1

wF (lk)

)(
i+j∏

k=i+1

ŵF (lk)

)

. (9)

Proof We apply Theorem 1. Define U as all combinations of i walks and j cyclic
walks with lengths summing up to exactly n − i. Define the requirement space to be
V , and for every v ∈ V let Pv be all combinations of walks and cyclic walks in U

such that at least one of the (cyclic) walks visits v. It is easy to see that each summand
(ignoring the (−1)|F |) equals |⋂v∈F Pv|, and since |⋂v∈F Pv| = c(i, j) by the above
discussion, the lemma follows from Theorem 1. �

Theorem 8 The COVER POLYNOMIAL problem can be solved in O�(2n) time and
polynomial space.

Proof By using minor modifications of the dynamic programming algorithm using
(2), for every F ⊆ V and 0 ≤ j ≤ n, both wF (j) and ŵF (j) can be computed in poly-
nomial time. Using straightforward dynamic programming, the simplified problem
can be obtained from the values wF (j) and ŵF (j). Using this, (9) can be evaluated
within the claimed resource bounds. �

6 Convex Tree Coloring

In this section we solve a generalization of the CONVEX RECOLORING problem
studies in [19] and improve upon one of their results. Let T = (V ,E) be a tree and

880 Algorithmica (2013) 65:868–884

w : E(T) × [k] × [k] → [c]. A k-coloring is a function γ : V → [k]. As before,
for X ⊆ V let ϕ(X) be

⋃
v∈X ϕ(v). The coloring γ is minimal if γ (V) = [k]. De-

fine w(γ) = ∑
(u,v)∈E(T) w((u, v), γ (u), γ (v)). The coloring γ is convex if for every

x, y, z ∈ V such that y is in the (unique) path from x to z it holds that γ (x) = γ (z)

implies γ (x) = γ (y), or more informally: γ is convex if all its color classes induce a
connected subtree. It is worth mentioning that in [19] the slightly different CONVEX

TREE RECOLORING (CTR) was studied, but that CTR is a special case of CTC.

CONVEX TREE COLORING (CTC)

Input A tree T = (V ,E) with a weight function w : E × [k] × [k] → [c].
Question Is there a convex coloring γ : V → [k] with w(γ) ≤ c?

Let us first note that we can safely assume that T is in fact binary, since if it
is not, we can insert vertices and force them to have the same color by using an
appropriate weight function. Also note we can restrict ourselves to minimal colorings
by k vertices of degree one to arbitrary vertices and setting w(·, ·, · =) = 0. Hence
the colors assigned to the added vertices does not matter at all, but if a color is not
minimal, it can be extended to a minimal one using the new added vertices. Thus we
can restrict ourselves to solving the following variant:

MINIMAL CONVEX BINARY TREE COLORING (MCBTC)

Input A binary tree T = (V ,E) with a weight function w : E × [k] × [k] → [c].
Question Is there a minimal convex coloring γ : V → [k] with w(γ) ≤ c?

For a given coloring γ , use pce(γ) to denote the number of poly-chromatic edges,
i.e. the number of edges (y, z) ∈ E(T) such that ϕ(y) �= ϕ(z).

Lemma 11 The instance of MCBTC is a yes-instance if and only if there exists a
k-coloring γ such that pce(γ) = k − 1, and w(γ) ≤ c.

Proof In a tree, the fact that γ gives k monochromatic connected components is
equivalent with pce(γ) = k − 1 since after contracting all monochromatic edges, we
again obtain a tree. �

Using Lemma 11, we can reduce our problem to determining the existence of a
minimal k-coloring with k − 1 polychromatic edges. We will use Theorem 1: For
notational convenience add a vertex to T , make it adjacent to an arbitrarily cho-
sen other vertex of T and let the added vertex be the root of T . For the added
edge, set all corresponding weights to 0. Define the universe U = {γ : V → [k] |
pce(γ) = k − 1 ∧ w(γ) ≤ c}. Define the requirement space to be [k] with for
each 1 ≤ v ≤ k a requirement Pv being all elements γ of U with v ∈ γ (V). Then
|⋂v∈[l] Pv| > 0 if and only if the current instance is a yes-instance by Lemma 11.
Define CF (s,W,g,p) as all k-colorings γ of T [s] with pce(γ) = g + [γ (rt(T)) �=
p], γ (V (T [s])) ∩ F = ∅ and w(γ) ≤ W and let cF (s,W,g,p) = |CF (s,W,g,p)|.
Also note that |⋂v∈F Pv|cF (rt(T), c, k − 1,1) (the color of the root is not relevant
here so we just set it to 1). It remains to show how to compute cF (rt(T), c, k−1,p):

Algorithmica (2013) 65:868–884 881

Lemma 12

cF (s,W,g,p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
w

((
s,pa(s)

)
,p,p

) ≤ W
]

if s is a leaf ∧ g = 0, (10a)
∑

q∈[l]\(F∪{p})[w((s,pa(s)), q,p) ≤ W]
if s is a leaf ∧ g = 1, (10b)

0 if s is a leaf ∧ g > 1, (10c)

ĉF (s, j, g,p) otherwise, (10d)

where

ĉF (s,W,g,p) =
∑

g1+g2=l
W1+W2=W−w((s,pa(s)),p,p)

cF (s1,W1, g1, q)cF (s2,W2, g2, q)

(11)

+
∑

q∈[l]\(F∪{p})

∑

g1+g2=l−1
W1+W2=W−w((s,pa(s)),q,p)

cF (s1,W1, g1, q)

× cF (s2,W2, g2, q). (12)

Proof For Case 10a, the only possible valid coloring is the one where γ (s) =
γ (pa(s)). For Case 10b, any coloring γ with γ (s) �= γ (pa(s)) and low enough
cost is counted. For Case 10c, no such a coloring exists since a leaf is only ad-
jacent to one edge. For Case 10d, s is not a child and hence has two children s1

and s2. It is not too hard to see that the term in (11) is the number of colorings in
CF (s,W,g,p) where γ (s) = γ (pa(s)) and that the term in (12) is the number of
colorings in CF (s,W,g,p) where γ (s) �= γ (pa(s)). �

Theorem 9 The CONVEX TREE COLORING problem can be solved in O�(2kc) time
and O�(c) space.

Proof By Lemma 11 and the discussion before it we can reduce CONVEX TREE

COLORING to finding a minimal k-coloring γ with k − 1 polychromatic edges and
w(γ) ≤ c. This can be solved using the IE-formulation as discussed above. The sim-
plified problem can be solved in O�(c2) time and O�(c) using Lemma 1 and using
standard Fast Fourier Transform techniques this can be reduced to O�(c) time and
space. The theorem then follows from Theorem 1. �

7 Counting Perfect Matchings

In this section we will count the number of perfect matchings in a graph G = (V ,E).
We let |V | = 2n. First, we arbitrarily partition the vertex set V into A and B (thus,
A ∪ B = V , and A ∩ B = ∅), with |A| = |B| = n. Let an l-matching of G be a
perfect matching M ⊆ E such that |{e ∈ M : |e ∩A| = 1}| = l, i.e. a perfect matching
containing exactly l edges with exactly one endpoint in A.

882 Algorithmica (2013) 65:868–884

We will need the following simple lemma:

Lemma 13 ([18], Lemma 4.10; [1], Theorem 4) Given an independent set S ⊆ V ,
the number of perfect matching of G can be computed in O�(22n−|S|).

We will first give two algorithms that we combine later. Both algorithms solve the
same problem, but with different running times. Afterwards we show how to combine
the two to obtain the main result of this section.

Lemma 14 l-matchings can be counted in O∗((n
l

)
2n

)
time and polynomial space.

Proof Given a perfect matching M , define

L(M) = {
a ∈ A : ∃(a, b) ∈ M ∧ b ∈ B

}
.

That is, L(M) is the set of all vertices in A that are matched with a vertex in b in M .
Then, if we define f (X) as the number of perfect matchings M such that L(M) = X,
then we can compute the number of l-matchings according to

#l-matchings =
∑

X∈(A
l)

f (X). (13)

Define g(X,B) as the number of perfect matchings in the graph obtained from G[X∪
B] by making X into an independent set. Then f (X) = pm(A \ X)g(X,B) where
pm(A \ X) is the number of perfect matching in G[A \ X]. Using Lemma 13 both
pm(A \ X) and g(X,B) can be computed in polynomial space and time O�(2n−l)

and O�(2n) respectively. Hence the lemma follows. �

We proceed to the next algorithm:

Lemma 15 l-matchings can be counted in O∗((n
n
2 + l

2

)
2n

)
time and polynomial space.

Proof Arbitrarily choose a total ordering ≺ on A and use the shorthand k = n+l
2 . We

will use Theorem 1: Define the universe U to be

U =
{(

(ui, vi)
)
i≤k

∈ (
(A × V) ∩ E

)k ∣
∣ ∀i < j : ui ≺ uj

}
× En−k

and the requirement space to be V . Define Pv to be
{(

(u1, v1), . . . , (un, vn)
) ∈ U

∣
∣ v ∈ {u1, . . . , un} ∪ {v1, . . . , vn}

}

for each v ∈ V . We claim that |⋂v∈V Pv| is 2n(
(n−l)

2)! times the number of l-
matchings. To see this, notice that for every l-matching there are exactly 2n(n−l

2)!
elements in |⋂v∈F Pv| obtained by all permutations of the n−l

2 edges contained in
G[B] and then flipping the order of the vertices of the edge. Moreover, every element
in |⋂v∈F Pv| can obtained in this way from exactly one l-matching.

Algorithmica (2013) 65:868–884 883

Thus, combining Theorem 1 with the above we obtain that the number of
l-matchings is

1

2n(n−l
2)!

∑

F⊆V

(−1)|F |
∣
∣
∣
∣

⋂

v∈F

Pv

∣
∣
∣
∣. (14)

We proceed by trimming (see also [6]): Observe that |⋂v∈F Pv| = 0 if |F ∩ A| >

(n − k) since u1, . . . , uk ∈ A are distinct for any ((u1, v1), . . . , (un, vn)) ∈ U . Hence
for evaluating (14), we can restrict ourselves to sum over F ⊆ V such that |F ∩ A| ≤
(n − k). The number of F ⊆ V such that |F ∩ A| ≤ (n − k) is O�(

(
n

n−k

)
2n) =

O�(
(
n
k

)
2n). Hence to prove the lemma, it suffices to show that |⋂v∈F Pv| can be

computed in polynomial time for a fixed F .
Let {a1, . . . , an} be obtained by sorting A with respect to the total ordering ≺.

Define

pF (r,m) =
{(

(ui, vi)
)
i≤m

∈ ((
(A \ F) × (V \ F)

) ∩ E
)m ∣

∣ ∀i < j : ui ≺ uj ≺ ar

}
.

Then we have |⋂v∈F Pv| = pF (n, k)|E(G[B \ F])|n−k and it is easy to see that
pF (n, k) can be computed according to

pF (r,m) =
⎧
⎨

⎩

[m = 1]dG[V \F](v1) if r = 1, (15a)

pF (r − 1,m) + dG[V \F]pF (r − 1,m − 1) otherwise, (15b)

hence pF (n, k) and |⋂v∈F Pv| can be computed in polynomial time and the lemma

follows. �

Theorem 10 The number of perfect matchings of a graph G can be computed in
O�(1.95|V (G)|) time and polynomial space.

Proof Sum over all 0 ≤ l ≤ n over the number of l-matchings computed by the al-
gorithm of minimum running time among the algorithms of Lemmas 14 and 15. The
running time of this algorithm is

max
0≤l≤n

min

{(
n

l

)

2n,

(
n

1
2n + 1

2 l

)

2n

}

= max
0≤l≤n

min

{(
n

l

)

,

(
n

1
2n + 1

2 l

)}

2n. (16)

Since 0 ≤ p ≤ p′ ≤ n
2 implies

(
n
p

) ≤ (
n
p′

)
, (16) is maximized if min{l, n

2 − l
2 } is max-

imized, which is at l = n
3 . Hence (16) is equal to

(
n
n
3

)
2n = O�(1.89n2n), where the

latter is due to standard approximations (see for example Lemma 4 of [7]). �

8 Further Remarks

It is worth mentioning that, as the proofs in this paper might suggest, the results of
this paper admit a generalization. The study of such a generalization was initiated in
the conference version of this work and finally given in [17]. In the latter Theorem 3
is also improved by giving a O�(2kc) time and polynomial space algorithm.

884 Algorithmica (2013) 65:868–884

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. In: Proceedings of the
36th International Colloquium on Automata, Languages and Programming (ICALP), Part I. Lecture
Notes in Computer Science, vol. 5555, pp. 71–82. Springer, Berlin (2009)

2. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number of perfect matchings.
Algorithmica 52(2), 226–249 (2008)

3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput.
39(2), 546–563 (2009)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–74.
ACM, New York (2007)

5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-
exponential time. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science (STOC), pp. 677–686. IEEE Comput. Soc., Los Alamitos (2008)

6. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Moebius inversion and graphs of
bounded degree. Theory Comput. Syst. 47(3), 637–654 (2010)

7. Bodlaender, H.L., Kratsch, D.: An exact algorithm for graph coloring with polynomial memory. Tech-
nical Report UU-CS-2006-015, Department of Information and Computing Sciences, Utrecht Univer-
sity (2006)

8. Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. J. Comb. Theory, Ser. B 65(2),
273–290 (1995)

9. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1972).
doi:10.1002/net.3230010302

10. Fernau, H., Gaspers, S., Raible, D.: Exact and parameterized algorithms for max internal spanning
tree. In: Proceedings of the 35th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG). Lecture Notes in Computer Science, vol. 5911, pp. 100–111. Springer, Berlin (2009)

11. Fomin, F.V., Grandoni, F., Kratsch, D.: Faster Steiner tree computation in polynomial-space. In: Pro-
ceedings of the 16th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer
Science, vol. 5193, pp. 430–441. Springer, Berlin (2008)

12. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic programming for
minimum Steiner trees. Theory Comput. Syst. 41(3), 493–500 (2007)

13. Gaspers, S., Saurabh, S., Stepanov, A.A.: A moderately exponential time algorithm for full degree
spanning tree. In: Proceedings of the 5th International Conference on Theory and Applications of
Models of Computation (TAMC). Lecture Notes in Computer Science, vol. 4978, pp. 479–489.
Springer, Berlin (2008)

14. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett.
1, 49–51 (1982)

15. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman prob-
lem. In: Proceedings of the 1977 Annual Conference (ACM), pp. 294–300. ACM, New York (1977).
doi:10.1145/800179.810218

16. Koivisto, M.: Partitioning into sets of bounded cardinality. In: Proceedings of the 4th International
Workshop Parameterized and Exact Computation (IWPEC). Lecture Notes in Computer Science, vol.
5917, pp. 258–263. Springer, Berlin (2009)

17. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Proceedings of the 42nd ACM Sym-
posium on Theory of Computing (STOC), pp. 321–330. ACM, New York (2010)

18. Nederlof, J.: Inclusion exclusion for hard problems. Master’s thesis, Utrecht University (August 2008)
19. Ponta, O., Hüffner, F., Niedermeier, R.: Speeding up dynamic programming for some N P -hard graph

recoloring problems. In: Proceedings of the 5th International Conference on Theory and Applications
of Models of Computation (TAMC), pp. 490–501. Springer, Berlin (2008)

20. Woeginger, G.J.: Space and time complexity of exact algorithms: some open problems (invited talk).
In: First International Workshop on Parameterized and Exact Computation (IWPEC). Lecture Notes
in Computer Science, vol. 3162, pp. 281–290. Springer, Berlin (2004)

http://dx.doi.org/10.1002/net.3230010302
http://dx.doi.org/10.1145/800179.810218

	Fast Polynomial-Space Algorithms Using Inclusion-Exclusion
	Abstract
	Introduction
	Preliminaries and Notation
	Model

	Inclusion-Exclusion
	Hamiltonian Paths

	Branching Walks
	Steiner Tree
	Degree Constrained Spanning Tree
	Maximum Internal Spanning Tree
	Counting Spanning Forests

	Cover Polynomial
	Convex Tree Coloring
	Counting Perfect Matchings
	Further Remarks
	References

