
Algorithmica (2012) 64:170–188
DOI 10.1007/s00453-011-9578-2

An Improved FPT Algorithm and a Quadratic Kernel
for Pathwidth One Vertex Deletion

Marek Cygan · Marcin Pilipczuk ·
Michał Pilipczuk · Jakub Onufry Wojtaszczyk

Received: 27 December 2010 / Accepted: 16 September 2011 / Published online: 29 September 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The PATHWIDTH ONE VERTEX DELETION (POVD) problem asks
whether, given an undirected graph G and an integer k, one can delete at most k

vertices from G so that the remaining graph has pathwidth at most 1. The question
can be considered as a natural variation of the extensively studied FEEDBACK VER-
TEX SET (FVS) problem, where the deletion of at most k vertices has to result in the
remaining graph having treewidth at most 1 (i.e., being a forest). Recently Philip et al.
(WG, Lecture Notes in Computer Science, vol. 6410, pp. 196–207, 2010) initiated
the study of the parameterized complexity of POVD, showing a quartic kernel and
an algorithm which runs in time 7knO(1). In this article we improve these results by
showing a quadratic kernel and an algorithm with time complexity 4.65knO(1), thus
obtaining almost tight kernelization bounds when compared to the general result of
Dell and van Melkebeek (STOC, pp. 251–260, ACM, New York, 2010). Techniques
used in the kernelization are based on the quadratic kernel for FVS, due to Thomassé
(ACM Trans. Algorithms 6(2), 2010).

Keywords Fixed parameter tractability · Kernelization · Pathwidth · Caterpillar
graph

M. Cygan · M. Pilipczuk · M. Pilipczuk (�) · J.O. Wojtaszczyk
Faculty of Mathematics, Computer Science and Mechanics, University of Warsaw, ul. Banacha 2,
02-097 Warsaw, Poland
e-mail: michal.pilipczuk@students.mimuw.edu.pl

M. Cygan
e-mail: cygan@mimuw.edu.pl

M. Pilipczuk
e-mail: malcin@mimuw.edu.pl

J.O. Wojtaszczyk
e-mail: onufry@mimuw.edu.pl

mailto:michal.pilipczuk@students.mimuw.edu.pl
mailto:cygan@mimuw.edu.pl
mailto:malcin@mimuw.edu.pl
mailto:onufry@mimuw.edu.pl

Algorithmica (2012) 64:170–188 171

1 Introduction

In the parameterized complexity setting, an input instance comes with an integer pa-
rameter k—formally, a parameterized problem Q is a subset of Σ∗ × N for some
finite alphabet Σ . We say that the problem is fixed parameter tractable (FPT) if there
exists an algorithm which solves any instance (x, k) in time f (k)poly(|x|) for some
(usually exponential) computable function f . It is known that a decidable problem is
FPT iff it is kernelizable: a kernelization algorithm for a problem Q is an algorithm
that takes an instance (x, k) and in time polynomial in |x|+ k produces an equivalent
instance (x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q) such that |x′| + k′ ≤ g(k) for some
computable function g. The function g is the size of the kernel and if it is polynomial,
we say that Q admits a polynomial kernel. Kernelization techniques can be viewed
as polynomial time preprocessing routines for tackling NP-hard problems. Parame-
terized complexity provides a formal framework for the analysis of such algorithms
[8, 11, 15].

The notions of pathwidth and treewidth, introduced by Robertson and Seymour
[19, 20], measure how much a given graph resembles a path and a tree, respectively.
Both play an important role in the proof of the Graph Minor Theorem, and there
exists a large family of fixed parameter algorithms (usually based on the dynamic
programming principle) for problems parameterized by treewidth.

One of the most extensively studied problems in the parameterized complexity
community, FEEDBACK VERTEX SET, asks for a set of vertices of size at most k such
that their deletion results in a graph of treewidth at most 1, i.e., a forest. Currently
fastest known deterministic algorithm for the FEEDBACK VERTEX SET problem runs
in 3.83knO(1) time1 [4]; however, having allowed randomization a 3knO(1) running
time can be achieved [5]. A kernel of size O(k2) is due to Thomassé [22]. Very re-
cently, Philip et al. [18] initiated a study of the parameterized complexity of a closely
related problem—PATHWIDTH ONE VERTEX DELETION.

PATHWIDTH ONE VERTEX DELETION (POVD) Parameter: k

Input: An undirected graph G = (V ,E) and a positive integer k

Question: Does there exist a set T ⊆ V such that |T | ≤ k and G[V \ T] is a graph
of pathwidth at most one?

We omit the formal definitions of pathwidth and treewidth (an interested reader
is invited to read, e.g., Diestel’s book [7] on graph theory), as the following simple
characterisation will be sufficient for our purposes:

Definition 1 A graph is a caterpillar iff it is a tree and after removing all vertices
of degree one it becomes a path (possibly empty or consisting of a single vertex).
A caterpillar forest is a graph whose every connected component is a caterpillar.

Lemma 1 [2] A graph has pathwidth at most one if and only if it is a caterpillar
forest.

1In this article by n we denote the size of the input graph, i.e., n = |G| = |V (G)| + |E(G)|.

172 Algorithmica (2012) 64:170–188

The class of caterpillars and caterpillar forests has been studied as further simpli-
fications of trees. A number of problems which have been proved to be difficult even
in the class of trees have efficient solutions for caterpillars. Examples include BAND-
WIDTH [3, 12, 17], PROPER INTERVAL COLORED GRAPH and PROPER COLORED

LAYOUT [1].
Philip et al. [18] have shown a simple branching algorithm that solves POVD in

7knO(1) time, and a kernel consisting of O(k4) vertices. In this paper we improve
these bounds: we show a 4.65knO(1) FPT algorithm and a kernel consisting of O(k2)

vertices and edges. Let us note that our kernel is not a proper kernel in the follow-
ing sense: the kernelization algorithm takes a POVD instance (G, k) and outputs an
equivalent instance (G′, k′) such that |G′|, k′ ≤ O(k2). However, it may happen that
the new parameter k′ is indeed of size Ω(k2). As it may happen that the running
time of an algorithm solving the kernelized instance is strongly dependent on k (for
instance if one wants to run an FPT algorithm, or mix it with another algorithm in
some win–win approach) this may be very undesirable. This motivates a search for
proper kernels, ie. kernels in which |G′| ≤ g(k) and k′ ≤ k. As far as proper kernels
are considered, we obtain a cubic kernel (|G′| ≤ O(k3)) for POVD. We also obtain
a smaller, proper quadratic kernel (that is, with |G′| ≤ O(k2) k′ ≤ k) for a version of
the problem which allows multiple edges:

MULTIGRAPH PATHWIDTH ONE VERTEX DELETION (MPOVD) Parameter: k

Input: An undirected multigraph G = (V ,E) and a positive integer k

Question: Does there exist a set T ⊆ V such that |T | ≤ k and G[V \T] is a simple
graph of pathwidth at most one?

Note that in MPOVD we require that the graph G[V \ T] is simple, i.e., the solu-
tion is required to hit all multiple edges.

It may appear surprising that we are able to push the proper kernelization upper
bounds lower in a seemingly more difficult problem. The reason for this is that in
the kernelized MPOVD instance we allow multiple edges, while when performing
reductions for POVD they need to be avoided, which turns out to be problematic.

Observe that the first of our kernelization results almost matches known kernel
lower bounds for POVD. It follows from a general result of Dell and van Melke-
beek [6] that there cannot exist a kernel for POVD that can be encoded in O(kγ)

bits for any γ < 2 unless coNP ⊆ NP/poly, as it may be easily seen that the class of
graphs of pathwidth at most one is nontrivial and hereditary (the appropriate defini-
tions are given in the paper [6] stating this result).

Let us also mention that PATHWIDTH ONE VERTEX DELETION problem is
closely related to another problem, namely TWO LAYER PLANARIZATION:

TWO LAYER PLANARIZATION (TLP) Parameter: k

Input: An undirected graph G = (V ,E) and a positive integer k

Question: Does there exist a set S ⊆ E such that |S| ≤ k and (V ,E \ S) is a graph
of pathwidth at most one?

In other words, in TLP one can delete at most k edges instead of vertices. The pa-
rameterized complexity of TWO LAYER PLANARIZATION has been widely studied.

Algorithmica (2012) 64:170–188 173

Dujmović et al. [9] showed a 6knO(1) algorithm and a kernel with O(k) vertices and
edges. The complexity of the algorithm has been further improved to 5.19276knO(1)

by Fernau [10], and finally to 3.562knO(1) by Suderman [21]. Recently, Uhlmann and
Weller studied TLP parameterized by the size of a minimum feedback edge set [23],
i.e., the minimum number of edges that need to be deleted from the graph to obtain a
forest. Observe that this parameter is a lower bound on the solution size of TLP, so
this is a stronger parameterization. Their results include a kernel with O(f) vertices
and edges, as well as an algorithm with running time 6f nO(1), where f is the size of
a minimum feedback edge set.

Organization In Sect. 2 we introduce some notation and give several introductory
observations and results. In Sect. 3 we give a simple 4.65knO(1) branching algo-
rithm that solves POVD. In Sect. 4 we describe the kernelization algorithms. Finally,
Sect. 5 contains some concluding remarks and open problems.

2 Preliminaries

Notation For a graph or multigraph G we denote by V (G) the set of vertices of
the graph. The degree of a vertex v ∈ V (G) is the number of edge ends incident to
it (so a loop contributes 2 to the degree). K3 is used to denote the 3-element cycle,
while C4 denotes the four-element cycle. A graph T is a tree iff it is connected and
contains no cycle. By rooting a tree we mean distinguishing one of its vertex r , further
called a root. The depth of a rooted tree is the maximum number of vertices on a path
connecting the root with a leaf. By N(v) we denote the set of neighbours of the
vertex v. For S ⊆ V , by N(S) we denote (

⋃
s∈S N(s)) \ S.

By contracting an edge uv in a multigraph G we mean the following operation. We
introduce a new vertex w and remove the edge uv we are contracting. Next, for every
edge having u as an endpoint, we substitute the endpoint u with w. Similarly we do
for v. Finally, we remove vertices u,v from the graph. Note that all the loops situated
in u or v after the contraction are situated in w. Moreover, if there were multiple
edges uv, after the contraction all but the contracted one become loops situated in w.
Note also that contraction may introduce new multiple edges in case when u,v had a
common neighbour.

The example shown on Fig. 1 presents all the technical details of the used notion
of contraction.

Let us recall the characterization of graphs of pathwidth one, proved by Philip et
al. [18].

Lemma 2 [18] A simple graph G has pathwidth at most one iff it does not contain
cycles and subgraphs isomorphic to the graph T2, depicted in Fig. 2.

Fig. 1 Example of a contraction
of one of the edges uv

174 Algorithmica (2012) 64:170–188

Fig. 2 A forbidden subgraph
T2 in graphs of pathwidth at
most one. The notation for the
vertices is used in Lemma 6 and
in the proof of Theorem 3

The following corollary of Lemma 2 has been introduced [18] in a slightly differ-
ent formulation.

Lemma 3 [18] If a simple graph G does not contain T2, K3 or C4 as subgraphs,
then the PATHWIDTH ONE VERTEX DELETION problem on G can be solved in poly-
nomial time.

Proof We begin by introducing the following simple definition:

Definition 2 If w is a vertex of degree 1, and v is its sole neighbour, we call w a
pendant of v.

Let G be a graph that does not contain T2, K3 and C4 as subgraphs. Let H be
any connected component of G. If H is a tree, it does not contain any cycles as
subgraphs, and due to Lemma 2 it already has pathwidth at most one. Otherwise, let
C be a shortest cycle in H . As we excluded K3 and C4 as subgraphs, C has length
at least 5. We aim to prove that all vertices of H either lie on C or are pendants of
vertices lying on C.

Consider any vertex v on C, and any w adjacent to v, but not lying on C. If
w has another neighbour u ∈ V (C), then the cycle formed by w and the shorter
of the arcs connecting u and v on C would be shorter than C, a contradiction (as
|V (C)| ≥ 5, the length of the longer arc is at least 3). On the other hand, if w has a
neighbour u �∈ V (C), then v, w, u and the arcs of length two in both directions from
v on C form a T2 subgraph of H (the two arcs are disjoint as |V (C)| ≥ 5), again a
contradiction. Thus any vertex adjacent to C is a pendant of some vertex of C, and as
H is connected, there are no other vertices in H .

Additionally we know that there are no internal edges (chords) in C, since we
could get a shorter cycle using such a chord. Now note that any solution of POVD
needs to delete at least one vertex of C, while the deletion of any vertex of C makes
H a caterpillar. Thus, the minimum number of deleted vertices in the graph G is
exactly the number of connected components of G that are not trees. �

Now we state a simple observation which enables us to add pendant vertices to the
input graph.

Lemma 4 If G is a caterpillar forest where a vertex v ∈ V (G) is of degree at least
two, then after adding a pendant vertex w adjacent to v the graph remains a cater-
pillar forest.

Algorithmica (2012) 64:170–188 175

Proof After adding w the set of non-pendant vertices does not change. Hence the set
of non-pendant vertices induces a set of paths. This implies that the graph remains a
caterpillar forest. �

Lemma 5 If (G, k) is an instance of MPOVD and u is a vertex with at least k + 2
neighbours in G then (G, k) is equivalent to (G′, k), where G′ is constructed from G

by adding w—a pendant neighbour of u.

Proof Obviously, the intersection of every solution to MPOVD in (G′, k) with V (G)

is a solution to MPOVD in (G, k).
Now take a solution T ⊂ V (G) to MPOVD in (G, k). If u ∈ T , then T is also

a solution to MPOVD in (G′, k). Otherwise, there are at least two neighbours of u

not in T , thus u is of degree at least 2 in the caterpillar forest G[V (G) \ T]. But
then G[V (G′) \ T] is also a caterpillar forest by Lemma 4, and so T is a solution to
MPOVD in (G′, k) also in this case. �

Let us now recall two results from matching theory, which will be extensively used
in the construction of the kernel:

Theorem 1 (Ore’s formula [16], Theorem 1.3.1 of [13]) Let H be a nonempty bi-
partite graph with a bipartition (X,Y). Then the maximum cardinality of a matching
in H is equal to |X| − maxA⊆X def(A), where def(A) = |A| − |N(A)|. If A ⊆ X is a
set which maximizes the value of def(A), then every maximal matching in H matches
|A| − def(A) vertices from A and all vertices from X \ A.

Moreover, a set A maximizing the value of def(A) can be computed in time poly-
nomial in the size of H .

Theorem 2 (α-Expansion Lemma, Theorem 2.3 of [22]) Let H be a nonempty bi-
partite graph with a bipartition (X,Y) with |Y | ≥ α|X|, where α is a positive integer,
and such that every vertex of Y has at least one neighbour in X. Then there exist
nonempty subsets X′ ⊆ X, Y ′ ⊆ Y and a function φ : X′ → (

Y ′
α

)
(the set of subsets of

Y ′ of cardinality α) such that

– N(Y ′) = X′;
– φ(x) ⊆ N(x) for every x ∈ X′;
– the sets φ(x) are disjoint for x ∈ X′.
The elements of φ(x) will be denoted by yx

1 , yx
2 , . . . , yx

α , and will be jointly referred
to as the private neighbours of x.

Moreover, such X′, Y ′ and φ can be computed in time polynomial in the size of H .

Note that the private neighbours of x, the set φ(x), can be neighbours of any vertex
of X′, but cannot be adjacent to any vertex from X \ X′.

3 The 4.65knO(1) Algorithm for POVD

In this section we develop a 4.65knO(1) branching FPT algorithm for POVD. Firstly,
let us recall the approach used by Philip et al. [18]. By Lemma 3 we know that if we

176 Algorithmica (2012) 64:170–188

hit all subgraphs that are isomorphic to K3, C4 or T2, the problem becomes solvable
in polynomial time. Thus, if a graph contains one of the forbidden subgraphs, we
branch and guess which of its vertices should be deleted in the solution. There are
at most 7 choices (for T2), thus we obtain a 7knO(1) algorithm described by Philip
et al. [18].

Our algorithm uses the same approach, but we use the following combinatorial
observation to enhance branching rules for T2.

Lemma 6 Let G be a graph and let H be its subgraph isomorphic to T2. Denote the
vertices of H as in Fig. 2. Assume that the degree of vertex b1 in the whole graph G is
equal to two. If (G, k) is a YES instance of POVD and there exists a solution A that
satisfies A∩{a, b1, b2, b3} = {b1} then there exists a solution A′, such that |A′| ≤ |A|
and A′ ∩ {a, b1, b2, b3} = ∅.

Proof Assume that we have a solution A to POVD that satisfies b1 ∈ A, b2, b3,

a /∈ A. We argue that A′ := A ∪ {c1} \ {b1} is also a valid solution to POVD. As
|A′| ≤ |A| and A′ ∩ {a, b1, b2, b3} = ∅, this proves the lemma.

If G[V \ A] is a caterpillar forest then obviously G[V \ (A ∪ {c1})] also is. How-
ever, since {a, b2, b3} ∩ A = ∅, we know that the vertex a is of degree at least two
in G[V \ A]. Hence by Lemma 4 we can add a pendant vertex adjacent to a and the
graph remains a caterpillar forest. In this way we obtain a graph which is isomorphic
to G[V \ A′], so A′ is a valid solution to POVD instance (G, k). �

We are now ready to present branching rules that prove the main theorem of this
section.

Theorem 3 There exists a 4.65knO(1) FPT algorithm for PATHWIDTH ONE VER-
TEX DELETION.

Proof As in the algorithm of Philip et al. [18], the algorithm hits all subgraphs iso-
morphic to K3, C4 or T2 and then solves the remaining instance in polynomial time
using Lemma 3. At each step, the algorithm first looks for subgraphs isomorphic to
K3 or C4 and if it finds one, it guesses which vertex of the forbidden subgraph should
be included in the solution. We have at most 4 branches and each branch decreases k

by one, thus this branching rule fits into the claimed time bound.
In the rest of the analysis we assume that the girth of the graph G is at least 5

and there exists a subgraph H isomorphic to T2. Denote vertices of H as in Fig. 2.
We are going to guess which vertices of H are included in the solution, however we
use Lemma 6 to limit the number of choices or to delete more than one vertex in
some branches. In order to obtain the claimed time bound in each branching point the
recurrence should not be worse than T (k) ≤ 4T (k − 1) + 3T (k − 2), which leads to
a 4.65knO(1) running time since 4 · 4.65−1 + 3 · 4.65−2 ≤ 1. Let us distinguish four
cases, depending on how many vertices bi are of degree 2 in G.
Case 0. All vertices bi have degree at least 3. For i = 1,2,3 denote by c′

i any neigh-
bour of bi different than ci and a. Since G has girth at least 5, vertices c′

i are pairwise
different and different from vertices in V (H). Let us branch on the following seven

Algorithmica (2012) 64:170–188 177

options. In the first four branches, either a, b1, b2 or b3 is included in the solution.
We have 4 branches, each decreases k by one. In the last three branches both ci and c′

i

are included in the solution for some i = 1,2,3, hence in each branch k is decreased
by two. To prove the correctness of this branching rule note that if we have a solution
to POVD that is disjoint with {a, b1, b2, b3} and does not delete both c1 and c′

1 nor
both c2 and c′

2, there are six remaining vertices forming a subgraph isomorphic to T2
with c3 as well as with c′

3. Thus both c3 and c′
3 need to be included in the solution.

Case 1. Exactly one vertex bi (say b1) has degree 2. For i = 2,3 denote by c′
i any

neighbour of bi different than ci and a. As before, c′
2 �= c′

3 and c′
2, c

′
3 /∈ V (H). Let

us branch on the following six options. In the first four branches, either a, b2, b3 or
c1 is included in the solution. In the fifth branch we include c2 and c′

2 in the solution
and in the sixth branch we include c3 and c′

3. We have four branches that decrease k

by one and two that decrease k by two. Let us now check correctness. If a, b2 and b3
are not included in an optimal solution, we may also assume that b1 is not included
either, due to Lemma 6. If an optimal solution is disjoint with {a, b1, b2, b3, c1} and
does not contain both c2 and c′

2, it needs to contain both c3 and c′
3, as otherwise it

misses a subgraph isomorphic to T2.
Case 2. Exactly two vertices bi (say b2 and b3) have degree 2. Let c′

1 be any neighbour
of b1 different than c1 and a; as before, c′

1 /∈ V (H). Let us branch on the following six
options. In the first four branches, one of a, b1, c2 and c3 is included in the solution.
In the fifth branch, b2 and b3 are included in the solution. In the sixth branch, c1 and
c′

1 are included in the solution. We have four branches that decrease k by one and two
that decrease k by two. Let us now check correctness. If a and b1 are not included
in an optimal solution A, we may assume that either b2, b3 ∈ A or b2, b3 /∈ A by
Lemma 6. In the first case, we fit into the fifth branch. In the second case, if c2 and c3
are not included in the solution, both c1 and c′

1 are—otherwise a subgraph isomorphic
to T2 is left.
Case 3. All vertices bi are of degree 2 in G. We branch into seven options. In the first
four cases, one of a, c1, c2 and c3 is included in the solution. In the last three cases,
one of the subsets of {b1, b2, b3} of size two is included in the solution. We have four
branches that decrease k by one and three that decrease k by two, thus we fit into
the time bound. To check correctness note that if neither a nor any of the vertices
ci is included in the solution, we need to include at least one vertex bi . But, due to
Lemma 6, any solution has to contain at least two of them. �

4 An O(k2) Kernel for POVD

4.1 A Quadratic Kernel for MPOVD

Firstly, we focus on a kernelization algorithm for MULTIGRAPH PATHWIDTH ONE

VERTEX DELETION that transforms an instance (G, k) of MPOVD into an equiva-
lent instance (G′, k′), where k′ ≤ k and |G′| = O(k2). We provide a set of reduction
rules, each of which transforms a MPOVD instance (G, k) into another instance
(G′, k′) in time polynomial in |G| + k, where |G′| < |G| and k′ ≤ k. For each of the
reduction rules we will check correctness, i.e. that the output instance (G′, k′) is a

178 Algorithmica (2012) 64:170–188

MPOVD instance equivalent to (G, k). The kernelization algorithm tries to apply the
lowest numbered applicable rule. If none of the rules is applicable, we claim that the
size of the multigraph is already bounded by O(k2). Let (G, k) denote the MPOVD
instance we are dealing with.

Before we proceed to the formal description of the rules, let us have a quick
overview on the whole procedure. Firstly, we apply all the simple rules already de-
veloped by Philip et al. [18]. We use one of them, namely Reduction Rule 4, in order
to be able to reduce the high-degree vertices (Reduction Rule 6). Thus, the maximum
degree of the graph is bounded linearly in the number of vertices that can be deleted.
In this situation every deletion of a vertex can reduce the number of edges by O(k) at
most, so at most O(k2) edges can disappear after deletion of the solution. A caterpil-
lar forest has less edges than vertices, so in the reduced instance |E| ≤ |V | + O(k2),
or otherwise the answer is clearly NO. If |V |, |E| are large in comparison with O(k2),
we can closely examine the structure of the instance and find out that in fact one of
the reduction rules of Philip et al. [18] is applicable, as the graph has to contain long
paths with possible tree-like protrusions attached.

Definition 3 We say that vertices u,v are connected by a multiedge if the number of
edges between u,v is at least two. In such a case we say that vertices u,v are incident
to a multiedge.

The number of multiedges can be reduced quite easily.

Reduction Rule 1 If there is a loop at a vertex v, delete v and decrease k by one.
If vertices u and v are connected by γ ≥ 3 edges, delete γ − 2 of them, leaving only
two.

Proof (of correctness) Observe that by removing the solution we have to obtain a
simple graph. Therefore, each vertex with a loop has to be contained in the solution
and every solution has to contain at least one endpoint of a multiedge. Choosing any
endpoint to the solution removes the multiedge, so the instance with the multiplicity
of edges reduced down to two is equivalent. �

Reduction Rule 2 For a vertex u in G, if it is connected by multiedges to at least
k + 1 other vertices, then delete u and decrement k by one. The resulting instance is
(G[V (G) \ {u}], k − 1).

Proof (of correctness) Observe that if u is connected by multiedges to at least k + 1
other vertices, then each solution not containing u would need to contain all the (at
least k + 1) other endpoints of these edges, a contradiction. Therefore, any solution
has to contain u. �

We follow up with a group of reduction rules already provided by Philip et al. [18].

Reduction Rule 3 [18] If a vertex u in G has two or more pendant neighbours, then
delete all but one of these pendant neighbours to obtain G′. The resulting instance is
(G′, k).

Algorithmica (2012) 64:170–188 179

Reduction Rule 4 [18] For a vertex u in G, if there is a matching M of size k + 3
in G[V (G) \ {u}], where each edge in M has at least one end in N(u), then delete u

and decrement k by one. The resulting instance is (G[V (G) \ {u}], k − 1).

Reduction Rule 5 (Rule 5 of Philip et al. [18], rephrased) Let v0 − v1 − v2 − · · · −
vp − vp+1 be a path in G, such that for each vertex vi (1 ≤ i ≤ p) its neighbours
other than vi−1, vi+1 are pendant, and vi is not incident to any multiedges. If p ≥ 5,
then contract the edge (v2, v3) in G to obtain the graph G′. The resulting instance is
(G′, k).

The correctness of the above rules has already been proved by Philip et al. [18].
It is easy to observe that the rules are also correct in the multigraph model we are
working with.

Let us now take some integer α ≥ 5. In this section we use α = 5, while in the
next section α = max{k + 2,5} is going to be considered. Our next goal is to bound
the degrees of vertices in G. The following lemma is crucial for the degree reduction
rule.

Lemma 7 Let α ≥ 5. Consider a MPOVD instance (G, k). Assume that there is a
vertex u ∈ V (G) of degree at least (5k + 7) + α(k + 2) and Reduction Rules 1–5
cannot be applied. Then one can in polynomial time find disjoint sets of vertices
X′, Y ′ ⊆ V (G)\{u} and a function φ : X′ → (

Y ′
α

)
satisfying the following properties:

1. every vertex in Y ′ is connected by a single edge to u,
2. Y ′ is an independent set in G,
3. N(Y ′) = X′ ∪ {u}, and each vertex from Y ′ has a neighbour in X′,
4. the sets φ(x) ⊆ N(x) are disjoint for any two different x ∈ X′ (as before we denote

the elements of φ(x) by yx
1 , yx

2 , . . . , yx
α in Y ′ and call them the private neighbours

of x).

Proof Before we proceed to the technical details, let us have an informal glimpse on
the outline of the proof. Assume that u has a large degree. If deg(u) is sufficiently
large, then by firstly forgetting all its neighbours adjacent via multiple edges (there
are not so many of them, as Reduction Rule 2 is not applicable) and secondly for-
getting endpoints of maximum matching of the graph induced by the neighbours (it
has to be relatively small, as Reduction Rule 4 was not applicable), we obtain a large
independent set of neighbours of u, connected via single edges. Now we consider
the second neighbourhood, of u, namely the neighbours of this independent set, and
the bipartite graph between the first end the second neighbourhood induced by edges
of G. As Reduction Rule 4 was not applicable, the matching in this graph is relatively
small; therefore, by Theorem 1 we can find a set with a small deficit. Thus we con-
structed a large independent set of neighbours of u, which know only a small number
of vertices in the second neighbourhood. Now we need only to apply Theorem 2 in
order to finish the proof.

Let us now transform this intuition into a formal argument.
We invite the reader to read the presented proof while carefully studying Fig. 3,

which pictures the details.

180 Algorithmica (2012) 64:170–188

Fig. 3 The situation from Lemma 7 before and after application of the Reduction Rule 6

Let Y0 be the set of nonpendant neighbours of u, connected to u by single edges.
As Reduction Rules 1, 2 and 3 could not be applied, there are at most 2k + 1 edges
incident to u and not incident to Y0: at most 2k which are multiple edges and at most
one for a pendant, thus |Y0| ≥ (α + 3)(k + 2).

Now, let M0 be a maximum matching in G[Y0], constructed in polynomial
time [14]. Note that as Reduction Rule 4 could not be applied, |M0| ≤ k + 2. Let
us denote by Y1 the set Y0 excluding the endpoints of M0. As M0 was a maximum
matching in G[Y0], Y1 is an independent set in G of cardinality at least (α+1)(k+2).

Let us construct a bipartite graph H1 on the bipartition (Y1,X1), where X1 =
N(Y1)\ {u}. Vertices x ∈ X1 and y ∈ Y1 are connected by an edge in H1 iff they were
adjacent in G. Let Y ⊆ Y1 be a set with the maximum def(Y) in H1 among all subsets
of Y1, constructed in polynomial time using Theorem 1. Denote X = NH1(Y). Ob-
serve that a maximum matching in H1 has cardinality |Y1|− |Y |+ |X|. As Reduction
Rule 4 could not be applied, k + 2 ≥ |Y1| − |Y | + |X|. As Y ⊆ Y1, we conclude that
|Y1 \ Y | ≤ k + 2 and |X| ≤ k + 2. Thus |Y | ≥ α(k + 2).

Denote by H the subgraph of H1 induced by X ∪ Y . As Y1 was an independent
set and all the vertices from Y1 were nonpendant neighbours of u, by the definition
of X every y ∈ Y has at least one neighbour in X. Moreover, |Y | ≥ α(k + 2) ≥ α|X|.
Using Theorem 2 in polynomial time we construct nonempty sets Y ′ ⊆ Y , X′ ⊆ X

and a function φ : X′ → (
Y ′
α

)
such that N(Y ′) ∩ X = X′ and each x ∈ X′ has a set

φ(x) = {yx
1 , yx

2 , . . . , yx
α} of α private neighbours in Y ′. �

Reduction Rule 6 Let u be a vertex of degree at least (5k+7)+α(k+2). Let X′ and
Y ′ be the nonempty sets found using Lemma 7. Obtain G′ by deleting all the edges
between u and Y ′ and adding double edges between u and every vertex from X′. Also,
if u had no pendant neighbour, add one. The resulting instance is (G′, k).

Proof (of correctness) Firstly, note that during application of the reduction rule we
delete at least α|X′| edges and add at most 2|X′| + 1 edges and one vertex, thus (as
α ≥ 5 and |X′| ≥ 1) strictly reducing the graph size. Now let us prove the correctness
of this reduction rule.

We have to show that the resulting instance (G′, k) is equivalent to the input in-
stance (G, k). Observe that the degree of u in G is at least (5k + 7) + α(k + 2), so
by Lemma 5 one can add a pendant vertex to u without changing the answer to the
POVD problem. Thus, without loss of generality we may assume that the pendant
vertex has already been attached to u and therefore there are no additional vertices
in G′. Denote this additional pendant vertex by w. Observe that one may assume that
w is not contained in the solution to POVD in (G, k) and in (G′, k), as choosing

Algorithmica (2012) 64:170–188 181

w to the solution can always be substituted with choosing u without increasing the
solution size.

Denote V = V (G) = V (G′) and l = |X′|. Suppose that there is a set A ⊆ V such
that |A| ≤ k and G[V \ A] has pathwidth at most one. As α ≥ 2 then one can find l

cycles of length 4 that meet only at u: for each x ∈ X′ we form a cycle consisting of
x, yx

1 , u and yx
2 . Observe that if u ∈ A then G[V \ A] = G′[V \ A] and A is also a

solution to MPOVD in (G′, k). Now suppose that u /∈ A. In this situation, the set A

has to contain at least l vertices from X′ ∪ Y ′ in order to have at least one vertex on
each of the indicated cycles. Obtain A′ = (A \ Y ′) ∪ X′ by replacing these vertices
with simply the set X′ (of cardinality l). Note that thus |A′| ≤ k. We claim that A′
is also a solution to (G, k) instance of MPOVD. Indeed, as G[V \ A] has pathwidth
at most one, then G[V \ (A ∪ X′)] has pathwidth at most one as well. Observe that
G[V \ A′] can obtained from G[V \ (A ∪ X′)] by introducing vertices from Y ′ ∩ A

as pendant neighbours of u. As we argued, we may assume that u already has a
pendant neighbour w in G[V \ (A ∪ X′)], hence adding additional pendants to u

cannot increase the pathwidth. Thus G[V \ A′] has also pathwidth at most 1. Finally,
observe that A′ is also a solution in (G′, k), as G′[V \ A′] is a graph obtained from
G[V \A′] by removing all the edges from u to Y ′. Therefore (G′, k) is a YES instance
of MPOVD as well.

Now suppose that B is a solution to MPOVD in (G′, k). Recall that both in G′ and
G the vertex u has a pendant neighbour w and we may assume that w /∈ B . As before,
if u ∈ B , then G′[V \ B] = G[V \ B] and B is also a solution to MPOVD in (G, k).
Now suppose that u /∈ B . As u is connected to all the vertices from X′ by double
edges, X′ ⊆ B . Therefore, in G[V \ B] the set Y ′ \ B is a set of pendant neighbours
of u. Observe that G[V \ B] can be obtained from G′[V \ B] by introducing vertices
from Y ′ \ B as pendant neighbours of u instead of isolated vertices. As there already
exists a pendant neighbour w of u in G′[V \ B], this operation cannot increase the
pathwidth. Hence B is a solution to MPOVD in (G, k) as well. �

Let us denote β = (5k + 7) + α(k + 2). Using Reduction Rule 6 we have already
bounded the maximum degree by β . Let us introduce two more reduction rules in
order to make the graph denser and thus bound its size.

Reduction Rule 7 Let u be a vertex which is not contained in any cycle or T2. Obtain
G′ by deleting u. The resulting instance is (G′, k).

Proof (of correctness) Consider any induced subgraph H of G containing u. Then u

is not contained in any cycle or T2 in H . We claim that G[V (H) \ {u}] is a caterpillar
forest if and only if H is a caterpillar forest. To see this, observe that if G[V (H)\{u}]
is a caterpillar forest, then introduction of u cannot create new cycles nor T2-s in H .
The fact that a subgraph of a caterpillar forest is a caterpillar forest concludes the
proof of the equivalence.

This implies that a set A ⊆ V (G) is a solution to MPOVD in (G, k) iff A \ {u} is
a solution. Thus u is not contained in any minimal solution, and a set A is a minimal
solution to MPOVD in (G, k) iff it is a minimal solution in (G′, k). �

182 Algorithmica (2012) 64:170–188

The next reduction rule can be viewed as greedy deletion of vertices in treelike
parts of the graph.

Reduction Rule 8 Let W ⊆ V (G) be a set of vertices such that G[W] is a tree
(without loops or multiple edges) containing at least one T2 and there are no edges
between W \ {w} and V (G) \ W for some w ∈ W . Root G[W] in w and in every T2
contained in G[W] mark the vertex nearest to w. Let c be the vertex farthest from w

among the marked ones. Delete c to obtain G′ and decrement k by one. The resulting
instance is (G′, k − 1).

Proof (of correctness) Let F be a T2 subgraph of G[W], due to which c has been
marked. Observe that at least one of the vertices from V (F) has to be deleted and
that the deletion of any such vertex can be substituted by the deletion of c—every T2
hit by a vertex from V (F) is also hit by c, due to extremality of c and F . Thus one
can safely assume that c is in the solution. �

Note that the situation described in Reduction Rule 8 can be recognized in poly-
nomial time—for every vertex w one deletes w and chooses as W the union of w and
these connected components derived from the connected component in which w was,
which are trees.

Now we claim that if none of the Reduction Rules 1–8 can be applied and there is
a solution to MPOVD in (G, k) then the size of G is bounded by O(k2).

Lemma 8 Let (G, k) be a YES instance of MPOVD. If Reduction Rules 1–8 are not
applicable, then |V (G)| ≤ (220.5β + 63)k and |E(G)| ≤ (252β + 72)k.

Proof Take any vertex w. Let Gw be the connected component of w in G. Let
H1,H2, . . . ,H� be those connected components of Gw[V (Gw) \ {w}] that are trees
(without any loops or multiple edges) and for each Hi (1 ≤ i ≤ �) there is exactly
one edge between Hi and w. We claim that H1,H2, . . . ,H� have at most 6 vertices
in total. Let Ww be {w} ∪ ⋃l

i=1 V (Hi). G[Ww] is a tree not satisfying the assump-
tions of Reduction Rule 8, so G[Ww] does not contain any T2. On the other hand, as
Reduction Rule 7 was not applicable, any vertex v ∈ Ww \ {w} has to be contained
in some T2. Thus the depth of G[Ww] after rooting in w is at most 3—otherwise
the deepest leaf would not be in any cycle nor T2 and Reduction Rule 7 would be
applicable.

Assume at first that w is a pendant in G[Ww]. Then w′, the only neighbour of
w in G[Ww], has got at most 3 neighbours other than w: at most one other pendant
and at most two non-pendant (if there were three of them, there would be a T2 in
G[Ww]). These non-pendant neighbours can have only pendant other neighbours, as
otherwise the depth of the tree would exceed 3. Therefore, they have at most one
other neighbour that is pendant, resulting in G[Ww] having at most 7 vertices.

Now assume that w has at least two neighbours. Similarly as before, w has at
most 3 neighbours in G[Ww] at all: one pendant and two non-pendant. Let w′ be
any non-pendant neighbour of w. Observe that apart from w, w′ can have at most
one pendant neighbour and at most one non-pendant neighbour—two non-pendant

Algorithmica (2012) 64:170–188 183

neighbours would result in a T2 with the centre in w′ and one leg passing through w.
Assume for a moment that such a non-pendant neighbour of w′ exists and denote it
by w′′. Observe that a T2 containing a neighbour of w′′ other than w′ (there is one,
as otherwise Reduction Rule 7 would be applicable) has to be entirely contained in
G[Ww], as it cannot have center in w′. We obtained a contradiction with the assump-
tion that G[Ww] contained no T2-s entirely. Therefore, every non-pendant neighbour
of w has at most one other neighbour that is a pendant. As w has at most three neigh-
bours in G[Ww]: at most one pendant and at most two non-pendant, we infer that in
this case G[Ww] has at most 6 vertices.

Now we proceed to the simplification of the graph G. Consider the following
procedure: while there exists a vertex of degree at most 1 in G, remove it. Denote the
remaining set of vertices as V1. Denote H1 = G[V1]. Observe that the construction of
H1 can only decrease the degrees of vertices in V1, so the degrees of vertices in H1

are also bounded by β , as Reduction Rule 6 was not applicable.
As Reduction Rules 7, 8 could not be applied, no connected component of G is

a tree. Hence each vertex v ∈ V (G) \ V1 belongs to the tree G[Ww] for the vertex
w ∈ V1 that is closest to v (there is exactly one such vertex). Thus every vertex v ∈
V (G) \ V1 belongs to a tree G[Ww] for some w ∈ V1. The trees G[Ww] for w ∈ V1

are disjoint, so |V (G)| ≤ 7|V1| and |E(G)| = |E(H1)| + |V (G)| − |V1|.
Consider any walk v1, v2, . . . , v9 in H1 where the inner 7 vertices have degree 2

in H1. The vertices v1 and v9 possibly coincide, but all the inner vertices are dis-
tinct from each other and from v1 and v9. If v3, v4, v5, v6 and v7 all had only
pendant neighbours in V (G) \ V1, we could apply Reduction Rule 5, a contradic-
tion. Thus one of them (say vi) has a neighbour w1 ∈ V (G) \ V1, which has a
neighbour w2 ∈ V (G) \ V1. Therefore, vi is the “a” vertex of a T2 (see Fig. 2), as
vi−2, vi−1, vi, vi+1, vi+2,w1,w2 form a T2. Thus we can have at most k such vertex-
disjoint 9-vertex walks—for otherwise we would obtain k + 1 vertex-disjoint T2 sub-
graphs, a contradiction.

Let H2 be a multigraph with possible loops, obtained from H1 as follows: while
there is any vertex of degree exactly 2, we contract one of the edges incident to this
vertex. Observe that when contracting an edge incident to a vertex v of degree 2, all
the degrees of vertices not incident to the edge stay the same. Moreover, the degree of
the vertex obtained in the contraction is equal to the degree of the second endpoint,
different from v. In H1 there were no vertices of degree 0 nor 1; therefore, in H2

every vertex either is isolated and has a self-loop or has degree at least 3. The edges
in H2 correspond to paths in H1, in which every inner vertex has degree 2 (possibly
there are no inner vertices on such a path; a loop corresponds to a path in which
the first and last vertex coincide). Let se be the number of edges on the path in H1

corresponding to e ∈ E(H2). Consider any edge e with se ≥ 10. In the corresponding
path we can find � se−1

9 � entirely contained vertex-disjoint subpaths with 9 vertices
each. As we have argued, we have at most k such subpaths at all, hence

∑

e∈E(H2)

se − 1

9
≤

∑

e∈E(H2)

(⌊
se − 1

9

⌋

+ 8

9

)

≤ k + 8|E(H2)|/9.

184 Algorithmica (2012) 64:170–188

As each edge in E(H1) is contained in some path corresponding to an edge in E(H2),
we obtain

|E(H1)| =
∑

e∈E(H2)

se =
(

9
∑

e∈E(H2)

se − 1

9
+ |E(H2)|

)

≤ 9|E(H2)| + 9k.

Let A be a solution to MPOVD in (G, k). We may assume that A ⊆ V1, as if
v ∈ V (G) \ V1 and v ∈ Ww , we may take w into A instead of v (as in the proof of
correctness of Reduction Rule 8). Construct A′ ⊆ V (H2) as the image of A in the con-
tractions creating H2 (i.e., if we contract an edge, where at least one of the endpoints
was in A, the resulting vertex is in A′). Observe that A′ is a solution to MPOVD
in (H2, k)—we have |A′| ≤ |A|, and any cycle or T2 in G[V (H2) \ A′] would corre-
spond to a cycle or T2 in G[V (G)\A]. Moreover, the contractions could not increase
the maximum degree in H2, so the maximum degree in H2 is also bounded by β , as
Reduction Rule 6 was not applicable. Let us recall that in H2 every vertex either is
isolated and has a self-loop or has degree at least 3. Let H 1

2 be the subgraph of H2

made up of isolated vertices with self-loops and H 2
2 be the subgraph of H2 made up

of all the connected components containing at least two vertices. By this definition,
every vertex in H 2

2 is of degree at least three and V (H 1
2) ⊆ A′ since self-loops need

to be hit, hence |V (H 1
2)| ≤ |A′| ≤ k. Furthermore, the degrees of vertices in both

the graphs H 1
2 ,H 2

2 are bounded by β , hence |E(H 1
2)| ≤ βk/2 (note that it is pos-

sible for a vertex in H 1
2 to have multiple loops, so we cannot use the trivial bound

|E(H 1
2)| ≤ k). Moreover, after the deletion of vertices from A′ the multigraph H 2

2
becomes a forest. Consequently, we can partition the edges in H 2

2 into two sets: those
deleted by the deletion of A′ (at most βk of them) and those contained in the resulting
forest (at most |V (H 2

2)| of them). Vertices in H 2
2 have degree at least 3, so

3

2
|V (H 2

2)| ≤ |E(H 2
2)| ≤ |V (H 2

2)| + βk.

Thus |V (H 2
2)| ≤ 2βk and |E(H 2

2)| ≤ 3βk. We can now bound the number of edges
of the graph H2: |E(H2)| = |E(H 1

2)| + |E(H 2
2)| ≤ 7βk/2. As a result, |E(H1)| ≤

9|E(H2)| + 9k ≤ (63β/2 + 9)k. Note that |E(H 1
2)| ≥ |V (H 1

2)|, as each vertex from
V (H 1

2) has at least one loop. As vertices in V (H 2
2) have degree at least 3, |E(H 2

2)| ≥
3
2 |V (H 2

2)|. Hence |E(H2)| ≥ |V (H2)|. Now observe that |E(H1)| − |V (H1)| =
|E(H2)| − |V (H2)|, as each contraction removes one edge and one vertex. There-
fore,

|V (H1)| ≤ |E(H1)| ≤ (63β/2 + 9)k.

Now we can bound the number of vertices of G:

|V (G)| ≤ 7|V (H1)| ≤ 7(63β/2 + 9)k = (220.5β + 63)k,

as well as the number of edges:

|E(G)| ≤ |E(H1)| + |V (G)| ≤ (63β/2 + 9)k + (220.5β + 63)k = (252β + 72)k. �

Algorithmica (2012) 64:170–188 185

This lemma justifies the final reduction rule.

Reduction Rule 9 If |E(G)| > (252β + 72)k or |V (G)| > (220.5β + 63)k, the re-
sulting instance is (K3,0), which is a trivial NO instance of MPOVD.

Taking α = 5 (and thus β = 10k + 17) we obtain the kernelization algorithm for
MPOVD.

Theorem 4 There exists a kernelization algorithm for MULTIGRAPH PATHWIDTH

ONE VERTEX DELETION that from an instance (G, k) produces an equivalent in-
stance (G′, k′) satisfying k′ ≤ k, |E(G′)| ≤ 2520k2 +4356k and |V (G′)| ≤ 2205k2 +
3811.5k, i.e., |G′| = O(k2).

4.2 Kernels for POVD

Firstly, let us establish an equivalence between POVD and MPOVD instances. Ob-
viously, any instance of POVD can be treated as an instance of MPOVD. In the other
direction, the following lemma shows that each multiedge can be replaced by a small
gadget at the cost of a small increase of the parameter.

Lemma 9 Let (G, k) be an MPOVD instance. One can compute in |G|O(1) time
complexity an equivalent instance (G′, k′) of POVD, where |G′| = O(|G|) and k′ ≤
k + |E(G)|.

Proof Firstly, if there exists a vertex v with a loop, we remove this vertex and de-
crease k by one, since this vertex has to be contained in any solution. Next, for each
pair of vertices v1, v2 ∈ V (G) connected by a multiedge, we replace all edges v1v2
with the gadget shown on Fig. 4 and increase the parameter by one. The new instance
(G′, k′) clearly satisfies |G′| = O(|G|) and k′ ≤ k + |E(G)|. Let us now check the
correctness of this construction. Obviously, we need to check only the correctness of
a single replacement. Let us assume that v1 and v2 are connected by a multiedge in
the instance (G, k) and the instance (G′, k + 1) is created by replacing the multiedge
v1v2 with the gadget. We now argue that these instances are equivalent.

Assume that (G, k) is a YES instance and let A ⊆ V (G) be a valid solution.
If {v1, v2} ⊆ A, then A ∪ {u} is a valid solution to (G′, k + 1). Otherwise, as
A ∩ {v1, v2} �= ∅, w.l.o.g. assume that v1 ∈ A and v2 /∈ A. Then A ∪ {w2} is a valid
solution to (G′, k + 1).

Now assume that (G′, k + 1) is a YES instance and let A′ ⊆ V (G′) be a valid
solution. Denote X = {c1, c2, b1, b2, u,w1,w2, v1, v2}. Note that X \ {w1, v1} and

Fig. 4 A gadget that replaces a
multiedge v1v2

186 Algorithmica (2012) 64:170–188

X \ {w2, v2} form two subgraphs isomorphic to T2, {v1, v2,w1,w2} is a 4-cycle in G′
and those three forbidden subgraphs have an empty intersection. Thus |A′ ∩ X| ≥ 2.
If |A′ ∩ X| ≥ 3, then A′′ := A′ \ X ∪ {v1, v2, u} is also a valid solution to (G′, k + 1)

and A′′ ∩ V (G) is a valid solution to (G, k). Otherwise, if |A′ ∩ X| = 2 note that
A′ ∩ X �= {v1, v2}, because otherwise a 3-cycle u,w1,w2 is left untouched. W.l.o.g.
assume that v1 /∈ A′. Then A′′ := A′ \ X ∪ {v2,w1} is a valid solution to (G′, k + 1)

and A′′ ∩ V (G) is a valid solution to (G, k). �

We are now ready to conclude with the kernelization results for POVD.

Theorem 5 There exists a kernelization algorithm for PATHWIDTH ONE VERTEX

DELETION that from an instance (G, k) produces an equivalent instance (G′, k′)
satisfying |G′| + k′ = O(k2).

Proof At first, treat the instance (G, k) as a MPOVD instance and obtain a MPOVD
kernel with O(k2) vertices and edges. Then use Lemma 9 to obtain a POVD instance
(G′, k′) with O(k2) vertices and edges and with k′ = O(k2). �

Theorem 6 There exists a kernelization algorithm for PATHWIDTH ONE VERTEX

DELETION that from an instance (G, k) produces an equivalent instance (G′, k′)
satisfying k′ ≤ k and |G′| = O(k3).

Proof We use the same reduction rules as for the MPOVD kernel in Sect. 4.1. Notice
that Reduction Rule 6 is the only one which introduces multiedges. Thus, we need to
modify it so that it will use only single edges. We proceed as in Reduction Rule 6,
however we will use α = max{k + 2,5}. Let vertex u be of degree at least (5k + 7) +
α(k + 3), obtain sets X′ and Y ′ from Lemma 7, remove all edges between u and Y ′
and add a pendant to u. However, instead of connecting u to X′ using double edges,
for each x ∈ X′ we introduce a new vertex vx and connect vertices x, vx,u into a
triangle.

Let us now verify the correctness of the reduction rule. As in the analysis of Re-
duction Rule 6, due to Lemma 5 we may assume that the pendant vertex has already
been attached to u and therefore there are no additional vertices in G′.

Firstly, let A be a valid solution in the modified (G′, k) instance. We may assume
that A does not contain any vertex vx . Indeed, as u already has a pendant in G′,
we may delete the vertex x instead of vx . Since u,vx, x is a cycle in G′ for each
x ∈ X′, either u ∈ A or X′ ⊆ A. If u ∈ A, then G′[V (G′) \ A] is a supergraph of
the graph G[V (G) \ A] and, thus, A is a solution to the instance (G, k). Otherwise,
as in the analysis of Reduction Rule 6, G[V (G) \ A] is isomorphic to a subgraph
of G′[V (G′) \ A] but with Y ′ \ A being pendant neigbours of u instead of isolated
vertices. However u already has a pendant neighbour in G′, about which we can
assume that it is not contained in A, so introduction of these pendant neighbours
cannot increase the pathwidth.

Now let A be a valid solution to the instance (G, k). As in the analysis of Reduc-
tion Rule 6, either u ∈ A or X′ ⊆ A. In our case the graph G′[V (G′)\A] differs from
the same graph in the MPOVD case by vertices vx , which are now pendants of vertex

Algorithmica (2012) 64:170–188 187

u or x. Since α ≥ k + 2, vertices u and x have at least k + 2 neighbours and, due to
Lemma 5, the answer does not change if we add pendant neighbours to them. Thus,
the reduction rule is correct.

Clearly, the application of the reduction rule does not increase the parameter.
Taking α = max{k + 2,5} and, thus, β = O(k2) in Lemma 8 leads to the bound
|G′| = O(k3). �

5 Conclusions and Open Problems

In this article we have improved the FPT algorithm and kernelization upper bounds
for PATHWIDTH ONE VERTEX DELETION. The kernelization bounds are almost
tight compared to lower bounds derived from the general result of Dell and van
Melkebeek [6]. However, we do not know of any exact (not FPT) algorithm solv-
ing POVD that runs significantly faster than the trivial one (the trivial one, that tries
to hit all subgraphs isomorphic to T2, K3 and C4 runs in 127n/7 ·nO(1) = O(1.9978n)

time). One approach to obtain a faster exact algorithm would be to develop an FPT
algorithm that runs in time cknO(1) for some constant c < 4 and use the well-known
win–win approach. This, however, seems really nontrivial, as it requires to do some-
thing clever with C4 subgraphs, instead of simply branching over them.

Acknowledgements This work was partially supported by the Polish Ministry of Science grants N206
491038 and N206 491238.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Àlvarez, C., Serna, M.J.: The proper interval colored graph problem for caterpillar trees (extended
abstract). Electron. Notes Discrete Math. 17, 23–28 (2004)

2. Arnborg, S., Proskurowski, A., Seese, D.: Monadic second order logic, tree automata and forbidden
minors. In: Börger, E., Büning, H.K., Richter, M.M., Schönfeld, W. (eds.) CSL. Lecture Notes in
Computer Science, vol. 533, pp. 1–16. Springer, Berlin (1990)

3. Assmann, S.F., Peck, G.W., Syslo, M.M., Zak, J.: The bandwidth of caterpillars with hairs of length 1
and 2. SIAM J. Algebr. Discrete Methods 2(4), 387–393 (1981)

4. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Kaplan, H.
(ed.) SWAT. Lecture Notes in Computer Science, vol. 6139, pp. 93–104. Springer, Berlin (2010)

5. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving
connectivity problems parameterized by treewidth in single exponential time. In: FOCS (to appear),
see also CoRR. arXiv:1103.0534 [cs.Ds] (2011)

6. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-
time hierarchy collapses. In: Schulman, L.J. (ed.) STOC, pp. 251–260. ACM, New York (2010)

7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Berlin (2006)
8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
9. Dujmovic, V., Fellows, M.R., Hallett, M.T., Kitching, M., Liotta, G., McCartin, C., Nishimura, N.,

Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach
to 2-layer planarization. Algorithmica 45(2), 159–182 (2006)

10. Fernau, H.: Two-layer planarization: improving on parameterized algorithmics. In: Vojtás, P.,
Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM. Lecture Notes in Computer Science,
vol. 3381, pp. 137–146. Springer, Berlin (2005)

http://arxiv.org/abs/arXiv:1103.0534

188 Algorithmica (2012) 64:170–188

11. Flum, J., Grohe, M.: Parameterized Complexity Theory, 1st edn. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Secaucus (2006)

12. Lin, M., Lin, Z., Xu, J.: Graph bandwidth of weighted caterpillars. Theor. Comput. Sci. 363(3), 266–
277 (2006)

13. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics. North-Holland, Am-
sterdam (1986)

14. Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. In: FOCS, pp. 248–255.
IEEE Comp. Soc., Los Alamitos (2004)

15. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in Mathematics
and Its Applications. Oxford University Press, London (2006)

16. Ore, O.: Graphs and matching theorems. Duke Math. J. 22(4), 625–639 (1955)
17. Papadimitriou, C.H.: The NP-completeness of the bandwidth minimization problem. Computing

16(3), 263–270 (1976)
18. Philip, G., Raman, V., Villanger, Y.: A quartic kernel for pathwidth-one vertex deletion. In: Thilikos,

D.M. (ed.) WG. Lecture Notes in Computer Science, vol. 6410, pp. 196–207 (2010)
19. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35(1),

39–61 (1983)
20. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms

7(3), 309–322 (1986)
21. Suderman, M.: Layered graph drawing. Ph.D. thesis, School of Computer Science, McGill University

Montreál (2005)
22. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms 6(2), 32:1–32:8

(2010)
23. Uhlmann, J., Weller, M.: Two-layer planarization parameterized by feedback edge set. In: Kra-

tochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC. Lecture Notes in Computer Science, vol. 6108,
pp. 431–442. Springer, Berlin (2010)

	An Improved FPT Algorithm and a Quadratic Kernel for Pathwidth One Vertex Deletion
	Abstract
	Introduction
	Organization

	Preliminaries
	Notation

	The 4.65k nO(1) Algorithm for POVD
	An O(k2) Kernel for POVD
	A Quadratic Kernel for MPOVD
	Kernels for POVD

	Conclusions and Open Problems
	Acknowledgements
	References

