
Comput Sci Res Dev (2014) 29:161–169
DOI 10.1007/s00450-013-0238-4

S P E C I A L I S S U E PA P E R

Performance estimation of high performance computing systems
with Energy Efficient Ethernet technology

Shinobu Miwa · Sho Aita · Hiroshi Nakamura

Published online: 25 July 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Energy Efficient Ethernet (EEE) is an Ethernet
standard for lowering power consumption in commodity
network devices. When the load of a link is low, EEE allows
the link to turn into a low power mode and therefore can sig-
nificantly save the power consumption of a network device.
EEE is expected to be adopted in high performance comput-
ing (HPC) systems a few years later, but the performance
impact caused by EEE-enabled in HPC systems is still un-
known. To encourage HPC system developers to adopt the
EEE technology, it is required for the performance estima-
tion of the non-existing HPC systems that would utilize the
EEE technology. This paper presents the performance es-
timation method for EEE-supported HPC systems, which
utilizes a novel performance model we propose. The model
with a few profiles for HPC applications allows us to antic-
ipate the performance of the systems not yet realized. The
evaluation results show that the proposed model has the sig-
nificant accuracy and that EEE is still promising for HPC
applications.

Keywords Energy Efficient Ethernet · High performance
computing · Performance estimation

S. Miwa (�) · S. Aita · H. Nakamura
The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
e-mail: miwa@hal.ipc.i.u-tokyo.ac.jp

S. Aita
e-mail: aita@hal.ipc.i.u-tokyo.ac.jp

H. Nakamura
e-mail: nakamura@hal.ipc.i.u-tokyo.ac.jp

1 Introduction

Interconnection networks consume large amount of power
in modern high performance computing (HPC) systems. The
main contributors to the power consumption of interconnec-
tion networks are physical layer devices (PHYs) because
they work whenever the network cable is connected. For
high-performance and high-availability, the HPC systems
require wide bandwidth and a lot of redundant network paths
on interconnection networks. For example, TOFU intercon-
nection network used in K computer has 6.25 GB/s in each
link and 10 links in each node [1, 2]. Since a lot of PHYs
are required for the HPC systems, their power consumption
is not negligible. Some researcher reported that the power
consumption of interconnection networks reaches 33 % of
the total system power [12].

Energy Efficient Ethernet (EEE) is an Ethernet standard
for lowering power consumption in commodity network de-
vices. EEE allows a PHY to turn into a low power mode,
which is called Low Power Idle (LPI), when the network
load of the related link is low. During LPI mode, the PHY
can save the power consumption by up to 70 % [5]. EEE is
standardized as IEEE 802.3az in 2010 [9], and network de-
vices compliant with IEEE 802.3az are gradually increased
[6, 8, 13, 20].

EEE is expected to be used for interconnection networks
in HPC systems, but few studies about it have been done.1

The main reason is that EEE has not been standardized yet
for high performance networks such as InfiniBand, so there
does not exist EEE-supported devices for HPC systems. In

1Although the paper [17] that has a similar title to ours is submitted
in ISPASS 2013, it had not been published in IEEE Xplore when we
wrote this manuscript.

mailto:miwa@hal.ipc.i.u-tokyo.ac.jp
mailto:aita@hal.ipc.i.u-tokyo.ac.jp
mailto:nakamura@hal.ipc.i.u-tokyo.ac.jp


162 S. Miwa et al.

addition, EEE itself has not been studied thoroughly be-
cause it is a quite new technology. For example, it is still
unclear that EEE can work well under the system where a
parallel application runs. Only the power consumption of
EEE-supported devices for ping-pong tests was evaluated
[15, 16].

This paper shows a performance estimation method for
HPC systems with EEE-supported devices. Our approach
is to use a performance model for such systems, which we
newly developed. The collaboration between the model and
the network profiles for HPC applications allows us to es-
timate the performance of EEE-supported systems not yet
realized.

The main contributions of this paper are summarized as
follows.

• We propose a novel performance model for EEE-support-
ed HPC systems. Using this model with the network pro-
files enables us to estimate the performance of the above
systems.

• We uncover the power management scheme of an existing
EEE-supported device. Although the power management
scheme is not published by switch makers, we identify it
through simple experiment.

• We present that EEE is also effective for parallel pro-
grams. This result would motivate HPC system develop-
ers to adopt the EEE technology.

The rest of the paper is organized as follows. First, we
introduce EEE in Sect. 2, and Sect. 3 then summarizes hur-
dles for realizing EEE in HPC systems. Next, the proposed
estimation method including the performance model is de-
scribed in Sect. 4. Section 5 presents the evaluation result of
the proposed method, and finally we summarize this work in
Sect. 6.

2 Energy Efficient Ethernet

The power consumption of PHYs dominates that of network
devices because PHYs consumes large amount of dynamic
power. To confirm the connection of a network cable, PHYs
that locate at the both edges of the cable are always activated
and frequently communicate with each other. When no data

Table 1 Specification of transition time in EEE

Protocol Min Ts (µsec) Min Tw (µsec)

100BASE-TX 200 30

1000BASE-T 182 16

10GBASE-T 2.88 4.48

should be transferred, a PHY creates a special packet, which
is called IDLE, and it is periodically sent to the other edge.
When the other PHY receives the packet, it returns an ac-
knowledgement to the source PHY. The source PHY regards
the link as live if it receives the acknowledgement.

To reduce the power consumption of PHYs, EEE was de-
veloped in the IEEE 802.3az task force. Figure 1 illustrates
the concept of EEE. The basic idea of EEE is to reduce
the number of IDLE transfers. When no data is transmit-
ted, a PHY compliant with EEE sends an LPI packet in-
stead of IDLE. If the receiver is also compliant with EEE,
the source can receive an acknowledgement against the LPI
packet. After that, both PHYs turn to be LPI mode where
almost all parts in a PHY are shut down. This sleep process
takes a little time (Ts ) and consumes similar power to an ac-
tive mode. After entering LPI mode, the power consumption
of the PHYs can be dramatically reduced.

When a packet arrives to a PHY during LPI mode, the
PHY starts a wake-up process. All hardware is powered on
and whether the other PHY is ready for communication is
confirmed. This wake-up process also consumes the almost
same power as an active mode. After the wake-up process
(which takes Tw) is finished, the PHY starts to send the
packet.

To confirm the link connection during LPI mode, the re-
fresh process is defined in EEE. When the pre-defined time
(Tq ) passes after entering LPI mode, both PHYs are woken
up. For this purpose, they set the internal timers during the
sleep process. In the refresh process, some packets are sent
to confirm that the link partner is alive. After the confirma-
tion is finished, both PHYs set the internal timers and enter
LPI mode again.

The specifications of Ts and Tw in EEE [15, 16] are sum-
marized in Table 1. In 1000BASE-T protocol, the sleep pro-
cess takes hundreds of microseconds, while the wake-up

Fig. 1 Concept of Energy
Efficient Ethernet



Performance estimation of high performance computing systems with Energy Efficient Ethernet technology 163

process takes dozens of micro seconds. This is 100 times
faster than the reset process of an Ethernet controller [10].
Such a fast mode transition enables PHYs to sleep in short
idle intervals.

Note that EEE does not define any power management
policies such as timing of entering LPI mode. Since network
switch makers can develop their original management pol-
icy, the power management scheme with EEE depends on
network devices. Unfortunately, it is not published, so we
cannot know how an EEE-enabled device works specifically.

3 Hurdles to realize EEE for HPC

Since EEE can dramatically reduce the power consumption
of network devices, it is expected to be adopted in HPC sys-
tems. However, there exists the following issues to use EEE
for HPC.

Development of EEE-supported devices Since EEE is an
Ethernet standard, high performance interconnection net-
works such as InfiniBand are not compliant with EEE. EEE
is available only in a part of 10GBASE-T and 1000BASE-
T network devices. IEEE P802.3bj (which is a standard for
100 Gb/s backplane and copper cable) task force is now dis-
cussing about EEE [4, 7], but it would take a few years for
the standardization. To utilize EEE in HPC systems, the im-
mediate development of EEE-supported devices is desirable.

Power/performance estimation when using EEE To en-
courage HPC system developers to adopt the EEE technol-
ogy, power and performance estimation of HPC systems
with them is required. If EEE is also energy-efficient in HPC
systems, it would motivate the developers to use the technol-
ogy.

Establishment of power management scheme Power man-
agement scheme with EEE should be established for the fur-
ther energy-efficient HPC systems. EEE is a part of the MAC
layer protocol, so it does not define the power management
policy of PHYs. The current policy implemented in an exist-
ing EEE-supported device is effective for LANs, but it may
be ineffective for HPC networks. We need to clarify what
power management scheme is suitable for HPC systems.

Since the first one is a matter of industry, this paper fo-
cuses on the rest. Above all, our concern is how to estimate
the system performance of EEE-supported HPC systems.
This is because the power consumption of such systems can
be estimated by the combination of existing models [16]. Of
course, the power management scheme should be carefully
considered to develop the performance estimation method
because the system performance highly depends on the man-
agement scheme.

4 Performance estimation method for EEE-supported
HPC systems

EEE-supported interconnection network devices do not ex-
ist yet, but the benefit of introducing EEE into HPC systems
should be estimated. To this end, we propose the perfor-
mance model for EEE-supported HPC systems. The model
with the network profiles on an existing HPC system enables
us to estimate the system performance if the system adopted
the EEE technology.

4.1 Power management scheme

IT devices such as CPUs, LCDs and HDDs use a simple
policy for their power management: time-out control and
on-demand wake-up [14, 19]. An IT device turns into a
low power mode when constant time passes in an idle state
where no request arrives. When a request arrives during a
low power mode, the device starts to be powered up. Since
the request must wait for the readiness of the device, its
response time is exacerbated in this situation. In spite of
this performance penalty, time-out control and on-demand
wake-up are widely used in IT devices because of their sim-
plicity.

As described later, this scheme is also suitable for EEE-
supported devices of HPC systems. It is well-known that a
lot of HPC applications have computation and communica-
tion phases. This means that the networks of HPC systems
are used bursty and then keep idle. Therefore, if the time-
out interval is appropriately set, an EEE-enabled device can
keep an active state in a communication phase, while it can
largely save the power in a computation phase.

When using time-out control and on-demand wake-up,
the time-out interval and the mode transition time are the
key factors to determine the system performance. The for-
mer determines how often a PHY enters LPI mode, while
the latter determines how large the recovery time from LPI
mode is. Proposed performance models should respond to
their variability.

4.2 Performance model of EEE-enabled systems

Let i be a parallel application and j be the running threads
per node of the application. We assume that the execution
time T ij of the application on an EEE-enabled system is
defined as follows:

T ij = T
ij

base + T
ij

overhead (1)

where T
ij

base is the execution time when the application runs

on an EEE-unsupported system, and T
ij

overhead is the time
overhead caused by EEE-enabled.

Here, we suppose T
ij

overhead can be described below.

T
ij

overhead = nij ∗ f
(
I ij

)
(2)



164 S. Miwa et al.

where nij is communication count per node; f is the func-
tion that expresses the time overhead per communication;
and I ij is the average idle interval of the network when the
application runs.

If the network device utilizes time-out control and on-
demand wake-up, ideally f forms a step function that shows
the sudden rise at the time-out interval. However, since
each idle interval is not completely equal to I ij , actually f

presents the gradual increase around the time-out interval.
Therefore, we denote f as the following equation.

f
(
I ij

) =
{

0 (I ij ≤ t)

c ∗ (1 − exp(−α ∗ (I ij − t0))) (I ij > t)
(3)

where c and α are constant values that depend on the pa-
rameters of the network device; and t is a threshold. The
time overhead can be classified into two cases depending on
average idle intervals.

When the average idle interval is extremely short (I ij ≤ t),
an EEE-supported device cannot enter LPI mode because
the next packet comes into the device before the internal
timer reaches the time-out interval. That is, all packets do
not suffer from the performance penalty caused by the mode
transition. The time overhead can be regarded as zero in this
situation.

After the average idle interval is beyond a threshold
(I ij > t), some idle intervals exceed the time-out interval
and the EEE-supported device often enters LPI mode. As
previously mentioned, packets arriving the device during
LPI mode are affected by the overhead of the mode transi-
tion and the system performance then degrades. The packet
suffering from the above overhead increases as the network
load decreases. Finally, every packet transfer is delayed by
the mode transition time. We simply model this situation us-
ing an exponential function that is asymptotic to a constant
value c.

Note that t , c and α depend on EEE-supported devices,
especially their time-out intervals and mode transition time.
In the performance estimation, some assumption is needed
for them.

I ij can be described as follows:

I ij = (
Tbase/nij

) − (
Sij /B

)
(4)

where Sij is the average data size of communication per
node; and B is the network bandwidth per node. This as-
sumes that all communication occurs periodically and trans-
mits the same size of data. For example, supposing a pro-
gram of which the execution time is 1 second on a system
using a 1 Gb/s link and in which 1024 bit data is transferred
1000 times, its average idle interval is 999 microseconds.

Here, regarding the EEE-unsupported system as an exist-
ing HPC system, we can easily obtain the input parameters
of the above models. If we would like to know T

ij

base, we
should indeed execute the application i on the system while

invoking j threads per node. nij and Sij can be measured
by a profiling tool such as TAU [18] and Scalasca [11]. Of
course, B is already known. Thus, we can estimate the sys-
tem performance if the system adopted EEE.

5 Evaluation

To evaluate the accuracy of the proposed model, an EEE-
enabled device using time-out control and on-demand wake-
up is needed. Fortunately, we were able to find out such a
device, so we used it for the evaluation.

First, this section presents that the above device uses
time-out control and on-demand wake-up through the sim-
ple experiment. Next, with a PC cluster system using this
device, we will show how accurate the proposed model is.

5.1 Examination of power management scheme of existing
EEE-supported devices

In order to examine the power management scheme of an
EEE-supported device, a simple ping-pong test was carried
out on an EEE-supported computing system. To our best
knowledge, this is the first trial that clarifies the power man-
agement scheme of a commercial EEE-supported device.

5.1.1 Experimental methodology

If an EEE-supported device uses time-out control and on-
demand wake-up for the power management of PHYs, the
round trip time of a packet should be worsened as its send
interval is lengthened. When a send interval is shorter than
the time-out interval, a packet can be sent normally. On the
other hand, when the former interval is longer than the lat-
ter interval, sending the packet is delayed by Tw because of
waking the PHY up.

To confirm the above assumption, we constructed the
evaluation platform shown in Fig. 2. The platform consists
of one network switch and two compute nodes. The switch
and the NIC of Node 0 support EEE, while the NIC of Node
1 does not. Therefore, only the link connected between the
switch and Node 0 can enter LPI mode.

System configurations are listed in Table 2. Dell Pow-
erConnect 5548 was used, which is a 48-port gigabit Eth-
ernet switch compliant with IEEE 802.3az. For an EEE-
supported node, HP ProLiant DL360p Gen8 with HP Flex-
ible LOM 1 Gb 331FLR adapter was selected. Lenovo
ThinkPad T400s with Intel 82567LM Ethernet adapter was
used as an EEE-unsupported node. The nodes and the switch
connected by CAT5e cable.

On the above system, we carried out a ping-pong test as
changing send intervals of packets, and then measured their
response time. Ping command was used for the above test,



Performance estimation of high performance computing systems with Energy Efficient Ethernet technology 165

Fig. 2 Evaluation platform for ping-pong test

Table 2 System configuration of the ping-pong test platform

Device Remarks

Switch Dell PowerConnect 5548

Node 0 HP ProLiant DL360p Gen8
(NIC: HP Flexible LOM 1 Gb 331FLR)

Node 1 Lenovo ThinkPad T400s
(NIC: Intel 82567LM Ethernet Adapter)

and the send intervals were varied from 0.5 to 4 millisec-
onds by using the “−i” option. For each send interval, 1000
packets were sent from one of the nodes to the other, and we
measured the average of their response time. Each packet
consists of 64 byte data including 8 bytes ICMP data.

Note that Tw of PowerConnect 5548 is defined as 60 mi-
croseconds. We confirmed it on the management console of
PowerConnect 5548.

5.1.2 Experimental result

The result of the ping-pong test is shown in Fig. 3. The
horizontal axis represents send intervals, while the vertical
axis represents the response delay caused by EEE-enabled.
The response delay means that the response time in EEE-
disabled is subtracted from that in EEE-enabled. The line
represents a trend of the response delay when Node 0 pings
Node 1, while the dotted line represents vice versa.

The result indicates that PowerConnect 5548 uses time-
out control and on-demand wake-up. In the figure, the re-
sponse delay is nearly equal to zero under 1 millisecond send
interval. This means that the PHYs did not enter LPI mode
because packets were continuously sent within the time-out
interval. As send intervals are lengthened, the response de-
lay is close to the Tw (60 microseconds). This means that the
PHYs turned to do the wake-up process every packet trans-
fer.

The result also indicates that the time-out interval of
PowerConnect 5548 is 1 millisecond. In the figure, at the 1
millisecond send interval, the response delay suddenly raises
up by dozens of micro seconds. This means that the response
time in EEE-enabled is delayed by the mode transition be-
cause the send interval exceeds the time-out interval.

Fig. 3 Response delay caused by EEE-enabled

Note that the response delay is often beyond Tw . This is
considered as the impact of Ts . When a packet arrives in
the sleep process, PowerConnect 5548 seems to wait for the
completion of the process. Since the wake-up process starts
after the sleep process finishes, the response delay within
this range shows around 100 microseconds.

5.2 Evaluation of performance estimation method

Using a PC cluster with PowerConnect 5548, we evaluated
the effectiveness of our approach. The evaluation result is
presented in this section.

5.2.1 Evaluation methodology

To evaluate the proposed method, we built the EEE-support-
ed system shown in Fig. 4. The system consists of one EEE-
supported switch and four compute nodes that have EEE-
supported NICs. Each node is flatly connected to the switch
via a CAT5e cable.

The switch and node configurations are summarized in
Table 3. Dell PowerConnect 5548 was used as the switch,
and HP ProLiant DL360p Gen8 was used as a node again.
Each node contains two sockets of Xeon E5-2680 that has
eight cores. To exclude the impact on the performance
caused by something except for EEE, we disabled all func-
tions that strongly affect the system performance, such as
Hyper-Threading, Turbo Boost and cpuspeed. Moreover,
with cpufreq, we set the clock frequency in all cores at its
maximum (2.7 GHz). The main memory is DDR3-1333 and
its capacity is 64 GB in each node. The switch and NICs
support 1000BASE-T protocol, so the network bandwidth
per node is 1 Gb/s.

To verify the accuracy of the proposed model, we made a
simple program in which all threads uniformly communicate
(Fig. 5). The program repeats MPI_Alltoall 100,000 times
for the given array. To adjust the communication interval,
we inserted the usleep function between MPI functions. In
the evaluation, the array size varies from 256 B to 128 KB,
and the sleep time changes from 0 to 1,000 microseconds.

In addition to the synthetic application, NAS Parallel
Benchmarks (NPB) 3.3.1 [3] were used for the evaluation.



166 S. Miwa et al.

Fig. 4 Evaluation platform for the proposed model

Table 3 System configuration of the EEE-supported system

Device Remarks

Switch Dell PowerConnect 5548

Node HP ProLiant DL360p Gen8
(NIC: HP Flexible LOM 1 Gb 331FLR,
CPU: Xeon E5-2680 (2.7 GHz, 8-core), 2 CPUs,
Memory: 32 GB (8 GB 2R×4 DDR3-1333 ×4))

Fig. 5 A synthetic application with uniform communication

All programs were compiled by OpenMPI-1.5.4 and gcc-
4.4.6 with “-O2-funroll-loops”. When executing a program,
we invoked several MPI processes on each node. The num-
ber of processes per node varies as 1 and 4, so the total pro-
cess count is 4 and 16, respectively. We used three problem
classes: A, B and C. The program was executed 10 times for
each process count and problem class. Then, we calculated
the average of their execution time.

For the network profiling, we utilized paraprof command
from TAU-2.22.2 [18]. The command with the
“-dumpmpisummary” option provides us with the total
transferred bytes and the total call count of MPI functions
per process when an MPI program runs. Using these values,
we calculated the average idle interval I ij when the appli-
cation i runs under j processes. We inputted the calculated
value into the proposed model and compared the estimated
performance to the actual performance.

Fig. 6 The time overhead caused by EEE-enabled and the accuracy of
its model (for 4-process execution)

Fig. 7 The time overhead caused by EEE-enabled and the accuracy of
its model (for 16-process execution)

5.2.2 Evaluation result

Figures 6 and 7 show the time overhead caused by EEE-
enabled for the synthetic application. The horizontal axis
represents the average idle interval calculated by Eq. (4),
while the vertical axis represents the time overhead. A point
in the figure indicates the result of a trial when the applica-
tion runs with an array size and a sleep interval. The time
overhead is calculated by the subtraction of the elapsed time
in EEE-disabled from that in EEE-enabled. The line illus-
trates the trend calculated by Eq. (2), which is fitted to the
measured data by the least square method.

Figure 6 indicates that our model can well express the
trend of the time overhead. As shown in the figure, the most
points converge on the trend line. Note that a few points that
are far from the trend line are incurred by the fluctuation of
the clock frequency. In fact, the difference of elapsed time
between trials under the same configuration was up to 13.2
seconds. Since the firmware employed in HP ProLiant can
control the core frequency independent of the operating sys-
tem, it sometimes degrades the frequency. This mechanism
affects the performance at these points.

As shown in the figure, the rising point of the trend line is
different from the time-out interval shown in Fig. 3. This is
because a part of idle intervals does not match their average.
Although the average idle interval is smaller than the time-
out interval, some intervals may exceed the time-out interval
and then cause the system performance degradation.

The figure also presents that the average idle interval be-
comes longer as the array is larger. This is because time
overheads except for data transfer are not considered in our



Performance estimation of high performance computing systems with Energy Efficient Ethernet technology 167

Fig. 8 Real elapsed time and
the estimated time when the
synthetic application runs (for
4-process execution)

Fig. 9 Real elapsed time and
the estimated time when the
synthetic application runs (for
16-process execution)

model. Generally speaking, pre- and post-process of data
transfer in an MPI function take much more time as the com-
munication data is larger, but we did not model it. In fact,
the elapsed time of an MPI function with 128 KB array is
around 1.8 milliseconds as shown in Fig. 8, while the trans-
mission time of actually transfered data in the function is
much smaller. According to the paraprof ’s result, the trans-
fered data in the function is 1.73 KB data, so its transmission
time through 1 Gbps link is only 1.73 microseconds. That is,
a large fraction of time in the function is spent in pre- and
post-process of data transfer.

In contrast to the 4-process execution, for the 16-process
execution (Fig. 7), the proposed model presents a bit mis-
match at the small average intervals. This is because our as-
sumption where all MPI functions in a node are called peri-
odically is not satisfied. Four processes running on a node
concurrently call an MPI function. Then, they simultane-
ously sleep after the function call finishes. That is, the com-
munication count is overestimated in terms of idle intervals,
so the proposed model estimates that the average idle inter-
val is smaller than the real. We will try to improve the model
of the average idle interval in the future.

Figures 8 and 9 present the elapsed time in EEE-disabled,
that in EEE-enabled and the time estimated by the proposed
method. The former figure is the result of the 4-process exe-
cution, while the latter is the result of the 16-process execu-
tion. In each figure, the horizontal axis represents the array
size and the sleep interval used for the execution, while the
vertical axis represents the elapsed time. For the visibility,
a part of Fig. 8 is enlarged as shown in Fig. 10.

Firstly, both figures show that EEE significantly worsens
the system performance. In the worst case, where 4 KB data
and 100 microseconds sleep are used in the 4-process execu-
tion, the performance degradation reaches 25.8 % (Fig. 10).

Fig. 10 The scaled version of Fig. 8 at 100 microseconds

Fig. 11 Real elapsed time and the estimated time when NPB runs
(16-process execution, class B)

Secondly, the figures indicate that the proposed model
can well estimate the performance of an EEE-supported
system. The error between the estimated time and the
elapsed time in EEE-enabled achieves 2.63 % (4-process)
and 1.11 % (16-process) on average, respectively. Even in
the worst case, the error still presents 20.0 % and 15.3 % in
each.

Figure 11 shows the elapsed time when NPB runs with
16 processes and the problem class B. We had to omit other



168 S. Miwa et al.

results for want of space. Since the communication count is
significantly lower in the most configurations, the elapsed
time in EEE-enabled is similar to that in EEE-disabled. The
proposed model also presents the same tendency, but it over-
estimates the execution time in some cases. This seems to
be incurred by the inaccuracy of the average interval model
because a lot of trials by 16 processes show the overes-
timation. Thus, the further improvement of our model is
needed.

6 Summary

EEE will be adopted in the future HPC systems, but its
impact on the system performance was unclear because of
lack of the performance estimation method for such sys-
tems. This paper presents the novel performance estima-
tion method for EEE-supported systems, which utilizes the
newly developed model and a few network profiles on ex-
isting systems. The evaluation result shows that the pro-
posed model has the significant accuracy. Moreover, the re-
sult shows that the performance penalty caused by EEE-
enabled is negligible in the realistic situation.

For the future work, we will try to carry out the further
improvement of our model and confirm it under various ap-
plications and platforms. Especially, we are interested in
the accuracy of the proposed model in the large diameter
networks because the performance penalty caused by EEE-
enabled increases in such networks. By adding the further
evaluation, we would like to confirm that our approach is
also effective under other conditions.

Acknowledgements This research was partially supported by MEXT
and JST CREST projects for next-generation high performance com-
puting systems.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

References

1. Ajima Y et al (2012) TOFU: interconnect for the K computer. Fu-
jitsu Sci Tech J 48(3):280–285

2. Ajima Y et al (2009) TOFU: a 6D Mesh/Torus interconnect for
exascale computers. IEEE Comput 42(11):36–40

3. Bailey D et al (1994) The NAS parallel benchmarks. RNR Tech-
nical Report RNR-94-007

4. Bannet MJ (2011) Energy-efficient Ethernet for 100 G backplane
and copper. IEEE P802.3bj task force

5. http://www.broadcom.com/products/features/energy_efficient_
network.php

6. D-Link (2011) DGS-1100 EasySmart switches 16/24 port gigabit
switches. Datasheet

7. Gustlin M (2011) 100 Gb/s Ethernet and EEE. IEEE P802.3bj task
force

8. Hewlett-Packard (2011) HP E8200 z1 v2 switch series. Technical
specifications

9. IEEE (2010) IEEE Std 802.3az-2010. IEEE Standards
10. Intel Corp (2012) Intel Ethernet controller I350 specification up-

date. Revison 2.05
11. Geimer M et al (2010) The scalasca performance toolset architec-

ture. Concurr Comput 22(6):702–719
12. Kogge PM (2008) Architectural challenges at the exascale fron-

tier, simulating the future: using one million cores and beyond.
Invited talk

13. Level One (2011) GEU-0820 8-port gigabit switch. Datasheet
14. Li K et al (1994) A quantitative analysis of disk drive power man-

agement in portable computers. In: USENIX winter, pp 279–291
15. Reviriego P et al (2012) An initial evaluation of energy efficient

Ethernet. IEEE Commun Lett 15(5):578–580
16. Reviriego P et al (2012) An energy consumption model for energy

efficient Ethernet switches. In: International conference on high
performance computing and simulation, pp 98–104

17. Saravanan KP et al (2013) Power/performance evaluation of en-
ergy efficient Ethernet (EEE) for high performance computing. In:
2013 IEEE international symposium on performance analysis of
systems and software

18. Shende S, Malony AD (2006) The TAU parallel performance sys-
tem. Int J High Perform Comput Appl 20(2):287–311

19. Shye A et al (2009) Into the wild: studying real user activity pat-
terns to guide power optimizations for mobile architectures. In:
Proceedings of the 42nd annual IEEE/ACM international sympo-
sium on microarchitecture, pp 168–178

20. Trendnet (2011) 8-port gigabit GREEENnet switch. Datasheet

Shinobu Miwa was born in 1977
and received Doctor of Informat-
ics degree from Kyoto University in
2007. He is now an assistant pro-
fessor at the University of Tokyo
from 2011. His research interests
are computer architecture, high per-
formance computing and embedded
systems. He is a member of IEEE.

Sho Aita was received the B.E.
degree in Department of Mathe-
matical Engineering and Informa-
tion Physics from the University
of Tokyo in 2012. He is currently
pursuing the Master’s degree in In-
formation Physics and Computing
from Graduate School of Informa-
tion Science and Technology at the
University of Tokyo. He is inter-
ested in high performance comput-
ing systems. Sho Aita was received
the B.E. degree in Department of
Mathematical Engineering and In-
formation Physics from the Univer-

sity of Tokyo in 2012. He is currently pursuing the Master’s degree
in Information Physics and Computing from Graduate School of In-
formation Science and Technology at the University of Tokyo. He is
interested in high performance computing systems.

http://www.broadcom.com/products/features/energy_efficient_network.php
http://www.broadcom.com/products/features/energy_efficient_network.php


Performance estimation of high performance computing systems with Energy Efficient Ethernet technology 169

Hiroshi Nakamura is a Professor
at The University of Tokyo. He re-
ceived the Ph.D. degree in Electrical
Engineering from The University of
Tokyo in 1990. His research inter-
ests include power-efficient com-
puter architecture and VLSI design
for high-performance and embed-
ded systems. He is now leading the
Normally-Off Computing Project
supported by NEDO, New Energy
and Industrial Technology Devel-
opment Organization in Japan. He
served IEEE ISLPED 2011 (Inter-
national Symposium on Low Power

Electronics Design) as a general chair. He is a senior member of IEEE
and ACM.


	Performance estimation of high performance computing systems with Energy Efficient Ethernet technology
	Abstract
	Introduction
	Energy Efficient Ethernet
	Hurdles to realize EEE for HPC
	Development of EEE-supported devices
	Power/performance estimation when using EEE
	Establishment of power management scheme

	Performance estimation method for EEE-supported HPC systems
	Power management scheme
	Performance model of EEE-enabled systems

	Evaluation
	Examination of power management scheme of existing EEE-supported devices
	Experimental methodology
	Experimental result

	Evaluation of performance estimation method
	Evaluation methodology
	Evaluation result


	Summary
	Acknowledgements
	References


