
Comput Sci Res Dev (2011) 26: 275–283
DOI 10.1007/s00450-011-0154-4

S P E C I A L I S S U E PA P E R

A system level view of Petascale I/O on IBM Blue Gene/P

Wolfgang Frings · Michael Hennecke

Published online: 8 April 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Petascale supercomputers rely on highly efficient
Petascale I/O subsystems. This work describes the tuning
and scaling behavior of the GPFS parallel file system on JU-
GENE, the largest IBM Blue Gene/P installation worldwide
and the first PetaFlop/s HPC resource within the European
PRACE Research Infrastructure.

Keywords Parallel I/O · Blue Gene · GPFS

1 Introduction and background

The first Petascale supercomputers have now been in pro-
duction for a while. The Jülich Supercomputing Centre op-
erates the largest IBM* System Blue Gene*/P [1] supercom-
puter worldwide, nicknamed “JUGENE”. It has a peak per-
formance of 1 PetaFlop/s, 288k compute cores, and 144 TiB
of main memory. Real world applications from a broad
range of science areas have been scaled to the full size of
this capability system, as demonstrated by the annual JSC
extreme scaling workshops [5, 6].

This work was supported by the FZJ/IBM Exascale Innovation
Center, EIC cooperation agreement T/Z1213.02.09.
∗IBM, Blue Gene and GPFS are trademarks of IBM in USA and/or
other countries. Linux is a registered trademark of Linus Torvalds in
the United States, other countries, or both.

W. Frings (�)
Forschungszentrum Jülich GmbH (FZJ),
Wilhelm-Johnen-Strasse, 52425 Jülich, Germany
e-mail: w.frings@fz-juelich.de

M. Hennecke
IBM Deutschland GmbH, Karl-Arnold-Platz 1a,
40474 Düsseldorf, Germany
e-mail: hennecke@de.ibm.com

JUGENE is supported by a storage cluster based on the
IBM General Parallel File System (GPFS*) [7], with an ag-
gregate bandwidth of 66 GB/s and more than 4 PB of us-
able capacity [8]. The Blue Gene/P architecture employs
an hierarchical I/O model, in which the compute nodes are
connected to the external storage cluster by a much smaller
number of Blue Gene/P I/O nodes (IONs), using a 10 GbE
TCP/IP network. The JUGENE machine is configured with
8 IONs per rack, or 576 IONs in the full system partition of
288k cores.

This article describes our experiences with Petascale I/O
in this production environment, in particular the effects of
the hierarchical I/O model and the unprecedented scalability
in terms of number of MPI tasks. Our work is focusing on
tuning the IBM supported Blue Gene/P and GPFS software
products which are used in FZJ’s operational environment.
See [9] for a discussion of enhancements of Blue Gene/P I/O
forwarding within a research software environment.

A parallel file system like GPFS is the minimum software
layer between the application and the storage hardware. It
provides a file system layer on top of the underlying storage
hardware, offers a POSIX API, and provides large aggre-
gate bandwidth for large, contiguous I/O by striping across
many disks, servers, and network links. Beyond the file sys-
tem layer, the following areas are important:

1.1 High-level I/O libraries

From the application perspective, sequential as well as
parallel I/O requires a mapping of the application spe-
cific data structures to the file system level [10]. High-
level I/O libraries like HDF5 and NetCDF provide a self-
describing, portable data format. Their APIs are much richer
than POSIX, in particular allowing the expression of non-
contiguous I/O and collective I/O within their respective

mailto:w.frings@fz-juelich.de
mailto:hennecke@de.ibm.com

276 W. Frings, M. Hennecke

data formats. Parallelism is supported through PnetCDF
[11], PHDF5 [12], and netCDF-4 [13] which in turn are
based on MPI-IO [14] as an intermediate layer. Eventually,
this software stack issues POSIX I/O requests against the
parallel file system. From a performance viewpoint, the I/O
optimizations in the MPI-IO layer are utilizing the knowl-
edge conveyed through its richer API, and transform the
application I/O requests into a form which is better suited
for the underlying POSIX API and parallel file system char-
acteristics: fewer and larger I/O requests than what is ex-
pressed at the higher abstraction levels. In this work we only
focus on I/O performance at the POSIX level as the common
low-level API.

1.2 File organization: task-local versus shared files

Application programmers will generally approach parallel
I/O from either of two sides: If the applications already use
the sequential version of a high-level I/O library, parallelism
is introduced through the parallel versions of those libraries,
with MPI-IO as the intermediate layer and parallel I/O to one
shared file. If the original application is based on sequential
POSIX I/O, parallelization naturally evolves through several
stages:

– One task performs all I/O.
This is trivial to implement, but obviously does not scale.
On Blue Gene this mode is not realistic, as a single ION
does not have the network bandwidth, memory capacity
and CPU power to perform all the I/O for thousands of
MPI tasks.

– Each MPI task accesses its own file.
This is an obvious match for the domain decomposition
used in many distributed memory applications. The I/O
is embarrassingly parallel, so the bandwidth should scale
perfectly with the number of nodes. The most obvious dis-
advantage at Petascale is the excessive number of files:
This causes both manageability issues (a single run may
generate millions of files), as well as metadata perfor-
mance issues when creating the files. Other disadvantages
are the fact that the file layout is for a fixed number of
tasks (so jobs of other size or post-processing requires a
reorganization of the files), and that task-local files pre-
vent any kind of optimization across task boundaries.

– All MPI tasks access one shared file.
This is easiest to manage, and using one file also allows
to maintain the same data format as the serial program.
For a fully POSIX compliant file system like GPFS, it is
safe to perform shared file I/O using the POSIX API. Oth-
erwise, another API like MPI-IO may be required which
can guarantee consistency and atomicity at a higher layer.

Note that shared file write operations require coordi-
nation at the metadata level as inode and indirect block
updates have to be synchronized. At Petascale, this may
reveal effects which are neglectable at smaller scales.

As long as the I/O pattern is predominantly contiguous large
block I/O, parallelizing POSIX I/O as described above will
generally produce good performance with relatively low
porting effort. When small, non-contiguous or collective I/O
dominates, employing a higher-level API will be beneficial.

1.3 Avoiding overload

Another important aspect of parallel I/O is that overloading
the storage infrastructure should be avoided. It is very com-
mon that HPC clusters can generate I/O at a much higher
rate than what the storage can consume. From a scaling per-
spective, using more compute nodes than what is required
to saturate the file system should not incur large perfor-
mance degradations. On Blue Gene/P with its hierarchical
I/O model, performance scaling on the ION level is also im-
portant: How many compute tasks per ION are needed to
saturate the ION, and how big is the performance degrada-
tion when increasing the number of compute tasks per ION
beyond that point?

In the following sections we will investigate these ques-
tions in detail, focusing on the POSIX I/O level. In addition,
FZJ has developed SIONlib [15] to address some of the lim-
itations mentioned above. SIONlib is a lightweight I/O li-
brary which maintains the POSIX API, but under the covers
enables several optimizations including the aggregation of
a logical view of task-local files into one file per ION, and
control over how many MPI tasks per ION perform the ac-
tual I/O. SIONlib is described elsewhere [16], but as it is
used in our performance studies we briefly summarize it in
Sect. 5.

2 Maximizing storage subsystem bandwidth

Storage subsystem bandwidth is increasing from generation
to generation, while individual disk drive performance is no
longer improving significantly. Especially with nearline disk
drives, sustaining the higher per-controller bandwidth of re-
cent storage subsystems requires larger and larger GPFS
block sizes. Assuming that sufficiently many disk drives are
populated, the sustained sequential I/O bandwidth that can
be achieved with a particular disk storage subsystem de-
pends on the proper alignment of three main size parame-
ters:

1. the GPFS file system block size,
2. the RAID stripe size, and
3. the application I/O size.

It is a general performance best practice to align the
RAID stripe size and application I/O size with the file sys-
tem block size. Otherwise, a read-modify-write penalty is

A system level view of Petascale I/O on IBM Blue Gene/P 277

Table 1 Bandwidth dependency on GPFS block size

GPFS block size Read bandwidth Write bandwidth

(MiB) (GB/s) (GB/s)

1 4.0–5.3 1.2–4.0

2 6.1–7.4 2.0–5.7

4 8.6–9.3 3.4–8.2

incurred when an application write is performed which is
smaller than the file system block size, or when a GPFS
block is written to disk which is smaller than the LUN’s
RAID full stripe size.

One building block of our GPFS storage cluster [8] con-
tains a pair of IBM DS5300 disk storage subsystems with
RAID6 arrays (8+2P) on SATA disks and has a hardware
read bandwidth of 9.6 GB/s, with a slightly lower write
bandwidth. Table 1 shows the sustainable read and write
bandwidth of one building block, for GPFS block sizes
1 MiB to 4 MiB (measured on the GPFS servers using
the gpfsperf [18] benchmark). The indicated bandwidth
ranges show the effect of varying the application I/O size
and RAID stripe size from 1 MiB to 4 MiB for a given
GPFS block size. The highest bandwidth is only achieved
with 4 MiB GPFS block size and when all of the above-
mentioned performance best practices are followed.

Over the years, the central GPFS storage cluster at FZJ
has been migrated through several generations of disk stor-
age hardware, while keeping the GPFS file systems online.
The GPFS scratch file system $WORK has been originally
created with a 2 MiB block size, which was sufficient to
saturate the less powerful storage subsystems at that time.
To benefit from the 25% (read) to 40% (write) performance
increase on DS5300 hardware when going from a 2 MiB
GPFS block size to 4 MiB, the $WORK file system had to
be recreated at 4 MiB block size (the GPFS block size can-
not be changed once the file system has been created). This
was the only tuning activity in the context of the JUGENE
Petascale upgrade which was not transparent to the users.
Doubling the file system blocksize directly affects tuning on
the Blue Gene/P side, as will become obvious in Sect. 3.

3 Tuning the I/O data path on Blue Gene

In HPC clusters, GPFS is usually set up using Network
Shared Disk (NSD) servers. Disks are attached to the
NSD servers (with redundant connections within a build-
ing block), and are accessed by the NSD clients through a
TCP/IP network as shown in Fig. 1. The user applications
are executed on compute nodes, which are also running the
operating system as well as the GPFS and NSD client code.

General GPFS tuning advice can be found in the GPFS
manuals [17, 18] and in the HPC Central Wiki [20]. The

Fig. 1 General GPFS cluster architecture

Fig. 2 I/O function shipping on Blue Gene/P

guiding principle is that the whole data path from the ap-
plication to the disk needs to be optimized to avoid perfor-
mance bottlenecks. Here we focus on the additional aspects
introduced by the Blue Gene I/O architecture.

3.1 GPFS architecture on Blue Gene

The Blue Gene/P system design [1] is very similar to Blue
Gene/L [2–4]. Blue Gene compute nodes (CNs) run the user
application on a lightweight compute node kernel (CNK),
and do not have direct TCP/IP connection to an external net-
work. As shown in Fig. 2, all application I/O function calls
are function shipped to an intermediate layer of Blue Gene
I/O nodes (IONs), using the Blue Gene collective (or tree)
network. The IONs do have external TCP/IP connectivity
and run a full Linux* kernel. The control and I/O daemon
(CIOD) on the ION is responsible to process the I/O requests
which are function shipped from the CNs, and passes them
on to the file system layer on the ION. GPFS on Blue Gene
uses the GPFS multi-cluster functionality [19] to provide ac-
cess from the disk-less Blue Gene IONs to an external GPFS
storage cluster [22].

278 W. Frings, M. Hennecke

Fig. 3 GPFS architecture for
Blue Gene/P

Figure 3 outlines the GPFS architecture on Blue Gene,
including the ION layer. The GPFS and NSD client code
runs on the IONs, not on the compute nodes. Blue Gene/P
supports 8, 16, 32 or 64 IONs per rack with 1024 compute
nodes, with each ION providing one 10GbE port. Each com-
pute node can run one MPI task with up to 4 threads (SMP
mode) to four single-threaded MPI tasks (virtual node mode
or VN mode), so the ratio of MPI tasks per ION can range
from 16–64 (for 64 IONs per rack) to as much as 128–512
(for 8 IONs per rack).

In Sect. 3.2 we will show that the Blue Gene/P IONs
cannot drive file system traffic at 10GbE line rate: The best
achievable bandwidth per ION is roughly 450 MB/s for read
and 350 MB/s for write in SMP mode, and about 50 MB/s
less for VN mode. So in order to consume the GPFS band-
width provided by a number N of external GPFS servers
(which usually can drive 10 GbE at line rate), it is necessary
to use about 3N IONs on the Blue Gene side.

The 10 GbE network ports to connect the IONs are a
significant cost factor. Especially in large Blue Gene/P in-
stallations, it is therefore typical to only use the minimum
of 8 IONs/rack, which will often still result in vastly more
ION network bandwidth than the available disk bandwidth.
For example, the full-system JUGENE partition with 72
racks has 576 IONs with a peak TCP/IP bandwidth of 200–
260 GB/s, while the storage cluster can provide only around
66 GB/s.

3.2 GPFS performance tuning on Blue Gene

On Blue Gene, the key difference to a general HPC clus-
ter is the fact that a single GPFS daemon on an ION needs
to concurrently serve a much larger number of active I/O
streams (512 for VN mode and 8 IONs per rack). Our tun-
ing efforts targeted some resource limitations of the IONs
caused by the fact that the IONs are running a 32-bit Linux

kernel, and have a limited memory capacity (Blue Gene/P
nodes are available with 2 GiB or 4 GiB of memory). This
affects the CIOD function shipping infrastructure, and the
GPFS daemon itself.

3.2.1 CIOD tuning on the IONs

The main CIOD tunable is the size of the buffers which
are allocated on the IONs to hold the I/O which is function
shipped from the compute nodes, CIOD_RDWR_BUFFER_
SIZE [21]. Following GPFS best practices, these buffers
should have the same size as the GPFS file system block size
to avoid fragmentation. CIOD always allocates four buffers
per compute node to be able to handle Blue Gene/P VN
mode jobs with four MPI tasks per compute node. If an ap-
plication I/O request is larger than the CIOD buffer size, it
is fragmented and the fragments are function shipped to the
ION where they are passed on to the file system (without
re-assembling the fragments, as there isn’t enough memory
to do so).

Figure 4 shows the aggregate bandwidth of a single ION
as a function of the number of MPI tasks performing I/O
through this ION. The data is from an IOR [23, 24] bench-
mark in a GPFS file system with 4 MiB block size, using
POSIX individual file I/O with an application I/O size of
4 MiB.

Initially, the memory layout of the 32-bit Linux kernel
on the IONs prevented the allocation of 4 MiB CIOD buffers
with 8 IONs/rack. Figure 4 clearly shows the strong effect of
a too small CIOD buffer size on the achievable bandwidth.
Changing the memory layout of the IONs’ Linux kernel to
support 512 CIOD buffers of size 4 MiB was key to achieve
the full GPFS bandwidth on file systems with 4 MiB block
size.

A system level view of Petascale I/O on IBM Blue Gene/P 279

Fig. 4 Single ION bandwidth as a function of the number of MPI tasks per ION. IOR POSIX individual file I/O, 4 MiB GPFS block size, 4 MiB
I/O size, varying GPFS pagepool and CIOD buffer size

3.2.2 GPFS tuning on the IONs

GPFS on the IONs needs sufficiently many buffers in the
GPFS pagepool [17] to support a large streaming I/O band-
width. Originally, GPFS on Blue Gene/P supported a max-
imum pagepool of 384 MiB. This translates to only 96
buffers of size 4 MiB, whereas at 8 IONs/rack each ION
needs to support between 128 (SMP mode) and 512 (VN
mode) active I/O streams. With an optimized memory lay-
out, GPFS on Blue Gene/P now supports a pagepool of up
to 1024 MiB (or up to 256 buffers of size 4 MiB). While it
would be beneficial to increase this even further, on Blue
Gene/P the total ION memory is only 4 GiB (of which
2 GiB are already consumed by CIOD buffers when using
8 IONs/rack and 4 MiB block size), and some non-pinned
memory is needed as well, so there is little room to expand
the pagepool beyond 1 GiB.

In Fig. 4, comparing (A) and (C) with (B) and (D) shows
the performance impact of increasing the pagepool size from
384 MiB to 1024 MiB. When CIOD buffers of size 4 MiB
are used, the performance is roughly identical. But when the
CIOD buffer size is smaller than the GPFS block size, the
larger pagepool shifts the onset of performance degradations
to the region of larger numbers of MPI tasks per ION. This is
the expected behavior, as a larger pagepool allows to cache
more of the file system blocks that have only been partially
read or written yet (caused by the fragmentation of the I/O
requests at the CIOD layer).

When the CIOD buffer size is set to the optimal 4 MiB
but the application transfer size is reduced from 4 MiB to
2 MiB or 1 MiB, the resulting bandwidth plots are almost
identical to Fig. 4 (with ciod and xfer reversed). So even
when the CIOD buffer size is identical to the file system
block size, a large pagepool is important to sustain higher

280 W. Frings, M. Hennecke

Fig. 5 Performance of parallel file creation: One file per MPI task
(POSIX) versus one file per ION (SION)

bandwidth for I/O requests which are smaller than the file
system blocksize.

4 Impediments to scaling

Ideally, the I/O bandwidth of a Blue Gene/P partition con-
taining multiple I/O nodes should scale out linearly with the
number of IONs, up to the limits imposed by the aggregate
performance of the provisioned storage hardware. While this
is a reasonable assumption for raw bandwidth scaling, in
Sect. 1 we have pointed out two potential bottlenecks: per-
formance of parallel file creates and shared-file write perfor-
mance.

4.1 Performance of parallel file creates

Besides the manageability issues of handling millions of
files, one additional issue with POSIX individual file I/O
is the overhead during file creation. Figure 5 compares the
time to create and open files in the same directory. For a
64-rack partition on JUGENE, the parallel creation of 256k
individual files took approximately 33 minutes whereas cre-
ating and opening 512 shared SION files (one shared file per
ION) took less than 10 seconds. This effect of metadata con-
tention during file creation is caused by the parallel access to
the directory: 256k directory entries need to be added, which
link the files’ names to their inode numbers. Although GPFS
optimizes the parallel access by fine grain directory locking
(FGDL) which only locks individual directory blocks rather
than the whole directory for write updates, the time for file
creation is not negligible if the application uses more than a
few thousand tasks. The most likely bottleneck in this sce-
nario is contention on the directory’s metanode. For each
open file or directory, GPFS assigns one node to coordinate
all metadata updates. Parallel file creates of this magnitude
may overwhelm the metanode (which will usually be the
GPFS client which first opened the directory).

The workaround for this performance issue is to pre-
create one subdirectory per MPI task, and create the files

Fig. 6 Bandwidth per ION when scaling the number of IONs (VN
mode). One file per task (POSIX individual), one file per ION (SION
shared), and one shared file (POSIX shared)

in those per-task subdirectories. But at Petascale, this tech-
nique only multiplies the manageability issues of using task-
local files as creating one subdirectory per task doubles the
number of files/inodes.

4.2 Shared file write performance

For parallel I/O to individual files, there is no dependency
between the tasks after the initial parallel file create, there-
fore we expect no decay of the I/O bandwidth per ION when
increasing the number of IONs. The “POSIX individual”
measurements in Fig. 6 confirm this expectation.

In contrast, parallel I/O to a shared file uses a common
file as a resource accessed concurrently by all tasks. The
“POSIX shared” measurements in Fig. 6 show a pronounced
bandwidth degradation when writing from several IONs into
one shared file. The reason for this degradation is the file
metadata management. While block allocation happens in
parallel, it is necessary to store the references to new file
blocks in the file’s inode structure (inode and associated in-
direct blocks). These updates are managed by the per-file
metanode (usually the first GPFS client opening the file),
and at Petascale this apparently causes contention.

On a 32-bit Linux kernel there is a maximum of 164
GPFS threads to perform both sequential/prefetching I/O
(prefetchThreads) and random I/O (worker1-
Threads). Changing the default setup to allocate more
threads to random I/O slightly reduces the amount of shared
file write degradation. Other effects are still under investiga-
tion.

In the meantime, the FZJ library SIONlib can be used
to circumvent this degradation. SIONlib uses a transparent
optimization which maps all task-local files which use the

A system level view of Petascale I/O on IBM Blue Gene/P 281

same ION into a single shared SION file. At 8 IONs per rack
and VN mode, 512 MPI tasks performing task-local I/O will
actually use one shared file, and only one ION will perform
I/O against this file. This case of one physical file per ION
is situated between the two extremes of one shared file and
one file per MPI task, and combines the advantages of both:
Parallel file create time is no concern (only 576 files are cre-
ated for 288k tasks), and the “SION shared” measurements
in Fig. 6 show that the write bandwidth on multiple IONs is
comparable to individual files.

5 The SIONlib library

The objective of SIONlib [16] is to make massively paral-
lel I/O to task-local files such as checkpoints, scratch files,
or log files more efficient. Situated as an additional soft-
ware layer between a parallel application and the under-
lying parallel file system, the main idea of SIONlib is to
map a large collection of logical task-local files onto physi-
cal shared files. As already shown in previous sections this
avoids metadata contention during file creation and simpli-
fies file management operations. SIONlib can be thought of
as a very simple application-level file system with an API
and command-line utilities to access individual logical files.
The programming interface of SIONlib is laid out as an ex-
tension of the POSIX or ANSIC I/O interface, requiring only
very few source code changes for applications already using
these APIs. Existing ANSI C or POSIX read and write calls
can be retained. To allow parallel codes written in Fortran
to take advantage of the SIONlib library, a Fortran language
binding is supplied in addition to the C API. Although by
design not tied to a specific parallel programming interface,
the current version of SIONlib supports MPI, OpenMP and
hybrid MPI + OpenMP programs. The internal metadata ex-
change, needed to collect and write information about the
size and location of data in the shared files, is done via
the same parallel interface. Optimizations implemented in
SIONlib to support fast parallel I/O to task local files from
large number of tasks are the automatic block alignment, the
handling of extension, which allows to store more than one
chunk per task in a shared SION file, the transparent han-
dling of shared files which are split into a couple of physical
files, and the support of collective I/O operations.

At open-time, SIONlib uses the information about the
size of data which will be written by one task to optimize
the access to the shared file. For example SIONlib automati-
cally aligns boundaries between sections written by different
tasks to the boundaries of the file system blocks. This guar-
antees that a simultaneous parallel access to the same file
system block from different tasks can never happen. Band-
width degradation could also be seen if chunks are separated
to different file system blocks but the task I/O is not aligned,

writing for example some bytes of data at the end of one file
system block and another part at the beginning of the next
file system block. To optimize such aligned write operations,
the newest version of SIONlib provides internal buffering—
similar to the ANSI C I/O functions—in a buffer which has
the same size as the file system block. Furthermore, the li-
brary provides collective write and read functions to support
applications writing only small chunks of data. To allow a
broad range of applications to take advantage of SIONlib, a
fully documented version has been made available at [15].

6 Full system bandwidth scaling

The large FZJ scratch file system $WORK provides an ag-
gregate bandwidth of about 33 GB/s (50% of the total band-
width of the storage cluster). Given the performance char-
acteristics shown in Sect. 3, we expect that roughly 12 to
16 racks of Blue Gene/P are needed to saturate the band-
width of this file system (48k to 64k MPI tasks in VN mode).
For smaller partitions the aggregate bandwidth should scale
linearly with the partition size, and for larger partitions it
should ideally stay flat at roughly the file system limit.

Figure 7 shows the measured scaling behavior, using
SIONlib with logical task-local I/O but physically one file
per ION. We observe the expected linear scaling up to the
file system saturation at around 48k to 64k tasks, and a write
performance drop of about 10% beyond that point which is
still being investigated. The different curves show the effect
of varying the number of tasks per ION which perform the
actual I/O. Using 512 tasks per ION (VN mode) exhibits a
larger performance hit, all curves with 256 or less tasks per
ION are roughly comparable.

7 Summary and conclusions

In this paper we have described the hierarchical I/O model
of the Blue Gene architecture, and have shown how to tune
the I/O nodes to support the resulting high number of I/O
streams per ION. While the technical details are specific to
Blue Gene/P, this is indicative of the general trend of in-
creasing numbers of cores per OS instance or parallel file
system service instance.

GPFS has always distributed metadata load e.g. by uti-
lizing distributed token servers and dynamically assigning
the metanode roles for different files to different nodes. Our
scaling studies on up to 288k cores suggest that the perfor-
mance of an individual node which is performing metadata
management functions for one specific file is becoming a
gating factor when tens or hundreds of thousands of con-
current updates are happening against that single file. Per-
formance tracing and tuning is ongoing to better understand
and address these effects.

282 W. Frings, M. Hennecke

Fig. 7 Total bandwidth scaling
with the number of MPI tasks.
SIONlib read/write tests, one
file per ION

The optimizations in SIONlib provide an easy to imple-
ment solution for POSIX-style I/O: With the help of per-
ION container files for task-local I/O, and by controlling the
number of tasks per ION which perform the I/O, we are able
to reach and sustain the file system’s peak bandwidth for up
to 288k tasks. In the future, similar optimizations could also
be implemented within the MPI-IO layer.

Acknowledgements This work summarizes the efforts of a large
FZJ/IBM team; special thanks to M. Stephan, J. Docter, O. Mex-
torf, L. Wollschläger, U. Schmidt (FZJ) and K. Kutzer, K. Petersen,
M. Megerian, T. Gooding, M. Mundy, D. McNabb, B. Hartner,
G. Shah, K. Gunda, Y. Volobuev (IBM).

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. IBM Blue Gene team (2008) Overview of the IBM Blue Gene/P
project. IBM J Res Dev 52(1/2):199–220. Online at http://dx.doi.
org/10.1147/rd.521.0199

2. Gara A, et al (2005) Overview of the Blue Gene/L system architec-
ture. IBM J Res Dev 49(2/3):213–248. Online at http://dx.doi.org/
10.1147/rd.492.0195

3. Coteus P, et al (2005) Packaging the Blue Gene/L supercomputer.
IBM J Res Dev 49(2/3):213–248. Online at http://dx.doi.org/10.
1147/rd.492.0195

4. Moreira J, et al (2005) Blue Gene/L programming and operating
environment. IBM J Res Dev 49(2/3):367–376

5. Mohr B, Frings W (2010) Jülich Blue Gene/P extreme scaling
workshop 2009. Technical report FZJ-JSC-IB-2010-02. Online
at http://www.fz-juelich.de/jsc/docs/printable/ib/ib-10/ib-2010-02.
pdf

6. Mohr B, Frings W (2010) Jülich Blue Gene/P extreme scaling
workshop 2010. Technical report FZJ-JSC-IB-2010-03. Online
at http://www.fz-juelich.de/jsc/docs/printable/ib/ib-10/ib-2010-03.
pdf

7. Schmuck F, Haskin R (2002) GPFS: A shared-disk file sys-
tem for large computing clusters. In: Proceedings of the
first USENIX conference on file and storage technologies.
Monterey, CA, January 28–30, 2002, pp 231–244, 2002.
Online at http://www.usenix.org/publications/library/proceedings/
fast02/

8. Mextorf O, Schmidt U, Wollschläger L, Hennecke M, Kutzer K
(2010) Storage and network design for the JUGENE Petaflop
system. inSiDE 8(1):62–66 Online at http://inside.hlrs.de/htm/
editions.htm

9. Vishwanath V, et al. (2010) Accelerating I/O Forwarding in IBM
Blue Gene/P Systems. Online at http://www.mcs.anl.gov/uploads/
cels/papers/P1745.pdf

10. Latham R (2008) Parallel I/O for high performance and scalability.
In: 14th annual meeting of ScicomP, NY, 19–23 May 2008. Online
at http://www.spscicomp.org/ScicomP14/talks/Latham.pdf

11. Parallel-NetCDF: a high performance API for NetCDF file access.
Online at http://www.mcs.anl.gov/parallel-netcdf/

12. The HDF Group Parallel HDF5. Online at http://www.hdfgroup.
org/HDF5/PHDF5/

13. Unidata. Parallel I/O with netCDF-4. Online at http://www.
unidata.ucar.edu/software/netcdf/netcdf-4/

http://dx.doi.org/10.1147/rd.521.0199
http://dx.doi.org/10.1147/rd.521.0199
http://dx.doi.org/10.1147/rd.492.0195
http://dx.doi.org/10.1147/rd.492.0195
http://dx.doi.org/10.1147/rd.492.0195
http://dx.doi.org/10.1147/rd.492.0195
http://www.fz-juelich.de/jsc/docs/printable/ib/ib-10/ib-2010-02.pdf
http://www.fz-juelich.de/jsc/docs/printable/ib/ib-10/ib-2010-02.pdf
http://www.fz-juelich.de/jsc/docs/printable/ib/ib-10/ib-2010-03.pdf
http://www.fz-juelich.de/jsc/docs/printable/ib/ib-10/ib-2010-03.pdf
http://www.usenix.org/publications/library/proceedings/fast02/
http://www.usenix.org/publications/library/proceedings/fast02/
http://inside.hlrs.de/htm/editions.htm
http://inside.hlrs.de/htm/editions.htm
http://www.mcs.anl.gov/uploads/cels/papers/P1745.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1745.pdf
http://www.spscicomp.org/ScicomP14/talks/Latham.pdf
http://www.mcs.anl.gov/parallel-netcdf/
http://www.hdfgroup.org/HDF5/PHDF5/
http://www.hdfgroup.org/HDF5/PHDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/

A system level view of Petascale I/O on IBM Blue Gene/P 283

14. Gropp W, Huss-Lederman S, Lumsdaine A, Lusk E, Netzberg B,
Saphir W, Snir M (1998) MPI: the complete reference. The MPI-2
extensions, vol 2. MIT-Press, Cambridge, p 10

15. SIONlib: scalable massively parallel I/O to task-local files. Online
at http://www.fz-juelich.de/jsc/sionlib/

16. Frings W, Wolf F, Petkov V (2009) Scalable massively paral-
lel I/O to task-local files. In: Proceedings of SC09, Portland,
OR, USA, November 14–20. Online at http://dx.doi.org/10.1145/
1654059.1654077

17. GPFS Version 3.3 (2009) Concepts, planning, and installation
guide. IBM publication GA76-0413-03, September 2009

18. GPFS Version 3.3 (2009) Administration and programming refer-
ence. IBM publication SC23-2221-03, September 2009

19. GPFS Version 3.3 Advanced administration guide. IBM publica-
tion SC23-5182-03, September 2009

20. IBM developerWorks “HPC Central” Wiki. Online at http://www.
ibm.com/developerworks/wikis/display/hpccentral/

21. Lakner G (2010) IBM system Blue Gene solution: Blue Gene/P
system administration. Configuring I/O nodes. Chap 12. IBM
redbook SG24-7417-03. Online at http://www.redbooks.ibm.com/
abstracts/sg247417.html

22. Hennecke M (2006) GPFS multicluster with the IBM System
Blue. Gene solution and eHPS clusters. IBM redpaper REDP4168.
Online at http://www.redbooks.ibm.com/abstracts/redp4168.html

23. IOR HPC benchmark. Online at http://sourceforge.net/projects/
ior-sio/

24. Shan H, Shalf J (2007) Using IOR to analyze the I/O perfor-
mance for HPC Platforms. LBNL technical report. Online at http://
escholarship.org/uc/item/9111c60j

http://www.fz-juelich.de/jsc/sionlib/
http://dx.doi.org/10.1145/1654059.1654077
http://dx.doi.org/10.1145/1654059.1654077
http://www.ibm.com/developerworks/wikis/display/hpccentral/
http://www.ibm.com/developerworks/wikis/display/hpccentral/
http://www.redbooks.ibm.com/abstracts/sg247417.html
http://www.redbooks.ibm.com/abstracts/sg247417.html
http://www.redbooks.ibm.com/abstracts/redp4168.html
http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/
http://escholarship.org/uc/item/9111c60j
http://escholarship.org/uc/item/9111c60j

	A system level view of Petascale I/O on IBM Blue Gene/P
	Abstract
	Introduction and background
	High-level I/O libraries
	File organization: task-local versus shared files
	Avoiding overload

	Maximizing storage subsystem bandwidth
	Tuning the I/O data path on Blue Gene
	GPFS architecture on Blue Gene
	GPFS performance tuning on Blue Gene
	CIOD tuning on the IONs
	GPFS tuning on the IONs

	Impediments to scaling
	Performance of parallel file creates
	Shared file write performance

	The SIONlib library
	Full system bandwidth scaling
	Summary and conclusions
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

