Skip to main content
Log in

Development of a high analytical performance amperometric glucose biosensor based on glucose oxidase immobilized in a composite matrix: layered double hydroxides/chitosan

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This paper aimed at showing the interest of the composite material based on layered double hydroxides (LDHs) and chitosan (CHT) as suitable host matrix likely to immobilize enzyme onto electrode surface for amperometric biosensing application. This hybrid material combined the advantages of inorganic LDHs and organic biopolymer, CHT. Glucose oxidase (GOD) immobilized in the composite material maintained its activity well as the usage of glutaraldehyde was avoided. The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH, applied potential and temperature, were explored for optimum analytical performance of the enzyme electrode. The enzyme electrode provided a linear response to glucose over a concentration range of 1 × 10−6 to 3 × 10−3 M with a high sensitivity of 62.6 mA M−1 cm−2 and a detection limit of 0.1 μM based on the signal-to-noise ratio of 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trau D, Renneberg R (2003) Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor application. Biosens Bioelectron 18:1491–1499

    Article  CAS  Google Scholar 

  2. Choy JH, Kwak SY, Park JS, Jeong YJ, Portier J (1999) Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J Am Chem Soc 121:1399–1400

    Article  CAS  Google Scholar 

  3. Garcia-Ponce AL, Prevot V, Casal B, Ruiz-Hitzky E (2000) Intracrystalline reactively of layered double hydroxides: carboxylate alkylations in dry media. New J Chem 24:119–126

    Article  Google Scholar 

  4. Crepaldi EL, Pavan PC, Valim JB (2000) Anion exchange in layered double hydroxides by surfactant salt formation. J Mater Chem 10:1337–1348

    Article  CAS  Google Scholar 

  5. De Roy A, Forano C, El Malki K, Besse JP (1992) Expanded clays and other microporous solids. Expanded clays and other microporous solids. In: Occelli ML, Robson HE (eds) Van Nostrand Reinhold, New York, pp 108–169

  6. Shan D, Cosnier S, Mousty C (2003) Layered double hydroxides: an attractive material for electrochemical biosensor design. Anal Chem 75:3872–3879

    Article  CAS  Google Scholar 

  7. Shan D, Mousty C, Cosnier S (2004) Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors. Anal Chem 76:178–183

    Article  CAS  Google Scholar 

  8. Shan D, Cosnier S, Mousty C (2003) HRP wiring by redox active layered double hydroxides: application to the mediated H2O2 detection. Anal Lett 36:909–922

    Article  CAS  Google Scholar 

  9. Shan D, Yao WJ, Xue HG (2006) Amperometric detection of glucose with glucose oxidase immobilized in layered double hydroxides. Electroanalysis 18:1485–1491

    Article  CAS  Google Scholar 

  10. Mousty C (2004) Sensors and biosensors based on clay-modified electrodes-new trends. Appl Clay Sci 27:159–177

    Article  CAS  Google Scholar 

  11. Wang B, Li B, Deng Q, Dong S (1998) Amperometric glucose biosensor based on sol–gel organic–inorganic hybrid material. Anal Chem 70:3170–3174

    Article  CAS  Google Scholar 

  12. Tan X, Li M, Cai P, Luo L, Zou X (2005) An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol–gel/chitosan hybrid composite film. Anal Biochem 337:111–120

    Article  CAS  Google Scholar 

  13. Wang G, Xu J, Chen H, Lu Z (2003) Amperometric hydrogen peroxide biosensor with sol–gel/chitosan network-like film as immobilization matrix. Biosens Bioelectron 18:335–343

    Article  CAS  Google Scholar 

  14. Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme Micro Technol 35:126–139

    Article  CAS  Google Scholar 

  15. Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41:305–312

    Article  CAS  Google Scholar 

  16. Chen L, Gorski W (2001) Bioinorgnic composites for enzyme electrodes. Anal Chem 73:2862–2868

    Article  CAS  Google Scholar 

  17. Miao Y, Tan S (2001) Amperometric hydrogen peroxidase biosensor with silica sol–gel/chitosan film as immobilization matrix. Anal Chim Acta 437:87–93

    Article  CAS  Google Scholar 

  18. Wei X, Cruz J, Gorski W (2002) Integration of enzymes and electrodes: spectroscopic and electrochemical studies of chitosan-enzyme films. Anal Chem 74:5039–5046

    Article  CAS  Google Scholar 

  19. Wang G, Xu J, Ye L, Zhu J, Chen H (2002) Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. Bioelectrochemistry 57:33–38

    Article  CAS  Google Scholar 

  20. Luo X, Xu J, Du Y, Chen H (2004) A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem 334:284–289

    Article  CAS  Google Scholar 

  21. Feng J, Zhao G, Xu J, Chen H (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized chitosan. Anal Biochem 342:280–286

    Article  CAS  Google Scholar 

  22. Vial S, Forano C, Shan D, Moustry C, Barhoumi H, Martelet C, Jaffrezic N (2006) Nanohybrid-layered double hydroxides/urease materials: synthesis and application to urea biosensors. Mater Sci Eng C 26:387–393

    Article  CAS  Google Scholar 

  23. Bartlett PN, Whitaker PG (1987) Electrochemical immobilization of enzymes: part II. glucose oxidase immobilized in poly-N-methylpyrrole. J Electroanal Chem 224:37–48

    Article  CAS  Google Scholar 

  24. Cosnier S, Gondran C, Senillou A, Grätzel M, Vlachopoulos N (1997) Mesoporous TiO2 films: new catalytic electrode fabricating amperometric biosensors based on oxidases. Electroanalysis 9:1387–1392

    Article  CAS  Google Scholar 

  25. Tatsuma T, Watanabe T, Watanabe T (1993) Electrochemical characterization of polypyrrole bienzyme electrodes with glucose oxidase and peroxidase. J Electroanal Chem 356:245–253

    Article  CAS  Google Scholar 

  26. Cosnier S, Senillou A, Grätzel M, Comte P, Vlachopoulos N, Jaffrezic-Renault N, Martelet C (1999) A glucose biosensor based on enzyme entrapment with polypyrrole films electrodeposited on mesoporous titanium dioxide. J Electroanal Chem 469:176–181

    Article  CAS  Google Scholar 

  27. Bulmus V, Ayhan H, Piskin E (1997) Modified PMMA monosize microbeads for glucose oxidase immobilization. Chem Eng J 65:71–76

    Article  CAS  Google Scholar 

  28. Godievargova T, Konsulov V, Dimov A (1999) Preparation of an ultrafiltration membrane from the copolymer of acrylonitrile–glycidylmethacrylate ultilized for immobilization of glucose oxidase. J Memb Sci 152:235–240

    Article  Google Scholar 

  29. Yin LT, Chou JC, Chuang WY, Sun TP, Hsiung KP, Hsiung SK (2001) Glucose ENEET doped with MnO2 powder. Sensor Actuat chem 76:187–192

    Article  Google Scholar 

  30. Yang MH, Yang YH, Liu B, Shen GL, Yu RQ (2004) Amperometric glucose biosensor based on chitosan with improved selectivity and stability. Sens Actuat B Chem 101:269–276

    Article  Google Scholar 

  31. Yang YH, Yang HF, Yang MH, Liu YL, Shen GL, Yu RQ (2004) Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/chitosan composite film as immobilization matrix. Anal Chim Acta 525:213–220

    Article  CAS  Google Scholar 

  32. Chen X, Jia JB, Dong SJ (2003) Organically modified sol–gel/chitosan composite based glucose biosensor. Electroanalysis 15:608–612

    Article  CAS  Google Scholar 

  33. Mbouguen JK, Ngameni E, Walcarius A (2006) Organoclay-enzyme film electrodes. Anal Chim Acta 578:145–155

    Article  Google Scholar 

  34. Poyard S, Martelet C, Jaffrezic-Renault N, Cosnier S, Labbé P (1999) Association of a poly(4-vinylpyridine-co-styrene) membrane with an inorganic/organic mixed matrix for the optimization of glucose biosensors. Sens Actuat B Chem 58:380–383

    Article  Google Scholar 

  35. Chen XH, Hu YB, Wilson GS (2002) Glucose microbiosensor based on alumina sol–gel matrix/electropolymerized composite membrane. Biosens Bioelectron 17:1005–1013

    Article  CAS  Google Scholar 

  36. Senillou A, Jaffrezic N, Martelet C, Cosnier S (1999) A laponite clay-poly(pyrrole-pyridinium) matrix for the fabrication of conductimetric microbiosensors. Anal Chim Acta 401:117–124

    Article  CAS  Google Scholar 

  37. Bartlett PN, Caruana DJ (1992) Electrochemical immobilization of enzymes. Part V. Microelectrodes for the detection of glucose based on glucose oxidase immobilized in poly(phenol) film. Analyst 117:1287–1292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial supports of National Natural Science Foundation of China (Grant NO. 20505014) and (Grand NO. 20773108), the Key Project of Chinese Ministry of Education (NO. 207041) and Foundation of Jiangsu Provincial Key Program of Physical Chemistry in Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Shan or Huaiguo Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Q., Han, E., Shan, D. et al. Development of a high analytical performance amperometric glucose biosensor based on glucose oxidase immobilized in a composite matrix: layered double hydroxides/chitosan. Bioprocess Biosyst Eng 31, 519–526 (2008). https://doi.org/10.1007/s00449-007-0190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0190-4

Keywords

Navigation