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Abstract Rogerson Graben, USA, is critically placed at the
intersection between the Yellowstone hotspot track and the
southern projection of the west Snake River rift. Eleven rhy-
olitic members of the re-defined, ≥420-m-thick, Rogerson
Formation record voluminous high-temperature explosive
eruptions, emplacing extensive ashfall and rheomorphic ig-
nimbrite sheets. Yet, each member has subtly distinct field,
chemical and palaeomagnetic characteristics. New regional
correlations reveal that the Brown’s View ignimbrite covers
≥3300 km2, and the Wooden Shoe ignimbrite covers
≥4400 km2 and extends into Nevada. Between 11.9 and
∼8 Ma, the average frequency of large explosive eruptions
in this region was 1 per 354 ky, about twice that at
Yellowstone. The chemistry and mineralogy of the early rhy-
olites show increasing maturity with time possibly by progres-
sive fractional crystallisation. This was followed by a trend
towards less-evolved rhyolites that may record melting and

hyb r i d i s a t i on o f a mid - c ru s t a l sou r c e r eg ion .
Contemporaneous magmatism-induced crustal subsidence of
the central Snake River Basin is recorded by successive ig-
nimbrites offlapping and thinning up the N-facing limb of a
regional basin-margin monocline, which developed between
10.59 and 8 Ma. The syn-volcanic basin topography
contrasted significantly with the present-day elevated
Yellowstone hotspot plateau. Concurrent basin-and-range ex-
tension produced the N-trending Rogerson Graben: early up-
lift of the Shoshone Hills (≥10.34 Ma) was followed by initi-
ation of the Shoshone Fault and an E-sloping half-graben
(∼10.3–10.1 Ma). The graben asymmetry then reversed with
initiation of the Brown’s Bench Fault (≥8 Ma), which
remained intermittently active until the Pliocene.

Keywords SnakeRiverPlainvolcanicprovince .Yellowstone
hotspot . Rheomorphic ignimbrite . Rhyolite . Volcanic
stratigraphy . Basin and Range . Crustal flexure

Introduction and geological setting

The Yellowstone–Snake River Plain volcanic province
(Fig. 1) is the youngest and best-preserved silicic intraplate
volcanic province on Earth. It records large-scale (100’s to
1000’s km3) explosive eruptions that were unusual both phys-
ically (i.e. very high-temperature, pumice-poor rhyolitic erup-
tions of ‘Snake River type’; Branney et al. 2008) and chemi-
cally, constituting the largest volume of low-δ18O volcanic
rocks known on Earth (e.g. Boroughs et al. 2012; Colón
et al. 2015). Interest centres upon how the magmas formed
in such volume (Leeman et al. 2008; Shervais et al. 2013) and
upon the unusual physical volcanology of the eruptions, their
scale, frequency and environmental impact (Branney et al.
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2008; Self and Blake 2008; Ellis and Branney 2010). To prop-
erly understand these topics, it is essential to first develop a
robust stratigraphic and temporal framework with sufficient
resolution to distinguish the products of individual eruptions.

This paper documents the volcanic stratigraphy of a key
part of the province in the central Snake River Plain where the
hotspot track and the west Snake River rift intersect (Fig. 1) at
the site of particularly intense magmatism (the ignimbrite
‘flare-up’ of Nash et al. 2006). The succession around
Rogerson, Idaho, has been resolved and is now divided into
11 clearly defined eruption-units. The work builds upon recent
studies further east, in the Cassia Hills (Knott et al. 2016), at
Rogerson Graben (Andrews and Branney 2005; Andrews

et al. 2008), and to the west, at Brown’s Bench escarpment
(Bonnichsen et al. 2008; Fig. 1). In particular, we (1) present
new definitions and correlations of eruption deposits support-
ed by (2) new field, mineralogical and chemical data, (3) new
high-resolution geochronology and (4) palaeomagnetic data.
The new stratigraphic framework robustly defines individual
eruption-units and thus provides significantly higher resolu-
tion than the broader ‘composition and time (CAT) groups’ of
recent studies (Bonnichsen et al. 2008), and it reveals tempo-
ral trends in chemistry and mineralogy of Snake River Plain
magmas during 11 large rhyolitic explosive eruptions between
11.9 and ∼8.0 Ma. We show that the eruptions occurred con-
temporaneously with continental extension (Basin-and-Range
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Fig. 1 Digital elevation map of the Rogerson Graben and surrounding
areas. Key towns, and place names, along with major faults are indicated.
Individual letters (B, G, and W–Z) denote specific localities mentioned in
the text. Inset map: Outline of the Yellowstone–Snake River Plain (Y-

SRP) volcanic province. Arrow indicates the broad NE-progression of
volcanism. Location of the Rogerson Graben (RG) is also indicated.
Abbreviations: CRB Columbia River basalts, Y Yellowstone, wSRr west
Snake River rift
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and opening of the western Snake River rift; Fig. 1) and we
use new structural, kinematic and thickness-variation data to
reconstruct the timing of major, magma-induced continental
subsidence of the 100-km-wide Snake River Basin during this
phase of intense magmatism. A complementary account of a
rhyolitic volcanic succession further east, in the Cassia Hills,
is given in Knott et al. (2016).

Following initial Columbia River flood basalt effusion
(16.5 Ma; Coble and Mahood 2012), Snake River Plain rhy-
olitic volcanism gradually migrated from northern Nevada
∼600 km eastwards across southern Idaho to the present-day
Yellowstone Volcanic Field (Fig. 1). The volcanism is com-
monly attributed to a mantle plume beneath the west-
migrating North American plate (Armstrong et al. 1975;
Cathey and Nash 2004; Pierce and Morgan 1992; Coble and
Mahood 2012) although slab break-off (James et al. 2011) and
regional extension in response to upper mantle convection
(Christiansen et al. 2002) have also been invoked. More than
30,000 km3 of rhyolites are thought to have been generated
due to melting by the incremental emplacement of an elongate
ENE-trending, mid-crustal mafic sill at a depth of ∼12 km
beneath the Snake River Basin (Rodgers et al. 2002;
Leeman et al. 2008), which crosses numerous N and NW-
trending extensional Basin-and-Range faults (Miller et al.
1999). The rhyolitic eruption centres are thought to lie
concealed beneath younger basalt lavas in the Snake River
Basin, and numerous extensive outflow ignimbrite sheets are
exposed in massifs along the north and south flanks of the
basin (Fig. 1). Associated fallout ashes are dispersed widely
across continental USA (Perkins 1998).

Methods and terminology

Distinguishing the deposits of individual eruptions in the cen-
tral Snake River Plain is challenging because the exposed
successions of ignimbrites are thick, monotonous and intense-
ly faulted: most units have similar rhyolitic chemistry and
mineralogy and broadly similar field characteristics (intensely
welded rheomorphic tuffs). Therefore, the best exposures
were logged in detail (>30 logs) at non-faulted reference sec-
tions and subdivided into individual eruption units (deposit
packages inferred to record a single volcanic eruption) on
the basis of intervening palaeosols, sedimentary horizons
and contrasting palaeomagnetic directional signatures that in-
dicate significant repose periods. Tops and bases of each unit
were sampled for petrographic, geochemical, radiometric and
palaeomagnetic analysis. Field mapping was undertaken lo-
cally to link key sections, determine faults, strata dips and
lateral thickness variations.

X-ray fluorescence (XRF) analyseswere undertaken on fresh
vitrophyres from which rare lithic fragments had been removed
(sample locations and data given in Online Resource 2).

Crystals were characterised optically and by electron micro-
probe. XRF and electron microprobe analytic procedures, in-
cluding standard data, are detailed in Knott et al. (2016).
Separated sanidine feldspars were dated by 40Ar/39Ar method-
ology at the Quaternary Dating Laboratory (QUADLAB),
Natural History Museum of Denmark. New age data are pre-
sented alongside published data (Table 1), and all data, includ-
ing full age justifications, are given as supplementary files.
Cores of vitrophyres and lithoidal parts of eruption units were
drilled for palaeomagnetic analysis at the same key reference
sections and processed at University of California, Santa Cruz,
using methods described in Finn et al. (2015).

In this paper, we use ‘eutaxitic’ for welded tuff displaying
sheared or flattened shards or fiamme. ‘Lava-like’ describes
(without interpreting their origin) massive or flow-banded li-
thologies that lack such features and so resemble lava
(Branney et al. 1992). ‘Fused’ ash is welded as the result of
contact with a formerly hot adjacent rock (Fisher and
Schmincke 1984). ‘Intensely welded’ tuff shows high strain
and lacks remnant interstitial porosity (Smith 1960) and is
‘rheomorphic’ where there is evidence for ductile extension
or folding prior to cooling (Branney et al. 2004). ‘Vitrophyre’
is chilled, mostly glassy welded tuff, whereas ‘lithoidal’
welded tuff is microcrystalline (including devitrified tuff).
Devitrification features include spherulites (‘axiolites’ where
planar) commonly within zones that span contacts between
vitrophyres and lithoidal zones. Spherulites in the central
Snake River area reach 35 cm in diameter and commonly have
an irregular-shaped central cavity or ‘lithophysae’ (cf.
Breitkreuz 2013). ‘Sheet joints’ are ramifying sub-horizontal
joints orientated sub-parallel to bedding and spaced ∼5–
30 mm apart (e.g. Bonnichsen and Citron 1982); because they
are absent in vitrophyre, they likely form in response to stress-
es associated with slow cooling and devitrification. Although
the ignimbrites in the central Snake River Plain are unusually
intensely welded and develop flow-folding and upper flow
breccias, they can readily be distinguished from true lavas
by several features, key of which are (a) the widespread ab-
sence of basal autobreccias, which are ubiquitous in rhyolitic
lavas (Bonnichsen and Kauffman 1987; Henry and Wolff
1992; Branney et al. 1992); and (b) the tendency of
rheomorphic ignimbrites to thin gradually as they mantle to-
pographic slopes, and as they approach their tapering distal
terminations (e.g. Branney and Kokelaar 2002; Knott et al.
2016), in contrast to the more abrupt, lobate, steep and
breccia-fringed terminations of true blocky lavas
(Bonnichsen and Kauffman 1987).

The Rogerson Formation

Mid-Miocene rhyolitic ignimbrites of the Rogerson
Formation are exposed around Rogerson Graben and
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Brown’s Bench escarpment, Idaho (Fig. 1) and belong to the
Idavada Volcanic Group (Malde and Powers 1962; Andrews
et al. 2008). The formation exceeds 420 m thickness (base not
seen; Fig. 2) and comprises rhyolitic ignimbrites and thinner
ashfall layers thought to be derived from eruptive sources
concealed beneath basalts in the central Snake River Plain
(Bonnichsen et al. 2008). Prior to this study, it was subdivided
into five members (Andrews and Branney 2005; Andrews
et al. 2008), with another 12 informal units (‘BBU 1–12’ of
Bonnichsen et al. 2008) reported on the adjacent Brown’s
Bench scarp (Fig. 1) of which two were correlated with units
in the graben (Ellis et al. 2012).

The present study combines new data into a significantly
revised formation of 11 members (Fig. 2) defined at three linked
reference sections around Rogerson: Corral Creek on Brown’s
Bench scarp, Backwaters in Rogerson Graben and Salmon Falls
Creek south of Jackpot, Nevada (Fig. 1). First, we define, char-
acterise and interpret each member below (type section co-
ordinates given in Online Resource 1) using new field, geo-
chemical, palaeomagnetic and high-precision radiometric data.
We then reconstruct the volcanic, magmatic and tectonic history
of mid-Miocene southern central Idaho, at a time of particularly
active volcanism and tectonism. The new type locations and
robust definitions should eliminate ambiguity and benefit future

stratigraphic, volcanological, petrogenetic and tectonic studies
in the region. A brief summary of the characteristics of each
member can be found in Online Resource 1.

Corral Creek Member

The Corral Creek Member (Fig. 2; ‘BBU-2’ of Bonnichsen
et al. 2008) is a crystal-poor (<2 %) intensely welded and
rheomorphic rhyolitic ignimbrite, >20 m thick, exposed near
the base of the Corral Creek section (Fig. 1). It is massive to
flow-laminated, lava-like and lithic-poor, with ubiquitous
metre-scale rheomorphic folds and platy joints. Only the cen-
tral lithoidal part is exposed. It is the oldest member exposed
in Corral Creek, although a rather poorly exposed silicified
rhyolite of unknown origin occurs ∼2 km further south
(‘BBU-1’ of Bonnichsen et al. 2008). The Corral Creek
Member has a reversed magnetic polarity (Fig. 3a), and we
present a high-precision 40Ar/39Ar age of 11.938±0.004 Ma
(Table 1). Its mineralogy is typical of Snake River-type rhyo-
lites of Idaho, with sanidine, plagioclase, pigeonite, augite,
magnetite, ilmenite and accessory zircon and apatite.
However, it has several distinctive characteristics: (1) conspic-
uously larger (∼2 mm) sanidine crystals than in all overlying

Table 1 Summary of new and published radio-isotopic dates for members of the Rogerson Formationwith sample locations, material type andmethod
used. Note: All argon ages are relative to sanidine feldspar standard FCs at 28.172Ma± 0.028Ma (Rivera et al. 2011) and reported with 2σ uncertainties

Member Sample number Sample location Sample type Method Weighted mean age (Ma)

Grey’s Landing – Rogerson Graben – Stratigraphic position a∼8.0
Brown’s View – Rogerson Graben – Constrained by underlying age a∼10.0

RC-11.1-004 Cassia Hills Zircon Ionprobe (SIMS) b10.3 ± 0.2

Twin Buttes – – – – –

Wooden Shoe RC-10.1-002 Cassia Hills Sanidine Single-grain laser fusion b10.139 ± 0.006

Bobcat Buttte – Brown’s Bench Escarpment Sanidine Single-grain laser fusion d10.34 ± 0.09

Rabbit Springs – Brown’s Bench Escarpment Sanidine Single-grain laser fusion c10.59 ± 0.09

– Backwaters Sanidine Single-grain laser fusion d10.49 ± 0.13

– Cottonwood Creek, Nevada Sanidine Single-grain laser fusion c10.62 ± 0.10

Jackpot RC-10.1-010 Corral Creek Sanidine Single-grain laser fusion a10.960 ± 0.009

– Brown’s Bench Escarpment Sanidine Single-grain laser fusion a11.04 ± 0.07

– Cassia Hills Sanidine Single-grain laser fusion c10.97 ± 0.07

China Hill – Brown’s Bench Escarpment – Stratigraphic position a∼11.3 Ma

Black Canyon RC-10.1-002 Corral Creek Sanidine Single-grain laser fusion a11.667 ± 0.017

Brown’s Bench Escarpment Sanidine Single-grain laser fusion c11.40 ± 0.08

Brown’s Bench RC-10.1-002 Corral Creek Sanidine Single-grain laser fusion a11.857 ± 0.006

Corral Creek MP-11.2-001 Corral Creek Sanidine Single-grain laser fusion a11.938 ± 0.004

a This study (see Online Resource 4—Table S4)
b Knott et al. 2016
c Ellis et al. 2012
d Bonnichsen et al. 2008
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rhyolitic eruption-unit



members, (2) sanidine predominates over plagioclase, and (3)
quartz-sanidine micrographic (granophyric) intergrowths are
abundant. Chemically, the ignimbrite is a high-silica rhyolite
(75 wt.% SiO2) and can be distinguished from other members
by its low MgO (<0.07 wt.%) and high Ba contents
(1000 ppm). No vertical variations are exhibited.

Interpretation

The homogeneous, massive, intensely welded nature of this
ignimbrite, and the absence of internal vitrophyres, welding
variations or other breaks within the main lithoidal zone, is
consistent with the member representing a non-zoned, simple
cooling unit of outflow ignimbrite, deposited by a very hot,
granular fluid-based pyroclastic density current (Branney and
Kokelaar 2002) .

Brown’s Bench Member

The Brown’s Bench Member is the thickest (∼90 m) and most
complex ignimbrite on Brown’s Bench scarp. At the type area
(Coral Creek Canyon; Fig. 1), it overlies the Corral Creek
Member and underlies the Black Canyon Member (contacts
not seen; Fig. 2). It has a reversed magnetic polarity (Fig. 3a),
and its thermoremanent magnetisation (TRM) direction is dis-
tinct from the enclosing members (Fig. 3a). We also present a
high-precision 40Ar/39Ar age for this member of 11.857

±0.006 Ma (Table 1). The Brown’s Bench Member (Fig. 4)
comprises a basal massive vitrophyric tuff, ∼5 m thick, with
an upper zone of sparse elongate lithophysal spherulites,
∼0.3 m in diameter, and metre-long axiolites. The vitrophyre
is sharply overlain by a red-brown, lava-like lithoidal zone,
70 m thick, which forms 10 conspicuous step-like erosional
benches along Brown’s Bench scarp (Fig. 4c). Two less-
intensely welded zones with gradational contacts, 5 and
10 m above the base of the lithoidal zone (Fig. 4a), contain
fiamme and abundant blocky, non-vesicular vitric lapilli
(Fig. 4b). The overlying lithoidal tuff is rheomorphic and is
overlain by a ≥1-m-thick upper perlitic vitrophyre, although
the upper 10m are commonly obscured. Crystal content varies
with height through the Brown’s BenchMember, from ∼10 %
in the basal vitrophyre to 10–15% in the lithoidal zone and 5–
7 % in the upper vitrophyre. The member is mineralogically
distinct from the overlying Black Canyon Member in that it
contains an additional compositional mode of pigeonite to-
gether with a compositional pair of pigeonite and augite
(Fig. 5). It can also be distinguished from enclosing members
by its combination of lower SiO2 (≤73.38 wt.%) and relatively
higher TiO2 (>0.5 wt.%), MgO (>0.2 wt.%), Fe2O3

(>3.6 wt.%) and Zr (>550 ppm) (Online Resource 2).

Interpretation

The Brown’s BenchMember is a thick outflow ignimbrite that
originated from a source somewhere in the central Snake
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River Basin. Its uniform palaeomagnetic direction (Fig. 3a,
inset ii), together with an absence of internal breaks,
palaeosols or reworked horizons, show that it is a single erup-
tion unit. The complex welding profile in lower parts (Fig. 4a)
is similar to a compound cooling unit that would classically be
interpreted as recording at least three separate pyroclastic

density currents in rapid succession (two short-duration cur-
rents followed by a more protracted one), with intervening
periods during which deposit tops cooled. However, we note
that the two less-welded, eutaxitic zones that alternate with the
intensely welded zones coincide with abundant blocky vitric
lapilli. Therefore, we infer the passage of a prolonged density
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current, during which two abrupt influxes of the blocky
vitric fragments occurred during the first half of the
eruption. The two influxes of vitric fragments in such
large quantity (traced for more than 55 km from the
inferred source area) indicate major fragmentation
events with entrainment of an abundant proximal glassy
source. These significant events may have involved
hydroclastic explosive fragmentation (e.g. Ellis and
Branney 2010) or caldera collapse-triggered proximal
avalanching of earlier-formed glassy rhyolite deposits
in the source area, with consequent entrainment of the
glassy debris into the pyroclastic density current.
Similar occurrences of abundant blocky vitric lapilli at
horizons within thick massive ignimbrites have been de-
scribed in Snake River-type ignimbrites elsewhere (e.g.
Big Bluff Member, Knott et al. 2016).

Black Canyon Member

The Black Canyon Member is a 35-m-thick intensely welded
rhyolitic ignimbrite sheet with a new high-precision 40Ar/39Ar
age of 11.667±0.017 Ma (Table 1). At the type area, Corral
Creek Canyon, it overlies the Brown’s Bench Member and is
overlain by the China Hill Member (Fig. 2). It is eroded into a
double bench and had previously been interpreted as two sep-
arate units (‘BBU-4’ and ‘BBU-5’; Bonnichsen et al. 2008) on
the basis that field flux-gate magnetometer readings indicated
normal polarity for the lower bench and reversed polarity for
the upper bench. There is, however, no internal vitrophyre,
palaeosol, fallout or sedimentary horizon to support a signif-
icant repose period, and new palaeomagnetic data derived
from 23 oriented cores reveal that both benches share the same
magnetic polarity and direction (Fig. 3a, inset ii). This is a rare
transitional polarity not seen in any other member, and it in-
dicates that the entire Black Canyon Member is a single erup-
tion unit.

Awell-exposed 1-m-thick perlitic vitrophyre at the base of
the member is sharply overlain by massive, brown lithoidal
tuff (Fig. 2), the lower ∼2 m of which contains lithophysae,
≤40 cm in diameter. Above this, the tuff is pervasively sheet-
jointed and characteristically weathers to form prominent
rounded erosional pillars. An upper perlitic vitrophyre, 1 m
thick, contains small (1–4 cm) lithophysae and is overlain by
3 m of non-welded grey tuff that locally displays low-angle
cross-stratification. The base of the grey tuff is darker, possi-
bly due to fusing caused by deposition onto the still hot un-
derlying welded ignimbrite.

The Black CanyonMember is vertically zoned with respect
to phenocryst abundance, which decreases with height from
15 % near the base to ∼5 % in the upper vitrophyre. The
member also can be distinguished from the underlying
Brown’s Bench Member by its higher SiO2 (∼74 wt.%) and

Rb (219–227 ppm) content and from the overlying China Hill
Member, which has higher SiO2 (∼76 wt.%) and lower Ba
concentrations (609–709 ppm) (Online Resource 2). The up-
per part of the Black Canyon Member has been correlated
with Cougar Point Tuff XI of Bonnichsen and Citron (1982)
further west (Ellis et al. 2012).

Interpretation

The ignimbrite is a simple cooling unit (c.f. Smith 1960), and
its thick, massive nature with subtle zoning is interpreted to
record a prolonged, granular fluid-based pyroclastic density
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current, fed by an eruption in which the proportion of crystals
decreased gradually with time. Towards the end of the erup-
tion, the current became fully dilute, with fluid turbulence in
lower parts of the current favouring tractional segregation and
development of the cross-stratification (e.g. Brown and
Branney 2013). As would be expected, the increased air-
ingestion in the late waning phase of the current also resulted
in cooling, as recorded by the non-welded zone at the top.

China Hill Member

The China Hill Member (‘BBU-6’ of Bonnichsen et al. 2008),
35 m thick, is a crystal-poor (∼2 %) rheomorphic ignimbrite
that, at the Corral Creek type section, overlies the Black
Canyon Member and underlies the Jackpot Member (Fig. 2).
It forms three widely traceable benches ∼2 m high, separated
by 1 and 2-m-high non-exposed slopes. The member is in-
tensely welded, red-brown lithoidal tuff with sub-horizontal
and hackly fractures. Basal and upper vitrophyres are not ex-
posed. The upper 3 m characteristically displays a lithophysal
zone in which a band of smaller (∼1 cm) lithophysae is
sandwiched between two bands of larger (∼3 cm) lithophysae.
Above this, an unexposed 8-m-high slope probably conceals
an upper vitrophyre and overlying volcaniclastic sediments
(Bonnichsen et al. 2008).

The China Hill Member has the highest Rb/Sr ratio (∼8.4)
and lowest Ba content (609–709 ppm) of all the members of
the Rogerson Formation (Online Resource 2), and it also can
be distinguished from its enclosing members as it has a re-
versed magnetic polarity and different TRM direction
(Fig. 3a).

Interpretation

The member is inferred to record the passage of a hot granular
fluid-based pyroclastic density current rather similar to the one
that deposited the underlying Black Canyon ignimbrite. The
three benches likely record some thermal or flow unsteadiness
but would require more complete exposure to interpret.

Jackpot Member

The Jackpot Member (Andrews et al. 2008 and ‘BBU-7’ of
Bonnichsen et al. 2008) is a complex, 60-m-thick
rheomorphic rhyolitic ignimbrite. At Corral Creek, it overlies
the China Hill Member and is overlain by the Rabbit Springs
Member. The internal features are best exposed at the Salmon
Falls Creek rest area south of Jackpot township (Nevada;
Fig. 1) after which it is named. We present a high-precision
40Ar/39Ar age of 10.960±0.009 Ma (Table 1).

The Jackpot Member is the oldest ignimbrite in the
Rogerson Formation to have normal magnetic polarity
(Fig. 3a) and can also be distinguished by the presence of
abundant quartz crystals, fayalitic olivine and a distinctive
composition of augite, whereas all other members of the for-
mation contain both augite and pigeonite. Crystal abundance
increases with height from 3–7 % to 10–15 %, as with the
overlying Rabbit Springs Member. The whole-rock chemistry
is broadly similar to other members (Online Resource 2).

Massive, lithoidal and rheomorphic lava-like tuff, 50 m
thick, has eroded into five cliffs, 5–20 m high (‘Jackpot 1-5’
on Fig. 6a) separated by benches that each correspond to a
lithophysal zone. Along US Highway 93 at Sweetwater Lane
(Fig. 1), a discontinuous upper vitrophyre, 2 m thick, overlies
massive lithoidal lava-like tuff with sparse cognate crystal-
rich, vesicular enclaves (Fig. 6d). Lithophysae filled with
lime-green chalcedony span the contact with the platy jointed
upper part of the lithoidal zone. Sharply overlying the
vitrophyre is a mostly massive, 2–3-m-thick pink lapilli-tuff
(‘Jackpot 6’, Fig. 6b) with abundant blocky vitric fragments
(2–10 mm in size) but no pumice. An impersistent layer of
low-angle cross-bedded tuff contains 1-cm-diameter accre-
tionary lapilli (Fig. 6c), some cored by a non-vesicular vitric
fragment (Fig. 8a of Branney et al. 2008). The lowest 20 cm of
the pink lapilli-tuff seems to have been fused by deposition
onto hot vitrophyre. The top of the Jackpot Member is marked
by a palaeosol (e.g. at Backwaters, Fig. 1) and is sharply
overlain by the Rabbit Springs Member. An overlying unit
along Cottonwood Creek, Nevada (X on Fig. 1) was thought
to be part of the Jackpot Member (‘Jackpot 7’ of Andrews et
al. 2008; Ellis et al. 2012) but is now recognised to be the
Rabbit Springs Member (see below). The Jackpot Member
has been widely correlated across the southern Snake River
Plain (‘Cougar Point Tuff XIII’ ∼1000 km3; Ellis et al. 2012)
and is described, with several of its distinctive internal features
in the Cassia Hills, further east (Knott et al. 2016, where it is
locally known as the ‘Big Bluff Member’).

Interpretation

The volume of the Jackpot Member is consistent with depo-
sition from a caldera-forming super eruption. The member is a
compound cooling unit, outflow ignimbrite (Smith 1960;
Wilson and Hildreth 2003). Its massive nature indicates depo-
sition from predominantly granular fluid-based pyroclastic
density currents (Branney and Kokelaar 2002). Since
lithophysal zones in ignimbrites typically mark transitions be-
tween lithoidal and chilled vitrophyres (e.g. Bonnichsen and
Citron 1982; Breitkreuz 2013), the four internal lithophysal
zones (Fig. 6a) may record four brief chilling events of insuf-
ficient duration to preserve vitrophyre. No internal fallout,
palaeosol or sediment layers have been seen within the mem-
ber that would indicate a protracted repose period, and the
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fusing at the base of ‘Jackpot 6’ indicates emplacement prior
to cooling of ‘Jackpot 5’. However, ‘Jackpot 1’ and ‘Jackpot
5’ have differing mean TRM directions (angular separation of
14°, Fig. 6e) indicating a potential time gap of decades. The
last phase of the eruption was marked by an abrupt influx of
angular vitric fragments associated with lower-temperature
pyroclastic density currents (the upper pink lapilli-tuff;
‘Jackpot 6’). This change may reflect similar fragmentation
events as those that occurred during the older Brown’s Bench
eruption. Fully dilute, turbulent currents flowed >60 km from
source, as recorded by the tractional cross-stratified facies
within the pink lapilli-tuff. High moisture levels within a
lofted ash plume rained ash pellets and vitric fragments into
the turbulent, fully dilute pyroclastic current, wherein succes-
sive fine ash rims accreted around a central pellet or vitric
fragment, forming the abundant large accretionary lapilli
(see Brown et al. 2010). After deposition of the pink lapilli-
tuff, the hot ignimbrite beneath continued to deform
rheomorphically, folding the lapilli-tuff in syncline cores prior
to its lithification. The cooling zonation and vertical and lat-
eral variations within this complex ignimbrite would reward
further study.

Rabbit Springs Member

The Rabbit Springs Member (Andrews et al. 2008) is 20 m
thick and rhyolitic, with an ashfall deposit overlain by an
intensely welded, locally rheomorphic ignimbrite (Fig. 2). It
is defined at its type area at Backwaters (Fig. 1) where it has
normal magnetic polarisation (Fig. 3a), overlies an orange
palaeosol at the top of the Jackpot Member and is overlain
by the Brown’s ViewMember. The Rabbit SpringsMember is
the oldest member to be widely exposed across the Rogerson
Graben (Fig. 7). It is well-exposed along Cottonwood Creek
(X on Fig. 1), and it forms the uppermost crag at Corral Creek
Canyon (formerly ‘BBU-8’; Bonnichsen et al. 2008) and is
locally overlain by the Bobcat Butte Member. The Rabbit
Springs Member, along with all overlying members, also ex-
hibits intriguing thickness variations from west to east across
the Rogerson Graben (Fig. 7). The cause of these variations is
likely related to the tectonic development of the Rogerson
Graben (see below).

The Rabbit Springs Member was once thought to be dis-
tinct from a local unit referred to as ‘Jackpot 7’ of Andrews
et al. (2008). However, the two units are never seen together in
stratigraphic continuity. New palaeomagnetic (Fig. 3a),
whole-rock (Fig. 3b) and mineral (Fig. 5) data along with
new and published radio-isotopic dates (Table. 1) show these
units to be indistinguishable, and they are now considered to
be the same.

At the Backwaters type section, an 8-m-thick layer of non-
welded parallel-bedded white ash is overlain by a 12-m-thick

intensely welded ignimbrite. The lower metre of the ignim-
brite is incipiently welded lapilli-tuff with low-angle cross-
bedding, sparse accretionary lapilli and angular vitric lapilli
(Fig. 7). Welding increases rapidly upwards into a 3-m-thick
perlitic vitrophyre, and the low-angle cross-bedding is
highlighted by crystal-rich lenses (Fig. 8a). Smaller (≤5 mm)
vitric fragments continue up into the vitrophyre and are best
seen in thin section (Fig. 8b). A prominent zone of 10–
30-cm-diameter lithophysal spherulites occurs within the
top of the vitrophyre and is sharply overlain by lithoidal
tuff, 4 m thick. A second, upper zone of abundant
spherulites and lithophysae (3–5 cm in size) spans the
contact with the 2-m-thick, upper vitrophyre (Fig. 7).
Crystal content increases with height from 3 % in the
lower vitrophyre to 10–15 % in the lithoidal zone and
upper vitrophyre.

The ignimbrite thickens westwards to 30 m at Brown’s
Bench escarpment, where the top develops rheomorphic folds
(e.g. at Corral Creek Canyon, Fig. 7). It also thins eastward
beyond US Highway 93 (Z on Fig. 1), where the central
lithoidal zone pinches out and the entire ignimbrite thickness
is non-rheomorphic vitrophyre (Fig. 7).

Interpretation

The Rabbit Springs Member is both a single eruption
unit and a simple cooling unit. The eruption was zoned
with respect to crystal content and began with a
protracted phase of unsteady ashfall followed by a
sustained pyroclastic density current. The current was
initially relatively cool and fully dilute (recorded by
the incipiently welded lower part with tractional low-
angle cross-stratification) and later became hotter, more
crystal-rich and granular fluid-based as recorded by the
intensely welded, massive tuff. The westward thickening
may reflect lower elevation in the west at the time of
the eruption.

Bobcat Butte Member

The Bobcat Butte Member is a relatively crystal-rich (15–
20 %) intensely welded ignimbrite that forms a 15 m cliff
∼0.2 km west of the crest of Brown’s Bench escarpment
(Corral Creek Canyon type locality; Fig. 1). It overlies the
Rabbit Springs Member and is overlain by the Twin Buttes
Member (Fig. 2) and is absent in central and eastern parts of
Rogerson Graben (Fig. 7). It has an 40Ar/39Ar age of 10.34
± 0.09 Ma (Bonnichsen et al. 2008), has normal magnetic
polarisation (Fig. 3) and can be distinguished from other units
nearby by the presence of large (≤4 mm), blocky feldspar
crystals. It is also the youngest member on Brown’s Bench
escarpment to contain sanidine.
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The lowest exposure is grey-black perlitic vitrophyric
tuff, 1 m thick, containing angular vitric fragments
(≤4 mm), similar to, but less abundant, than those in
the Rabbit Springs Member. A zone of spherulites and
lithophysae extends from the top of the vitrophyre into
the sharply overlying sheet-jointed lithoidal zone, which
has weathered to form prominent rounded erosional

pillars. The lower lithoidal zone also contains sparse
rotated lithic lapilli delta objects that indicate top-to-
the-north rheomorphic transport directions (Fig. 8c).
The Bobcat Butte Member contains two distinct compo-
sitional modes of pigeonite together with a single mode
of augite, similar to the older Brown’s Bench Member
(Fig. 5). Its whole-rock chemistry is broadly similar to
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its enclosing members but differs from the younger
Twin Buttes Member by having lower Nb (<48 ppm)
and lower Rb/Sr ratios (<2.2, Fig. 3b).

Interpretation

The ignimbrite doubles in thickness to 30 m northwards
down-dip and is inferred to record a single hot, granular
fluid-based density current, possibly from the NW,
encroaching a north-dipping slope.

Wooden Shoe Member

The Wooden Shoe Member has not hitherto been recognised
in the Rogerson area. It is defined at its type section within the
Cassia Hills ∼40 km to the east (Knott et al. 2016). It has
normal magnetic polarity and a distinct palaeomagnetic
TRM direction shared only by the much younger Grey’s
Landing Member (Fig. 3a). In the Rogerson area, it is well-
exposed along USHighway 93 (Won Fig. 1). At this location,
it comprises a 3-m-thick basal non-welded stratified ash de-
posit overlain by a ∼5-m-thick ignimbrite (Fig. 9a). It overlies
an orange palaeosol at the top of the Rabbit Springs Member
and is overlain by the eastern correlative of the Brown’s View
Member (Fig. 7). The lower white ash deposit has
parallel-bedded ashfall layers including some reworked
layers with low-angle scour surfaces. It includes a dis-
tinct reverse-graded pumice-fall layer, 20 cm thick,
∼1 m beneath the overlying ignimbrite, (Figs. 9a and

10c): pumice fall (that is, containing pumice lapilli rath-
er than just pumiceous ash) are scarce in Snake River-
type deposits (Branney et al. 2008). The overlying ig-
nimbrite is a massive, slightly perlitic vitrophyre. A
eutaxitic fabric with 2–7 cm long fiamme is best seen
on bleached joint surfaces in the lowermost 50 cm.

TheWooden ShoeMember exposure onUSHighway 93 (W
on Fig. 1) has hitherto been thought to be the Grey’s Landing
Member (Andrews and Branney 2005; Andrews and Branney
2011), but its whole-rock trace elements (Figs. 3b and 11c),
pyroxene compositions (Figs. 5 and 11b) and the stratigraphy
of the lower ashfall layer are inconsistent with the Grey’s
Landing Member (Fig. 10) and consistent with the Wooden
Shoe Member. This has been confirmed by the discovery of
the (younger) Grey’s Landing Member (with its characteristic
basal ashfall layer) further up-succession, just 3 km to the north
(Fig. 9c) on the same highway (G on Fig. 1). Therefore, recent
estimates of former ignimbrite rheology and cooling durations
based on roadside site W (Lavallée et al. 2015; ‘H’ of Ellis et al.
2015) apply to the Wooden Shoe eruption.

Interpretation

The Wooden Shoe ignimbrite is a thinner, less-welded and
non-rheomorphic distal part of a 45-m-thick, extensive
rheomorphic ignimbrite further east that extends to Goose
Creek, Nevada, and yields an 40Ar/39Ar age of 10.139
± 0.006 Ma (Knott et al. 2016). The distribution of the
Wooden Shoe ignimbrite is now estimated to exceed
4400 km2, (Fig. 11e). Using measured thicknesses, this
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indicates a deposit volume of ∼130 km3. The thinner, non-
rheomorphic, less-intensely welded nature of the unit in the
Rogerson area is consistent with its appearance in southern-
most Idaho, where it comprises a thin (1 m thick)
vitrophyre (e.g. at Goose Creek, Knott et al. 2016). The
fines-rich, basal laminated ash deposit contains abundant coat-
ed pellets further east, reflecting aggregation due to atmo-
spheric moisture. This may record an early phreatoplinian
phase of the explosive Wooden Shoe eruption.

Twin Buttes Member

The Twin Buttes Member (‘BB-10’ of Bonnichsen et al.
2008) is a ≥2-m-thick rhyolitic ignimbrite sheet that
overlies the Bobcat Butte Member near Twin Buttes
and other small mesas west of the crest of Brown’s
Bench escarpment (type locality 2 km east of Twin
Buttes; Y on Fig. 1). Only a 2-m-thick perlitic vitrophyre
is exposed, and the member pinches out eastwards as it
is absent in Rogerson Graben (Fig. 7). It has normal
magnetic polarity and is separated from the overlying
Brown’s View Member by a ∼3 m gap in exposure
(Fig. 2). Crystals (5–10 % and 1–2 mm in size) comprise
a similar assemblage to other members, but the Twin
Buttes Member conspicuously lacks sanidine, which is
present in all underlying members, and has different au-
gite and pyroxene compositions (Fig. 5) than those in the
enclosing members. It has 70.4–72.3 wt.% SiO2 and is
distinctly lower in Ba (1079–1083 ppm) at elevated Th
(>31 ppm) contents than the underlying Bobcat Butte
Member. The thin nature of this ignimbrite and its
pinching out towards the SE suggests that it is a distal
deposit from density current(s) derived from the NW,
possibly during a period with relatively elevated topog-
raphy to the SE.

Interpretation

The ignimbrite is inferred to record a single hot, granular fluid-
based density current. Its limited exposure and thickness suggest
that it may record a smaller volume eruption than othermembers
of the formation. Alternatively it may be a more distal correl-
ative of a more prominent ignimbrite further west.

Brown’s View Member

The Brown’s View Member is a rhyolitic ignimbrite with a
compound vertical welding profile and a basal ashfall layer
(Fig. 7) and is newly correlated as far as the Cassia Hills to the
east (Fig. 11a), covering ≥3300 km2, with an estimated vol-
ume of ∼100 km3 (Fig. 11e). Its type locality is at Backwaters
(Fig. 1), where it is 9 m thick and unconformably overlies a
palaeosol in poorly exposed volcaniclastic sands above the
Rabbit Springs Member (Andrews et al. 2008), and it is over-
lain by the Grey’s Landing Member. It also forms two ero-
sional benches above the Twin Buttes Member NW of
Brown’s Bench escarpment (‘BBU-11’ and ‘12’ of
Bonnichsen et al. 2008; Fig. 8d).

The parallel-bedded ashfall deposit is 3 m thick and com-
prises interbedded coarse to fine ash and pumice-fall layers.
The ignimbrite has a lower perlitic vitrophyre, 1 m thick,
overlain by less-welded lapilli-tuff, 1 m thick, with abundant
non-vesicular vitric lapilli, 2–10 mm in size. Upward, the
lapilli show inverse and then normal coarse-tail grading
(Fig. 7). The welding intensity decreases towards the centre
where the lapilli are largest and then increases upwards again
towards an upper perlitic vitrophyre, 2 m thick, with sparse
lithophysal spherulites, 1–2 cm in size. The upper vitrophyre
is overlain by 2 m of non-welded, massive tan ash that is
intensely bioturbated, with mammalian burrows. It is capped
by a 0.5-m-thick, terracotta-baked palaeosol with preserved

US  Highway  93

palaeosol

dense massive
ignimbrite vitrophyre

     fusing
increases

     parallel-bedded
       ashfall layers

     thin ashfall

     palaeosol
     non-welded

     welded

massive, porous ignimbrite
       with small vitric lapilli

    bioturbated
      palaeosol

 eutaxitic
vitrophyre

 fused bedded
          ash

(c)(b)

layer

Brown’s View Member Grey’s Landing MemberWooden Shoe Member(a)

S NUS Highway 93

Fig. 9 Three key exposures along US Highway 93, Idaho of a the thin
eutaxitic Wooden Shoe ignimbrite (W on Fig. 1) vitrophyre overlies 3 m
of bedded ashfall, with a distinct reverse-graded pumice fall (Fig. 10c)
along with local scours and reworking. Here, the ignimbrite was
previously misidentified as the Grey’s Landing Member (Andrews et al.

2008). b The Browns View Member, located 0.6 km further north
(B on Fig. 1), is incipiently welded with a thin (10 cm) basal ashfall layer.
c The thin Grey’s Landing ignimbrite, which is here (G on Fig. 1) welded
to a dense vitrophyre and overlies a parallel-stratified, partly fused ashfall
deposit

23 Page 14 of 25 Bull Volcanol (2016) 78: 23



grass imprints on its upper surface. Ash up to 1 m below the
soil has been intensely fused to dark vitrophyre by downward
conduction of heat from the overlying intensely welded
Grey’s Landing ignimbrite (Andrews et al. 2008).

Crystal contents increase from ∼4 % in the lower vitrophyre
to ∼10 % in the overlying lapilli-tuff and upper vitrophyre.
Phenocrysts are plagioclase (1–2mm in size), pigeonite, augite,
magnetite and accessory apatite and zircon. Sanidine is absent,
as with the locally underlying Twin Buttes Member. A distinct
characteristic of the Brown’s View Member is that pigeonite
and augite MgO contents are higher than any other member of
the formation (Figs. 5 and 11b). Whole-rock silica content (69–
73 wt.%) is also the lowest in the Rogerson Formation, whereas
TiO2 (∼0.65 wt.%), MgO (∼0.50 wt.%) and Fe2O3

(∼4.21 wt.%) are relatively high (Online Resource 2).
On the northern Brown’s Bench massif, the ignimbrite

thins southwards from 11 to 4 m over ∼2 km away from the
Snake River Plain. Within the Rogerson Graben, it thickens
eastwards. Where the ignimbrite is thicker (e.g. East of US
Highway 93, Z on Fig. 1), it overlies an eroded parallel-
bedded ashfall deposit (10 cm thick, Fig. 9b) and comprises
an 8-m-thick grey lapilli-tuff with a 1-m-thick upper
vitrophyre (Fig. 7). The lapilli-tuff was previously thought to
be the localised ‘Sand Springs Member’ (B on Fig. 1;
Andrews et al. 2008). However, indistinguishable
palaeomagnetic TRM directions (Fig. 3a inset i), together with
whole-rock data and the distinctive high-MgO pyroxenes
(Fig. 11b–d), indicate that these eastern outcrops are part of
the Brown’s View Member.

Interpretation

The Brown’s View Member is correlated with the ‘Little
Creek Member’ of the Cassia Formation (Knott et al. 2016)
on the basis of (1) its stratigraphic position directly above the
Wooden Shoe Member (Fig. 11a); (2) the same compound

cooling unit profile, with upper and lower intensely welded
zones separated by a less-welded lapilli-tuff containing abun-
dant non-vesicular lapilli; (3) identical high-MgO (∼10–
14 wt.%) pyroxenes that do not occur in other units
(Fig. 11b); (4) consistent palaeomagnetism (Fig. 11d); and
(5) consistent whole-rock chemistry (Fig. 11c). The name
Browns ViewMember takes precedence as the earlier former-
ly establish nomenclature (Andrews et al. 2008). The thicker
exposures of the member in the Cassia Hills (Knott et al.
2016) may indicate that they were topographically lower than
Rogerson Graben at the time of eruption.

The eruption began with ashfall from an unsteady eruption
column. The parallel ashfall layering likely reflects some com-
bination of fluctuating eruption column height and localised
ash showering initiated by convective instabilities in lower
parts of the umbrella region of the eruption plume (e.g.
Carey et al. 1988; Branney 1991). A sustained, hot pyroclastic
density current then flowed across the region. The initially
upward-increasing abundance and size of non-vesicular,
blocky vitric lapilli in the ignimbrite may reflect waxing flow
competence and/or increasing entrainment of these fragments
at source, which peaked and then gradually decreased (e.g.
waning flow) as recorded by the decrease in the fragments
towards the top of the unit. The welding intensity shows an
inverse relationship with the abundance of non-vesicular
blocky lapilli in vertical sections. This suggests that the influx
of the blocky clasts during the middle part of the eruption was
associated with a phase of cooling of the density current,
probably in a similar manner to that outlined above for the
Brown’s Bench and Jackpot eruptions.

Grey’s Landing Member

The Grey’s Landing Member is the youngest and most
rheomorphic member of the Rogerson Formation. The

inverse graded
pumice fall layer

parallel-bedded 
ash layers

base of Grey’s Landing ignimbrite

lithoidal

giant red 
axiolites

(a)

baked
palaeosol palaeosolparallel-bedded 

fused ashfall

(b) (c)

Fig. 10 Comparison of basal ashfalls beneath the Grey’s Landing and
Wooden Shoe Members. a At its type locality at Grey’s Landing (Fig. 1),
the Grey’s Landing Member has a basal fused, parallel-bedded basal
ashfall overlain by intensely welded ignimbrite containing distinct giant
red axiolites. b Along US Highway 93 (G on Fig. 1), the Grey’s Landing

basal ashfall is much less fused (Fig. 9c) but retains the distinctive
bedding observed at its type locality. c In contrast, the Wooden Shoe
Member basal fall deposit (Won Fig. 1) has a non-welded reverse-graded
pumice-fall layer, which readily distinguishes it from the younger Grey’s
Landing Member shown in (a) and (b)
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View Member are consistent between correlatives and distinct from the
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ignimbrite has been well described and interpreted because it
has been influential in the understanding of how rhyolitic
rheomorphic ignimbrites are emplaced, rapidly welded, de-
formed and cool (Branney et al. 2004; Branney et al. 2008;
Andrews et al. 2008; Andrews and Branney 2011; Robert et
al. 2013; Finn et al. 2015; Ellis et al. 2015). However, previous
accounts included nearby exposures (W on Fig. 1) of what is
now known to be the older Wooden Shoe Member (Fig. 9a).
The present revision of the stratigraphy reveals that the mem-
ber has more consistent distinguishing field, chemical and
mineralogical characteristics than was formerly thought.

At its type section at Grey’s Landing (Fig. 1), a ≥65-m-thick
intensely rheomorphic, lava-like ignimbrite (top not seen), with
a fused basal ashfall layer, overlies a baked palaeosol in the
Brown’s View Member (Fig. 2; Fig. 10a). The upper contact
is best seen at Salmon Falls Reservoir dam (Fig. 1), where an
upper vitrophyric and partly pumiceous, rheomorphic
autobreccia and overlying orange ash are overlain by a 30-
cm-thick soil baked red by overlying younger basalt lavas.

The Grey’s Landing Member differs from others in the
Rogerson Formation in containing four discrete compositional
modes of pyroxene (two augite-pigeonite pairs, Fig. 5). The
crystal content (10–15 %; 1–3 mm in size) is consistent
throughout and also contains plagioclase, magnetite and ac-
cessory apatite and zircon, but it lacks sanidine.

The basal ashfall layer, 0.5 m thick, is thin parallel-bedded
with alternating crystal-rich and vitric layers, all fused to
dense vitrophyre by the overlying ignimbrite (Fig. 10a;
Andrews and Branney 2011). The ignimbrite has a massive
perlitic basal vitrophyre, 2 m thick, in which microscopic
shards are both compacted and highly attenuated (Andrews
and Branney 2011) to form a crystal-wrapping foliation that
ranges from parataxitic to flow-banded. Sparse ellipsoidal ves-
icles, <2 cm in size, have grown by late exsolution of the tuff
following welding, and red planar devitrification zones (giant
axiolites; 2 cm thick and <3 m long) have locally overprinted
the welding fabric (Fig. 10a).

The overlying, red-brown, lithoidal zone is c. 57 m thick
and has a lower ‘flat-zone’ with sub-horizontal intrafolial
isoclines and sheath folds and an upper ‘steep-zone’ with up-
right to overturned ≥10 m scale antiforms and synforms that
refold the earlier isoclines (Branney et al. 2004; Andrews and
Branney 2011). The upper vitrophyre, ≥1 m thick, is perlitic,
locally highly inflated by post-welding vesiculation, and
folded into tight upright folds with rheomorphic
autobrecciation. A porous upper orange ash, 2–3 m thick, is
preserved within rheomorphic synclines and is locally fused at
the contact with the vitrophyre.

West of Rogerson Graben, the ignimbrite thins rapidly and
pinches out southwards from the Snake River Plain (3 km N of
Twin Buttes, Fig. 1), but within the graben, it extends 14 km
further south to Backwaters and thins eastwards from >65 m to
∼4 m thick, where it is still entirely welded and intensely

rheomorphic. A ∼5-m-thick eutaxitic vitrophyre on US
Highway 93 (W on Fig. 1; Fig.9a) was thought to be a thin
less-intensely welded Grey’s Landing Ignimbrite (Andrews
et al. 2008; Andrews andBranney 2011). However, this outcrop
has a contrasting basal ashfall sequence (Fig. 10) and is now
known to be part of the Wooden Shoe Member (see above;
Fig. 7). The true Grey’s Landing ignimbrite outcrops just
3 km further north (G on Fig. 1), where it was hitherto not
described (Fig. 9c). Here, the same parallel-bedded basal ashfall
sequence as at the type area is seen (Fig. 10b), overlain by a 1-
m-thick massive basal vitrophyre that lacks fiamme, sharply
overlain by a lithoidal rheomorphic zone (≥2 m thick; top not
seen). The thinned ignimbrite also caps several small mesas east
of the highway. This correlation is supported by indistinguish-
able trace element data (Fig. 3b), palaeomagnetic TRM direc-
tions (Fig. 3a, inset i) and the characteristic of two pyroxene
pairs (Fig. 5).

Interpretation

There is no evidence for any significant break during the em-
placement of the Grey’s Landing Member and it is inferred to
record a single eruption (Andrews and Branney 2011).
Unsteady ash fallout from the first plinian phase of the eruption
was followed by a protracted, and geographically extensive,
intensely hot pyroclastic density current. During deposition,
hot ductile pyroclasts coalesced and sheared around the base
of the current with the development of a ductile shear zone that
rose with the rising surface of the aggrading deposit (see
Branney and Kokelaar 1992). The shear zone produced perva-
sivemylonite-like fabrics, extensional lineations and subparallel
intrafolial sheath folds. The orientation of these features gradu-
ally changes with height in the ignimbrite, reflecting shifting
rheomorphic transport directions with time as the ignimbrite
gradually aggraded (Branney et al. 2004). Such rapid welding
and rheomorphic shear during emplacement is consistent with
rheology and geospeedometry estimates (Robert et al. 2013;
Lavallée et al. 2015, although the site sampled is now
identified as the Wooden Shoe Member). Gravity-driven, hot
deformation continued after deposition ceased, folding the first
generation fabrics and folds, and causing local autobrecciation,
particularly in the upper vitrophyre, which chilled more rapidly.
This is consistent with modelled cooling rates (Ellis et al. 2015).
The upper non-welded orange ash records late-stage, cooler
emplacement onto the still hot and moving rheomorphic ignim-
brite, as indicated by the localised folding and fusing of the
upper ash, where it is in contact with the ignimbrite’s upper
vitrophyre (Andrews and Branney 2011). A detailed magnetic
study of the member demonstrates that rheomorphic shear fab-
rics influence the orientation of thermoremanent magnetisation,
particularly in the lower vitrophyre, but a consistent
palaeomagnetic field (Fig. 3a) nevertheless can be discerned
with careful sampling and analysis (Finn et al. 2015).
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Whole-rock and mineral chemistry

This section describes the chemistry of the Rogerson
Formation primarily to help characterise and distinguish the
individual members. The stratigraphic approach has enabled
the resolution of temporal trends in the rhyolite chemistry.

Rogerson Formation ignimbrites are metaluminous to
slightly peralkaline rhyolites (69.4–76.6 wt.% SiO2), with typ-
ical alkali saturation indices (ASI) ranging between 0.71 and
1.05 (Online Resource 2). Their whole-rock chemistry resem-
bles that of other central Snake River Plain ignimbrites
(Bonnichsen and Citron 1982; Wright et al. 2002;
Bonnichsen et al. 2008; Ellis et al. 2012) with less than
0.8 wt.% TiO2, elevated Fe2O3 (5.09–1.27 wt.%) and low
(<0.8 wt.%) MgO (Online Resource 2). Vertical chemical zo-
nation within individual members is minimal, with typical
base to top variations of <2 wt.% SiO2 at any one locality.
The lack of significant chemical zonation is a distinctive fea-
ture of these Snake River-type ignimbrites, in comparison to
some other medium to large-volume ignimbrites (e.g. Hildreth
1979). Most Rogerson Formation ignimbrites have a common
central Snake River Plain anhydrous mineral assemblage
comprising some or all of plagioclase, sanidine, pigeonite,
augite, quartz, olivine, magnetite, ilmenite and accessory zir-
con and apatite (Ellis et al. 2013). Biotite and amphibole (as in
‘Lava Creek Tuff Member A’ of Yellowstone; Christiansen
2001) and secondary amphibole rims on augites (as in some
Cougar Point Tuffs; Bonnichsen and Citron 1982) are not
observed. Most of the ignimbrites contain both pigeonite
and augite, and the compositions of these helps distinguish
the members. In addition, several ignimbrites contain more
than one type of pigeonite (e.g. the Browns Bench Member;
Fig. 5) and/or more than one type of augite (e.g. the Grey’s
Landing Member; Fig. 5). This is interpreted as indicat-
ing the simultaneous eruption of more than one magma
composition, as proposed for rhyolitic ignimbrites else-
where in the central Snake River Plain (Cathey and
Nash 2004; Ellis and Wolff 2012; Ellis et al. 2014).

Chemical and mineralogical trends with time

Using the stratigraphy outlined above, the Rogerson
Formation records two opposing geochemical trends
(Fig. 12). Up-succession from the Brown’s Bench Member
to the China Hill Member, whole-rock SiO2 contents increase,
whereas TiO2, Ba and Zr contents decrease (Fig. 12), as do
pyroxene Mg-numbers and plagioclase anorthite contents
(Fig. 12). These whole-rock and mineralogical trends are con-
sistent with a normal ‘maturation’ of the magmatic system due
to cooling and crystal fractionation (e.g. successively higher
SiO2, Fig. 12). The degree of fractional crystallisation required
to account for this chemical progression is ∼20 %; assuming a

low pressure fractionating assemblage comprising feldspar,
pyroxenes, magnetite and zircon (modal proportions
45:50:5:<1; respectively). In contrast, younger units (Jackpot
to Brown’s View members) show decreasing SiO2 and in-
creasing TiO2, Ba and Zr with stratigraphic height (Fig. 12).
This is accompanied by an upward increase in pyroxene Mg-
numbers. This second trend indicates a progression towards
less-evolved rhyolite compositions with time: similar progres-
sions have been noted regionally (Nash et al. 2006;
Bonnichsen et al. 2008) and within the Cassia Hills
Formation to the east, where they are attributed to cyclic pet-
rogenetic processes (Knott et al. 2016). It is possible that re-
peat injections of mantle-derived basaltic melts into the mid-
crust drove melting of a hybridised (diorite?) source region
(Leeman et al. 2008; McCurry and Rodgers 2009), with
prolonged melting and hybridisation yielding progressively
less differentiated rhyolitic magma batches that then erupted
(Knott et al. 2016). The youngest, Grey’s Landing Member
discontinues the trend towards less-evolved rhyolites and has
higher SiO2 and lower pyroxene Mg-numbers similar to the
older Black Canyon Member (Fig. 12). This abrupt shift may
mark the start of a new geochemical cycle, due to mi-
gration of the locus of crustal melting and hybridisation
as the Yellowstone hotspot shifted eastwards (Knott
et al. 2016).

Tectonic evolution of Rogerson Graben

The 15-km-wide Rogerson Graben in southern Idaho trends
N-S and opens to the Snake River Basin in the north, and in
the south, it opens into a basin south of Jackpot, Nevada
(Fig. 1). Interest lies in its association with voluminous
magmatism: the graben developed between ∼12 and
8 Ma, when magmatic activity beneath the central
Snake River Plain was at a peak (Nash et al. 2006;
Bonnichsen et al. 2008) and the 70-km-wide west
Snake River rift (Fig. 1) was forming by NE-SW exten-
sion (Bonnichsen and Godchaux 2002; Beranek et al.
2006; Andrews et al. 2008).

The graben is bound by two normal faults: (1) the E-
downthrowing, 30-km-long Brown’s Bench Fault in the west
that produced the 400-m-high Brown’s Bench escarpment and
(2) the smaller Shoshone Hills Fault in the east (Fig. 1,
Andrews et al. 2008). NNW and NNE-trending faults within
the graben are growth faults, active both during and after
ignimbrite-forming eruptions.Westward thickening of succes-
sive Rogerson Formation members within the graben was
interpreted to record the progressive development of an asym-
metric half-graben with a westward-dipping floor (Andrews
et al. 2008). The present paper draws on the revised stratigra-
phy to reconstruct a more complex graben evolution
(Fig. 13), using the principle that ignimbrites behave
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essentially the same way as turbidites and thickness
variations largely reflect the evolution of basin-floor to-
pography. Ignimbrites typically fill and bury topographic
depressions producing nearly flat upper surfaces
(Branney and Kokelaar 2002). They also partly drape
substrate slopes yielding upper surfaces that dip up to
5° (e.g. depositional ramps of Suzuki-Kamata and Ui
1982), which may then steepen further during post-
depositional welding compaction. Consequently, thick-
ness variations within an ignimbrite sheet indicate, but
are more subdued than, the topographic relief of the
basin at the time of emplacement. In the Rogerson
Graben, thickness variations caused by Miocene erosion
can generally be excluded: the upper vitrophyres are
widely preserved with little incision. It seems that the
intense welding favoured intact preservation.

Stage 1: initial uplift in the East (∼11.0–10.3 Ma)

The Rabbit Springs Member thins eastwards from 30 to
8 m across the Rogerson Graben. This contrasts with
the underlying Jackpot Member, which exhibits no ob-
vious thickness changes across the graben faults, and so
probably pre-dates much of the faulting. These thickness
changes suggest that a gentle west-facing topographic
slope (Fig. 13a) started to increase between 10.96
± 0.01 Ma and 10.49 ± 0.13 Ma (ages of the Jackpot
and Rabbit Springs members), causing the Rabbit
Springs ignimbrite to pond in the west and thin and
offlap upslope to the east (Fig. 13a). Continued rise of
the early Shoshone Hills in the east prior to 10.34

± 0.09 Ma (age of the Bobcat Butte Member) is indicat-
ed by progressive offlap of two younger ignimbrites: the
Bobcat Butte and Twin Buttes members thin and pinch
out eastward between the Brown’s Bench massif and
Backwaters (Figs. 13b and 7).

Stage 2: development of an E-sloping half-graben
(∼10.3–10.1 Ma)

The slope of the floor of Rogerson Graben then reversed, as
indicated by ponding of theWooden ShoeMember in the east,
and its absence further west (e.g. at Backwaters; Fig. 7). The
younger Brown’s ViewMember thickens slightly from ∼10 to
∼14 m eastward across the graben (Fig. 7). We infer that E-W
extension initiated the Shoshone Hills Fault system, removing
the westward basin slope and forming a gentle eastward dip-
ping half-graben (Fig. 13c). The initiation of Shoshone Hills
faulting pre-dated 10.139±0.006 Ma, the age of the Wooden
Shoe Member.

Stage 3: activation of the W-sloping Rogerson Graben
(∼10.1–8.0 Ma)

Activation of the Brown’s Bench Fault to produce a second
slope reversal (Fig. 13d) is indicated by marked thickening of
the Grey’s Landing Member ignimbrite (∼8.0 Ma) from 3 to
65 m towards the west side of Rogerson Graben (Fig. 13f),
together with the absence of the ignimbrite on Brown’s Bench
massif on the western, upthrown, side of the fault. A west-
sloping graben floor is consistent with kinematic indicators
and W-trending extensional rheomorphic lineations in the
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Grey’s Landing ignimbrite across the graben, indicating top-
to-the-west, downslope hot rheomorphic shear (Andrews and
Branney 2005; 2011). We infer a phase of E–W extension
prior to emplacement of the Grey’s Landing ignimbrite with
faulting predominantly on the Brown’s Bench Fault
(Fig. 13d).

Stage 4: continued displacement on the Brown’s Bench
Fault (∼8.0 Ma—present)

Displacement on the Brown’s Bench Fault continued after the
Grey’s Landing eruption to produce the present-day 400-m-
high Brown’s Bench Fault escarpment (Fig. 13e). Late-
Miocene basalt lavas (Bonnichsen and Godchaux 2002) partly
flowed over the subdued northern extension of the scarp but
also show evidence of dip-slip offset west of Salmon Dam
(Fig. 1). Smaller NW–SE trending graben cut late-Miocene
basalts in the north of Rogerson Graben (Fig. 1). These graben
trend towards the west Snake River rift and likely represent its
southern extension, with opening possibly continuing into the
Quaternary. The young (probably <1Ma) Salmon Butte shield
volcano (Fig. 1) is sited at the intersection of faults associated
with western Snake rifting and fractures associated with the
Brown’s Bench monocline (below): Pliocene-Pleistocene
lavas from the volcano flowed into the Salmon River canyon,
and so post-date incision, and also into one of the NW-
trending graben, and so post-date the late extensional faulting.
The lavas are Ti- and Fe-rich basalts similar to ferrobasalts of
the western Snake River rift. Quaternary fans south of Jackpot
suggest that the region remains tectonically active.

Snake River Basin subsidence and timing
of the Brown’s Bench monocline

The 100×600 km Snake River Basin is thought to have sub-
sided in response to loading by the emplacement of a large
mid-crustal mafic sill, accommodated by lower-crustal flow
into basin-and-range-extending crust to the north and the
south (Sparlin et al. 1982; Leeman et al. 2008), supplemented
by subsidence of large calderas (Branney et al. 2008). In the
eastern Snake River Plain, the loading origin is indicated by
the presence of a 10-km-thick seismic high-Vp lens (Peng and
Humphreys 1998; Shervais et al. 2006). There, basinal strata
have subsided ∼5 km relative to their elevation on flanking
massifs (McQuarrie and Rodgers 1998; Rodgers et al. 2002).

Around Rogerson, the southern margin of the Snake River
Basin is defined by a gentle north-dipping monocline, partly
buried by younger basalt lavas within the graben, but clearly
exposed on the Brown’s Bench Fault escarpment, where the
monocline is defined by the changing dips of Rogerson
Formation ignimbrites (Fig. 14). The Brown’s Bench mono-
cline forms a westward continuation of the Cassia

monocline (Knott et al. 2016) and has an opposing
monocline along the northern margin of the central
Snake River Basin (Mount Bennett Hills, Idaho).

The upper sub-horizontal limb of the Brown’s Bench
monocline extends south into northern Nevada from near the
summit of the Brown’s Bench massif, west of Backwaters
(Fig. 1). The tilted limb dips 3–5° N and extends northwards
at least 12 km before it dips beneath younger deposits ponded
in the Snake River Basin. Several small-displacement E-W-
trending faults (Fig. 1) cut the northern limb of the monocline:
their trend parallel to the axial trace of the monocline suggests
they are formed by outer-arc extension.

The differential elevation across the Brown’s Bench mono-
cline is estimated at ∼4–5 km, using the well-exposed Rabbit
SpringsMember as a reference horizon (Fig. 14e inset), which
projects northward beneath the northward-thickening Bobcat
Butte, Twin Buttes, Browns View and Grey’s Landing mem-
bers (Fig. 14e) and also beneath several post-Rogerson
Formation units (e.g. Castleford Crossing Ignimbrite, 70 m,
Balanced Rock Rhyolite lava, 80 m; Late-Miocene and
Pliocene to Pleistocene basalts, ≥100 m, Bonnichsen et al.
2008; Othberg et al. 2012). The net differential elevation
across the Brown’s Bench monocline could exceed our esti-
mate if, as we expect, some individual ignimbrites reach over
1 km thick in the Snake River Basin, as demonstrated by a
≥1.3-km-thick ponded ignimbrite in the Kimberly deep drill
core to the east (Shervais et al. 2013; Knott et al. 2016).
Similar estimates of elevation change across the basin margins
are described in the eastern Snake River Plain (Rodgers et al.
2002) and around Kimberly (Knott et al. 2016).

The timing of Snake River Basin subsidence in the
Rogerson area is constrained by the ignimbrites on Brown’s
Bench monocline. The 10.59 ± 0.09 Ma Rabbit Springs
Member forms the crest of Brown’s Bench escarpment and
maintains its thickness (∼30 m) from the summit of the massif
northward down the steep limb of the monocline (Fig. 14e).
We infer from this that little subsidence of the Snake River
Basin pre-dated 10.59±0.09 Ma (Fig. 14a). In contrast, the
overlying Bobcat Butte Member (10.34±0.09Ma) doubles in
thickness northwards down the steep limb and pinches out
∼3 km south of Corral Creek. This indicates a response of
pyroclastic density currents to a new north-facing slope and
so marks the initiation of Snake River Basin subsidence in the
Rogerson area between 10.59 and 10.34 Ma (Fig. 14b). The
younger ignimbrites on Brown’s Bench massif also thin and
ultimately pinch out up the north-dipping limb of the mono-
cline. The Brown’s View ignimbrite thins abruptly southward
and pinches out further north (∼1 km south of Twin Buttes;
Fig. 1) than the Bobcat Butte Member (Fig. 14c). Within the
developing Rogerson Graben, however, it was able to extend
much further south (e.g. ≥4 m thick at Backwaters). This pat-
tern confirms that distribution and thickness changes of the
ignimbrite generally reflect subsidence topography rather
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than, for example, distance from source. It also confirms that
Brown’s Bench monocline development occurred contempo-
raneous with the development of Rogerson Graben. The
Grey’s Landing Member also thins markedly as it offlaps the
north-dipping limb of the monocline (Fig. 14d), and it pinches
out ∼3 km further north of Twin Buttes (Fig. 1). Marked
southward thinning of the member is also documented at
Monument Creek together with top-to-the north rheomorphic
kinematic indicators (Andrews and Branney 2011). However,
like the Brown’s ViewMember, the Grey’s Landing pyroclas-
tic density current was able to flow 9 km further south down
the subsiding Rogerson Graben, unconstrained by topography
(the ignimbrite is >65 m thick at Backwaters, Fig. 7). This
indicates that the monocline continued to develop, generating
northward sloping topography prior to the Grey’s Landing
eruption (∼8.0 Ma), broadly at the time that the western
faulted margin of the Rogerson Graben developed.

In summary, volcanological, kinematic, structural and geo-
chronology data together indicate that subsidence of the Snake
River Basin began prior to 10.34±0.09 Ma in the Rogerson
area, and that the Brown’s Bench monocline developed, gen-
erating increasing northward topographic slopes prior to, and
during, the Bobcat Butte, Brown’s View and Grey’s Landing
eruptions (∼10.3–8.0 Ma).

If the present-day, Yellowstone plateau is an appropriate
analogue; the central Snake River Plain region may initially
have been thermally elevated at the time of hotspot related
explosive eruptions, before gradually subsiding due to loading
by the developing crustal sill to form the present Snake River
Basin. However, the evidence presented herein suggests that
the central Snake River Plain was already actively subsiding
during the large explosive rhyolitic eruptions, and that this
subsidence coincided with east–west extension and develop-
ment of the Rogerson Graben. Two additional lines of evi-
dence for this notion are: (1) kinematic indicators and
rheomorphic lineations indicate top to the north transport
(Andrews and Branney 2011), (2) ignimbrites are subaerial
on massifs both north and south of the central Snake River
Plain, but with proximity to the plain they developed peperitic
basal contacts (e.g. the Lincoln Reservoir and Wooden Shoe
Members in the northern Cassia Hills to the East, Knott et al.
2016, and an ignimbrite that overlies fluvio-lacustrine sedi-
ments at Queens Crown on the north side of the Snake River
Plain, Branney et al. 2008). This is consistent with the pres-
ence, during the ignimbrite eruptions, of surface water at the
margins of an already subsiding central Snake River Basin.

Conclusions

1. Eleven rhyolitic members make up the substantially re-
vised ≥420-m-thick, mid-Miocene Rogerson formation in
the central snake river plain of Idaho, and each represents

a palaeosol-bound eruption unit. All are typical Snake
River-type units (Branney et al. 2008) but can be distin-
guished using a combination of field, stratigraphic, geo-
chemical, mineralogical, palaeomagnetic and radio-
metric data.

2. Two widespread ignimbrite sheets have been discovered
by new regional correlations: the 100 km3 Brown’s View
Member that covers ≥3300 km2 and the ∼130 km3

Wooden Shoe Member that covers ≥4400 km2 and ex-
tends into northern Nevada. Moreover, we anticipate that
the distinguishing features reported in this paper for the
individual members of the Rogerson Formation should
contribute to more extensive regional correlations of other
eruption units.

3. Eleven large explosive rhyolitic eruptions occurred during
a period of 3.9 million years, with an average explosive
eruption frequency of one eruption per 354 ky, more than
twice the frequency of the more recent eruptions at
Yellowstone.

4. The ignimbrite succession records two systematic tempo-
ral trends in major element, trace element, and mineral
chemistry: (1) a period of increasing rhyolite maturity
(e.g. increasing SiO2, and decreasing TiO2 between
∼11.9 and 11.3Ma) that may record progressive fractional
crystallisation, followed by (2) a period of decreasing ma-
turity (between ∼11.0 and 10.0 Ma) that may reflect the
partial melting and evolution of a mid-crustal source
region.

5. The central Snake River Plain subsided to form a regional
basin during the explosive rhyolitic volcanism, as record-
ed by ignimbrite thickness changes, offlap relations and
rheomorphic kinematic indicators on the north limb of a
regional W toWSW-trending basin-margin monocline. In
the Rogerson area, this initiated after 10.59 Ma and con-
tinued to develop until ∼8 Ma. This subsidence was
caused by voluminous magmatism and began earlier than
further east in the Cassia Hills (Knott et al. 2016). The
syn-volcanic subsidence was in marked contrast to the
presently elevated Yellowstone plateau.

6. East–west basin-and-range extension contemporaneous
with the rhyolitic volcanism andmagmatic subsidence pro-
duced the N-S trending Rogerson Graben and related
Shoshone Hills structures. Initial regional westward tilting
(uplift of the early Shoshone Hills ≥10.34Ma) was follow-
ed by initiation of the Shoshone Hills Fault system with
development of an eastward-sloping half-graben (∼10.3–
10.1 Ma). The dominant Brown’s Bench Fault then initi-
ated (∼10.1–8.0 Ma) with a major reversal in the graben
asymmetry. This fault remained intermittently active at
least until the Pliocene. At approximately the same time,
the opening west Snake River rift (to the NW) propagated
as far south as Salmon Reservoir, with eruption of
ferrobasalts from Salmon Butte shield volcano.
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