Skip to main content
Log in

Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species

  • Physiological ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

All orchids and pyroloids are mycoheterotrophic at least in the early stage. Many species are predisposed to mycoheterotrophic nutrition even in the adult stage, due to the initial mycoheterotrophy during germination. Although other green plants, such as gentian species, also produce numerous minute seeds, whose germination may depend on fungal associations to meet C demands, physiological evidence for partial mycoheterotrophy in the adult stage is lacking for most candidate taxa. Here, we compared the natural abundances of 13C and 15N isotopes in the AM-associated gentian species Pterygocalyx volubilis growing in high-light-intensity habitats with those of co-occurring autotrophic C3 and C4 plants and AM fungal spores. We found that P. volubilis was significantly enriched in 13C compared with the surrounding C3 plants, which suggests the transfer of some C from the surrounding autotrophic plants through shared AM networks. In addition, the intermediate δ15N values of P. volubilis, between those of autotrophic plants and AM fungal spores, provide further evidence for partial mycoheterotrophy in P. volubilis. Although it is often considered that light deficiency selects partial mycoheterotrophy, we show that partial mycoheterotrophy in AM-forming plants can evolve even under light-saturated conditions. The fact that there have been relatively few descriptions of partial mycoheterotrophy in AM plants may not necessarily reflect the rarity of such associations. In conclusion, partial mycoheterotrophy in AM plants may be more common than hitherto believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abadie JC, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse MA (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477

    CAS  Google Scholar 

  • Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sérsic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    CAS  PubMed  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc B 271:1799–1806

    CAS  PubMed  Google Scholar 

  • Bolin JF, Tennakoon KU, Majid MBA, Cameron DD (2017) Isotopic evidence of partial mycoheterotrophy in Burmannia coelestis (Burmanniaceae). Plant Spec Biol 32:74–80

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monogr 32:155–161

    Google Scholar 

  • Cameron DD, Bolin JF (2010) Isotopic evidence of partial mycoheterotrophy in the Gentianaceae: Bartonia virginica and Obolaria virginica as case studies. Am J Bot 97:1272–1277

    PubMed  Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266

    CAS  PubMed  Google Scholar 

  • Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560

    CAS  PubMed  Google Scholar 

  • Courty PE, Walder F, Boller T, Ineichen K, Wiemken A, Rousteau A, Selosse MA (2011) Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol 156:952–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Courty PE, Doubková P, Calabrese S, Niemann H, Lehmann MF, Vosátka M, Selosse MA (2015) Species-dependent partitioning of C and N stable isotopes between arbuscular mycorrhizal fungi and their C3 and C4 hosts. Soil Biol Biochem 82:52–61

    CAS  Google Scholar 

  • Eriksson O, Kainulainen K (2011) The evolutionary ecology of dust seeds. Perspect Plant Ecol Evol Syst 13:73–87

    Google Scholar 

  • Field KJ, Leake JR, Tille S, Allinson KE, Rimington WR, Bidartondo MI, Beerling DJ, Cameron DD (2015) From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes. New Phytol 205:1492–1502

    CAS  PubMed  Google Scholar 

  • Fujiyoshi M, Kagawa A, Nakatsubo T, Masuzawa T (2005) Successional changes in mycorrhizal type in the pioneer plant communities of a subalpine volcanic desert on Mt. Fuji, Japan. Polar Biosci 18:60–72

    Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    CAS  Google Scholar 

  • Gebauer G, Schulze ED (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87:198–207

    CAS  PubMed  Google Scholar 

  • Gebauer G, Preiss K, Gebauer AC (2016) Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol 211:11–15

    PubMed  Google Scholar 

  • Giesemann P, Rasmussen HN, Liebel HT, Gebauer G (2020) Discreet heterotrophs: green plants that receive fungal carbon through Paris-type arbuscular mycorrhiza. New Phytol. https://doi.org/10.1111/nph.16367

    Article  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163

    PubMed  Google Scholar 

  • Gomes SIF, Aguirre-Gutierrez J, Bidartondo MI, Merckx V (2017) Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants. New Phytol 213:1418–1427

    CAS  PubMed  Google Scholar 

  • Gomes SIF, Merckx VSFT, Kehl J, Gebauer G (2020) Mycoheterotrophic plants living on arbuscular mycorrhizal fungi are generally enriched in 13C, 15N, and 2H isotopes. J Ecol. https://doi.org/10.1111/1365-2745.13381

    Article  Google Scholar 

  • Hynson NA, Madsen TP, Selosse MA, Adam IKU, Ogura-Tsujita Y, Roy M, Gebauer G (2013) The physiological ecology of mycoheterotrophy. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, Berlin, pp 297–342

    Google Scholar 

  • Imhof S, Massicotte HB, Melville LH, Peterson RL (2013) Subterranean morphology and mycorrhizal structures. In: Merckx VSFT (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, Berlin, pp 157–214

    Google Scholar 

  • Jacquemyn H, Merckx VS (2019) Mycorrhizal symbioses and the evolution of trophic modes in plants. J Ecol 107:1567–1581

    Google Scholar 

  • Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse MA (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    CAS  PubMed  Google Scholar 

  • Klink S, Giesemann P, Gebauer G (2019) Picky carnivorous plants? Investigating preferences for preys’ trophic levels—a stable isotope natural abundance approach with two terrestrial and two aquatic Lentibulariaceae tested in Central Europe. Ann Bot 123:1167–1177

    PubMed  Google Scholar 

  • Lallemand F, Gaudeul M, Lambourdière J, Matsuda Y, Hashimoto Y, Selosse M (2016) The elusive predisposition to mycoheterotrophy in Ericaceae. New Phytol 212:314–319

    PubMed  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Google Scholar 

  • Lekberg Y, Hammer EC, Olsson PA (2010) Plants as resource islands and storage units—adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol Ecol 74:336–345

    CAS  PubMed  Google Scholar 

  • Lerat S, Gauci R, Catford JG, Vierheilig H, Piché Y, Lapointe L (2002) 14 C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132:181–187

    PubMed  Google Scholar 

  • Merckx V, Bidartondo MI (2008) Breakdown and delayed cospeciation in the arbuscular mycorrhizal mutualism. Proc R Soc B 275:1029–1035

    PubMed  Google Scholar 

  • Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G (2010) 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol 188:590–596

    CAS  PubMed  Google Scholar 

  • Merckx V, Mennes CB, Peay KG, Geml J (2013a) Evolution and diversification. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, Berlin, pp 215–244

    Google Scholar 

  • Merckx V, Kissling J, Hentrich H, Janssens SB, Mennes CB, Specht CD, Smets EF (2013b) Phylogenetic relationships of the mycoheterotrophic genus Voyria and the implications for the biogeographic history of Gentianaceae. Am J Bot 100:712–721

    PubMed  Google Scholar 

  • Murata J (2003) Pterygocalyx volubilis. In: Yahara T, Nagata Y (eds) Red data plants. Yamakei, Tokyo, p 156

    Google Scholar 

  • Nakano A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9:41–47

    CAS  Google Scholar 

  • Nakano-Hylander A, Olsson PA (2007) Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biol Biochem 39:1450–1458

    CAS  Google Scholar 

  • Ogawa NO, Nagata T, Kitazato H, Ohkouchi N (2010) Ultra sensitive elemental analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. Earth life Isot 21:339–353

    Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336

    Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    PubMed  Google Scholar 

  • Pfeffer PE, Douds DD Jr, Bücking H, Schwartz DP, Shachar-Hill Y (2004) The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol 163:617–627

    Google Scholar 

  • Preiss K, Gebauer G (2008) A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants. Isot Environ Health Stud 44:393–401

    CAS  Google Scholar 

  • Preiss K, Adam IK, Gebauer G (2010) Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc R Soc B 277:1333–1336

    PubMed  Google Scholar 

  • Press MC (1989) Autotrophy and heterotrophy in root herniparasites. Trends Ecol Evol 4:258–263

    CAS  PubMed  Google Scholar 

  • Press MC, Shah N, Tuohy JM, Stewart GR (1987) Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiol 85:1143–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quested HM (2008) Parasitic plants—impacts on nutrient cycling. Plant Soil 311:269–272

    CAS  Google Scholar 

  • Schiebold JMI, Bidartondo MI, Lenhard F, Makiola A, Gebauer G (2018) Exploiting mycorrhizas in broad daylight: partial mycoheterotrophy is a common nutritional strategy in meadow orchids. J Ecol 106:168–178

    CAS  Google Scholar 

  • Schulze ED, Lange OL, Ziegler H, Gebauer G (1991) Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88:457–462

    PubMed  Google Scholar 

  • Schweiger JMI, Bidartondo MI, Gebauer G (2018) Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Funct Ecol 32:870–881

    Google Scholar 

  • Schweiger JMI, Kemnade C, Bidartondo MI, Gebauer G (2019) Light limitation and partial mycoheterotrophy in rhizoctonia-associated orchids. Oecologia 189:375–383

    PubMed  Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    CAS  PubMed  Google Scholar 

  • Selosse MA, Charpin M, Not F (2017a) Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett 20:246–263

    PubMed  Google Scholar 

  • Selosse MA, Bocayuva MF, Kasuya MCM, Courty PE (2017b) Mixotrophy in mycorrhizal plants: extracting C from mycorrhizal networks. In: Martin F (ed) Molecular mycorrhizal symbiosis. Springer, Berlin, pp 451–471

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Stöckel M, Meyer C, Gebauer G (2011) The degree of mycoheterotrophic carbon gain in green, variegated and vegetative albino individuals of Cephalanthera damasonium is related to leaf chlorophyll concentrations. New Phytol 189:790–796

    PubMed  Google Scholar 

  • Stöckel M, Tešitelová T, Jersáková J, Bidartondo MI, Gebauer G (2014) Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytol 202:606–615

    PubMed  Google Scholar 

  • Suetsugu K, Kawakita A, Kato M (2014) Evidence for specificity to Glomus group Ab in two Asian mycoheterotrophic Burmannia species. Plant Spec Biol 29:57–64

    Google Scholar 

  • Suetsugu K, Yamato M, Miura C, Yamaguchi K, Takahashi K, Ida Y, Shigenobu S, Kaminaka H (2017) Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Mol Ecol 26:1652–1669

    CAS  PubMed  Google Scholar 

  • Suetsugu K, Ohta T, Tayasu I (2018) Partial mycoheterotrophy in the leafless orchid Cymbidium macrorhizon. Am J Bot 105:1595–1600

    CAS  PubMed  Google Scholar 

  • Suetsugu K, Yamato M, Matsubayashi J, Tayasu I (2019) Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia. Mol Ecol 28:4290–4299

    PubMed  Google Scholar 

  • Suetsugu K, Matsubayashi J, Tayasu I (2020) Some mycoheterotrophic orchids depend on carbon from dead wood: novel evidence from a radiocarbon approach. New Phytol. https://doi.org/10.1111/nph.16409

    Article  PubMed  Google Scholar 

  • Tayasu I, Hirasawa R, Ogawa NO, Ohkouchi N, Yamada K (2011) New organic reference materials for carbon-and nitrogen-stable isotope ratio measurements provided by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology. Limnology 12:261–266

    CAS  Google Scholar 

  • Tedersoo L, Pellet P, Kõljalg U, Selosse MA (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217

    PubMed  Google Scholar 

  • Těšitel J, Plavcová L, Cameron DD (2010) Heterotrophic carbon gain by the root hemiparasites, Rhinanthus minor and Euphrasia rostkoviana (Orobanchaceae). Planta 231:1137–1144

    PubMed  Google Scholar 

  • Těšitel J, Lepš J, Vráblová M, Cameron DD (2011) The role of heterotrophic carbon acquisition by the hemiparasitic plant Rhinanthus alectorolophus in seedling establishment in natural communities: a physiological perspective. New Phytol 192:188–199

    PubMed  Google Scholar 

  • Walder F, Niemann H, Lehmann MF, Boller T, Wiemken A, Courty P (2013) Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C). Soil Biol Biochem 58:341–344

    CAS  Google Scholar 

  • Yamato M (2001) Identification of a mycorrhizal fungus in the roots of achlorophyllous Sciaphila tosaensis Makino (Triuridaceae). Mycorrhiza 11:83–88

    CAS  Google Scholar 

  • Yamato M, Yagame T, Shimomura N, Iwase K, Takahashi H, Ogura-Tsujita Y, Yukawa T (2011) Specific arbuscular mycorrhizal fungi associated with non-photosynthetic Petrosavia sakuraii (Petrosaviaceae). Mycorrhiza 21:631–639

    PubMed  Google Scholar 

  • Yamato M, Ogura-Tsujita Y, Takahashi H, Yukawa T (2014) Significant difference in mycorrhizal specificity between an autotrophic and its sister mycoheterotrophic plant species of Petrosaviaceae. J Plant Res 127:685–693

    CAS  PubMed  Google Scholar 

  • Yamato M, Takahashi H, Shimono A, Kusakabe R, Yukawa T (2016) Distribution of Petrosavia sakuraii (Petrosaviaceae), a rare mycoheterotrophic plant, may be determined by the abundance of its mycobionts. Mycorrhiza 26:417–427

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Masayuki Sato for help with the field study. We also thank Dr. Naohiko Ohkouchi and Dr. Hidetaka Nomaki for helping us to perform microscale isotope analysis. We also thank Dr. Masanori Saito for advice on the identification of AM fungal spores.

Funding

This work was financially supported by the JSPS KAKENHI Grant nos. 17H05016 (KS), 17J04991 (JM), and 18K19356 (HT).

Author information

Authors and Affiliations

Authors

Contributions

KS planned and designed the research, collected the materials, carried out laboratory work and analyses, and wrote the initial draft. MJ, NOO, and HT conducted laboratory work and carried out analyses. SM and RS conducted the laboratory work. All authors contributed to the manuscript.

Corresponding author

Correspondence to Kenji Suetsugu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Susana Rodriguez Echeverria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suetsugu, K., Matsubayashi, J., Ogawa, N.O. et al. Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species. Oecologia 192, 929–937 (2020). https://doi.org/10.1007/s00442-020-04631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-020-04631-x

Keywords

Navigation