
REVIEW

Urinary extracellular vesicles. A promising shortcut to novel
biomarker discoveries
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Abstract Proteomic and genomic techniques have reached
full maturity and are providing unforeseen details for the com-
prehensive understanding of disease pathologies at a fraction
of previous costs. However, for kidney diseases, many gaps in
such information remain to inhibit major advances in the pre-
vention, treatment and diagnostics of these devastating dis-
eases, which have enormous global impact. The discovery
of ubiquitous extracellular vesicles (EV) in all bodily fluids
is rapidly increasing the fundamental knowledge of disease
mechanisms and the ways in which cells communicate with
distant locations in processes of cancer spread, immunological
regulation, barrier functions and general modulation of cellu-
lar activity. In this review, we describe some of the most
prominent research streams and findings utilizing urinary ex-
tracellular vesicles as highly versatile and dynamic tools with
their extraordinary protein and small regulatory RNA species.
While being a highly promising approach, the relatively
young field of EV research suffers from a lack of adherence
to strict standardization and carefully scrutinized methods for
obtaining fully reproducible results. With the appropriate
guidelines and standardization achieved, urine is foreseen as
forming a unique, robust and easy route for determining ac-
curate and personalized disease signatures and as providing

highly useful early biomarkers of the disease pathology of the
kidney and beyond.
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Introduction

Following extensive genome-wide analyses and the full mat-
uration of integrative technologies such as RNA-sequencing
(RNA-Seq) techniques to reveal the crucial regulatory func-
tions of the Bnon-coding^ DNA bulk of human and other
species (Lee et al. 2010), recent years have seen strong ad-
vances in a variety of organ functions with unprecedented
molecular accuracy. Nevertheless, an extensive understanding
of, for example, key kidney functions, including mechanisms
of glomerular filtration and the formation of urine from pri-
mary urine to the final voided urine, remains to be achieved
(Saritas et al. 2015; Maas et al. 2016). The combined use of
proteomics, lipidomics, metabolomics and comprehensive ge-
nomic analyses, together with advanced systems biology al-
gorithms, offers the promise of major new discoveries for the
benefit of patients with kidney disease.

Urine formation provides a key route for waste removal
from the body. In addition to immediate metabolic waste prod-
ucts, variable amount of electrolytes, small peptides and larger
functional proteins (Hildonen et al. 2016) are removed. Based,
for example, on hydration status, diet and excercise, the elec-
trolyte concentration may variate considerably. For years, this
dynamic nature of urine has presented a challenge for the full
exploitation of the potential of this bodily fluid, which is easy
to collect.

The structural basis of glomerular filtration has been de-
fined down to the fine molecular level, including the

* Harry Holthofer
harry.holthofer@helsinki.fi

Karina Barreiro
karina.barreiro@helsinki.fi

1 Institute for Molecular Medicine Finland (FIMM), University of
Helsinki, Helsinki, Finland

2 Freiburg Institute for Advanced Studies, Albert-Ludwigs University
Freiburg, Freiburg, Germany

Cell Tissue Res (2017) 369:217–227
DOI 10.1007/s00441-017-2621-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00441-017-2621-0&domain=pdf


identification of the respective signaling and functional path-
ways, whereas the functional mechanisms remain to be fully
understood (Patrakka and Tryggvason 2010; Pollak et al.
2014; Scott and Quaggin 2015). At the same time, however,
the continuous global increase of chronic kidney diseases
(CKD) attributable to a variety of causes involves over 10 %
of most populations and geographical areas (El Nahas 2005;
Remuzzi et al. 2006). These alarming numbers call for prac-
tical advances leading to early diagnostics, better therapies
and cost-efficient personalized disease management even in
less fortunate areas and countries. Many of the technologies
required are beginning to reach their full maturity for the
achievement of these goals.

The increase of CKD is mostly the result of the rapid in-
crease of diabetes world-wide (El Nahas 2005). However,
patient subpopulations susceptible to life-threatening diabetic
end-organ damagemostly cannot be identified early enough to
prevent the progress of disease. Apart from the medicinal
modulation of the renin-angiotensin axis (Remuzzi et al.
2006), only a few other CKD disease mechanisms have been
identified and, accordingly, the repertoire of targeted medica-
tion available to halt disease progression is not satisfactory.
Currently, the exhaustive genetic data produced have provided
few clues to the factors and mechanisms for the identification
of the vulnerable target subpopulations or even of those who
might benefit from the currently available treatment options.
In spite of numerous proposed early biomarkers to monitor
disease progression and activity, none have been fully validat-
ed for wide clinical use.

The discovery of vesicles of various sizes secreted from
practically all cell types in the body (Thery et al. 2009;
Yanez-Mo et al. 2015) is rapidly revolutionizing our under-
standing of key biological phenomena including organ growth
and development, cancer and metastasis, cellular homeostasis,
immunological defense, barrier functions to the exterior and,
importantly, intercellular communication (for references, see
Thery et al. 2009, van der Pol et al. 2012). Although this is a
relatively young field, many new cellular-intercellular mech-
anisms including the spread of viral infections (Nour and
Modis 2014) and the spread of cancer cells (Tomasetti et al.
2017) can be explained by messages from extracellular vesi-
cles (EV).

Extracellular vesicles

EVare a heterogenous group of membrane-coated particles of
various sizes (Fig.1) either actively or passively secreted from
cells by well-established mechanisms (Thery et al. 2009; van
der Pol et al. 2012; Akers et al. 2013; Ciardiello et al. 2016;
Morrison et al. 2016; Table 1).

EVs have a distinct surface coat with an abundance of
membrane-associated proteins, glycoproteins and lipids,

whereas the EV interior (Bcargo^) consists in structural and
functional proteins, enzymes, lipids and peptides of various
lengths. Notably, DNA (including mitochondrial DNA) and a
variety of RNA species are transported within EVs. These
important RNA classes have now been convincingly shown
to regulate all cellular functions efficiently and include small
RNAs, microRNAs and messager RNAs (Thery et al. 2009;
El Andaloussi et al. 2013; Liu et al. 2015; Zaborowski et al.
2015; Morrison et al. 2016), see Fig. 1. Originally mostly
ignored in electron micrographs or described as Bcell-derived
dust^ from megakaryocytes (Wolf 1967), their original role
was supposed to be passive cellular waste management.
However, intriguing findings of active and orderly secretion
mechanisms have emerged during the last few years.
Interestingly, a wealth of information is now available that
confirms that the vesicles are indeed taken up by target cells
via a variety of mechanisms (summarized in Mulcahy et al.
2014) revealing their key role in intercellular communication,
although targeted uptake mechanisms in any particular organ
systems, except for the brain, remain to be studied in detail.

Crude urine or urinary EV (uEV), with their protein, en-
zyme or RNA content, have been discovered over the last few
years (Alter et al. 2012; Alvarez et al. 2012; Cheng et al.
2014). In this review, we summarize some recent discoveries
and highlight especially the distinct value of urinary RNA for
biomarker purposes (Alter et al. 2012; Alvarez and Distefano
2013; Yang et al. 2013; Argyropoulos et al. 2015).With all the
present data available, especially of the surprisingly rich and
variable content of uEV, urine now appears as a very promis-
ing and completely uninvasive source for new information
reflecting accurately the pathophysiology of the kidney and,
most likely, also of other organ systems. Despite all the enthu-
siasm in this rapidly growing field, we aim to pinpoint some of
the caveats, misinterpretations and limitations of current ap-
proaches and to emphasize the importance of the appropriate
standardization needed.

EV classification Since the first descriptions of EV, a variety
of vesicle categories has been described. The classification
was based initially on their cellular or subcellular sources,
such as prostasomes, exosomes, membrane vesicles and
others (see van der Pol et al. 2012, 2016; Thery et al. 2009;
Wang and Sun 2014) and basically their physico-chemical
properties. These include the vesicle size, density, morpholo-
gy, lipid composition, protein composition, subcellular origin
and light scattering (Thery et al. 2009; van der Pol et al. 2012).
As seen in Table 1, most of the physico-chemical EV charac-
teristics overlap significantly. This also makes a reliable cate-
gorization and their isolation a challenge yet to be fully over-
come. Notably, in addition to the size and density of vesicles,
the efficiency of isolating these vesicles depends on the shape
and volume fraction of the vesicles, the viscosity of the fluid in
which they lie, the temperature and presence of other
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confounding factors such as proteins, peptides or pigments in
the fluid, the centrifugation time and the type of rotor used for
centrifugation (fixed angle or swing-out; Cvjetkovic et al.

2014; Livshits et al. 2015). Based on these variables and the
current lack of thoroughly standardized isolation protocols,
considerable cross-contamination of vesicle types can

Fig. 1 Biogenesis of microRNA (miRNA), extracellular vesicles (EV)
and uptake mechanisms. miRNAs are transcribed by RNA polymerase
II from chromosomal DNA into primary RNA (Pri-miRNA; 1-3 kb). Pri-
miRNA is processed by Drosha into precursor miRNA (Pre-miRNA).
Pre-miRNA is transported to the cytoplasm and cleeved into miRNA/
miRNA duplices (∼22 bp) byDicer. miRNA duplex strands separate with
the incorporation of the protein Argonaute (AGO) and RNA-induced
silencing complex (Risk; Xu et al. 2013; Sohel 2016; Tomasetti et al.
2017). miRNA can be packed in the EV or be exported as protein-
miRNA complexes (Arroyo et al. 2011; Canfran-Duque et al. 2014).
Exosomes are derived from the endocytic pathway and their biogenesis
requires multiprotein complexes called Endosomal Sorting Complex
Required for Transport. Microvesicles are formed by the outward bud-
ding of the plasma membrane, whereas apoptotic bodies are vesicles

released from cells that undergo apoptosis (Akers et al. 2013; Morrison
et al. 2016). EVare taken up by recipient cells by a variety of mechanisms
including endocytosis (mediated by lipid rafts, clathrin or caveolin), pi-
nocytosis, phagocytosis and membrane fusion (Mulcahy et al. 2014).
Proteins present on the EV can trigger signaling pathways in the target
cells or be involved in antigen presentation (Thery et al. 2009; El
Andaloussi et al. 2013). miRNA-protein complexes are also internalized
by interaction with specific receptors on the recipient cell. High-density
lipoprotein (HDL) associated with miRNA (miRNA-HDL) interacts with
scavenger receptor class B type 1 (SR-B1; Canfran-Duque et al. 2014).
miRNA-AGO-2 interacts with neuropilin-1 (NRP1; Prud’homme et al.
2016). EE Early endosome, MVB multivesicular body, NPM1
nucleophosmin 1, OMVs outer membrane vesicles, dsRNA double-
stranded RNA
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obviously occur in any sample studied and reported. Indeed,
this overlap between vesicle categories and the variety of iso-
lation methods might have led to Bpublished artifacts, over-
interpretation and non-comparable results between
laboratories^ (van der Pol et al. 2016), despite continuous at-
tempts at standardization by international organizations
(Witwer et al. 2013). On the other hand, especially for bio-
marker identification, the current trend is leaning towards the
use of methods providing the best total EV yield, which may
ignore strict EV categorization. Depending on downstream
uses and goals, this should be considered acceptable, in partic-
ular as most vesicle classes share, to a significant degree, the
same surface and cargo contents (even if in different ratios).

As stated above, urine contains a variety of vesicles of
variable sizes (Pisitkun et al. 2004; Miranda et al. 2010; van
Balkom et al. 2011; Alvarez et al. 2012; Alvarez et al. 2013).
Notably, however, urinary contents, including vesicles can be
strongly influenced by factors such as diet (Garcia-Perez et al.
2017), exercise (Alter et al. 2012; Yang et al. 2013; Mansueto
et al. 2017) and medication and by the presence of urinary
pigments. As discussed below in more detail, the lack of stan-
dardization and variables in nomenclature might have led to
reported artifacts and challenges of reproducibility.
Furthermore, free urine contains free and active proteases
and RNases, whereas within the vesicles, both proteins and
RNA are protected against ubiquitous proteases and RNases
(Cheng et al. 2014). Thus, only results of crude urines are
comparable with each other, whereas studies utilizing the
much richer contents of EV should be preferred because of
their mostly unmodified contents.

Interestingly, the bulk of urinary vesicles is considered to
derive from the epithelial lining of nephrons and kidney
parenchyme (Turco et al. 2016) but ample evidence has been
presented that urinary vesicles also originate from the circula-
tion (Miranda et al. 2010; Ma et al. 2016; Pazourkova et al.
2016). This offers an exciting opportunity to develop easy,
non-invasive and easy-to-repeat diagnostics for remote
tissue-specific markers (Ma et al. 2016) present in the urine.
However, whether uEVs are actively secreted through the glo-
merular filtration barrier or through the epithelial cell lining of
nephrons is not known, although this could involve many
active mechanisms (for a variety of the mechanisms
proposed, see Mulcahy et al. 2014).

Evidence is increasing for uEVusefulness in the biomarker
search for kidney diseases such as minimal change disease
and focal segmental glomerulosclerosis (Ramezani et al.
2015), diabetic nephropathy (Barutta et al. 2013; Musante
et al. 2015; Delic et al. 2016) and others (for an excellent
comprehensive review of uEV findings in kidney diseases,
see Erdbrugger and Le 2016).

Although proteins within uEVs have been widely recog-
nized and reported (see, for example, www.exocarta.org, the
dedicated database for vesicle contents), the recent technicalT
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advances in RNA-sequencing (Wang et al. 2009; Lee et al.
2010) highlight the usefulness especially of urinary miRNA
for biomarker purposes (Van Roosbroeck et al. 2013).
Interestingly, both uEV proteins and miRNAs are products
that not only are secreted by all the epithelial cell types along
the nephrons and lower urinary tract but are also filtered or
secreted from the circulation by the kidney parenchyme.

In contrast to earlier studies also utilizing urinary sediment
cells for miRNA isolation, the protocols presently call for
them being discarded as these most likely represent contents
from apoptotic cells. The information available concerning
specific downstream target effects of uEV miRNAs remains
limited (however, see Bellingham et al. 2012; Alvarez-Erviti
et al. 2011).

Interestingly, evidence is accumulating of yet another po-
tential source of urinary RNA, namely the resident bacteria
(Table 2). Accordingly, inherent but well-constrained bacterial
colonization can be found in the urinary bladder (Brubaker
and Wolfe 2015). For anatomical reasons, the female urinary
bladder and urine are more prone to urinary tract infections
(UTI). Whether this represents an escape of normal bacterial
flora from the host or the entry of more pathogenic urinary
pathogens, such as the uropathogenic fimbriated strains of
Escherichia coli (Korhonen et al. 1988), remains unknown.
Interestingly, the most common bacterial strains in urinary
bladder associated with UTI (both Gram negative and Gram
positives) have been well-established, whereas recent studies
by using RNA-Seq of the 16S RNA isolated from urine have
shown a wide variety of additional bacterial strains in urine
(Valadi et al. 2007; Brubaker and Wolfe 2015; Koeppen et al.
2016; Tataruch-Weinert et al. 2016). At the same time, bacte-
ria have been shown to actively use their outer membrane
vesicles (OMVs) for packaging and sending their genetic
material for interaction with the immediate environment.

The OMV contents also include abundant small RNA species
(Wang et al. 2012; Koeppen et al. 2016), which mediate inter-
actions with host cells and tissues. Thus, urine unavoidably
also contains vesicles from rich bacterial sources, with their
respective RNA contents. Although little is still known of the
exact roles of OMVs, they are clearly involved in the constant
interplay with the host defense system and in maintaining the
barrier function to prevent ascending infections.

For practical purposes in uEV studies, the OMVs and their
protein and RNA content are of special importance. Several
questions arise. How can excessive bacterial products in the
analyses and respective artifacts in the reported proteomes and
RNA be avoided (Shmaryahu et al. 2014; Cheung et al.
2016)? Should samples from male and female subjects be
differently interpreted as male samples present with less abun-
dant bacteria and their OMV products? Carefulness at all steps
in sample collection, storage, analysis and data interpretation
is mandatory and, notably, calls for rigorous technical controls
to pinpoint excessive bacterial RNA and protein products.
This, in turn, may require a much larger volume of urine
samples to allow all the necessary orthogonal controls
(Tataruch-Weinert et al. 2016).

The capacity of bacteria to exchange functional genetic
information between host cells is a widely unexplored area
that has profound repercussions in our understanding of clin-
ical UTI and beyond. The presence of bacterial proteins, me-
tabolites and RNA products may generate misleading data and
this possibility should always be critically considered in stud-
ies with uEVanalytics.

Isolation methods of uEV have been extensively reviewed
(Musante et al. 2014b; Wang and Sun 2014; Gamez-Valero
et al. 2015). The most widely used methods are still the dif-
ferential (ultra)centrifugation–based methods, often with
modifications (see Table 3; Gardiner et al. 2016).

Table 2 Characteristics of bacterial extracellular vesicles (ND not determined, EM electron microscopy)

Characteristics Bacterial extracellular vesicles

Gram-negative Gram-positive

Size 20-300 nm 20-100 nm

Density in sucrose 1.20–1.22 g/ml ND

EM morphology Round Round

Sedimentation 150,000 g 150,000 g

Lipid compositiona Phosphatidylglycerol,
phosphatidylethanolamine (E. coli)

Palmitic acid, myristic acid (B. anthracis and
S. pneumoniae)

Main protein markers Outer membrane proteins, virulence factors Bacterial adhesion and invasion proteins,
host cell modulation proteins

Intracellular origin Bacterial outer membrane Cell membrane

References Lee et al. 2007; Bai et al. 2014;
Kim et al. 2015; Watanabe 2016

Gurung et al. 2011; Brown et al. 2015;
Kim et al. 2015

aVariability between strains, species

Cell Tissue Res (2017) 369:217–227 221



To isolate urinary EVs, a minimum of two steps are usually
used, including low-speed centrifugation to pellet any cellular
debris in the urine for discard.

Variations and combinations of other methods as Badd-
ons^ to differential centrifugation have been introduced to
overcome the observed limitations, including the aggregation
and unnecessary loss of valuable pellets still containing EVs
during the process. Notably, a number of practical parameters
for the ultracentrifugation-based methods should always be
carefully considered and details including relative centrifugal
force, centrifugation time, temperature and the rotor type used
should be recorded since variation in these parameters will
lead to substantial quantitative and qualitative differences in
the final EVyield (Thery et al. 2009). A detailed discussion of
caveats in many of the currently used protocols can be found
in recent critical reviews (Gardiner et al. 2016; van der Pol
et al. 2016).

Reducing agents including dithiothreitol (DTT) or CHAPS
(3 - ( (3 -cho lamidopropy l ) d ime thy lammonio ) -1 -

propanesulfonate) are used to prevent excessive protein
complexing during EV isolation, especially in order to regulate
polymerization of Tamm-Horsfall glycoprotein (THP;
Fernandez-Llama et al. 2010; Musante et al. 2012), the most
abundant normal urinary protein distorting many downstream
analyses. Notably, an intact urinary THP meshwork efficiently
entraps vesicles of all sizes at all steps of EV harvesting, causes
clogging and a seriously reduced isolation capacity of in-
filtration-based methods and may result in a loss of up to 30
% of the final uEV yield (Fernandez-Llama et al. 2010).
Notably, however, the use of reducing agents may also release
miRNA bound to protective circulating proteins or from the
surface of uEVs (Wachalska et al. 2016).

The current golden standard, namely serial (ultra)centrifu-
gation, has been shown to easily miss up to 20–30 % of ves-
icles in the pre-purification steps (Musante et al. 2014a).
Furthermore, recent results demonstrate that the final pellet
after the ultracentrifugation steps for vesicle isolation may
have missed yet another 20–30 % of vesicles (Musante et al.

Table 3 Advantages and disadvantages of isolation methods for urinary extracellular vesicles (DC differential centrifugation, CHAPS 3-((3-
cholamidopropyl) dimethylammonio)-1-propanesulfonate, DTT dithiothreitol, SEC size exclusion chromatography, THP Tamm-Horsfall glycoprotein,
uEV urinary extracellular vesicles)

Method Advantages Disadvantages

DC Vesicle enrichment as a pellet No standard conditions for:
1. number of centrifugations;
2. relative centrifugation force;
3. time;
4. rotor type;
5. sample volume;
6. temperature during centrifugation;
7. presence/absence of protease inhib-

itors

Not applicable for large volume
of samples, not suitable for
samples from large cohort of
patients.
Relatively expensive
because of devise setup/reagent
price

DC + CHAPS treatment Protein activity prevention

DC + DTT treatment Removal of, for example, THP
excess in sample

Not suitable for protein activity
assessment designated samples

DC + SEC

Nano-membrane filtration Removal of cell debris and
urinary casts

Differences in removal of larger
(>0.22μm or more) vesicles
without assessment of their
importance for biomarkers
screening; major loss of uEVs
on the filter

DC + microfiltration

DC + nanofiltration

DC + ultrafiltration

DC + sucrose gradient Vesicle separation according
to density

Highly time consuming

Ultrafiltration + DC

Exoquick No need for ultracentrifugation step Overtly expensive when applied
to large volumesTotal exosome isolation reagent

Hydrostatic filtration dialysis
(HFD)

Inexpensive, quick, versatile.
Applicable to large sample
volumes
and large sample numbers; no
need
for special machinery or highly
trained personnel
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2017). These alarming facts should be carefully taken into
consideration in order to include EV isolation methods that
have been selected and modified and published results that
have been critically evaluated.

The most commonly used current methods and their com-
binations for EV isolation from urine are listed in Table 3.
Notably, many of these methods can easily clog because of
protein aggregates or the capacity of the method might be
limited. For practical isolation purposes and for the amounts
necessary especially for uEVs, large sample volumes are a
definite benefit as this allows the inclusion of the necessary
quality control of the samples. An additional source of arti-
facts, namely variations in urinary electrolyte concentrations,
e.g., resulting from hydration status because of exercise
(Maughan 1991), may likewise change the sample conditions
and distort EV yield. Furthermore, urine is abundant in pig-
ments, a recognized major source of artifacts in all down-
stream analyses. An interesting approach might be to use
fluorescence-activated cell sorting (FACS) for direct vesicle
isolation into various categories, although the resolution of
FACS is presently limited mostly to vesicle size above
100 nm and thus misses a major part of of vesicles, especially
exosomes.

Musante et al. (2014a) developed an alternative isolation
method for the comprehensive catching of urinary vesicles.
This method is called hydrostatic filtration dialysis (HFD)
and avoids the recognized limitations of most EV isolation
methods. It uses simple and quick low-speed centrifugation
(2000 g) to remove, for example, bacteria, cellular debris and
excessive polymers of THP before filter-dialysing the sample
(especially urine).

In HFD, the hydrostatic pressure of the sample pushes it
through the dialysis membrane tubing. For recovery of urinary
proteins and miRNA, the HFD method is clearly superior to
the ultracentrifugation-based methods and provides superior
quality of protein and RNA yield (Musante et al. 2014a;
Tataruch-Weinert et al. 2016).

HFD is versatile, simple and inexpensive and can be used
for a variety of samples including urine, plasma, cell culture
medium and saliva (Musante et al. 2014a). It is based on
sample dialysis in a tube with a defined-cutoff pore-size mem-
brane (Musante et al. 2012). This membrane allows the pas-
sage of small solutes and peptides, effectively standardizing
the solute environment, while retaining the EVs because of
their larger size. HFD easily provides normalization and col-
lection of the yield and washes away electrolytes while effi-
ciently retaining the vesicles. Notably, the major contaminant
in all urinary downstream analyses, namely urinary pigments,
are also washed though the membrane and thus are avoided.
The capacity of this method is adequate, with up to 1000 ml
sample volumes being easily handled. Furthermore, this meth-
od requires little or no previous knowledge or training, is
extremely cost-efficient and can readily process a number of

samples in parallel during a workday (Musante et al. 2014a).
The HFD method is not suitable for distinguishing between
defined vesicle populations, which, for most diagnostic, prog-
nostic or biomarker searches is, however, irrelevant.

Antibodies and synthetic peptides with affinity for EV
membrane proteins have been used for EV isolation (Ghosh
et al. 2014; Wang and Sun 2014). Although these methods
may preferentially yield exosomes or other EV types with
distinct surface antigens as required, additional EV subpopu-
lations sharing the same membrane proteins may be isolated.
Moreover, their capacity for EV catching is limited making
them more suitable for smaller sample volumes.

Specific kits to precipitate exosomes have been developed,
e.g., ExoSpin Exosome Purification Kit (Cell Guidance
Systems, USA), Invitrogen Total Exosome Isolation Kit
(Life Technologies, USA) and others. These products have
been tested with solutions of liposomes and exosomes and
have shown not only a robust isolation capacity for EV but
also the co-isolation of molecules with similar physical prop-
erties. Thus, other additional purification methods may need
to be used (Lane et al. 2015).

RNA species in vesicles Intracellular RNA species are in-
volved in the translation of DNA information to proteins at
ribosomes and in the general regulation of RNA translation
(see Grosshans and Filipowicz 2008, Xu et al. 2013).MiRNA,
with the size of 20-25 nt, has a distinct role in gene regulation
(Xu et al. 2013). Its formation is regulated by a specific intra-
cellular pathway distinguishing it from other small RNA spe-
cies present both in pro- and eukaryotic cells (Xu et al. 2013;
see Fig. 1).

Interestingly, all RNA classes can also be found extracel-
lularly, in all bodily fluids, including serum and plasma, sali-
va, tear fluid and urine (Wang et al. 2012; Patton et al. 2015;
Yanez-Mo et al. 2015). The way in which the cellular RNA
secretion itself is regulated and the relative proportions of the
various small RNA species secreted are not exactly known.
The intracellular RNA profile may differ from that of the
secreted profile, suggesting the possibility of the overflow
being secreted. Packaged into EV but also free, RNA appears
as a unique and archaic method of cell-to-cell communication
found throughout living cells (Brown et al. 2015; Yanez-Mo
et al. 2015). Interestingly, the RNA secretome appears to re-
flect accurately the physiological state of the cell of origin and
is highly valuable and accurate for the mapping of any per-
sonalized functions.

Although free extracellular RNAwas identified years ago,
the extracellular milieu consists in complex proteases and
ubiquitous RNases actively splicing any target secreted from
the cells (Sorrentino 1998; DeClerck et al. 2004; Ricard-Blum
and Vallet 2016). The splicing process produces the extracel-
lular fluid proteome (peptidome) and RNome. What is even
more exciting is that cells ranging from archaic bacteria to the
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most highly sophisticated cell types have developed methods
to protect these valuable entities from degradation by packag-
ing them into vesicles and, indeed, extracellular RNAs appear
to be universally associated instead with carrier vehicles
(Patton et al. 2015), probably because of the rapid degradation
of unprotected RNAs in biofluids.

Exosomes appear as a dominant pathway and vehicle for
RNA secretion from cells (Crescitelli et al. 2013; Lunavat
et al. 2015; Willms et al. 2016), although other vesicle types
also contain RNA. This fact reduces the value of any method
designed strictly for the purification of a distinct EV class.
Moreover, these methods always end up in losing up in 40
% of EV because of losses in the process up until the last
separation steps (Musante et al. 2017). Furthermore, the mem-
brane layer of all vesicle types has been shown to contain a
distinct surface coat that may be quite different from the ves-
icle interior, i.e., the Bvesicle cargo^ (Liu et al. 2015). This is
interesting, as many lines of evidence now suggest different
roles for these regions: the surface proteins and even EV sur-
face RNA may serve as an Baddress code^ for targeting (for
references, see Mulcahy et al. 2014). As the vesicle attaches
and fuses with the target cell membrane, its contents are re-
leased for intracellular interaction. This appears as a finely
tuned and highly sophisticated system for target cell regula-
tion in processes such as immunological defense, cancer
spread and the modulation of the metabolic state of cells in a
specific manner (El Andaloussi et al. 2013; Yanez-Mo et al.
2015; Zaborowski et al. 2015).

The gut, skin, urine and mucous membrane microbiomes
appear to have developed methods to efficiently interfere with
the host defense systems by releasing outer membrane vesi-
cles (OMVs), with distinct RNA contents and constant inter-
action with the host defense system. As a result, a strong,
although less-well understood barrier function is achieved.

Future aspects

The number of studies on EV, especially exosomes, has been
sky-rocketing during the last few years. This is because their
extraordinary potential is not limited to the dissection of dis-
ease mechanisms to identify new druggable targets but can
also provide early biomarkers of unforeseen accuracy. EV,
which are also abundantly present in the urine, are an unpar-
alleled resource for individualized molecular fingerprints
reflecting cellular pathophysiology at their site of origin up-
stream in the kidney and beyond (Miranda et al. 2010; Alvarez
and Distefano 2013). Thus, EV are derived not only from all
cell types along the nephron and kidney parenchyme (Salih
et al. 2014) but also from the circulation and normal bacterial
colonization in the urinary bladder.

The potential of EV, especially for early diagnostics and as
novel biomarkers for kidney diseases, is exciting. With full

systems biology integration, combining their proteome,
RNome and metabolomics information, EV now show great
promise in dissecting these thus far less-well understood dis-
ease mechanisms in an individualized way (Erdbrugger and
Le 2016; van der Pol et al. 2016). The field still lacks com-
prehensive standardization, starting from the nomenclature
and methods used for efficient EV harvesting and extending
up to their critical downstream analysis. Misleading or false
results in the field may lead to wrong conclusions (van der Pol
et al. 2016). However, the challenges have been recognized
and respective international organizations are committed to
continuous standardization (Witwer et al. 2013). Novel, inex-
pensive and critically scrutinized methods are being devel-
oped in order to avoid the gaps of the earlier ones and to match
expectations, for example, for personalized markers.

Whereas the physical properties and protein and RNA con-
tent of the various EV types significantly overlap, a careful
selection of methods available should provide a rational basis
for an appropriate selection of each type of application
(Musante et al. 2014b; Rupert et al. 2017).

Notably, methods for single vesicle detection are develop-
ing rapidly, including those utilizing microfluidics and nano-
sized beads. These will be highly useful, especially for linking
the different vesicle types to specific contents and, thus, for
revealing details of their functions. The respective compact
systems and techniques including micro-nuclear magnetic
resonanace (Shao et al. 2012), magneto-electrochemical sensor
systems (Jeong et al. 2016) and nanoplasmonic chips (Im et al.
2014) are expected to develop into practical and rapid point-of-
care detection for diagnostics, especially for uEV-based protein
miRNA biomarkers (Shao et al. 2015). Flow cytometry is cur-
rently developing as an exciting extension for EV isolation
directly in suspension and provides a means for the efficient
identification of EV based on their type-specific epitopes and
sequestration into subpopulations. However, currently, the
size-range of flow cytometric detection starts at 200 nm going
upwards, although a detection limit down to 100 nm has been
achieved (Pospichalova et al. 2015; Rupert et al. 2017). Thus,
FACS detection, especially of exosomes, is currently beyond
the detection limit (Shao et al. 2015).

The massively parallel Next-Generation Sequencing as ap-
plied also to uEV analytics is a welcome extension to the
repertoire of the novel robust and non-biased methods for
urinary analytics (Renkema et al. 2014; Khurana et al.
2017). Carefully planned studies, meticulous controls and crit-
ical evaluation of results will provide an unforeseen accuracy
to mechanisms of health and disease beyond the kidney
parenchyme and urinary tract. The obvious caveat of genetic
material as a Bcontaminant^ from bacterial OMVs should be
noted. Moreover, novel mechanisms to distinguish bacterial
from Bnon-bacterial^ cystitis, an important clinical problem,
are expected to be discovered with emerging new therapeutic
options.
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An exciting extension to utilizing EV biology relates to
bioengineered nanoparticles. These can serve as EV mimics
and can be released into the circulation with a defined target
cell Baddress code^. Upon attachment, the engineered protein,
regulatory RNA or selected medication contents can be re-
leased as previously exemplified by the delivery of targeted
chemotherapeutics (Jang et al. 2013). These treatments will
have a huge influence, including on kidney diseases, with
next-generation targeted therapies fully utilizing the obtained
knowledge of EV biology and their bioengineering capacities.
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