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Abstract. We prove a homogenization result for system of semilinear parabolic PDEs of
the type

∂tu
ε = 1

2
e2V (x/ε)div

(
e−2V (x/ε)a(x/ε)∇uε)+ h(x, uε,∇uε) ,

where V and a are random ergodic fields. We extend to the random case, results of Buck-
dahn, Hu & Peng [4] for periodic structures. The same method involving stability results
is applied. Our main tool is an Lp estimate for the gradient of the solution of the auxiliary
problems. The same type of results is obtained for systems of semilinear elliptic PDEs.

1. Introduction

The problem considered in this paper is the homogenization of systems of semi-
linear parabolic PDEs with random coefficients,

∂tu
ε
k + Lε,ωuεk + hk(x, uε,∇uε) = 0, t ∈ [0, T ], k ∈ {1, · · · ,m}

uε(T , x) = H(x), x ∈ R
d (1)

where Lε,ω is the second order partial differential operator with random stationary
ergodic coefficients

Lε,ωf = 1

2
e2V (x/ε,ω)div

(
a(x/ε, ω)e−2V (x/ε,ω)∇f

)
. (2)

Note that when a and V are smooth enough, Lε,ω can be rewritten as

Lε,ωf = 1

2

∑
i,j

aij (x/ε, ω)∂
2
ij f +

1

ε

∑
i,j

(
1

2
∂iaij (x/ε, ω)− ∂iV (x/ε, ω)

)
∂jf ,

and exhibits an exploding term.
The aim of homogenization is to prove the “convergence” of uε (when ε −→ 0)

to the solution of systems of semilinear PDEs, where the inhomogeneous coeffi-
cients have been replaced by “constant” ones. This type of problems have been
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studied in a lot of papers (see [1], [11] for monographs on the subject). A common
classification of the methods used, is to distinguish between “analytical” methods,
and “probabilistic” ones. For the system (1) with periodic coefficients, an analytical
proof of homogenization can be found in [1].

This paper belongs to the second set of methods. Roughly speaking, the prob-
abilistic method begins with representing the quantities of interest by means of
stochastic processes, and then tries to prove convergence in laws of these processes.

For the linear case (h = 0), the problem often reduces to transforming the
underlying Markov process into a martingale, whose quadratic variation has a de-
terministic limit thanks to the ergodic theorem. This transformation requires to
find harmonic functions (the so-called “auxiliary” problem). This method has been
introduced by Freidlin [6] in the periodic framework. Since then, it has been ex-
tended in various directions ([5] for Brownian motion in a random potential, [26]
for Brownian motion in a random perforated domain, [15] for diffusions with co-
efficients depending on time, [20] [19] and [16] for Markov processes associated
to Dirichlet forms... )

The probabilistic way of handling nonlinear terms, is to work with the back-
ward stochastic differential equations (BSDEs) introduced by Pardoux & Peng
[24], and to prove convergence in laws of the stochastic processes involved. This
method has been successfully applied for rapidly oscillating non linear terms not
depending of the gradient (more precisely, the non linear terms are of the type
h(t, x/ε, x, uε)+∇uεĥ(t, x/ε, x, uε)) (see [23] for the periodic case, and [16] for
Markov processes associated to a Dirichlet form), or for non linear terms of type
h(x, uε)+ ĥ(x, uε) ‖∇uε‖2 (see [8]). Another method which allows more general
non-linearity in the gradient, is to exploit the stability results of Hu & Peng [10].
This strategy has been employed in the periodic case in [4], [9], or [2]. This paper
extends these results to the random case. The main result (see theorem 9 for a pre-
cise statement) says that for some p ∈]1, 2], for any bounded open domain G of
R
d , and all t ∈ [0, T ],〈∫

G

∥∥∥uε(t, x)− u0(t, x)

∥∥∥p dx〉 −→
ε→0

0 ,

where 〈.〉 denotes the expectation over the randomness of a and V , and u0 is the
solution of a semilinear system

∂tu
0 + 1

2
āi,j ∂

2
i,j u

0
t + h̄(x, u0

t ,∇u0
t ) = 0 , t ∈ [0, T ] ,

u0
T = H .

Apart from stationarity and ergodicity, this theorem is proved under uniform ellip-
ticity of a and boundedness of a and V .

One key point in the proof of theorem 9, is to get Lp-estimates (p > 2) of the
gradient of the solution of the auxiliary problem. These are obtained using results
of Meyers [17] in the deterministic case, and the ergodic theorem.

The paper is organized as follows. Section 2 states the problem and the as-
sumptions made throughout the paper. Section 3 deals with the auxiliary problems
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and the Lp-estimates of the gradient. In section 4, the homogenization result for
systems of parabolic PDEs is proved, and section 5 treats the case of elliptic PDEs.

The author wishes to thank A. Lejay and E. Pardoux for helpful discussions.

2. Standing assumptions and notations

Let us now be more precise on the assumptions made on the system (1). All the
results stated in this section are already proved elsewhere, so they are often recalled
without justification. The reader is referred to [11] or [18] for the description of
the random media, and to [16] for the construction and the properties of the envi-
ronment viewed from the particle in the case of the Markov process associated to
a Dirichlet form.

Random media. The description of the random media involves a probability space
(�,A, µ), on which acts a group of transformations (τx, x ∈ R

d). As is now usual
in this kind of problems, we assume that

(RM 1) µ is invariant under the action of (τx, x ∈ R
d);

(RM 2) (�,A, µ, (τx)x∈Rd ) is ergodic;
(RM 3) if f is any measurable function on (�,A), (x, ω) �→ f(τxω) is measurable

on (Rd ×�,B(Rd)⊗A) ;
(RM 4) (τx, x ∈ R

d) is stochastically continuous, i.e. ∀f ∈ L2(�,A, µ), ∀ε > 0,

µ (|f(τhω)− f(ω)| ≥ ε) −→‖h‖→0
0 .

Let Tx be the operator on L2(�,µ) defined by

Txf(ω)
�= f(τxω) .

(Tx, x ∈ R
d) is a strongly continuous unitary group on L2(�,µ). For all i ∈

{1, · · · , d}, it is then possible to define the infinitesimal generator Di of the group
(Thei , h ∈ R) ((e1, · · · , ed) is the canonical basis of R

d ). That is,

dom(Di) =
{

f ∈ L2(�,µ), lim
h→0

Thei f − f
h

exists in L2(�,µ)

}
,

∀f ∈ dom(Di), Dif = L2 − lim
h→0

Thei f − f
h

.

It is clear that if f ∈
d

∩
i=1

dom(Di), then µ-a.s., x �→ f (x, ω)
�= f(τxω) is differen-

tiable and that ∇f (x, ω) = Df(τxω).
As a consequence of stationarity, one gets moreover the following integration

by parts formula

Lemma 1. Under assumptions (RM 1..4),

∀f, g ∈ dom(Di),
∫

f(ω)Dig(ω) dµ = −
∫

g(ω)Dif(ω) dµ .



Homogenization of random semilinear PDEs 495

About the linear part. The matrix a(x, ω) and the function V (x, ω) are respec-
tively given by a measurable function a on�with values in the space of symmetric
matrices Sd and a measurable real-valued function V, in such a way that

a(x, ω) = a(τxω) , V (x, ω) = V(τxω) . (3)

It is assumed that there exist strictly positive constants a, Ā, and ! , such that

(L 1) µ-a.s., for all y ∈ R
d ,

a ‖y‖2 ≤ (a(ω)y, y) ≤ Ā ‖y‖2 , (4)

where ‖.‖ is the euclidean norm, and (., .) the corresponding scalar product.

(L 2) |V(ω)| ≤ !, µ a.s.,
(L 3)

∫
e−2V(ω) dµ(ω) = 1.

The measure dπ
�= e−2V (ω) dµ is then a probability measure on�. The scalar prod-

uct on L2(�,µ) (respectively L2(�, π)) will be denoted by 〈., .〉µ (respectively
〈., .〉π ).

The Markov process in fixed environment. For each ω ∈ �, let πω be the

positive measure on R
d defined by dπω(x)

�= e−2V (x,ω) dx. Let us consider the
Dirichlet form on L2(Rd , πω), with domain H 1(Rd , πω),

Eω(f, g) �= 1

2

∫
ai,j (x, ω)∂if (x) ∂jg(x) dπ

ω(x) , (5)

where repeated indices are summed from 1 to d, and ∂i
�= ∂
∂xi

. Eω is a regular

strongly local Dirichlet form (with C∞c (Rd) as a core). (Lω, dom(Lω)) will denote
the self-adjoint operator associated to (Eω, dom(Eω)); and (X, Pωx ) the associated
continuous and conservative Markov process.

Let us recall now the generalized Itô’s formula (theorems 5.5.1, 5.5.2, and
corollary 5.5.4 of [7]).

Proposition 2. Let v be a function in H 1
loc(R

d), and ṽ be a quasi-continuous
version of v. Then µ-a.s., and q.e. in x ∈ R

d ,

ṽ(Xt )− ṽ(X0) = Mω,v
t +Nω,vt , P ωx -p.s.,

whereNω,vt is a continuous additive functional locally of zero energy, andMω,v
t is

a martingale continuous additive functional (MAF) locally of finite energy, whose
quadratic variation is

〈
Mω,v

〉
t

�=
∫ t

0
(a(Xs, ω)∇v(Xs),∇v(Xs)) ds , Pωx -p.s., q.e. in x ∈ R

d ,

Moreover, if there exists a function u in L1
loc(R

d) such that

∀f ∈ C∞c (Rd) , Eω(v, f ) = −
∫
u(x)f (x) dx ,

then Nω,vt = ∫ t
0 u(Xs)e

2V (Xs,ω) ds, Pωx -p.s., q.e. in x ∈ R
d .
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Applying this to the functions x ∈ R
d �→ xi ∈ R, we get the decomposition

X = MX + NX, where MX is a local continuous martingale with values in R
d ,

and with quadratic variations given by

〈
MX
i ,M

X
j

〉
t
=
∫ t

0
ai,j (Xs, ω) ds , P

ω
x -p.s., q.e. in x ∈ R

d .

Since a is bounded, MX is actually a martingale additive functional. Moreover,
theorem 5.6.3 in [7] allows one to express Mω,v of proposition 2 as

M
ω,v
t =

∫ t

0
∇v(Xs) dMX

s , Pωx -p.s., q.e. in x ∈ R
d .

Finally for each ε > 0 and ω, let dπε,ω(x)
�= e−2V ( xε ,ω) dx, and Eε,ω be the

regular strongly local Dirichlet form defined on H 1(Rd , πε,ω) by

Eε,ω(f, g) �= 1

2

∫
ai,j

(x
ε
, ω

)
∂if (x) ∂jg(x)e

−2V ( xε ,ω) dx . (6)

In accordance with what precedes, (Lε,ω, dom(Lε,ω)) will denote the generator of
(Eε,ω,H 1(Rd , πε,ω)), and (X, P ε,ωx ) the associated Markov process. Obviously,
(Xt , t ≥ 0) has the same law under P ε,ωx as (εXt/ε2 , t ≥ 0) under Pωx/ε. Moreover,
it follows from stationarity that (Xt − y, t ≥ 0) has the same law under P ε,ωx+y as

(Xt , t ≥ 0) under P
ε,τy/εω
x .

The environment viewed from the particle. Related to Xω, one can define a
Markov process on �, the so-called “environment viewed from the particle”. For
this purpose, let us introduce further notations. Let Eπ be the bilinear form defined

on H 1(µ)
�= ∩di=1 dom(Di) by

Eπ (f, g)
�= 1

2

∫
ai,j (ω)Dif(ω) Djg(ω) dπ(ω) . (7)

Eπ is a closed bilinear symetric form densely defined on L2(�,µ). Consequently,
there exists a self-adjoint operator (Lπ , dom(Lπ )) such that

Eπ (f, g) = − 〈Lπ f, g
〉
π
, ∀f ∈ dom(Lπ ) , ∀g ∈ H 1(µ) .

Lemma 3. (see for instance [16], chapter 2).

Let ωt
�= τXωt ω. Under (RM 1..4) and (L 1..3), ωt is a Markov process on � with

generator (Lπ , dom(Lπ )), and Dirichlet form (Eπ ,H 1(µ)). ωt is ergodic, with
invariant probability π .

Some remarks on the assumptions. First of all, note that any stationary random
fields a(x, ω) and V (x, ω), can be represented by formula (3). It suffices to choose
for � the canonical space SR

d

d × R
R
d
, equipped with the σ -field generated by the

cylinder sets. µ is then the law of the stationary fields a and V ; (τx, x ∈ R
d) is the
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group of translations; the r.v. a is the function which maps ω = (ω1, ω2) ∈ � to
ω1(0), and V(ω) = ω2(0).

Moreover, adding a strictly positive constant to V, we can always assume that
(L 3) is satisfied.

3. The auxiliary problems

This section is devoted to the study of the auxiliary problems

∀i ∈ {1, · · · , d} , find functions vi(x, ω) such that Lω(xi + vi(x, ω)) = 0 , (8)

which enable us to get rid of the highly oscillating terms in the linear part. Note that
if vi is a stationary random field (i.e vi(x, ω) = vi (τxω)), then (8) can be written
as

∀f ∈ H 1(µ) , Eπ (f, vi ) = −1

2

〈
ai,jDj f

〉
π
. (9)

But vi is not in general a stationary field. It is however possible to construct its gra-
dient as a stationary field satisfying (9). That’s the aim of this section, which begins
with some notations and results borrowed from [11], and [16]. The construction of
the gradient of vi in L2(�,µ), is made with whe point of view of [11]. The only
new result in this section is proposition 7 which gives Lp-estimates (p > 2) of the
gradient.

3.1. The space L2(�,µ)

For any f ∈ L2(�,µ) and any ϕ ∈ C∞c (Rd), let ϕ 0 f be the convolution

ϕ 0 f(ω)
�=

∫
f(τxω) ϕ(x) dx . (10)

ϕ 0 f is an element of L2(�,µ). Let

S = Span
{
ϕ 0 f , f ∈ L2(�,µ) , ϕ ∈ C∞c (Rd)

}
(11)

be the space of smooth functionals. The main property of S is given in the next
lemma

Lemma 4. Assume (RM 1..4). S is dense in L2(�,µ). Moreover, S is a subset of
∩di=1dom(Di), and

∀f ∈ L2(�,µ) , ∀ϕ ∈ C∞c (Rd) , Di(ϕ 0 f) = −∂iϕ 0 f .

The space of vortex-free stationary fields is then defined by

V2
pot=

{
f ∈ L2(�,µ)d

∣∣∣∣∀i ∈ {1, · · · , d},
∫

fi dµ = 0
∀i, j ∈ {1, · · · , d},∀ϕ ∈ C∞c (Rd), ∂jϕ 0 fi = ∂iϕ 0 fj

}

If f is a function in V2
pot , then µ-a.e., the function x �→ f(τxω) is vortex free.

Lemma 5. Assume (RM 1..4). V2
pot is a closed subset of L2(�,µ)d and

V2
pot = {(D1f, · · · ,Dd f), f ∈ S}‖.‖L2(�,µ)d .

This lemma is proved in [11] and in [16].
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3.2. Solution of the auxiliary problem in L2

On the Hilbert space (V2
pot , 〈., .〉π ), let us define the bilinear form

G(f, g) = 1

2

〈
ai,j figj

〉
π
.

Due to (L 1), this is a coercive quadratic form on V2
pot . On the other hand, for

all i ∈ {1, · · · , d}, g ∈ V2
pot �→ − 1

2

〈
ai,j gj

〉
π

is a linear form on V2
pot . By the

Lax-Milgram theorem, for all i ∈ {1, · · · , d}, there exists a unique φi ∈ V2
pot such

that for all g ∈ V2
pot ,

G(φi, g) = −1

2

〈
ai,j gj

〉
π
. (12)

Sinceφi ∈ V2
pot ,µ-a.s.x ∈ R

d �→ φi(τxω) is vortex free. Therefore, we can choose
a function f i(x, ω) such that µ-a.s., ∇f i(x, ω) = φi(τxω). Take for instance

f i(x, ω) =
∫ 1

0
xj φ

i
j (τtxω) dt . (13)

Lemma 6. µ-a.s., gi(x, ω)
�= xi + f i(x, ω) is a function in H 1

loc(R
d) which is a

weak solution of the equation

Lωgi(x, ω) = 0 . (14)

Proof of Lemma 6. Let ψ ∈ C∞c (Rd) and G ∈ L2(�,µ), and let g
�= D(ψ 0 G).

Then on one hand,

G(φi, g) = − 1
2

∫
ak,j (ω)(∂jψ 0G)(ω) φik(ω) dπ(ω)

= − 1
2

∫
Rd
dx ∂jψ(x)

∫
�

ak,j (ω)G(τxω)φik(ω)dπ(ω)

= − 1
2

∫
Rd
dx ∂jψ(x)

∫
�

ak,j (τ−xω)G(ω)φik(τ−xω)e
−2V (τ−xω)dµ(ω)

= − 1
2

〈
G,

∫
Rd
∂jψ(−x)ak,j (x, ω)φik(x, ω)dπω(x)

〉
µ

= 1
2

〈
G,

∫
Rd
∂j ψ̂(x)ak,j (x, ω)φik(x, ω)dπ

ω(x)
〉
µ

where ψ̂(x)
�= ψ(−x). On the other hand,

− 1
2

〈
ai,jgj

〉
π
= 1

2

∫
ai,j (ω) (∂jψ 0G)(ω) dπ(ω)

= 1
2

∫
Rd
dx ∂jψ(x)

∫
ai,j (ω)G(τxω)dπ(ω)

= 1
2

∫
Rd
dx ∂jψ(x)

∫
ai,j (τ−xω)G(ω)e−2V (τ−xω)dµ(ω)

= − 1
2

〈
G,

∫
Rd
∂j ψ̂(x)ai,j (x, ω)dπω(x)

〉
µ
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Applying (12) to functions g = D(ψ 0 G), for ψ ∈ C∞c (Rd) and G ∈ L2(�,µ),
yields then ∀G ∈ L2(�,µ), ∀ψ ∈ C∞c (Rd), ∀i ∈ {1, · · · , d},〈
G,

∫
ak,j (x, ω)∂jψ(x)φ

i
k(x, ω) dπ

ω(x)

〉
µ

=−
〈
G,

∫
ai,j (x, ω)∂jψ(x) dπ

ω(x)

〉
µ

Therefore, µ-a.s., for all ψ ∈ C∞c (Rd) and all i ∈ {1, · · · , d},

Eω(f i(., ω), ψ) = −Eω(xi, ψ) (15)

�

3.3. Lp-estimates of the gradient

The aim of this section is to prove

Proposition 7. Assume (RM 1..4) and (L 1..3). Let us denote

V = essinf V , V̄ = esssupV , 3V = V̄ − V ,

Ā and a the best constants in (4), b = e−23V a

Ā
(∈ [0, 1]) .

Then, there exists Q(b, d) > 2 such that for all p ∈ [2,Q(b, d)[, for all i ∈
{1, · · · , d}, φi ∈ Lp(�,µ). Moreover, Q(b, d)−→

b→1
+∞, and Q(b, d)−→

b→0
2.

Proof of Proposition 7. Since gi(., ω) is a weak solution of (14), for all R > 0,

the function giR(x, ω)
�= gi(x, ω) − ∫

B(0,2R) g
i(x, ω) dx is again a weak solution

of (14) (B(0, 2R) is the ball of R
d centered at 0, of radius 2R). Consider

H(ω) = 1

Ā
a(ω)e−2(V(ω)−V ) .

µ-a.s., for all x, ξ ∈ R
d ,

b ‖ξ‖2 ≤ (H(τxω)ξ, ξ) ≤ ‖ξ‖2 ; (16)

i.e., H(., ω) satisfy assumptions (10) and (11) of [17] (p 192). Moreover, for all
R > 0 and all i ∈ {1, · · · , d}, giR is a solution in H 1

loc(R
d) of

div(H(τxω)∇giR(x, ω)) = 0 . (17)

Applying theorem 2 of [17] p 200, we get the existence of constants Q(b, d) > 2
and C(b, p, d) > 0 such that for all p ∈ [2,Q(b, d)[, µ-a.s.,∥∥∥∇giR(., ω)∥∥∥

p,B(0,R) ≤ C(b, p, d)R
d/p−d/2−1

∥∥∥giR(., ω)∥∥∥2,B(0,2R) ,
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where ‖.‖p,B(0,R) is the norm inLp(B(0, R), dx). Since
∫
B(0,2R) g

i
R(x, ω) dx = 0,

Poincaré inequality then yields∥∥∥giR(., ω)∥∥∥2,B(0,2R) ≤ C(d)R
∥∥∥∇giR(., ω)∥∥∥2,B(0,2R) .

We have thus obtained that µ-a.s., for all p ∈ [2,Q(b, d)[ and all R > 0,

R−d/p
∥∥∥∇giR(., ω)∥∥∥

p,B(0,R) ≤ C(b, p, d)R
−d/2

∥∥∥∇giR(., ω)∥∥∥2,B(0,2R) . (18)

But ∇giR(x, ω) = ei + φi(τxω)µ-a.s. By the ergodic theorem,

R−d
∥∥∇giR(., ω)∥∥2

2,B(0,2R) = 1
Rd

∫
B(0,2R)

∥∥ei + φi(τxω)∥∥2
dx

µ−a.s.,L1(µ)

−→
R→∞ |B(0, 2)| ∫ ∥∥ei + φi(ω)∥∥2

dµ .

Therefore, µ-a.s.,

lim sup
R→∞

R−d
∥∥∥ei + φi(τ.ω)∥∥∥p

p,B(0,R) ≤ C(b, p, d)
∥∥∥ei + φi∥∥∥p

L2(µ)
.

But, for all K > 0,

lim sup
R→∞

R−d
∥∥ei + φi(τ.ω)∥∥pp,B(0,R)

≥ lim sup
R→∞

1
Rd

∫
B(0,R)

[∥∥ei + φi(τxω)∥∥ ∧K]p
dx

= |B(0, 1)| ∫ [∥∥ei + φi(ω)∥∥ ∧K]p
dµ , by ergodic theorem

The Beppo Levi monotone convergence theorem allows now to conclude that∥∥∥ei + φi∥∥∥
Lp(µ)

≤ C(b, p, d)
∥∥∥ei + φi∥∥∥

L2(µ)
.

�

Remark 1. One can take Q(b, 1) = +∞ for all b ∈ [0; 1]. Indeed, in the one-di-
mensional case, equation (12) can be solved explicitly. Using ergodicity, one easily

get that φ = e2V/a
〈e2V/a〉µ − 1, which is actually in V2

pot , since in the 1-dimensional

case, V2
pot reduces to the elements in L2(µ) with zero mean.

Remark 2. The constantsQ(b, d) can be described in the following way. Consider
the problem 


�u = divf ,

u ∈ W 1,p
0 (Bd(0, 1)) ,

f ∈ Lp(Bd(0, 1)) .
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It gets a unique solution in W 1,p
0 (Bd(0, 1)), and one has the estimate

‖∇u‖Lp(Bd (0,1)) ≤ Kp(d) ‖f ‖Lp(Bd (0,1)) .

Let Kp(d) be the best constant in the preceding inequality. Then

Q(b, d) = sup

{
p such that

1

Kp(d)
> 1− b

}
. (19)

4. Homogenization of parabolic systems

4.1. The problem and assumptions made on the non-linear term
and the final condition

This section is concerned with the homogenization of the parabolic system (1).
Apart from assumptions (RM 1..4) and (L 1..3) on the linear part, system (1) is
studied under the following assumptions on the non-linear term h, and the final
condition H :

(P 1) (i) h : R
d × R

m × R
m×d → R

m is uniformly continuous and bounded.
(ii) ∃K > 0 such that ∀(x, y, z, z′) ∈ R

d × R
m × R

m×d × R
m×d ,

∥∥h(x, y, z)− h(x, y, z′)∥∥ ≤ K ∥∥z− z′∥∥ ;

(iii) ∃λ ∈ R such that ∀(x, y, y′, z) ∈ R
d × R

m × R
m × R

m×d ,

(
h(x, y, z)− h(x, y′, z), y − y′) ≤ λ ∥∥y − y′∥∥2 ;

(iv) ∃C > 0 and g ∈ L2(Rd), such that ∀(x, y, z) ∈ R
d × R

m × R
m×d ,

‖h(x, y, z)‖ ≤ C [g(x)+ ‖y‖ + ‖z‖] .

(P 2) H : R
d → R

m is continuous and H ∈ L2(Rd)m.

Assumptions (L 1..3) and (P 1-2) are enough to ensure that µ-a.s., there exists
a unique weak solution to the system (1), i.e a solution in the space

W1
2

(
0, T ,H 1(Rd), L2(Rd)

) �= {
u(t, x) ∈ L2([0, T ];H 1(Rd)m) such that

∂tu(t, x) ∈ L2([0, T ], H−1(Rd)m)
}
.

Moreover, this space is continuously embedded in the space C ([0, T ];L2(Rd)m
)

(see for instance chapter 30 of [25]).
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4.2. The homogenized equation

Let us define the homogenized coefficients

ā
�= 〈
(Id+ φ)a(Id + φ)∗〉

π
, (20)

where φi,j
�= φij .

h̄(x, y, z)
�= 〈h(x, y, z(Id + φ))〉π (21)

Lemma 8. Assume (RM 1..4), (L 1..3), (P 1-2) are satisfied. Then, ā is a strictly
positive symmetric matrix, and h̄ satisfies (P 1) with constantsK 〈‖Id+ φ‖〉π and
λ in (P 1 (ii)) and (P 1 (iii)). Thus equation{

∂tu
0 + 1

2 āi,j ∂
2
i,j u

0
t + h̄(x, u0

t ,∇u0
t ) = 0 , t ∈ [0, T ] ,

u0
T = H

(22)

has a unique solution u0 ∈ W1
2

(
0, T ,H 1(Rd)m, L2(Rd)m

)
.

Proof of Lemma 8. ā is clearly a non-negative symmetric matrix. We just have
to check that it is non-degenerate. Assume that there exists ξ ∈ R

d such that
(ξ, āξ) = 0. Then µ-a.s., ‖ξ + φ∗ξ‖2

a(ω) = 0. a(ω) being uniformly elliptic,
this implies that µ-a.s., ξ + φ∗ξ = 0. Integrating this equation over µ, we get
ξ = 0, since for all i ∈ {1, · · · , d}, φi ∈ V2

pot , and therefore ∀i, j ∈ {1, · · · , d},∫
φij dµ = 0.

The assertion concerning h̄ is an easy consequence of (P 1) and φ ∈ L2(�,µ).
Now the existence and uniqueness of a weak solution to (22) is a consequence of
theorem 30.A in [25]. �

4.3. The homogenization result in parabolic case

We are now able to state the main result of this section

Theorem 9. Assume that (RM 1..4), (L 1..3) and (P 1-2) are satisfied. Then for
all p ∈]1, 1

2Q(b, d)[, p ≤ 2, for all bounded domain G of R
d , for all t ∈ [0, T ],〈∫

G

∥∥∥uε(t, x)− u0(t, x)

∥∥∥p dx〉
µ

−→
ε→0

0 . (23)

4.4. Proof of theorem 9

(a) The non-linear Feynman-Kac formula. Let t0 be any time in [0,T], and
(X, P

ε,ω
t0,x
) be the process X starting from x at time t0. FX is the minimal ad-

missible filtration generated by X. Since a martingale representation theorem is
valid with respect to the martingale partMX of X (because of uniform ellipticity),
it is proved for instance in [22] or [16] that under (P 1-2), there exists a unique pair
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(Yt , Zt )t∈[t0,T ] of FX-progressively measurable processes satisfying for all x ∈ R
d

and all t0,

Yt = H(XT )+
∫ T

t

h(Xr, Yr , Zr) dr −
∫ T

t

Zr dM
X
r , t ∈ [t0, T ] , P ε,ωt0,x − p.s. ,

(24)

E
ε,ω
t0,x

[
sup

t0≤t≤T
‖Yt‖2 +

∫ T

t0

‖Zr‖2 dr

]
<∞ . (25)

Moreover, it has been proved in [3] (theorem 20) that P ε,ωt0,x -p.s., for all t ∈ [t0, T ],
Yt = uε(t, Xt ), where uε is a continuous version of the weak solution of system
(1). Therefore Yt0 = uε(t0, x) and we are going to prove that〈∫

G

∥∥∥Yt0 − u0(t0, x)

∥∥∥p dx〉
µ

−→
ε→0

0 .

To avoid heavy notations, we will take in all the sequel t0 = 0.

(b) Change on X. Letgi be the functions defined in lemma 6 and recall from lemma

6 thatµ-a.s., for allψ ∈ C∞c (Rd), Eω(gi, ψ) = 0. Thus, if giε(x, ω)
�= εgi( x

ε
, ω) =

xi + εf i( x
ε
, ω), for all ψ ∈ C∞c (Rd) and all ε > 0,

Eε,ω(giε, ψ) = 0 . (26)

Applying proposition 2 to the functions giε(., ω), we get then that µ-a.s.,

g̃ε(Xt , ω)− g̃ε(X0, ω) = Mε,ω
t , P ε,ωx -p.s., q.e. in x ∈ R

d , (27)

where

M
ε,ω
t =

∫ t

0
(Id+ φ)

(
Xs

ε
, ω

)
dMX

s , P ε,ωx − p.s., q.e. in x ∈ R
d .

Lemma 10. Assume that (RM 1..4) and (L 1..3) are satisfied. Let X̂t
�= X0 +∫ t

0 (Id+ φ)
(
Xs
ε
, ω

)
dMX

s . Then,µ-a.s, q.e in x, the law of (X̂t ; t ≥ 0) underP ε,ωx

converges weakly in Cx(R+;Rd) (space of continuous paths starting from x, en-
dowed with the uniform convergence on compact subsets) to the law of (Bt ; t ≥ 0),
whereB is a Brownian motion with covariance matrix ā, starting from x. Moreover,
µ-a.s., q.e in x, for all T > 0 and all δ > 0,

P ε,ωx

[
sup

0≤t≤T

∥∥∥Xt − X̂t∥∥∥ ≥ δ
]
−→
ε→0

0 .

As a consequence, the law of ((Xt , X̂t ); t ≥ 0) under P ε,ωx converges weakly in
Cx(R+;Rd)× Cx(R+;Rd) to the law of ((Bt , Bt ); t ≥ 0)
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Proof of Lemma 10. This lemma is proved in [16]. �

(c) Change on Y. We are first going to prove theorem 9 in the case where the
coefficients h andH are smooth. To this end, we introduce assumptions (P 1’) and
(P 2’).

(P 1’) h is bounded and Lipschitz, and h(x, 0, 0) ∈ L2(Rd)m.
(P 2’) H : R

d �→ R
m is a C(2,δ)-function for some δ ∈]0; 1[ (i.e. bounded, with

bounded derivatives up to order 2, and with second derivatives which are Hölder
continuous of order δ), and H ∈ L2(Rd)m.

Under assumptions (P 1’-2’), the solutionu0 of system (22) is in the spaceC(1,δ/2)(2,δ)
of functions with one derivative in time which is Hölder continuous of order δ/2,
and with derivatives in space up to order two, Hölder continuous of order δ (see for
instance chapter VII of [13]).

Lemma 11. Assume that (RM 1..3), (L 1..3) and (P 1-2’) hold. Let
 Ŷt

�= Yt − u0(t, X̂t )

Ẑt
�= Zt − ∇u0(t, X̂t )(Id+ φ)

(
Xt
ε
, ω

) (28)

Then, for q.e. x ∈ R
d , P ε,ωx -p.s.,

Ŷt = η +
∫ T

t

F (r, Ŷr , Ẑr ) dr −
∫ T

t

Ẑr dM
X
r , (29)

where

η
�= H(XT )−H(X̂T )

F (r, y, z)
�= h

(
Xr, y + u0(r, X̂r ), z+ ∇u0(r, X̂r )

(
Id+ φ(Xr

ε
, ω)

))
−h̄(X̂r , u0(r, X̂r ),∇u0(r, X̂r ))

+ 1
2

[
(Id+ φ)a(Id+ φ)∗ − ā]

i,j

(
Xr
ε
, ω

)
∂2
i,j u

0(r, X̂r )

(30)

Proof of Lemma 11. It is an easy consequence of Itô’s formula applied to the smooth
function u0, of equation (22) satisfied by u0, and of definitions of the processes Y ,
Ŷ and Ẑ. �

(d) An ergodic lemma.

Lemma 12. Assume that (RM 1..3), (L 1..3) hold. LetG : [0, T ]×R
d ×�→ R

be a measurable function such that

(i) There exists ξ ∈ L1(�,µ) such that for all δ > 0, for allK compact subsets of
R
d , ∃α > 0 such that ∀r, r ′ ∈ [0, T ], |r − r ′| ≤ α, ∀x, x′ ∈ K ,

∥∥x − x′∥∥ ≤ α,
µ-a.s.,

|G(r, x, ω)−G(r ′, x′, ω)| ≤ ξ(ω)δ ,
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(ii) For all r ∈ [0, T ], and all x ∈ R
d , ω �→ G(r, x, ω) is in L1(�,µ) and∫

G(r, x, ω) dπ = 0 .

LetP ε,µx
�= ∫

�
dµ(ω)P

ε,ω
x . Then, for q.e. x ∈ R

d , and all s ∈ [0, T ], for all β > 0,

P ε,µx

[∣∣∣∣
∫ s

0
G
(
r, X̂r , τXr

ε
ω
)
dr

∣∣∣∣ ≥ β
]
−→
ε→0

0 .

Proof of Lemma 12. It follows from lemma 10 that the family of laws (X̂, P ε,µx )

is tight in the space Cx([0, T ],Rd) of continuous functions starting from x. This
enables to replace the process X̂ by a fixed trajectory in Cx . Indeed, let δ > 0 and

Kδ a compact subset of Cx such that infε>0 P
ε,µ
x

[
X̂ ∈ Kδ

]
≥ 1− δ.

Cδ
�=

{
y ∈ R

d such that ∃r ∈ [0, T ], ∃x ∈ Kδ, ‖y − x(r)‖ ≤ 1
}

is a compact subset of R
d . By (i), one can choose α ∈]0, 1] such that for all

x, x′ ∈ Cδ ,
∥∥x − x′∥∥ ≤ α,

∣∣G(r, x, ω)−G(r, x′, ω)∣∣ ≤ ξ(ω)δ. Cx being separable
(with countable basis (xi)), Kδ can be covered by a finite number Nα of balls of
Cx , say B(xi, α); i.e.

Kδ ⊂
Nα

∪
i=1

B(xi, α) =
Nα

∪
i=1

B̃i ,

where B̃i ⊂ B(xi, α) are disjoints. Now,

P
ε,µ
x

[∣∣∣∫ s0 G (
r, X̂r , τXr

ε
ω
)
dr

∣∣∣ ≥ β]
≤ P ε,µx

[
X̂ /∈ Kδ

]
+

Nα∑
i=1

P ε,µx

[∣∣∣∣
∫ s

0
G
(
r, xi(r), τXr

ε
ω
)
dr

∣∣∣∣ ≥ β

2

]

+
Nα∑
i=1

P ε,µx

[∫ T

0

∣∣∣G (
r, X̂r , τXr

ε
ω
)
−G

(
r, xi(r), τXr

ε
ω
)∣∣∣ dr ≥ β

2
;X̂ ∈ B̃i ∩Kδ

]

But, when X̂ ∈ B̃i , for all r ∈ [0, T ],
∥∥∥X̂r − xi(r)∥∥∥ ≤ α, and X̂r ∈ Cδ . Therefore,

µ-a.s.,
∣∣∣G (

r, X̂r , τXr
ε
ω
)
−G

(
r, xi(r), τXr

ε
ω
)∣∣∣ ≤ ξ (τXr

ε
ω
)
δ. Hence,

P
ε,µ
x

[∣∣∣∫ T0 G
(
r, X̂r , τXr

ε
ω
)
dr

∣∣∣ ≥ β]
≤ δ + P ε,µx

[∫ T

0
ξ(τXr

ε
ω)dr ≥ β

2δ

]
+

Nα∑
i=1

P ε,µx

[∣∣∣∣
∫ s

0
G
(
r, xi(r), τXr

ε
ω
)
dr

∣∣∣∣ ≥ β

2

]

≤ δ + T e2�V 2δ
β
〈ξ〉µ +

∑Nα
i=1 P

ε,µ
x

[∣∣∣∫ s0 G (
r, xi(r), τXr

ε
ω
)
dr

∣∣∣ ≥ β
2

]
It is then sufficient to show that for all x(.) ∈ Cx ,

Eε,µx

[∣∣∣∣
∫ s

0
G
(
r, x(r), τXr

ε
ω
)
dr

∣∣∣∣
]
−→
ε→0

0 .
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Let then x(.) ∈ Cx and δ > 0 be fixed. Let K be the compact subset of R
d defined

by K
�= {

y ∈ R
d such that ∃r ∈ [0, T ], ‖y − x(r)‖ ≤ 1

}
. Let α ∈]0, 1] be such

that for all r, r ′ ∈ [0, T ], |r − r ′| ≤ α, for all x, x′ ∈ K ,
∥∥x − x′∥∥ ≤ α,∣∣G(r, x, ω)−G(r ′, x′, ω)∣∣ ≤ ξ(ω)δ .

Finally, let β ∈]0, α] be such that for all r, r ′ ∈ [0, T ],
∣∣r − r ′∣∣ ≤ β implies∥∥x(r)− x(r ′)∥∥ ≤ α. If (ti) is a subdivision of [0, s] with step β, we get then

E
ε,µ
x

[∣∣∣∫ s0 G (
r, x(r), τXr

ε
ω
)
dr

∣∣∣]
≤∑

i E
ε,µ
x

[∣∣∣∫ ti+1
ti

G
(
ti , x(ti), τXr

ε
ω
)
dr

∣∣∣]
+∑

i E
ε,µ
x

[∫ ti+1
ti

∣∣∣G (
r, x(r), τXr

ε
ω
)
−G

(
ti , x(ti), τXr

ε
ω
)∣∣∣ dr]

≤e2�V∑
iE

1,µ
0

[∣∣∣∣∣ε2
∫ ti+1−ti

ε2

0 G(ti, x(ti), τXr
ε
ω) dr

∣∣∣∣∣
]
+ δEε,µx

[∫ T
0 ξ

(
τXr
ε
ω
)
dr
]

But, for all i,G(ti, x(ti), ω) ∈ L1(�,µ), and
∫
G(ti, x(ti), ω) dπ = 0. Ergodicity

of τXr
ε
ω implies now that for all δ > 0,

lim sup
ε→0

Eε,µx

[∣∣∣∣
∫ s

0
G
(
r, x(r), τXr

ε
ω
)
dr

∣∣∣∣
]
≤ CδT 〈ξ〉µ . �

(e) Some Lp-estimates.
Lemma 13. Assume that (RM 1..3), (L 1..3) and (P 1’-2’) hold. Let η and F be
as in lemma 11. Then, for any bounded domain G of R

d , for all s ∈ [0, T ],

∀p > 1,

〈∫
G

Eε,ωx
[‖η‖p] dx〉

µ

−→
ε→0

0 ; (31)

∀p ∈]1,
1

2
Q(b, d)[,

〈∫
G

Eε,xω

[∥∥∥∥
∫ s

0
F(r, 0, 0) dr

∥∥∥∥
p]
dx

〉
µ

−→
ε→0

0 . (32)

Proof of Lemma 13. (31) is a straightforward consequence of lemma 10, and of the
fact that the map

(x, x̂) ∈ C(R+;Rd)× C(R+,Rd) �→ ∥∥H(x(T ))−H(x̂(T ))∥∥p
is bounded and continuous by (P 2’).

Let us prove (32). F(r, 0, 0) = F1(r)+ F2(r)+ F3(r), where

F1(r) = h
(
Xr, u

0(r, X̂r ),∇u0(r, X̂r )(Id+ φ)
(
Xr
ε
, ω

))
−h

(
X̂r , u

0(r, X̂r ),∇u0(r, X̂r )(Id+ φ)
(
Xr
ε
, ω

))
F2(r) = h

(
X̂r , u

0(r, X̂r ),∇u0(r, X̂r )(Id+ φ)
(
Xr
ε
, ω

))
−h̄

(
X̂r , u

0(r, X̂r ),∇u0(r, X̂r )
)

F3(r) = 1
2

[
(Id+ φ)a(Id+ φ)∗ − ā]

i,j

(
Xr
ε
, ω

)
∂2
i,j u

0(r, X̂r )
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Let P ε,µG
�= ∫

G
dx
|G|P

ε,µ
x , and Eε,µG the expectation under P ε,µG . By (P 1’), for all

δ > 0,

E
ε,µ
G

[∥∥∫ s
0 F1(r) dr

∥∥p] ≤ T p−1E
ε,µ
G

[∫ T
0 ‖F1(r)‖p dr

]
≤ (2T )p ‖h‖p∞ P ε,µG

[
sup

0≤t≤T

∥∥∥Xt − X̂t∥∥∥ ≥ δ
]
+CT pδp.

Letting ε go to 0, then δ go to 0, lemma 10 leads to

∀p > 1, E
ε,µ
G

[∥∥∥∥
∫ s

0
F1(r) dr

∥∥∥∥
p]

−→
ε−→0

0 .

F2(r) = G2(r, X̂r , τXr
ε
ω), with

G2(r, x, ω) = h(x, u0(r, x),∇u0(r, x)(Id+ φ)(ω))− h̄(x, u0(r, x),∇u0(r, x)) .

By boundedness of h and definition of h̄, G2 is a bounded measurable function
which satisfies (ii) of lemma 12. Moreover, by (P 1’),

∥∥G2(r, x, ω)−G2(r
′, x′, ω)

∥∥ ≤ C [∥∥x − x′∥∥+ ∥∥∥u0(r, x)− u0(r ′, x′)
∥∥∥]

+C
[∥∥∥∇u0(r, x)− ∇u0(r ′, x′)

∥∥∥ (1+ ‖φ(ω)‖)
]
,

and (i) of lemma 12 is satisfied thanks to the smoothness properties of u0. Thus,∫ s
0 F2(r) dr converges to 0 in P ε,µG -probability. Since G2 is bounded, this conver-

gence takes also place in all Lp(P ε,µG ).

In the same way, F3(r) = G3(r, X̂r , τXr
ε
ω), with

G3(r, x, ω) = 1

2

[
(Id+ φ)a(Id+ φ)∗ − ā]

i,j
(ω)∂2

i,j u
0(r, x) .

Since ∂2
i,j u

0 are bounded and Hölder, G3 satisfies the assumptions of lemma 12.
Moreover, for all p ∈ [2,Q(b, d)[,

sup
ε>0

E
ε,µ
G

[∥∥∥∥
∫ s

0
G3(r, X̂r , τXr

ε
ω) ds

∥∥∥∥
p/2

]
≤CT p/2 max

i,j

∥∥∥∂2
i,j u

0
∥∥∥p/2∞

(
1+〈‖φ‖p〉

µ

)

Therefore,
∫ s

0 F3(r) dr converges to zero in Lp(P ε,µG ) for all p < 1
2Q(b, d). �

(f) Conclusion in the case of smooth h and H.

Lemma 14. Assume that (RM 1..3), (L 1..3) and (P 1’-2’) hold. Then, for any
bounded domain G of R

d , for all p ∈]1, 1
2Q(b, d)[, p ≤ 2,〈∫

G

∥∥∥uε(0, x)− u0(0, x)
∥∥∥p dx〉

µ

−→
ε→0

0 .



508 F. Castell

Proof of Lemma 14. Let

Ỹt
�= Ŷt +

∫ t
0 F(r, 0, 0) dr

= η + ∫ T
0 F(r, 0, 0) dr + ∫ T

t

(
F(r, Ŷr , Ẑr )− F(r, 0, 0)

)
dr − ∫ T

t
Ẑr dM

X
r

We are going to prove that
〈∫
G
E
ε,ω
x

[∥∥∥Ỹ0

∥∥∥p] dx〉
µ
−→
ε→0

0.

First of all, note that for all p ∈]1, 1
2Q(b, d)[, µ-a.s., q.e. in x,

Eε,ωx

[∫ T

0
|F(r, 0, 0)|p dr

]
≤ CEε,ωx

[∫ T

0

(
1+ ‖φ‖2p

)(Xr
ε
, ω

)
dr

]
<∞

since φ ∈ L2p(µ). Therefore, using estimate (25), and the boundedness of u0, for
all p ∈]1, 1

2Q(b, d)[, p ≤ 2, µ-a.s, q.e in x

Eε,ωx

[
sup

0≤t≤T

∥∥∥Ỹt∥∥∥p
]
<∞ . (33)

Moreover, using estimate (25), the boundedness of ∇u0, and the fact that φ ∈
L2(µ), we also get that µ-a.s, q.e in x,

Eε,ωx

[∫ T

0

∥∥∥Ẑr∥∥∥2
dr

]
<∞ . (34)

For all n ∈ N
∗, let Tn be the stopping time

Tn = inf{t ≥ 0,
∥∥∥Ỹt∥∥∥ ≤ 1

n
} .

For all p, 1 < p < 1
2Q(b, d), p ≤ 2, Itô’s formula yields that for all n ∈ N

∗, q.e.
x ∈ R

d , P ε,ωx -p.s.,

∥∥∥Ỹt∧Tn∥∥∥p + p
2

∫ T∧Tn
t∧Tn

∥∥∥Ỹr∥∥∥p−2
Trace

[
(Ẑra(Xr/ε, ω)Ẑ

∗
r )(PỸ⊥r

+ (p − 1)P
Ỹr
)
]
dr

=
∥∥∥ỸT∧Tn∥∥∥p + ∫ T∧Tn

t∧Tn p

∥∥∥Ỹr∥∥∥p−2 (
Ỹr , F (r, Ŷr , Ẑr )− F(r, 0, 0)

)
dr

− ∫ T∧Tn
t∧Tn p

∥∥∥Ỹr∥∥∥p−2 (
Ỹr , Ẑr dM

X
r

)
,

(35)

where for all x ∈ R
d , Px denotes the projection onto Span{x}, and Px⊥ the projec-

tion onto (Span{x})⊥.
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The local martingale
∫ t

0

∥∥∥Ỹr∥∥∥p−2 (
Ỹr , Ẑr dM

X
r

)
is actually a martingale.

Indeed,

Eε,ωx

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

∥∥∥Ỹr∥∥∥p−2 (
Ỹr , Ẑr dM

X
r

)∣∣∣∣
]

≤ CEε,ωx
[(∫ T

0

∥∥∥Ỹr∥∥∥2(p−2)
(
Ỹr , Ẑr a(

Xr

ε
, ω) Ẑ∗r Ỹr

)
dr

)1/2]

≤ CEε,ωx
[

sup
0≤t≤T

∥∥∥Ỹt∥∥∥p−1
(∫ T

0

∥∥∥Ẑr∥∥∥2
dr

)1/2]

≤ CEε,ωx
[

sup
0≤t≤T

∥∥∥Ỹt∥∥∥p +
(∫ T

0

∥∥∥Ẑr∥∥∥2
dr

)p/2]
by Young inequality,

≤ CEε,ωx
[

sup
0≤t≤T

∥∥∥Ỹt∥∥∥p
]
+ C

(
Eε,ωx

[∫ T

0

∥∥∥Ẑr∥∥∥2
dr

])p/2
since 2/p ≥ 1

<∞ µ-a.s., by (33) and (34) .

Taking the expectation in (35) and using the fact that F(r, y, z) is uniformly Lips-
chitz in (y, z),

E
ε,ω
x

[∥∥∥Ỹt∧Tn∥∥∥p + p
2

∫ T∧Tn
t∧Tn

∥∥∥Ỹr∥∥∥p−2
Trace

[(
ẐraẐ

∗
r

) (
P
Ỹ⊥r
+ (p − 1)P

Ỹr

)]
dr

]

≤ Eε,ωx
[∥∥∥ỸT∧Tn∥∥∥p + pK ∫ T∧Tn

t∧Tn
∥∥∥Ỹr∥∥∥p−1 (∥∥∥Ŷr∥∥∥+ ∥∥∥Ẑr∥∥∥) dr

]

≤ CEε,ωx
[∥∥∥ỸT∧Tn∥∥∥p +

∫ T∧Tn

t∧Tn

∥∥∥Ỹr∥∥∥p−1
(∥∥∥Ỹr∥∥∥+

∥∥∥∥
∫ r

0
F(u, 0, 0) du

∥∥∥∥+ ∥∥∥Ẑr∥∥∥
)
dr

]

Young inequality gives

∥∥∥Ỹr∥∥∥p−1 ∥∥∫ r
0 F(u, 0, 0) du

∥∥ ≤ 1
q

∥∥∥Ỹr∥∥∥(p−1)q + 1
p

∥∥∫ r
0 F(u, 0, 0) du

∥∥p
≤ 1

q

∥∥∥Ỹr∥∥∥p + 1
p

∥∥∫ r
0 F(u, 0, 0) du

∥∥p
and for all δ > 0,

∥∥∥Ỹr∥∥∥p−1 ∥∥∥Ẑr∥∥∥ = ∥∥∥Ỹr∥∥∥p/2 ∥∥∥Ỹr∥∥∥p/2−1 ∥∥∥Ẑr∥∥∥
≤ 1

2δ

∥∥∥Ỹr∥∥∥p + δ
2

∥∥∥Ỹr∥∥∥p−2 ∥∥∥Ẑr∥∥∥2
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Moreover,

Trace
[(
Ẑr a

(
Xr
ε
, ω

)
Ẑ∗r

) (
P
Ỹ⊥r
+ (p − 1)P

Ỹr

)]
= Trace

(
P
Ỹ⊥r
Ẑr a

(
Xr
ε
, ω

)
Ẑ∗r PỸ⊥r

)
+ (p − 1)Trace

(
P
Ỹr
Ẑr a

(
Xr
ε
, ω

)
Ẑ∗r PỸr

)
≥ (p − 1)Trace

(
P
Ỹ⊥r
Ẑr a

(
Xr
ε
, ω

)
Ẑ∗r PỸ⊥r + PỸr Ẑr a

(
Xr
ε
, ω

)
Ẑ∗r PỸr

)
≥ (p − 1)Trace

(
Ẑr a

(
Xr
ε
, ω

)
Ẑ∗r

)
≥ a(p − 1)

∥∥∥Ẑr∥∥∥2
by ellipticity of a .

Putting all together, we obtain that for all δ > 0, and all n,

E
ε,ω
x

[∥∥∥Ỹt∧Tn∥∥∥p + C(1− δ) ∫ T∧Tnt∧Tn
∥∥∥Ỹr∥∥∥p−2 ∥∥∥Ẑr∥∥∥2

dr

]
≤ CEε,ωx

[∥∥∥ỸT∧Tn∥∥∥p+(1+ 1
δ
)
∫ T∧Tn
t∧Tn

∥∥∥Ỹr∥∥∥p dr+∫ T∧Tnt∧Tn
∥∥∫ r

0 F(u, 0, 0)du
∥∥p dr]

Choosing δ sufficiently small so that 1− δ > 0, the preceding inequality gives for
all t ∈ [0, T ],

E
ε,µ
G

[∥∥∥Ỹt∧Tn∥∥∥p]+ Eε,µG
[∫ T∧Tn
t∧Tn

∥∥∥Ỹr∥∥∥p−2 ∥∥∥Ẑr∥∥∥2
dr

]

≤ CEε,µG
[∥∥∥ỸT∧Tn∥∥∥p]+ C ∫ T

0 E
ε,µ
G

[∥∥∫ r
0 F(u, 0, 0) du

∥∥p] dr
+C ∫ T

t
E
ε,µ
G

[∥∥∥Ỹr∧Tn∥∥∥p] dr
For all t ∈ [0, T ], Gronwall lemma then leads to

E
ε,µ
G

[∥∥∥Ỹt∧Tn∥∥∥p]≤C(T )
[
E
ε,µ
G

[∥∥∥ỸT∧Tn∥∥∥p]+
∫ T

0
E
ε,µ
G

[∥∥∥∥
∫ r

0
F(u, 0, 0) du

∥∥∥∥
p]
dr

]
.

Let T∞ = lim ↗ Tn = inf{t ≥ 0, Ỹt = 0}. For all t ∈ [0, T ], Ỹt∧Tn converges

a.s. to Ỹt∧T∞ when n tends to ∞, and is dominated by sup0≤t≤T
∥∥∥Ỹt∥∥∥ which is in

Lp by (33). By dominated convergence, letting n go to infinity in the preceding
inequality, yields

E
ε,µ
G

[∥∥∥Ỹt∧T∞∥∥∥p] ≤ C(T )Eε,µG
[∥∥∥ỸT∧T∞∥∥∥p +

∫ T

0

∥∥∥∥
∫ r

0
F(u, 0, 0) du

∥∥∥∥
p

dr

]

But, ∥∥∥ỸT∧T∞∥∥∥ = ∥∥∥ỸT ∥∥∥ 1IT≤T∞ ≤
∥∥∥∥η +

∫ T

0
F(u, 0, 0) du

∥∥∥∥ ,
so that for all t ∈ [0, T ],

E
ε,µ
G

[∥∥∥Ỹt∧T∞∥∥∥p] ≤ C(T )Eε,µG [∥∥∥η + ∫ T
0 F(u, 0, 0) du

∥∥∥p]
+C(T )Eε,µG

[∫ T
0

∥∥∫ r
0 F(u, 0, 0) du

∥∥p dr] (36)
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By lemma 13, the first term in the right-hand side converges to zero, and for all
r ∈ [0, T ], Eε,µG

[∥∥∫ r
0 F(u, 0, 0) du

∥∥p] −→
ε→0

0. Moreover,

E
ε,µ
G

[∥∥∫ r
0 F(u, 0, 0) du

∥∥p] ≤ T p−1E
ε,µ
G

[∫ T
0 ‖F(u, 0, 0)‖p du

]
≤ CT p−1

(
T + Eε,µG

[∫ T
0 ‖φ‖2p

(
Xu
ε
, ω

)
du

])
≤ CT p

(
1+ 〈‖φ‖2p〉

µ

)
By dominated convergence, we conclude then that the second term in the right hand
side of (36) converges also to zero. We have thus proved that for all t ∈ [0, T ],

E
ε,µ
G

[∥∥∥Ỹt∧T∞∥∥∥p] −→
ε→0

0 .

Taking t = 0, we get the desired conclusion.

(g) Regularization procedure. Let us assume now that h and H satisfy (P
1-2). Since H ∈ L2(Rd)m, we can approximate H in L2-norm by a sequence
Hn of functions in C∞c (Rd)m (i.e. infinitely differentiable functions with com-
pact support). Let ρ : R

d × R
m × R

m×d �→ R
+ be a C∞c function with sup-

port in B(0, 1), and such that
∫
ρ(x, y, z) dx dy dz = 1. For all n ∈ N

∗, let

ρn(x, y, z)
�= nd+m+dmρ(n(x, y, z)), and hn(x, y, z)

�= ρn 0h. Then hn is infinite-
ly differentiable with bounded derivatives. The functions hn satisfy assumptions
(P 1-(ii)) and (P 1-(iii)) with the same constants K and λ as h. Moreover, for all
(x, y, z) ∈ R

d × R
m × R

m×d

‖hn(x, y, z)− h(x, y, z)‖ ≤ sup‖(x,y,z)−(x′,y′,z′)‖≤1/n

∥∥h(x, y, z)− h(x′, y′, z′)∥∥
�= ωn(h)

(37)
Let (Y n, Zn) be the solution of the BSDE

Ynt = Hn(XT )+
∫ T

t

hn(Xr, Y
n
r , Z

n
r ) dr−

∫ T

t

Znr dM
X
r , t ∈ [0, T ] , P ε,ωx −p.s. ,

Eε,ωx

[
sup

0≤t≤T

∥∥Ynt ∥∥2 +
∫ T

0

∥∥Znr ∥∥2
dr

]
<∞ .

Usual computations (see for instance theorem 2.3 in [22]) lead to

E
ε,ω
x

[
sup0≤t≤T

∥∥Ynt − Yt∥∥2
]

≤ CEε,ωx
[
‖Hn(XT )−H(XT )‖2 + ∫ T

0‖hn(Xr, Yr , Zr)− h(Xr, Yr , Zr)‖2 dr
]
,

(38)

where the constant C depends only on the constants λ and K , and on T .
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Uniform ellipticity of a implies that the law of XT under P ε,ωx has a density
p
ε,ω
T (x, y) with respect to Lebesgue measure. Moreover, pε,ωT (x, y) satisfies the

Aronson estimate

p
ε,ω
T (x, y) ≤ M

T d/2
exp

(
−‖x − y‖

2

MT

)
. (39)

Therefore,

E
ε,ω
x

[‖Hn(XT )−H(XT )‖2] = ∫ ‖HN(y)−H(y)‖2 p
ε,ω
T (x, y) dy

≤ C ‖Hn −H‖2
L2(Rd )

.

It follows then from (38), (37) that there exists a constant C such that for all ε > 0
and all n ∈ N

∗,

Eε,ωx

[
sup

0≤t≤T

∥∥Ynt − Yt∥∥2

]
≤ C

(
‖Hn −H‖2

L2(Rd )
+ ωn(h)

)
. (40)

In the same way, let h̄n(x, y, z)
�= 〈hn(x, y, z(Id+ φ))〉φ . Then h̄n satisfies

(P 1-(ii)) and (P 1-(iii)) with constants independent of n, and for all x, y, z,

∥∥h̄n(x, y, z)− h̄(x, y, z)∥∥ ≤ ωn(h) .
Therefore, if E0

x denotes the expectation under the law of a Brownian motion with
covariance matrix ā, if (Ȳn, Z̄n) is the solution of the BSDE

Ȳ nt = Hn(XT )+
∫ T

t

h̄n(Xr, Ȳ
n
r , Z̄

n
r ) dr−

∫ T

t

Z̄nr dM
X
r , t ∈ [0, T ] , P 0

x −p.s. ,

and if (Ȳ , Z̄) is the solution of the BSDE

Ȳt = H(XT )+
∫ T

t

h̄(Xr, Ȳr , Z̄r ) dr −
∫ T

t

Z̄r dM
X
r , t ∈ [0, T ] , P 0

x − p.s. ,

we get

E0
x

[
sup

0≤t≤T

∥∥Ȳ nt − Ȳt∥∥2

]
≤ C

(
‖Hn −H‖2

L2(Rd )
+ ωn(h)

)
. (41)

Theorem 9 follows now from lemma 14, and estimates (40) and (41). �
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5. Homogenization of elliptic systems

5.1. The problem and assumptions made on the non-linear term
and the boundary condition

Let G be an open bounded domain of R
d with boundary ∂G, which is C2,δ for

some δ ∈]0, 1]. We are interested in this section in the homogenization of the
elliptic system{Lε,ωvεk + hk(x, vε,∇vε) = 0 , x ∈ G, k ∈ {1, · · · ,m}

vε = H , x ∈ ∂G (42)

Assumptions made on the linear part are the same as for the parabolic problem, i.e.
(RM 1-4) and (L 1-3). For the non linear part, we assume that

(E 1) (i) h : R
d × R

m × R
m×d �→ R

m is uniformly continuous and bounded.
(ii) ∃K > 0 such that ∀(x, y, z, z′) ∈ Ḡ× R

m × R
m×d × R

m×d ,∥∥h(x, y, z)− h(x, y, z′)∥∥ ≤ K ∥∥z− z′∥∥ ;
(iii) ∃λ ∈ R such that for all x ∈ Ḡ, all y, y′ ∈ R

d and all z ∈ R
m×d ,

(h(x, y, z)− h(z, y′, z), y − y′) ≤ λ ∥∥y − y′∥∥2

(iv) aλ [Q(b, d) ∧ 4− 2]+K2 < 0.
Note that (E-1-(iv)) implies that λ < 0.

(E 2) H : R
d �→ R

m is a uniformly continuous function, which is in H 1(Ḡ).
Under (L 1-3) and (E 1-2), µ-a.s., and for all ε > 0, system (42) has a unique weak
solution vε, i.e. a solution such that vε ∈ H 1(G) and for all ψ ∈ C∞c (G),

−
∫
G

aij (
x

ε
, ω)∂iψ∂jv

εe−2V (x/ε,ω) dx +
∫
G

v(x)h(x, vε(x),∇vε(x)) dx = 0 .

Indeed, let Aε,ω : H 1
0 (G; dπε,ω)m �→ H−1(G)m be the operator defined by

Aε,ω(u) = −Lε,ωu− h(x, u,∇u) .
It follows from (L 1) and (E 1) that for all u, v ∈ H 1

0 (R
d , dπε,ω)m,

〈Aε,ω(u− v), u− v〉
= 1

2

∫
G

ai,j
(
x
ε
, ω

)
∂i(u− v)(x)∂j (u− v)(x) dπε,ω(x)

− ∫
G (h(x, u(x),∇u(x))− h(x, v(x),∇v(x)), u(x)− v(x)) dπε,ω(x)

≥ a

2 ‖∇(u− v)‖2
L2(G,dπε,ω)

− λ ‖u− v‖2
L2(G,dπε,ω)

−K ‖u− v‖L2(G,dπε,ω) ‖∇(u− v)‖L2(G,dπε,ω) .

The matrix

( −λ −K/2
−K/2 a/2

)
is strictly positive, as soon as 2aλ+K2 < 0. Since

2aλ+K2 ≤ aλ [Q(b, d) ∧ 4− 2]+K2, assumption (E 1-(iv)) ensures existence
of a constant C > 0, such that µ-a.s., ∀ε > 0,〈Aε,ω(u− v), u− v〉 ≥ C ‖u− v‖2

H 1
0 (G,dπ

ε,ω)
. (43)
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The existence and uniqueness of a weak solution is then a well-known fact (see for
instance theorem 26.A of [25]).

Remark 3. Note that (E 1.(iv)) is a too stringent assumption to ensure existence
and uniqueness of weak solutions of system (42) on one hand, and of BSDE’s with
random terminal time on the other hand. A more natural assumption should be
2aλ + K2 < 0, as it appears precedingly. We are however unable to prove the
homogenization result under this assumption.

5.2. The homogenized equation

Let ā and h̄ be defined by (20) and (21).

Lemma 15. Assume that (RM 1..4), (L 1..3), and (E 1-2) are satisfied. Then, the
system {

1
2 āi,j ∂

2
i,j v

0 + h̄(x, v0,∇v0) = 0 , x ∈ G,
v0 = H , x ∈ ∂G .

(44)

has a unique weak solution v0 in H 1(G). If we assume moreover

(E 1’) h : Ḡ× R
d × R

m×d �→ R
m is Lipschitz.

(E 2’) H : Ḡ �→ R
m is of class C2,δ .

then, v0 is itself of class C2,δ .

Proof of Lemma 15. Let A0 : H 1
0 (G)

m �→ H−1(G)m be the non linear operator
defined by

A0(u) = −1

2
āi,j ∂

2
i,j u− h̄(x, u(x),∇u(x)) .

From the definition of a and h, we get that

〈A0(u− v), u− v〉
= 1

2

〈∫
G

Trace
[∇(u− v)(x)(Id+ φ)a(Id+ φ)∗∇(u− v)(x)∗] dx〉

π

− 〈∫
G (h(x, u,∇u(Id+ φ))− h(x, v,∇v(Id+ φ)), u− v) dx

〉
π

≥ a

2 ‖∇(u− v)(x)(Id+ φ)(ω)‖2
L2(G×�,dx⊗dπ) − λ ‖u− v‖2

L2(G,dx)

−K ‖u− v‖L2(G,dx) ‖∇(u− v)(x)(Id+ φ)(ω)‖L2(G×�,dx⊗dπ) by (E 1),

≥ C
(
‖u− v‖2

L2(G,dx)
+ ‖∇(u− v)(x)(Id+ φ)(ω)‖2

L2(G×�,dx⊗dπ)
)
,

as in the proof of (43).
But,

‖∇(u− v)(x)(Id+ φ)(ω)‖2
L2(G×�,dx⊗dπ)

= Trace
[(∫

G
∇(u− v)(x)∗∇(u− v)(x) dx) 〈(Id+ φ)(Id+ φ)∗〉π ] .
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It has already been proved in lemma 8 that the matrix 〈(Id+ φ)(Id+ φ)∗〉π is
strictly positive. Therefore,

‖∇(u− v)(x)(Id+ φ)(ω)‖2
L2(G×�,dx⊗dπ)

≥ λmin
(〈(Id+ φ)(Id+ φ)∗〉π )Trace

(∫
G
∇(u− v)(x)∗∇(u− v)(x) dx)

= λmin
(〈(Id+ φ)(Id+ φ)∗〉π ) ‖∇(u− v)‖2

L2(G,dx)

Thus, A0 is strongly monotone and the existence and uniqueness of weak solutions
is proved. The regularity of v0 under (E -1’) and (E 2’) follows then from the
regularity of the data (see theorem 5.1, chapter 8 of [14]). �

5.3. The homogenization result in elliptic case

Theorem 16. Assume that (RM 1..4), (L 1..3) and (E 1-2) are satisfied. There
exists p ∈]1, 2[ such that〈∫

G

∥∥∥vε(x)− v0(x)

∥∥∥p dx〉
µ

−→
ε→0

0 . (45)

5.4. Proof of Theorem 16

It follows the same lines as the proof of theorem 9.
(a) The non-linear Feynman-Kac formula. For all x continuous path from R

+ to
R
d , let

θG(x)
�= inf{t ≥ 0, x(t) /∈ G} . (46)

Since a is uniformly elliptic, andG is bounded, it is well-known that µ-a.s., for all
ε > 0 and all x ∈ Ḡ,

P ε,ωx [θG(X) <∞] = 1 .

Moreover, the regular points ofX forG are the same as those of Brownian motion,
i.e. all points are regular, since ∂G is assumed to be smooth enough.

It is proved in [22] that under (E 1-2), there is a unique pair (Yt , Zt )t∈R+ of
FX-progressively measurable processes such that µ-a.s., for all ε > 0, for q.e.
x ∈ Ḡ,

P ε,ωx
[
Zt 1It>θG(X) = 0

] = 1 ; (47)

P ε,ωx
[
Yt 1It≥θG(X) = H(XθG(X)) 1It≥θG(X)

] = 1 ; (48)

for all t, T such that 0 ≤ t ≤ T , P ε,ωx -p.s.,

Yt = YT +
∫ T∧θG(X)

t∧θG(X)
h(Xr, Yr , Zr) dr −

∫ T∧θG(X)

t∧θG(X)
Zr dM

X
r ; (49)

Eε,ωx

[
sup
t≥0

‖Yt‖2 +
∫ ∞

0
‖Zr‖2 dr

]
<∞ . (50)
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Moreover, using the results of [3] or [16] in the parabolic case, it can be proved
that P ε,ωx -p.s., Y0 = vε(x), and we are going to prove that〈∫

G

∥∥∥Y0 − v0(x)

∥∥∥p dx〉
µ

−→
ε→0

0 .

(b) Change on Y. We are first going to prove theorem 16 in the case where the
coefficients h and H are smooth; i.e. under additional assumptions (E 1’) and
(E 2’).

Lemma 17. Assume that (RM 1..3), (L 1..3), (E 1-2) and (E 1’-2’) hold. Let

θ
�= θG(X) and θ̂

�= θG(X̂), where X̂ is the process defined in lemma 10. Let
 Ŷt

�= Yt − v0(X̂
t∧θ∧θ̂ )

Ẑt
�=

[
Zt − 1I

t≤θ̂∇v0(X̂t )(Id+ φ)
(
Xt
ε
, ω

)]
1It≤θ

(51)

Then, µ-a.s., for q.e. x ∈ R
d , for all ε > 0, for all 0 ≤ t ≤ T ,

P ε,ωx

[
Ẑt 1It>θ = 0

]
= 1 ; (52)

P ε,ωx

[
Ŷt 1It≥θ = ζ 1It≥θ

]
= 1 . (53)

Ŷt = ŶT +
∫ T∧θ

t∧θ
G(r, Ŷr , Ẑr ) dr −

∫ T∧θ

t∧θ
Ẑr dM

X
r , (54)

where

ζ

�= H(Xθ)− v0(X̂
θ∧θ̂ )

G(r, y, z)
�= h

(
Xr∧θ , y + v0(X̂

r∧θ̂ ), z+ 1I
r≤θ̂∇v0(X̂r )

(
Id+ φ(Xr

ε
, ω)

))
+ 1

2 1I
r≤θ̂

[
(Id+ φ)a(Id+ φ)∗]

i,j

(
Xr
ε
, ω

)
∂2
i,j v

0(X̂r )

(55)

Proof of Lemma 17. It follows from Itô’s formula applied to the smooth function
v0, and of definitions of the processes Ŷ and Ẑ. �

(c) An ergodic lemma.

Lemma 18. Assume that (RM 1..3), (L 1..3) hold. Let F : Ḡ × � → R be a
measurable function such that

(i) There exists ξ ∈ L1(�,µ) such that µ-a.s.,
• for all x ∈ Ḡ, |F(x, ω)| ≤ ξ(ω);
• for all δ > 0, ∃α > 0 such that ∀x, x′ ∈ Ḡ,∥∥x − x′∥∥ ≤ α ⇒ |F(x, ω)− F(x′, ω)| ≤ ξ(ω)δ ;

(ii) For all x ∈ Ḡ,
∫
F(x, ω) dπ = 0 .
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Then, for all T > 0, for all β > 0,

P
ε,µ
G

[∣∣∣∣
∫ T∧θ

0
F
(
X̂
r∧θ̂ , τ Xr

ε
ω
)
dr

∣∣∣∣ ≥ β
]
−→
ε−→0

0.

Proof of Lemma 18. First of all, note that since all points are regular for (X, P ε,µG ),
the map x ∈ C(R+,Rd) �→ θG(x) isP ε,µG -a.s. continuous. It follows then from lem-

ma 10 that underP ε,µG , (X, X̂, θ, θ̂) converges in law (in C(R+,Rd)×C(R+,Rd)×
R
+×R

+) to the law of (B, B, θG(B), θG(B)), where B is a d-dimensional Brown-
ian motion with covariance matrix ā. Thus, ((X̂

t∧θ̂ , t ∈ [0, T ]), θ) converges in
law under P ε,µG .

Let δ > 0 be fixed. Let Kδ be a compact subset of C([0, T ], Ḡ) and Tδ ∈ R
+

be such that
inf
ε>0

P
ε,µ
G

[
X̂
.∧θ̂ ∈ Kδ; θ ≤ Tδ

]
≥ 1− δ .

Let us cover Kδ × [0, Tδ] by balls of radius α, where α ∈ ]0, 1] is such that∥∥x − x′∥∥ ≤ α imply
∣∣F(x, ω)− F(x′, ω)∣∣ ≤ ξ(ω)δ.
Kδ × [0, Tδ] ⊂

Nα

∪
i=1

B̃i×
Mα

∪
j=1

Ij ,

where B̃i ⊂ B(xi, α) are disjoints, and Ij
�= [tj ; tj+1[ are disjoints intervals of

length α. Now,

P
ε,µ
G

[∣∣∣∫ T∧θ0 F
(
X̂
r∧θ̂ , τ Xr

ε
ω
)
dr

∣∣∣ ≥ β]
≤ P ε,µG

[
X̂
.∧θ̂ /∈ Kδ or θ ≥ Tδ

]
+∑

i,j P
ε,µ
G

[∣∣∣∫ T∧tj0 F
(
xi(r), τXr

ε
ω
)
dr

∣∣∣ ≥ β
2

]
+∑

i,j P
ε,µ
G

[∣∣∣∫ T∧θ0 F
(
X̂
r∧θ̂ , τ Xr

ε
ω
)
dr − ∫ T∧tj

0 F
(
xi(r), τXr

ε
ω
)
dr

∣∣∣ ≥ β
2 ;

X̂
.∧θ̂ ∈ B̃i ∩Kδ ; θ ∈ Ij

]
≤ δ +∑

i,j P
ε,µ
G

[∣∣∣∫ T∧tj0 F
(
xi(r), τXr

ε
ω
)
dr

∣∣∣ ≥ β
2

]
+P ε,µG

[∫ T
0 ξ

(
τXr
ε
ω
)
≥ β

4δ

]
+∑

j ;tj≤T P
ε,µ
G

[∫ tj+1∧T
tj∧T ξ

(
τXr
ε
ω
)
dr ≥ β

4

]
≤ δ +∑

i,j P
ε,µ
G

[∣∣∣∫ T∧tj0 F
(
xi(r), τXr

ε
ω
)
dr

∣∣∣ ≥ β
2

]
+C δT

β
〈ξ〉µ +

∑
j ;tj≤T P

ε,µ
G

[∫ tj+1∧T
tj∧T ξ

(
τXr
ε
ω
)
dr ≥ β

4

]
Using ergodic theorem and lemma 12, we get

lim sup
ε→0

P
ε,µ
G

[∣∣∣∣
∫ T∧θ

0
F
(
X̂
r∧θ̂ , τ Xr

ε
ω
)
dr

∣∣∣∣ ≥ β
]
≤ δ+C δT

β
〈ξ〉µ+C

T

α
1I
α〈ξ〉π≥ β

4
.

Taking α < β
4〈ξ〉π , and letting δ go to 0, yield the result of Lemma 18 . �
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(d) Some Lp-estimates.

Lemma 19. Assume that (RM 1..3), (L 1..3), (E 1-2) and (E 1’-2’) hold. Let ζ and
G be as in lemma 17. Then, for all 0 < t < T ,

∀p > 1,

〈∫
G

Eε,ωx
[‖ζ‖p] dx〉

µ

−→
ε→0

0 ; (56)

∀p ∈ ]1,
1

2
Q(b, d)[,

〈∫
G

Eε,xω

[∥∥∥∥
∫ T∧θ

t∧θ
G(r, 0, 0) dr

∥∥∥∥
p
]
dx

〉
µ

−→
ε→0

0 .

(57)

Proof of Lemma 19. Since (Xθ , X̂θ∧θ̂ ) converges in law under P ε,µG to the law of
(BθG(B), BθG(B)), continuity and boundedness of H and vo imply that

E
ε,µ
G

[‖ζ‖p] −→
ε→0

∫
G

Ex

[∥∥∥H(BτG(B))− v0(BτG(B))

∥∥∥p] dx|G| = 0 ,

since v0 = H on ∂G.
Let us now prove (57). Using equation (44) satisfied by v0, G(r, 0, 0) can be

rewritten as G(r, 0, 0) =∑5
i=1Gi(r), where

G1(r)
�= h

(
Xr∧θ , v0(X̂

r∧θ̂ ), 1I
r≤θ̂∇v0(X̂r )(Id+ φ)(Xrε , ω)

)
−h

(
X̂
r∧θ̂ , v

0(X̂
r∧θ̂ ), 1I

r≤θ̂∇v0(X̂r )(Id+ φ)(Xrε , ω)
)
,

G2(r)
�= h

(
X̂
r∧θ̂ , v

0(X̂
r∧θ̂ ), 1I

r≤θ̂∇v0(X̂r )(Id+ φ)(Xrε , ω)
)

−h
(
X̂
r∧θ̂ , v

0(X̂
r∧θ̂ ),∇v0(X̂

r∧θ̂ )(Id+ φ)(Xrε , ω)
)
,

G3(r)
�= h

(
X̂
r∧θ̂ , v

0(X̂
r∧θ̂ ),∇v0(X̂

r∧θ̂ )(Id+ φ)(Xrε , ω)
)

−h̄
(
X̂
r∧θ̂ , v

0(X̂
r∧θ̂ ),∇v0(X̂

r∧θ̂ )
)
,

G4(r)
�= 1

2

[
(Id+ φ)a(Id+ φ)∗ − ā]

i,j
(Xr
ε
, ω) ∂2

i,j v
0(X̂

r∧θ̂ ) ,

G5(r)
�= − 1

2

[
(Id+ φ)a(Id+ φ)∗]

i,j
(Xr
ε
, ω) ∂2

i,j v
0(X̂

r∧θ̂ ) 1I
θ̂<r

.

Treatment of G1: It follows from the inequality∥∥h(x, y, z)− h(x′, y, z)∥∥ ≤ C (∥∥x − x′∥∥ ∧ ‖h‖∞)
,∀x, x′, y, z ,

and from the convergence in law of X.∧θ − X̂.∧θ̂ to 0, that

E
ε,µ
G

[∥∥∥∥
∫ T∧θ

t∧θ
G1(r) dr

∥∥∥∥
p
]
≤CT pEε,µG

[
sup

r∈[0,T ]

∥∥∥Xr∧θ−X̂r∧θ̂
∥∥∥p ∧ ‖h‖p∞

]
−→
ε→0

0.

Treatment of G2: Since ‖G2(r)‖ ≤ 2 ‖h‖∞ 1I
θ̂<r

, and (θ, θ̂) converges in law to
(θG(B), θG(B)),

E
ε,µ
G

[∥∥∥∥
∫ T∧θ

t∧θ
G2(r) dr

∥∥∥∥
p
]
≤ C ‖h‖p∞ Eε,µG

[∣∣∣θ ∧ T − θ̂ ∧ T ∣∣∣p] −→
ε→0

0 .
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Treatment of G3: G3(r) = G̃3(X̂r∧θ̂ , τ Xr
ε
ω), where

G̃3(x, ω) = h(x, v0(x),∇vo(x)(Id+ φ)(ω))− h̄(x, v0(x),∇v0(x))

satisfies condition (i) and (ii) of lemma 18 thanks to the smoothness properties of
h and v0, and boundedness of h. By lemma 18,

∫ T∧θ
t∧θ G3(r) dr converges to 0 in

P
ε,µ
G -probability, when ε −→ 0. Moreover,

∫ T∧θ
t∧θ G3(r) dr is uniformly bounded

in ε, so that this convergence takes also place in all Lp(P ε,µG ).

Treatment of G4: G4(r) = G̃4(X̂r∧θ̂ , τ Xr
ε
ω), where

G̃4(x, ω) = 1

2

[
(Id+ φ)a(Id+ φ)∗ − ā]

i,j
(ω) ∂2

i,j v
0(x)

satisfies condition (i) and (ii) of lemma 18 since ∂2
i,j v

0 are Hölder and bounded.

By lemma 18,
∫ T∧θ
t∧θ G4(r) dr converges to 0 in P ε,µG -probability, when ε −→ 0.

Moreover, since φ ∈ L2p(µ) for all p ∈]1, 1
2Q(b, d)[,

∫ T∧θ
t∧θ G4(r) dr is uniformly

bounded in Lp(P ε,µG ) for all p ∈]1, 1
2Q(b, d)[, so that this convergence in proba-

bility takes also place in Lp(P ε,µG ), for all p ∈]1, 1
2Q(b, d)[.

Treatment of G5: For all p ∈]1, 1
2Q(b, d)[,

E
ε,µ
G

[∥∥∥∫ T∧θt∧θ G5(r) dr

∥∥∥]

≤ CEε,µG
[∫ T

0

∥∥∥Id+ φ(τXr
ε
ω)

∥∥∥2p
dr

]1/p

E
ε,µ
G

[∫ T
0 1I

θ̂<r≤θ dr
]1/q

≤ C 〈‖Id+ φ‖2p〉1/p
µ
E
ε,µ
G

[∣∣∣T ∧ θ − T ∧ θ̂ ∣∣∣]1/q

−→
ε→0

0 since (θ, θ̂) converges in law to (θG(B), θG(B)).

Moreover,

E
ε,µ
G

[∥∥∥∫ T∧θt∧θ G5(r) dr

∥∥∥p] ≤ CEε,µG
[∫ T

0

∥∥∥Id+ φ(τXr
ε
)

∥∥∥2p
dr

]
≤ C 〈‖Id+ φ‖2p〉

µ
.

Therefore,
∫ T∧θ
t∧θ G5(r) dr converges to 0 in Lp(P ε,µG ) for all p ∈]1, 1

2Q(b, d)[. �

(e) Conclusion in the case of smooth h and H.

Lemma 20. Assume that (RM 1..3), (L 1..3), (E 1-2) and (E 1’-2’) hold. Then, for
all p ∈]1, 1

2Q(b, d) ∧ 2[,

〈∫
G

∥∥∥vε(x)− v0(x)

∥∥∥p dx〉
µ

−→
ε→0

0 .
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Proof of Lemma 20. Let

Ỹt
�= Ŷt +

∫ t∧θ
0 G(r, 0, 0) dr

= ỸT +
∫ T∧θ
t∧θ

(
G(r, Ŷr , Ẑr )−G(r, 0, 0)

)
dr − ∫ T∧θ

t∧θ Ẑr dM
X
r .

We are going to prove that Eε,µG

[∥∥∥Ỹ0

∥∥∥p] −→
ε→0

0.

As a first step in this direction, we establish some uniform estimates on the
process Ŷ . Standard results on BSDE’s with random terminal time (see for instance
theorem 4.1 in [22]) give

Eε,ωx

[
sup
0≤t

∥∥∥Ŷt∥∥∥2
]
≤ CEε,ωx

[
‖H(Xθ)‖2 +

∫ θ

0
‖h(Xr, 0, 0)‖2 dr

]
,

where the constant C does not depend on ε (it depends only on a, λ and K). Since
v0,H , and h are bounded, this leads to

sup
ε>0

E
ε,µ
G

[
sup
t≥0

∥∥∥Ŷt∥∥∥2
]
≤ C

(
1+ sup

ε>0
E
ε,µ
G (θ)

)
.

Using uniform ellipticity of a, it can be proved that

sup
ε>0

E
ε,µ
G (θ) <∞ , (58)

so that

sup
ε>0

E
ε,µ
G

[
sup
t≥0

∥∥∥Ŷt∥∥∥2
]
<∞ . (59)

Now, exactly the same computations as in the proof of lemma 14 yield for all
p < 1

2Q(b, δ), 1 < p ≤ 2, for all 0 < t < T ,

E
ε,µ
G

[∥∥∥Ỹt∧Tn∥∥∥p + ap(p−1)
2

∫ T∧Tn∧θ
t∧Tn∧θ

∥∥∥Ỹr∥∥∥p−2 ∥∥∥Ẑr∥∥∥2
dr

]

≤ Eε,µG
[∥∥∥ỸT∧Tn∥∥∥p + p ∫ T∧Tn∧θt∧Tn∧θ

∥∥∥Ỹr∥∥∥p−2 (
Ỹr ,G(r, Ŷr , Ẑr )−G(r, 0, 0)

)
dr

]
(60)

But, (
Ỹr ,G(r, Ŷr , Ẑr )−G(r, 0, 0)

)
=
(
Ỹr ,G(r, Ŷr , Ẑr )−G

(
r,− ∫ r∧θ

0 G(u, 0, 0) du, Ẑr
))

+
(
Ỹr ,G

(
r,− ∫ r∧θ

0 G(u, 0, 0) du, Ẑr
)
−G(r, 0, 0)

)
≤ λ

∥∥∥Ỹr∥∥∥2 +K
∥∥∥Ỹr∥∥∥ ∥∥∥Ẑr∥∥∥+Ky ∥∥∥Ỹr∥∥∥ ∥∥∥∫ r∧θ0 G(u, 0, 0) du

∥∥∥
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where Ky denotes the Lipschitz constant of G in the variable y. Young inequality
then yields for all α1, α2 > 0, for all 0 < t < T and all p < 1

2Q(b, δ), 1 < p ≤ 2,

E
ε,µ
G

[∥∥∥Ỹt∧Tn∥∥∥p]+ (
ap(p−1)

2 − pKα1
2

)
E
ε,µ
G

[∫ T∧Tn∧θ
t∧Tn∧θ

∥∥∥Ỹr∥∥∥p−2 ∥∥∥Ẑr∥∥∥2
dr

]

≤ Eε,µG
[∥∥∥ỸT∧Tn∥∥∥p]+

(
pλ+ pK

2α1
+ pKyα

q
2

q

)
E
ε,µ
G

[∫ T∧Tn∧θ
t∧Tn∧θ

∥∥∥Ỹr∥∥∥p dr]
+Ky

α
p
2
E
ε,µ
G

[∫ T∧Tn∧θ
t∧Tn∧θ

∥∥∥∫ r∧θ0 G(u, 0, 0) du
∥∥∥p]

By (E 1-(iv)), 1− K2

2aλ <
1
2Q(b, d)∧ 2. Therefore, for all p ∈]1− K2

2aλ ; 1
2Q(b, d)[,

p ≤ 2, we get 2(p−1)aλ+K2 < 0. For such a p, one can then choose α1, α2 > 0
such that {

(p − 1)a −Kα1 > 0 ,

λ+ K
2α1

+ Kyα
p
2

q
< 0 .

For such a choice of p, α1, α2, we have thus obtained that there exists a constant
C > 0, such that for all T > 0, for all t ∈ [0, T ], for all n

E
ε,µ
G

[∥∥∥Ỹt∧Tn∥∥∥p] ≤ Eε,µG
[∥∥∥ỸT∧Tn∥∥∥p + C

∫ T

0

∥∥∥∥
∫ r∧θ

0
G(u, 0, 0) du

∥∥∥∥
p

dr

]
.

Letting n go to infinity, and using the fact that Eε,µG

[
supt≥0

∥∥∥Ỹt∥∥∥p] <∞, we get

E
ε,µ
G

[∥∥∥Ỹt∧T∞∥∥∥p] ≤ Eε,µG
[∥∥∥ỸT∧T∞∥∥∥p + C

∫ T

0

∥∥∥∥
∫ r∧θ

0
G(u, 0, 0) du

∥∥∥∥
p

dr

]
.

Note that∥∥∥ỸT∧T∞∥∥∥ = ∥∥∥ỸT ∥∥∥ 1IT≤T∞ ≤
∥∥∥ŶT ∥∥∥+ ∥∥∥∫ T∧θ0 G(r, 0, 0) dr

∥∥∥
≤ ‖ζ‖ +

∥∥∥ŶT ∥∥∥ 1IT<θ +
∥∥∥∫ T∧θ0 G(r, 0, 0) dr

∥∥∥ .
Therefore, for all p ∈]1 − K2

2aλ ; 1
2Q(b, d) ∧ 2[, there is a constant C such that for

all T > 0, for all t ∈ [0, T ], for all ε > 0,

E
ε,µ
G

[∥∥∥Ỹt∧T∞∥∥∥p] ≤ CEε,µG
[
‖ζ‖p +

∥∥∥∥
∫ T∧θ

0
G(r, 0, 0) dr

∥∥∥∥
p

+
∫ T

0

∥∥∥∥
∫ r∧θ

0
G(u, 0, 0) du

∥∥∥∥
p

dr

]

+CEε,µG
[∥∥∥ŶT ∥∥∥2

]2/p

P
ε,µ
G [θ > T ]1−p/2 .

Let δ > 0 be fixed. By (58) and (59), one can choose T such that for all ε > 0,

CE
ε,µ
G

[∥∥∥ŶT ∥∥∥2
]2/p

P
ε,µ
G [θ > T ]1−p/2 ≤ δ .
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For such a T , lemma 19 leads to

lim sup
ε→0

E
ε,µ
G

[∥∥∥Ỹt∧T∞∥∥∥p] ≤ δ ,
and lemma 20 is proved by taking t = 0 and letting δ go to 0.

(f) Regularization procedure. It is performed in the same way as for the parabolic
case. Let (ρn)n be a sequence of mollifiers. We approximate h (respectivelyH ) by

hn
�= ρn 0h (respectivelyHn

�= ρn 0H ), so that for all n, hn andHn satisfy (E 1-2)
(E 1’-2’). Note moreover that hn satisfies (E 1-(ii)) and (E 1-(iii)) with the same
constants K and λ as for h. Let (Y n, Zn) be the solution to

Ynt∧θ = Hn(Xθ)+
∫ θ

t∧θ
hn(Xr, Y

n
r , Z

n
r ) dr −

∫ θ

t∧θ
Znr dM

X
r , P ε,ωx − p.s. .

Standard estimates on BSDE’s with random terminal time give that ∃C > 0 such
that for all n ∈ N

∗ and all ε > 0,

E
ε,µ
G

[
sup
t≥0

∥∥Yt − Ynt ∥∥2

]

≤ CEε,µG
[
‖Hn(Xθ)−H(Xθ)‖2

]
+CEε,µG

[∫ θ

0
‖hn(Xr, Yr , Zr)− h(Xr, Yr , Zr)‖2 dr

]

≤ C
[
ωn(H)

2 + ωn(h)2Eε,µG (θ)
]
; (61)

whereωn(H)
�= sup‖x−x′‖≤1/n

∥∥H(x)−H(x′)∥∥, andωn(h) is defined in (37). Let

h̄n(x, y, z)
�= 〈hn(x, y, z(Id+ φ))〉π , and let (Ȳ n, Z̄n) be the solution to the BSDE

with random terminal time

Ȳ nt∧θ = Hn(Xθ)+
∫ θ

t∧θ
h̄n(Xr, Ȳ

n
r , Z̄

n
r ) dr −

∫ θ

t∧θ
Z̄nr dM

X
r , P 0

x − p.s. ,

whereP 0
x is the law of a Brownian motion with covariance matrix ā. Note that exis-

tence and uniqueness of (Ȳ n, Z̄n) is not ensured by usual criterions. Indeed, H̄n sat-
isfies (E 1-(iii)) with constant λ, and (E 1-(ii)) with constant
Kλmax(〈(Id+ φ)(Id+ φ)∗〉π )1/2. Moreover, ā satisfies (L 1) with constant
aλmin(〈(Id+ φ)(Id+ φ)∗〉π ), so that it is possible that

2aλmin(
〈
(Id+ φ)(Id+ φ)∗〉

π
)λ+K2λmax(

〈
(Id+ φ)(Id+ φ)∗〉

π
) ≥ 0 .

However, using the same type of arguments as in the proof of lemma 15, and follow-
ing the proof of theorem 4.1 in [22], it is possible to prove existence and uniqueness
of (Ȳ n, Z̄n). Now, if (Ȳ , Z̄) is the solution to

Ȳt∧θ = H(Xθ)+
∫ θ

t∧θ
h̄(Xr, Ȳr , Z̄r ) dr −

∫ θ

t∧θ
Z̄r dM

x
r , P

0
x − p.s. ,
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we get easily that there exists C > 0 such that

E
ε,µ
G

[
sup
t≥0

∥∥Ȳt − Ȳ nt ∥∥2

]
≤ CEε,µG

[
‖Hn(Xθ)−H(Xθ)‖2

]

+CEε,µG
[∫ θ

0

∥∥h̄n(Xr, Ȳr , Z̄r )− h̄(Xr, Ȳr , Z̄r )∥∥2
dr

]

≤ C
[
ωn(H)

2 + ωn(h̄)2Eε,µG (θ)
]

≤ C
[
ωn(H)

2 + ωn(h)2Eε,µG (θ)
]
; (62)

Theorem 16 follows now from lemma 20, and estimates (58), (61) and (62).
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