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Abstract. In this paper we consider Skorokhod Problems on polyhedral
domains with a constant and possibly oblique constraint direction specified
on each face of the domain, and with a corresponding cone of constraint
directions at the intersection of faces. In part one of this paper we used
convex duality to develop new methods for the construction of solutions
to such Skorokhod Problems, and for proving Lipschitz continuity of the
associated Skorokhod Maps. The main alternative approach to Skorokhod
Problems of this type is the reflection mapping technique introduced by
Harrison and Reiman [8]. In this part of the paper we apply the theory
developed in part one to show that the reflection mapping technique of
[8] is restricted to a slight generalization of the class of problems originally
considered in [8]. We further illustrate the power of the duality approach
by applying it to two other classes of Skorokhod Problems – those with
normal directions of constraint, and a new class that arises from a model
of processor sharing in communication networks. In particular, we prove
existence of solutions to and Lipschitz continuity of the Skorokhod Maps
associated with each of these Skorokhod Problems.
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1. Introduction

Many Skorokhod Problems (SPs) that arise as models of physical processes
have polyhedral domains with a constant, possibly oblique direction of con-
straint on each face of the domain, and a corresponding cone of constraint
directions at the intersection of faces [6, Section 1]. SPs in this class can
be represented by a finite collection of triplets {(di, ni, ci), i = 1, . . . , N}
where the domain is G = ∩i=1,...,N {x : 〈x, ni〉 ≥ ci}, di is the direction
of constraint associated with the face {x : 〈x, ni〉 = ci} and 〈di, ni〉 = 1.
For a precise definition of the SP and a more detailed description of SPs in
this class, see [6, Definition 1.1 and Section 2.2]. New methods for proving
existence of solutions to SPs of this class, and for establishing Lipschitz
continuity of the associated Skorokhod Maps (SMs) were developed in [6].
In this paper we apply the techniques of [6] to analyze concrete SPs.

In [4, Theorem 2.2] the following sufficient geometric condition was
derived for Lipschitz continuity of the SM associated with a SP in this
class. Let C◦ denote the interior of a set C. Given a convex set C ⊂ IRn and
x ∈ ∂C, define the set of inward normals to C at x by

ν(x)
.= {γ : ‖γ ‖ = 1, and 〈γ, x − y〉 ≤ 0 ∀y ∈ C} . (1.1)

Consider a SP with representation {(di, ni, ci), i = 1, . . . , N}.
Assumption 1.1 (Set B).There exists a compact, convex setB with0 ∈ B◦,
such that ifν(z) denotes the set of inward normals toB at z ∈ ∂B, then
there existsδ > 0 such that fori = 1, . . . , N ,{

z ∈ ∂B
|〈z, ni〉| < δ

}
⇒ 〈ν, di〉 = 0 for all ν ∈ ν(z). (1.2)

While this work of [4] was interesting in that it reduced the problem of
regularity of the SM (an infinite dimensional dynamic problem) to the ex-
istence of a certain set (an infinite dimensional static problem), it was not
fully satisfactory because it did not provide any methodology for verifying
this condition for a given SP. In [6, Theorem 3.3] an alternate dualsufficient
condition for Lipschitz continuity of the SM was derived. This condition,
stated below as Assumption 1.2, is expressed in terms of the collection
{L∗

i , i = 1, . . . , N} of adjoint projection operators associated with the SP
{(di, ni, ci), i = 1, . . . , N}, where

L∗
i x

.= x − 〈x, di〉ni, (1.3)

for i = 1, . . . , N .



Convex duality and the Skorokhod Problem. II 199

Assumption 1.2 (Set B∗). There exists a finite set of verticesv1, v2, . . . , vJ
with span({vj , j = 1, . . . , J }) = IRn, such that ifB∗ .= conv[±vj , j =
1, . . . , J ], then for everyi ∈ {1, . . . , N} andj ∈ {1, . . . , J },

eitherL∗
i vj = vj or L∗

i vj ∈ (B∗)◦. (1.4)

Although this dual condition is also geometric, it lends itself more easily to
verification. Indeed, methods for deriving algebraic conditions that guaran-
tee the existence of a set B∗ that satisfies (1.4) were also proposed in [6]. In
the present paper we use these methods to verify property (1.4) for specific
classes of SPs, and thereby establish Lipschitz continuity of the associated
SMs. More specifically, we analyze every SP for which regularity is known,
prove some interesting new results for these SPs, and then proceed to ex-
amine a new class of Skorokhod Problems for which there are no existing
results.

The first general result on SPs of this type was derived by Harrison and
Reiman [8]. They used contraction mapping techniques to prove existence
of solutions to a certain class of SPs, which we refer to as the Harrison–
Reiman (H–R) class. The techniques used in [8] also automatically estab-
lished Lipschitz continuity of the associated SMs. Limitations of the con-
traction mapping approach were discussed in [6, Section 2.4]. In this paper
(see Section 2.2), we use the duality approach to obtain a sharp result in this
direction. We prove in Lemma 2.3 that the contraction mapping techniques
of [8] are in fact limited to what we call the generalized Harrison–Reiman
(gH–R) class of SPs. SPs in the gH–R class have directions of constraint
that are linearly independent and satisfy a certain spectral radius condition
(see Theorem 2.1). In Section 2.4 we use the techniques of [6] to show that
this spectral radius condition is not necessary for regularity of the SM.

In Section 3, we analyze a new SP that arises from a generalized proces-
sor sharing (GPS) model. Once again, we establish Lipschitz continuity of
the SM by constructing a set B∗ that satisfies the dual condition Assump-
tion 1.2 for the SP. In Section 3.4, we also prove existence of solutions to
this SP for a certain class of paths, using tools that were developed in [6,
Section 4]. SPs with normal directions of constraint have the representation
{(ni, ni, ci), i = 1, . . . , N} for some N < ∞. Lipschitz continuity of the
SMs associated with this class of SPs was established in [4]. The proof,
which entailed a direct verification of property (1.2), was rather tedious. In
Section 4 we use the convex duality approach of [6] to provide a simpler
proof of Lipschitz continuity.

The paper concludes with Section 5, which discusses the issues of finite
algebraic characterizations for Lipschitz continuity of SMs (in Section 5.1),
singularity of the structure of the set B across different classes of SPs (in
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Section 5.2) and non-uniqueness of the representation for a SP (in Section
5.3).

2. The generalized Harrison–Reiman Skorokhod Problem

2.1. Introduction

In [8] Harrison and Reiman derived sufficient algebraic conditions for Lips-
chitz continuity of a family of SMs. The class considered in [8] corresponds
to SPs on the positive n-dimensional orthant IRn+ with n linearly indepen-
dent oblique directions of constraint. They define the map ψ → φ in terms
of what we term a reflection map rather than the SM. However, as discussed
in [6, Section 2.4], the two concepts coincide for the setup used in [8]. The
technique of the proof used in [8] is also discussed in [6, Section 2.4]. In
[4] a slight generalization of the Harrison–Reiman condition given in [8]
was derived by directly verifying Assumption 1.1. This generalization can
also be obtained by adapting the techniques used in [8].

In Section 2.2 we use the dual condition in Assumption 1.2 to establish
the sufficiency of the generalized Harrison–Reiman (gH–R) condition for
Lipschitz continuity of the SM. We also show that this condition is necessary
if one wishes to use the technique of [8] to prove the Lipschitz property.
The gH–R problems are precisely those for which there exists a set B that
satisfies Assumption 1.1 with exactly 2n faces. Since B must have at least
2n faces in IRn for it to be symmetric, bounded and contain 0 in its interior,
the gH–R class of SPs uses a set that is, in a sense, the simplest possible.
The lack of any additional algebraic results after that of [8] is likely to be
due to this increase in the complexity of the set required for SPs outside
the gH–R class. This leads naturally to the following question. Suppose we
consider a SP which satisfies all the other conditions assumed in [8] (that is
G = IRn+ with n linearly independent directions of constraint), but not the
gH–R condition. Such SPs still have an interpretation in terms of a reflection
map. If a more complicated set is used (i.e., one with more than 2n sides), is
it still possible to satisfy Assumption 1.1 even though the gH–R condition
is violated? The answer is yes, and a 3-dimensional example is given in
Section 2.4.

2.2. The generalized Harrison–Reiman condition

Here we construct a polytope B∗ that satisfies (1.4) in order to establish the
Lipschitz continuity of the SM for SPs in the gH–R class. This class of prob-
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lems helps to illustrate how fundamental vertex directions are constructed
and how the techniques developed in [6, Section 3.3] can be used to obtain
algebraic characterizations for a given class of SPs. Since the fundamental
vertex directions are specified in terms of the directions of constraint, it is
easiest to consider the case where the directions of constraint have the max-
imum symmetry. Although the original H–R SP considered in [8] had the
simplifying property that the ni’s were the basis vectors, for the geometric
approach it is more convenient to assume that the di’s take a simple form.
Thus we first assume that di = ei, i = 1, . . . , n. In this case the adjoint
operators are

L∗
i x = x − 〈x, ei〉ni,

and V = {±ei, i = 1, . . . , n}, where V is the fundamental set of vertices
defined in [6, Section 3.3]. Note that L∗

i leaves all the vectors ej , j 6= i

invariant, which greatly simplifies the verification of (1.4) for a setB∗ of the
form conv[±aiei, i = 1, . . . , n]. This property motivates the use of simple
di and complicated ni rather than the reverse. Then linear transformations
can be used to determine the di’s for which Assumption 1.2 holds when
the inward normals are mapped to the basis vectors. The same principle is
followed in Section 3 while analyzing the SP arising from a generalized
processor sharing model.

Theorem 2.1. Consider the SP inIRn specified by{(ei, ni, ci), i=1, . . . , n},
where the directions of constraintD

.= {ei, i = 1, . . . , n} are the standard
orthonormal basis forIRn. Assume the normal directionsni have been nor-
malized so that〈ei, ni〉 = 1. Let the matrixV be defined by

V
.= [vij ] = [〈ei, nj 〉],

and letQ
.= |I −V |, whereI is then× n identity matrix. Then there exists

a setB∗ satisfying Assumption1.2 if σ(Q) < 1.

Proof.LetQ = [qij ] = [|δij −〈ei, nj 〉|], where δij = 1 for i = j and equals
zero otherwise. We are given that σ(Q) < 1. We follow the construction
outlined in [6, Section 3.3] to build a set that satisfies property (1.4) for
the given SP. Let D = {ei, i = 1, . . . , n} denote the set of directions of
constraint. The set V of fundamental directions is {±ei, i = 1, . . . , n},
and thus the dual set is assumed to be of the form B∗ = conv[±aiei, i =
1, . . . , n] for some constants ai > 0. We now identify a certain subset of
SPs for which the set B∗ with the choice of ai = 1 for every i satisfies
property (1.4). Recall that the adjoint operators are given by

L∗
j x = x − 〈x, ej 〉nj .
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For i 6= j , L∗
j leaves ei invariant since 〈ei, ej 〉 = 0, and for j = i, L∗

j ej =
ej − nj . Since {ei} is an orthonormal basis for IRn, L∗

j ej can be written as
a unique linear combination of the vertices of B∗,

L∗
j ej =

n∑
i=1

〈L∗
j ej , ei〉ei = 6n

i=1〈ej − nj , ei〉ei
= ej −6n

i=1〈nj , ei〉ei = −6n
i=1,i 6=j 〈nj , ei〉ei,

(2.5)

where the last equality follows because 〈nj , ej 〉 = 1. Note that qij = 0
if i = j and qij = |〈ei, nj 〉| if i 6= j . First consider the case where
6n
j=1qij < 1 for all i = 1, . . . , n. In this case (2.5) implies that L∗

j ej
lies in the interior of conv[±ei, i = 1, . . . , n] and the existence of B∗ is
established. Next suppose that 6n

j=1qij ≥ 1 for at least one i. Here we
follow [8] and observe that σ(Q) < 1 implies [17, Lemma 3] the existence
of positive scalars uj such that 6n

j=1qijuj/ui < 1 for i = 1, . . . , n. This
corresponds to applying the similarity transform

A = (aij ) =
{
uj i = j,

0 i 6= j,

to the operators L∗
j . Thus the set S = conv[±ei, i = 1, . . . , n] satisfies

property (1.4) for the operators A−1L∗
jA. By [6, Lemma 3.7], the set

B∗ .= AS = conv[±uiei, i = 1, . . . , n]

satisfies property (1.4) for the collection of operators {L∗
j , j = 1, . . . , n}.

ut
The sets B and B∗ that correspond to the SP considered in Theorem 2.1

are shown in Figure 1. In the next theorem we use the transformation result
obtained in [6, Theorem 3.7] to generalize the condition derived in Theorem
2.1 to SPs with n arbitrary linearly independent constraint directions.

Fig. 1. The sets B and B∗ for the H–R case
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Theorem 2.2. Consider the SP inIRn specified by{(di, ni, ci), i=1, . . . , n},
where the directions of constraint{di} are linearly independent. Let the ma-
trix Ṽ be defined by

Ṽ = [ṽij ]
.= [〈di, nj 〉],

and letQ
.= |I − Ṽ |, whereI is then × n identity matrix. Ifσ(Q) < 1,

then the SM is Lipschitz continuous.

Proof.Define the collection C of SPs to be {(ei, wi, ki), i = 1, . . . , n} such
that σ(|I − V |) < 1, where V = [vij ] = [〈ei, wj 〉]. Then by Theorem
2.1 every SP in C satisfies Assumption 1.2. Let D be the matrix of the
directions of constraint [d1, . . . , dn]. Then detD 6= 0 since span(D) = IRn

for D = {di, i = 1, . . . , n}. Since

ṽij = 〈di, nj 〉 = 〈Dei, nj 〉 = 〈ei,D∗nj 〉

and σ(|I− Ṽ |) < 1, it follows that the SP {(ei,D∗nj , ci), i = 1, . . . , n} be-
longs to C. Choosing the invertible transformationA = D−1 in [6, Theorem
3.7], it follows that the SP {(di, ni, ci), i = 1, . . . , n} satisfies Assumption
1.2. Hence the associated SM is Lipschitz continuous. ut

Theorem 2.2 is proved by constructing a symmetric set with 2n faces
that is a “tilted” version of a level set of the sup norm in IRn. It is natural
to ask if a set of this form can satisfy (1.4) under any weakening of the
condition σ(Q) < 1. Lemma 2.3 shows that this is not possible, and thus
the condition σ(Q) < 1 is also necessaryfor the existence of a set B of the
prescribed form. Thus the gH–R class of SPs is the precise class for which
a simple form of the set B (2n faces) suffices.

Lemma 2.3. Consider the SP and the matricesV andQdefined in Theorem
2.2. If σ(Q) ≥ 1 then there does not exist a setB∗ of the formconv[±vi, i =
1, . . . , n] that satisfies Assumption1.2.

Proof. It suffices to consider the case when di = ei, i = 1, . . . , n, since all
other cases can be reduced to this case by using [6, Theorem 3.7] and an
invertible change of coordinates. By [6, Theorem 3.4] any set of the form
conv[±vi, i = 1, . . . , n] that satisfies (1.4) must have the particular form
B∗ = conv[±ei/ai, i = 1, . . . , n], where ai are positive scalars. Suppose
such a set does exist. Then by [6, Theorem 2.4] B∗ is also an invariant set
for the collection of operators L∗. Fix any value j ∈ {1, . . . , n}. From (2.5)

Qej = 6n
i=1,i 6=j |〈ei, nj 〉|ei and L∗

j ej = −6n
i=1,i 6=j 〈ei, nj 〉ei.
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A vector v = ∑n
i=1 βiei is in B∗ if and only if

∑n
i=1 |aiβi | ≤ 1. Thus for

any j ∈ {1, . . . , n}, L∗
j (ej /aj ) ∈ B∗ (respectively (B∗)◦) if and only if

Q(ej/aj ) ∈ B∗ (respectively (B∗)◦).
Now suppose that σ(Q) ≥ 1 and that an invariant set of the proposed

form satisfying Assumption 1.2 exists. Then for each j ∈ {1, . . . , n},
L∗
j (ej /aj ) ∈ (B∗)◦ implies Q(ej/aj ) ∈ (B∗)◦. This implies Qn → 0

as n → ∞, which contradicts the fact that σ(Q) ≥ 1. ut
We next show that in the two-dimensional case, one can without loss of

generality assume that the set B satisfying (1.2) has 4 faces. Thus in two
dimensions σ(Q) < 1 serves as both a necessary and sufficient condition
for Assumption 1.1 to hold. There is also an obvious extension to the case
where N = 2 and n ≥ 2.

Lemma 2.4. Consider any SP such thatN = n = 2 and such thatn1 is not
a scalar multiple ofn2. DefineQ as in Theorem2.2. Thenσ(Q) < 1 is a
necessary and sufficient condition for Assumption1.1 to be satisfied.

Proof. Theorem 2.2 shows that σ(Q) < 1 is a sufficient condition for
Assumption 1.1 to hold. Consider a two dimensional SP {(di, ni, ci), i =
1, 2}. Suppose it is true that whenever there exists B satisfying Assumption
1.1, there also exists a set B̃ that satisfies this assumption and the additional
requirement that it be the intersection of 4 halfspaces. In this case, the
necessity of the condition σ(Q) < 1 follows from Lemma 2.3. We now
show that such a set B̃ can always be found.

Let B satisfy Assumption 1.1, and for i = 1, 2 let d⊥
i and n⊥

i repre-
sent unit vectors that are perpendicular to di and ni , respectively. Recall
that Assumption 1.1 implies B is symmetric. Thus for each i = 1, 2 there
is a scalar αi ∈ (0,∞) such that ±αin⊥

i ∈ ∂B. B satisfies Assumption
1.1 if and only if there are open neighborhoods ±Ni, i = 1, 2 around the
points ±αin⊥

i such that the inward normals to ∂B at points z ∈ ±Ni ∩ ∂B
are orthogonal to di . Thus there exist ai ∈ (0,∞), i = 1, 2 such that
all points in the sets ±Ni ∩ ∂B satisfy |〈x, d⊥

i 〉| = ai for i = 1, 2. Set-
ting B̃

.= {x : |〈x, d⊥
i 〉| ≤ ai, i = 1, 2}, we observe that ±Ni ∩ ∂B =

±Ni ∩ ∂B̃ for i = 1, 2. Thus B̃ satisfies Assumption 1.1, and the proof is
complete. ut

Open feedforward networks

In the original Harrison–Reiman framework, the normals were chosen to
be the orthonormal basis, I − V was required to be nonnegative, where V
is as defined in the proof of Theorem 2.2, and the spectral radius condition
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Fig. 2. Open feedforward network

σ(I − V ) < 1 was shown to guarantee existence and Lipschitz continuity
of solutions to the SP. In that case σ(I − V ) = σ(|I − V |), and hence
Theorem 2.2 is indeed a generalization of the H–R condition. Here we
illustrate the utility of this generalization with an example of a SP that arises
in open feedforward networks. This SP cannot be analyzed by the original
H–R condition but does fall into the gH–R class. For open feedforward
networks, an example of which is shown in Figure 2, there exists a natural
ordering of the buffers in the network and the map that takes the inputs to the
buffer contents can be shown to be Lipschitz continuous using an inductive
argument on the buffers. However, the problem can also be formulated as
a SP on the nonnegative orthant IRn+ (where n represents the number of
buffers in the network) with an upper triangular “reflection matrix” V , as
usual suitably normalized to have ones along the diagonal. Then I − V is
upper triangular with zeros along the diagonal and consequently has spectral
radius zero. However, the H–R condition is not applicable since I−V is not
necessarily non-negative. On the other hand, the generalized H–R condition
derived in Theorem 2.2 can be used since Q

.= |I − V | also has spectral
radius zero. SPs arising from single class networks with feedback also fall
into the gH–R category. These SP representations were used to derive heavy
traffic limits for multi-class open feedforward and single class networks with
feedback by [14] and [13] respectively.

2.3. Existence of solutions for the gH–R class of SPs

Recall the definition of the class of generalized Harrison–Reiman SPs de-
scribed in Section 2.2. For such SPs existence of solutions onC([0, T ] : IRn)
was established in [8] using contraction mapping techniques. In [8] it was
also shown that the gH–R SP gives rise to a semimartingale RBM. It is
known that [6, Assumption 4.1] is also a necessary condition for the exis-
tence of a semimartingale Brownian motion in this framework [18]. Thus
the gH–R condition implies [6, Assumption 4.1] (which is equivalent in
this context to the completely-S condition) and so by [6, Theorem 4.2]
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solutions to the gH–R SP exist on all of DG([0,∞) : IRn), the set of right
continuous functions with left limits on [0,∞) that start in G.

2.4. A Lipschitz continuous Skorokhod Map onIR3
+ that violates

the generalized Harrison–Reiman condition

In the last section it was established that for SPs on IRn+ with n linearly in-
dependent directions of constraint, σ(Q) < 1 is a necessary and sufficient
condition for the existence of a set with 2n faces that satisfies Assumption
1.1. It was also shown in Lemma 2.4 that in the two dimensional case,
σ(Q) < 1 is both a necessary and sufficient condition for Assumption
1.1 to be fulfilled. However in higher dimensions it is possible to satisfy
Assumption 1.1 (and therefore obtain Lipschitz continuity of the SM) even
when σ(Q) > 1. In this section we provide a 3-dimensional example of
such a SP. As required by Lemma 2.3, the set B that satisfies (1.2) in this
case has 8 > 2n = 6 faces.

Example: Consider the SP {(di, ni, 0), i = 1, 2, 3}, where

d1 = (1, 0, 0)T , n1 = (1,−.5 − ε, .5 + ε)T ,

d2 = (0, 1, 0)T , n2 = (.5 − aε, 1,−.5 + aε)T ,

d3 = (0, 0, 1)T , n3 = (.5 − aε,−.5 + aε, 1)T ,
(2.6)

where the superscript T denotes transpose and a and ε are positive scalars.
The matrix Q defined in Theorem 2.2 is then given by

 0 .5 − aε .5 − aε

.5 + ε 0 .5 − aε

.5 + ε .5 − aε 0


 .

For ε = 0, σ(Q) = 1. If a > 0 is sufficiently small then σ(Q) > 1 for all
sufficiently small values of ε > 0. Since span({d1, d2, d3}) = IR3, it follows
from [6, Theorem 3.4] that the set of vertex directions of B∗ must include
V

.= {±e1,±e2,±e3}, which suggests

C∗ .= conv[±e1,±e2,±e3]

as a candidate set for Assumption 1.2. However, Lemma 2.3 implies that
C∗ cannot satisfy (1.4). In order to guess at the correct form for the dual set,
it is instructive to see why C∗ does not satisfy (1.4). We begin by observing
that L∗

i ej = ej if i 6= j . Also, since aε > 0

L∗
2e2 = −(.5 − aε)e1 + (.5 − aε)e3 ∈ (C∗)◦,
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and similarly

L∗
3e3 = −(.5 − aε)e1 + (.5 − aε)e2 ∈ (C∗)◦.

Since

L∗
1e1 = (.5 + ε)e2 − (.5 + ε)e3 = (.5 + ε)(e2 − e3)

lies outside C∗, we consider for some k > 0 the set

B∗ = conv[±e1,±e2,±e3,±k(e2 − e3)]. (2.7)

Note that L∗
1e1 ∈ (B∗)◦ if .5 + ε < k and L∗

2e2 and L∗
3e3 also lie in (B∗)◦

since C∗ ⊂ B∗. It remains to check where the new vertex k(e2 − e3) is
mapped under the projection operators. It is clearly left invariant byL∗

1, and
its image under L∗

2 is

−k(.5 − aε)e1 + [k(.5 − aε)− k]e3.

Rewriting this sum as

−(.5 − aε)ke1 − (.5 + aε)ke3,

we find that it lies in conv[e1,−e3]◦ ⊂ (B∗)◦ when k < 1. An analogous
calculation shows that the same is true for the image under L∗

3. Thus the set
B∗ in (2.7) satisfies (1.4) for the SP for k ∈ (.5 + ε, 1).

The above SP is illustrative of a case when Assumption 1.1 holds but
no set B∗ having vertices only along the fundamental vertex directions will
satisfy (1.4). Thus additional vertex directions need to be added in order to
obtain an appropriate set B∗. While the choice of additional directions is
not ad-hoc, there is as yet no systematic method of selecting them. For SPs
arising from real models (such as open feedforward networks and the GPS
model discussed in Sections 2 and 3 respectively) the physical constraints
of the process seem to suggest the appropriate vertex directions. Finally we
observe that from the monotonicity property stated in [6, Theorem 3.5] it
is clear that a set B∗ of the form constructed in (2.7) (or appropriate linear
transforms of it) also satisfies (1.4) for SPs that satisfy the gH–R condition.
Thus by using a more complicated set, one obtains Lipschitz continuity
under strictly weaker conditions (i.e. σ(Q) > 1) on the problem data. It is
thus conceivable that by making the set increasingly more complicated, one
can obtain Lipschitz continuity under increasingly weaker algebraic condi-
tions. This seems to suggest that no tight algebraic condition for Lipschitz
continuity may be possible, which is in keeping with the conjecture made in
[9] that there do not exist semi-algebraic criteria to determine uniqueness of
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solutions to certain SPs. A perspective that is put forth in [6], and supported
by the examples found in this paper, is that one must group SPs accord-
ing to the structure required of the corresponding set B∗, and then search
for algebraic characterizations of regularity within the individual groups. A
compelling example of this approach is given in Section 3.

2.5. Existence of solutions for the three-dimensional example

In this section we show that the three-dimensional SP considered in the last
section, which we refer to as P , satisfies [6, Assumption 4.1]. As discussed
in Section 4.3.2 of [6], this is a necessary and sufficient condition for the ex-
istence of solutions onDG([0,∞) : IRn) for standard SPs. We first consider
the associated SP P0 which is obtained by setting ε = 0 in the definition of
the SP P in (2.6). In other words let P0

.= {(di, n0
i , 0), i = 1, 2, 3}, where

d1 = (1, 0, 0)T , n0
1 = (1,−.5, .5)T ,

d2 = (0, 1, 0)T , n0
2 = (.5, 1,−.5)T ,

d3 = (0, 0, 1)T , n0
3 = (.5,−.5, 1)T .

Then it follows from the properties stated below that Assumption 4.1 of [6]
is satisfied for P0. Consider i ∈ {1, 2, 3} and j ∈ {1, 2, 3} \ {i}.
1. For x ∈ rel int (∂G ∩ ∂Gi), consider d = di . With the choice ñ

.= ni ∈
n(x),

〈ñ, di〉 = 1 > 0.

2. For x ∈ rel int (∂G∩∂Gi∩∂Gj), consider any d of the form αidi+αjdj
with αi ≥ 0, αj ≥ 0, αi + αj = 1. With the choice ñ

.= 1√
2

(
ni + nj

) ∈
n(x),

〈ñ, d〉 ≥ 1√
2
> 0.

3. For x = 0 consider d of the form α1d1 +α2d2 +α3d3 where each αi ≥ 0
and 63

i=1αi = 1. With the choice ñ
.= 1√

3
(1, 1, 1) ∈ n(x)

〈ñ, d〉 ≥ 1√
3
> 0.

Thus P 0 satisfies Assumption 4.1 of [6], and therefore the same is true
of the SP P for all sufficiently small ε > 0.
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3. The generalized processor sharing Skorokhod Problem

3.1. Introduction

Generalized processor sharing (GPS) is a policy that has been proposed
for distributing processing in a fair manner between different data classes
in high-speed networks. The processor sharing model, which is shown in
Figure 3, is defined in terms of a probability vector ρ = (ρ1, . . . , ρn). The
total number of classes present is n and each ρi > 0 represents the minimal
fraction of the overall processing capacity that is guaranteed to class i. The
queue length process for a model of GPS with fluid absolutely continuous
inputs was characterized in [5] as the solution to a constrained ordinary
differential equation (CODE). This CODE was then recast in terms of a
Skorokhod Problem (which we refer to as the GPS SP below), and the
queue length process expressed as the associated Skorokhod Map applied
to a suitably centered input process. In Section 3.2 we give a description of
the Skorokhod Problem that arises from the GPS fluid model and derive a
suitable representation {(di, ni, ci), i = 1, . . . , N} for it. Like the Harrison–
Reiman SP considered in the last section, the GPS SP has the n-dimensional
orthant IRn+ as its domain. However, due to the structure of its constraint
directions, it falls outside the gH–R framework and therefore eludes analysis
by existing techniques. The study of the SM arising from the GPS model thus
serves as a good motivation for the techniques developed in [6, Section 3].

In Section 3.3 we describe how a dual set B∗ that satisfies (1.4) can
be constructed for this SP. The construction of B∗ here is similar to but

c

ρ

ρ

ρ
1

2

n
n

2

1

Fig. 3. Generalized processor sharing
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more complicated than that in the gH–R case. As in that case, we first
consider the GPS SP that has the simplest directions of constraint, which
we denote by {zi}, and construct the fundamental set of vertices of the form
V = {±wj, j = 1, . . . , K} associated with it. This construction, which is
greatly facilitated by the simple structure of the constraint directions, leads
to the conjectured internal representation conv[±ajwj , j = 1, . . . , K] for
the set B∗, where the aj > 0 are to be chosen so that B∗ satisfies (1.4). The
structure of the {zi} is such that each vertex ±ajwj of the conjectured setB∗

is left invariant by most of the projection operators. This greatly simplifies
the problem of determining the normals {ni} for which there exists B∗ of
the given form that satisfies (1.4).

A crucial step in obtaining the algebraic condition is the derivation of an
external representation for B∗ of the form B∗ = ∩ν∈K{x : 〈x, ν〉 ≤ cν} for
some constants cν and a finite set of vectors K. Though this is a highly non-
trivial task in general, it becomes feasible here due to the symmetry of the
fundamental vertex directions {wj } associated with the simplest directions
of constraint {zi}. Thus the verification of (1.4) is reduced to checking a finite
number of linear inequalities. This algebraic condition is generalized using
the transformation techniques discussed in [6, Section 3.4] to determine
the constraint directions di for which B∗ exists when the normals {ni} are
mapped to the vectors that define the GPS domain. This is in analogy with
the method used in Theorem 2.2 for the gH–R SP. Theorem 3.5 shows
that the transformed algebraic conditions are fulfilled by the directions of
constraint associated with any GPS model (i.e., for any dimension and any
ρ), and consequently establishes Lipschitz continuity of the corresponding
SMs. The Lipschitz continuity of the SM is very useful in studying the GPS
model, as illustrated in [5]. Prior work on the processor sharing model that
does not make use of a Skorokhod formulation is restricted to either the
two-dimensional case or to just bounds for higher dimensional cases, and
includes [10], [11], [12], [19].

3.2. Description of the generalized processor sharing SP

The domain of the GPS SP is the non-negative orthant IRn+ = ∩i=1,...,n{x :
〈x, ei〉 ≥ 0}. Given a probability vector ρ = (ρ1, ρ2, . . . , ρn), the direction
of constraint on the face {x : 〈x, ei〉 = 0} is

di = (ei − ρ)/(1 − ρi) (3.8)

for i = 1, . . . , n. There is also an additional direction of constraint dn+1

pointing along6n
i=1ei at the origin. The structure of the SP for 2 dimensions

is shown in Figure 4. The constraint directions di, i = 1, . . . , n effect a
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Fig. 4. The two-dimensional GPS SP and the associated set B

“fair” (as measured by ρ) redistribution of any processing capacity that is
not used by one set of users among all the remaining users, while dn+1 is
used to maintain the non-negativity of the buffers if at any time there is more
than enough processing capacity to service both the data that is currently
being input by the users as well as any data that is buffered. We now look
for a convenient representation of the SP as a finite collection of triplets. It
is apparent that the representation of the GPS SP must include the triplets
(di, ei, 0) for i = 1, . . . , n. The domain associated with this collection of
triplets is IRn+. However, it is not possible to represent the GPS SP with just
these triplets, since 〈dn+1, di〉 = 0 implies that dn+1 would not be in the set
of directions of constraint at the origin. In order to properly describe the
SP, it is necessary to add a face {x : 〈x, nn+1〉 = 0} passing through the
origin with dn+1 as the associated direction of constraint. Since the domain
must equal IRn+ even after we include this new triplet, this additional face
must be a supporting hyperplane to IRn+ at the origin. As we note in Section
5.3, this face is “fictitious” in the sense that it does not actually form a face
of the domain, but it is introduced to properly enlarge the cone of allowed
directions of constraint at the origin. A proper choice for the normal is
nn+1

.= dn+1 which, by the normalization convention 〈dn+1, nn+1〉 = 1,
implies that

nn+1
.= dn+1

.= 6n
i=1ei√
n
. (3.9)

Thus we obtain the representation {(di, ni, 0), i = 1, . . . , n + 1} for the
GPS SP, where ni = ei and di is as defined in (3.8) for i = 1, . . . , n and
nn+1 = dn+1 are as defined in (3.9).

The 2-dimensional GPS SP can be analyzed in a rather straightforward
manner. The Lipschitz continuity of the mapping 0 is easily established via
a direct construction of a set B that satisfies property (1.2) for the SP, as
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shown in Figure 4 (cf. also [4]). In higher dimensions, however, non-trivial
interactions between the buffers take place and the methods developed in
this paper are needed to constructB. In order to make the problem tractable,
we first characterize the special structure present in the GPS SP. Lemma 3.1
shows that for any probability vector ρ and dimension n, the directions of
constraint defined in (3.8) always span a fixed hyperplane in IRn.

Lemma 3.1. Letρ = (ρ1, ρ2, . . . , ρn)withρi > 0 and6n
i=1ρi = 1, and let

the associated constraint directionsdi = (ei −ρ)/(1−ρi) for i = 1, . . . , n
be given. DefineE

.= {di, i = 1, . . . , n}. Thenspan(E) is the hyperplane
normal todn+1 = 1√

n
6n
i=1ei and the constraint directions satisfy the relation

6n
i=1ρi(1 − ρi)di = 0. (3.10)

Furthermore, any subset ofn− 2 vectors inE spans an(n− 2)-dimensional
space.

Proof.Since

〈dn+1, di〉 =
〈
dn+1,

ei − ρ

1 − ρi

〉
= 1 −6n

j=1ρj√
n(1 − ρi)

= 0,

dn+1 is normal to span(E). Moreover,

6n
i=1ρi(1−ρi)di = 6n

i=1(ρiei−ρiρ) = 6n
i=1ρiei−ρ6n

i=1ρi = ρ−ρ = 0,

which establishes (3.10). Thus the directions of constraint {di, i = 1, . . . , n}
span a space of dimension at most n−1. To prove that the span actually has
dimension n−1, it is necessary to establish that some subset of n−1 direc-
tions ofE is linearly independent. We shall choose the set {d1, d2, . . . , dn−1},
but the analogous argument works for every subset of n− 1 directions and
thus establishes the slightly stronger result that any set of n−1 directions in
E is linearly independent. Suppose there exist αi such that 6n−1

i=1 αidi = 0.
To prove that the n − 1 constraint directions are linearly independent, we
need to show that αi = 0 for i = 1, . . . , n−1. Now for any i < n, equating
the ith and nth components of 6n−1

i=1 αidi to zero yields

− α1ρi

1 − ρ1
− α2ρi

1 − ρ2
− · · · −αi · · · − αn−1ρi

1 − ρn−1
= 0

− α1ρn

1 − ρ1
− α2ρn

1 − ρ2
− · · · − αiρn

1 − ρi
· · · − αn−1ρn

1 − ρn−1
= 0.

Since ρi > 0 for every i, we can multiply the first equation by ρn/ρi and
subtract it from the second to obtain
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− αiρn

1 − ρi
+ αiρn

ρi
= 0 ⇒ αi(1 − 2ρi) = 0. (3.11)

This implies that αi = 0 unless ρi = 1/2. When n = 2, ρ1 = ρ2 = 1/2,
d1 = (1,−1) and d2 = (−1, 1), and span(D) is the line perpendicular to
dn+1 = 1√

2
(1, 1). In all other cases, there is at most one component of

ρ that is equal to 1/2 since by assumption all ρi are strictly positive and
6n
i=1ρi = 1. Suppose ρj = 1/2 for some j ≤ n−1. If i 6= j , then ρi 6= 1/2

and thus by (3.11), αi = 0. However, this implies that αj is also zero since
−αjdj = 6n−1

i=1,i 6=jαidi = 0. Thus αi = 0 for 1 ≤ i ≤ n− 1 and span(E) is
the (n− 1)-dimensional space normal to dn+1. Finally suppose there exists
any subset of E of cardinality n − 2 that spans a k-dimensional space for
k < n − 2. Then there exists a subset of n − 1 vectors of E that spans an
m-dimensional space withm < n− 1. This contradicts the argument given
above and thereby establishes the last assertion of the lemma. ut

3.3. Construction of the dual setB∗ for the generalized
processor sharing SP

In Figure 4 it was shown that for the two-dimensional case, Lipschitz con-
tinuity of the SM could be established by directly constructing a set B that
satisfies Assumption 1.1. In higher dimensions Lipschitz continuity is ob-
tained by constructing the dual set that satisfies (1.4). In this section we
describe how this is done. The construction of the dual set, as outlined in
[6, Section 3.3], first involves the identification of the fundamental vertex
directions and then the determination of suitable multiplicative constants
that make the convex hull of the scaled vertices satisfy property (1.4). Fol-
lowing the methodology outlined there, we let D

.= {di, i = 1, . . . , n+ 1}
and E

.= {di, i = 1, . . . , n}. Since by Lemma 3.1 dn+1 is orthogonal to
span(E), the subsets of D which span (n− 1)-dimensional spaces are eas-
ily calculated to be E = {di, i = 1, . . . , n} and sets which are formed by
the union of dn+1 with subsets of E that span (n − 2)-dimensional spaces.
Lemma 3.1 identifies the latter subsets to be exactly those that have cardi-
nality n − 2. Each such subset of E can therefore be identified by the two
constraint directions in E that it does not contain, and thus the subsets that
determine the fundamental vertex directions are given by E and

Sij
.= D \ {di, dj }

for i > j, i, j ∈ {1, . . . , n}. If we define d∗
n+1

.= dn+1 and d∗
ij to be a unit

vector orthogonal to span(Sij ), then the fundamental vertex directions are
given by
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V = {±d∗
n+1,±d∗

ij : j > i, i, j ∈ {1, . . . , n}}.
V has cardinality n2 − n + 2, which is also equal to the number of faces
of the dual set B. As was discussed in [6, Section 3.1], this is a measure of
the complexity of the set B associated with the SP. Recall that the gH–R
SP required a set with only 2n faces, which turns out to be the simplest
possible. The conjectured form of the set B∗ for the GPS SP is then

B∗ = conv
[±an+1d

∗
n+1,±aijd∗

ij : j > i, i, j ∈ {1, . . . , n}] . (3.12)

We first consider a special case in which there is sufficient symmetry to make
the problem tractable. Recall that a similar approach was taken in Section
2.2, where the orthonormal basis {ei, i = 1, . . . , n} served as the simplest
set of constraint directions within the gH–R framework. The analogous
directions for the processor sharing model are obtained by considering ρ =
(1/n, . . . , 1/n), and we refer to this as the equal sharing case.

A. Equal sharing case (ρi = 1/n)

We now construct the dual setB∗ for the equal sharing SP which has weight
vector ρ = ( 1

n
, 1
n
, . . . , 1

n
). Here the direction vectors are given by

zi
.= n

n− 1
ei − 1

n− 1
6n
j=1ej (3.13)

for i = 1, . . . , n and zn+1
.= 6n

i=1ei/
√
n. By Lemma 3.1 the {zi} span the

hyperplane with normal z∗n+1
.= zn+1. The analysis here is greatly simplified

by the symmetry of the direction vectors which is evident from the following
relations when i, j and k are in {1, . . . , n}.

〈zk, zk〉 = n

n− 1
,

〈zk, zj 〉 = − n

(n− 1)2
for j 6= k,

〈zk, zk − zj 〉 = n2

(n− 1)2
for j 6= k,

〈zk, zi − zj 〉 = 0 for k 6= {i, j}.

(3.14)

Consider the sets Sij = E \ {zi, zj } whose spans are orthogonal to the
fundamental vertex directions z∗ij . Since the last relation in (3.14) implies
that 〈x, zi − zj 〉 = 0 for x ∈ span(Sij ), we obtain the simple expression

z∗ij = zi − zj = n

n− 1
(ei − ej ). (3.15)
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Thus a conjectured internal representation for the dual set can be expressed
succinctly in terms of the constraint directions as

B∗ = conv
[±an+1zn+1,±aij (zi − zj ) : i, j ∈ {1, . . . , n}, j > i

]
, (3.16)

where an+1, aij > 0.
Our objective is to develop algebraic conditions that determine the range

of normals {ni} in the equal sharing case for which (1.4) holds. Transfor-
mation techniques can then be applied, as shown in Theorem 3.5, to solve
the general GPS problem for arbitrary ρ and dimension n. The verification
of property (1.4) for the set B∗ requires an efficient way of determining
if a point lies in the interior of the set. We will make use of the facts
that L∗

i z
∗
n+1 = z∗n+1 for i ∈ {1, . . . , n} and that L∗

n+1z
∗
n+1 = 0. These

properties imply that regardless of the choice of the coefficient an+1, the
points ±an+1z

∗
n+1 will always satisfy the conditions required in (1.4). Let

M
.= span({z∗ij , i, j ∈ {1, . . . , n}, j > i}) and observe that since z∗n+1

is orthogonal to M , M⊥ .= span({z∗n+1}). A necessary and sufficient for
any point of the form ±aij z∗ij to be projected into the interior of B∗ (for
sufficiently large an+1) is that it be projected into the interior of

conv
[±aij z∗ij : i, j ∈ {1, . . . , n}, j > i

] ×M⊥.

We shall first consider the case when all aij = 1, and define

C∗ .= conv
[±z∗ij : i, j ∈ {1, . . . , n}, j > i

] ×M⊥.

We next derive an external representation of the form

C∗ = ∩ν∈K{x : |〈x, ν〉| ≤ cν}

for some γ > 0 and a finite set of vectors K. The external representation
reduces the problem of verifying (1.4) to checking the linear inequalities
|〈L∗

i z
∗
ij , ν〉| < γ for ν ∈ K.

The geometry of the SP for the three-dimensional equal sharing case
and the structure of the associated sets B and B∗ are illustrated in Figures 5
and 6 respectively. In this case it is not hard to show that the set of normals
to the corresponding set C∗ is K = {±z1,±z2,±z3}.

In Theorem 3.3 we show that the structure of the normals can be gener-
alized to the n-dimensional equal sharing case in the following way. The set
of normals to C∗ always has a simple representation in terms of the original
directions of constraint as ±zi,±(zi + zj ),±(zi + zj + zk), . . . , and so on.
(Recall that when dealing with external representations, the normals need
not necessarily be normalized to have norm 1.) For any p ∈ IN let a sum
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Fig. 5. The three-dimensional equal sharing SP

Fig. 6. The sets B and B∗ for the equal sharing GPS SP

of p distinct vectors be called a p-sum. In dimension n the normals to C∗

are all possible p-sums of the constraint directions D = {d1, . . . , dn} for
p < n. This indicates that the number of normals increases with dimension
as 2n − 2.

Remark 3.2. It is worthwhile to note the remarkable connection between
the geometry of the particular class of SPs arising from equal sharing GPS
models that is considered here and the theory of root systems that arises
in the study of simple Lie Groups [1, p. 188]. It turns out that the set
[ei −ej , i, j ∈ {1, . . . , n}, i 6= j ] of vertices of a scaled version of C∗ is the
root system for the Lie Algebra An−1 associated with the Lie Group sln [1,
p. 250]. A knowledge of root system theory then allows one to directly guess
that the set K of normals to C∗ can be obtained as Weyl transformations
of the fundamental weights of the dual root system. The fact that An−1 is
self-dual, the associated Weyl group is the set of permutations on {1, . . . , n}
and the fundamental weights ofAn−1 are given by6j

i=1ei, j = 1, . . . , n−1
can then be used to arrive at the general structure of K given above.
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Let T
.= {1, . . . , n}, U .= {ei − ej , i > j} and for S ⊂ T , S 6∈ {∅, T },

let

γS
.= n− 1

n
6i∈Szi =

{
6i∈S

(
ei − 1

n
6n
j=1ej

)}
.

Define Q
.= {γS : S ⊂ T , S 6∈ {∅, T }} and recall M = {x : 〈x, z∗n+1〉 = 0}.

Note that since U = n−1
n

{±z∗ij : i, j ∈ {1, . . . , n}, j > i}, U⊥M . For
simplicity, we first find a convenient external representation for a scaled
version of the projection of C∗ onto the subspace M .

Theorem 3.3. LetA
.= conv[U ]. Then∩γ∈Q{x ∈ M : 〈x, γ 〉 ≤ 1} is an

external representation for the setA.

Proof.Define Ã
.= ∩γ∈Q{x ∈ M : 〈x, γ 〉 ≤ 1}. We first show that A ⊂ Ã.

Observe that for every S ⊂ T , S 6∈ {∅, T }

〈ei − ej , γS〉 =




1 if S ∩ {i, j} = {i},
−1 if S ∩ {i, j} = {j},

0 otherwise .

(3.17)

Thus for every vertex ei−ej ∈ U , i 6= j , and every γ ∈ Q , 〈ei−ej , γ 〉 ≤ 1.
SinceA is convex, it follows that for every x ∈ A, 〈x, γ 〉 ≤ 1 for each γ ∈ Q

and consequently that A ⊂ Ã.
We now establish that Ã ⊂ A. Let U∗ .= {γ ∈ M : maxu∈U 〈u, γ 〉 ≤ 1}.

Since A = conv[U ], for every x ∈ M maxu∈U 〈u, x〉 = maxu∈A〈u, x〉.
Therefore, as stated in [6, Equation (3.7)], the fact that A = (A∗)∗ yields
the following external representation for A :

A =
{
x ∈ M : max

γ∈U∗
〈x, γ 〉 ≤ 1

}
. (3.18)

Now fix any γ ∈ U∗ and consider its unique representation in terms of the
standard orthonormal basis {ei, i = 1, . . . , n} :

γ = 6n
i=1λiei.

Given any γ ∈ U∗, define γ̂ by

γ̂ = γ − (
minj∈T λj

)
6n
i=1ei

= 6n
i=1

(
λi − minj∈T λj

)
ei

= 6n
i=1λ̂iei,

(3.19)
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where the last equality defines the coefficients λ̂i . With this definition, λ̂i ≥ 0
for every i ∈ T and mini∈T λ̂i = 0.

Define

Q̂
.= {wS : S ⊂ T , S 6∈ {∅, T }},

where for S ⊂ T , S 6∈ {∅, T },
wS = 6i∈Sei. (3.20)

We now state a claim that is the key step in obtaining a finite external rep-
resentation for A.

Claim . {γ̂ : γ ∈ U∗} ⊂ conv[Q̂].

Suppose the claim were true. Since 6n
i=1ei is orthogonal to M , if γ is

replaced by γ̂ in the description (3.18) for A the set A remains unaltered.
Thus

A =
{
x ∈ M : max

γ∈U∗
〈x, γ̂ 〉 ≤ 1

}
. (3.21)

Similarly, since Q and Q̂ are equivalent sets modulo6n
i=1ei and Ã ⊂ M , we

can rewrite

Ã = ∩γ∈Q̂{x ∈ M : 〈x, γ 〉 ≤ 1}. (3.22)

Then it follows from the last two displays and the claim that Ã ⊂ A.
We now prove the claim. By definition, for any γ ∈ U∗, γ̂ has a repre-

sentation γ̂ = 6n
i=1λ̂iei , where λ̂i ≥ 0 for every i ∈ T and mini∈T λ̂i = 0.

Now suppose that the representation for γ̂ is such that λ̂1 ≥ λ̂2 ≥ · · · ≥
λ̂n = 0. Then we claim that γ̂ can be written as a convex combination of
{w{1,...,j}, j = 1, . . . , n− 1}, where wS is defined in (3.20). Rewriting γ̂ in
terms of the w’s yields

γ̂ = 6n
i=1λ̂iei = 6n−1

i=1 βiw{1,...,i},

where βn−1
.= λ̂n−1 and βn−k

.= λ̂n−k − λ̂n−k+1 for k = 2, . . . , n− 1.
The monotonicity assumption on the λ̂i’s implies that βi ≥ 0 for all i.

Since maxu∈U 〈u, γ 〉 ≤ 1 and λ̂n = 0, we have in particular

〈e1 − en, γ̂ 〉 = λ̂1 − λ̂n = λ̂1 ≤ 1

This shows that γ̂ is a convex combination of the w’s since

6n−1
k=1βk = λ̂n−1 +6n−2

k=1 (λ̂k − λ̂k+1) = λ̂1 ≤ 1.
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Now for γ̂ = 6n
i=1λ̂iei , we consider the general case where

0 = min
i=1,...,n−1

λ̂i ≤ max
i=1,...,n−1

λ̂i ≤ 1.

Note that the last inequality is obtained once again using the fact that
maxu∈U 〈u, γ̂ 〉 ≤ 1. If j

.= argmini=1,...,n−1λ̂i and k
.= argmaxi=1,...,n−1λ̂i ,

then u is chosen to be ek − ej to obtain the desired result. The appropriate
subset of vectors in Q̂ that includes γ̂ in its convex hull can now be identi-
fied via the following procedure. Define σ to be a permutation on {1, . . . , n}
such that λ̂σ (1) ≥ λ̂σ (2) · · · ≥ λ̂σ (n) = 0. Then

γ̂ = 6n−1
i=1 λ̂σ (i)eσ(i)

and the above argument can once again be used to show that γ̂ lies in the
convex hull of the subset of Q̂ given by {wσj , j = 1, . . . , n − 1}, where

wσj
.= 6

j

k=1eσ(k) ∈ Q̂. This establishes the claim, from which it follows that
Ã ⊂ A. Along with the earlier conclusion that A ⊂ Ã, we infer that Ã is
indeed a valid finite external representation for A.

We now show that this external representation is minimal in the sense
that every vector in Q is normal to a legitimate face of A ⊂ M . Given any
S ⊂ T , S 6∈ {∅, T }, fix i0 ∈ S and j0 ∈ T \ S. Then from (3.17) it can be
seen that all n− 1 vertices in the set F

.= {ei − ej0, ei0 − ej , i ∈ S, j 6∈ S}
lie on the hyperplane {x : 〈x, γS〉 = 1}. (Note that F has n − 1 vertices
since there are |S| vectors in the set {ei − ej0, i ∈ S}, |Sc| vectors in the
set {ei0 − ej , j 6∈ S}, |S ∪ Sc| = |T | = n and ei0 − ej0 belongs to both
sets.) Moreover, these vertices also lie on the hyperplane M and thus span
at most an (n− 2)-dimensional space. However, since the n− 2 vertices in
F \ {ei0 − ej0} are linearly independent, dim[span(F )] = n− 2. Thus every
vector in Q is normal to an (n− 2)-dimensional face of A and so the given
external representation is minimal. ut

Corollary 3.4. The setC∗ with representation

conv
[±z∗ij : i, j ∈ {1, . . . , n}, j > i

] ×M⊥

is equal to ⋂
S⊂T ,S 6∈{∅,T }

{
x ∈ IRn : 〈x, νS〉 ≤ n2

(n− 1)2

}
,

where

νS
.= 6i∈Szi. (3.23)
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Proof. Let A be such that span(A) is a hyperplane in IRn. If conv[A] =
∩γ∈K{x ∈ span(A) : 〈x, γ 〉 ≤ cγ }, for some setK ⊂ span(A) and cγ ∈ IR,
the external representation for conv[A] × span(A)⊥ is ∩γ∈K{x ∈ IRn :

〈x, γ 〉 ≤ cγ }. Thus applying the affine transformation x → n

n− 1
x in

M and noting that the transformation takes γS to νS , the corollary follows
directly from Theorem 3.3. ut

We now use the minimal representation given in Corollary 3.4 to derive
algebraic conditions on the normals under which the equal GPS SP is Lip-
schitz continuous. We recall the definition νS

.= 6i∈SzS . Recall that {ni}
denotes the set of inward normals in the description of the SP.

Theorem 3.5. Letzi andz∗ij be as defined in(3.13) and(3.15) respectively.
Let a set of normalsni satisfying the standard normalization〈ni, zi〉 = 1 for
i = 1, . . . , n+ 1 be given. Suppose for everyi = 1, . . . , n andS ⊂ T \ {i}
satisfying1 ≤ |S| ≤ n− 2 that

|〈ni, νS〉| < 1. (3.24)

Then there existsan+1 ∈ (0,∞) such that the set

B∗ = conv[±an+1z
∗
n+1,±z∗ij : i, j ∈ {1, . . . , n}, j > i]

satisfies property(1.4) for the SP{(zi, ni, 0), i = 1, . . . , n+ 1}.
Proof.Note thatB∗ is symmetric and thatL∗

n+1 maps ±an+1z
∗
n+1 to the origin

and leaves all other vertices z∗ij invariant. Also note thatL∗
i leaves all vertices

other than ±z∗ij , j 6= i and ±z∗ji , j 6= i alone. Thus to establish property
(1.4) for the set B∗, it is enough to show that for every 1 ≤ i ≤ n and every
j 6= i, L∗

i z
∗
ij lies in the interior of the set B∗. It is necessary and sufficient

to show that these points lie in the interior of C∗ = conv[±z∗ij : i, j ∈
{1, . . . , n}, j > i] ×M⊥, where we recall the definitionM = span({±z∗ij :
i, j ∈ {1, . . . , n}, j > i}). If this is true, then one can clearly choose an+1

large enough so that all the projected points lie in the interior of B∗. Using
the external representation for C∗ derived in Corollary 3.4, observe that
(1.4) is satisfied if and only if for every i ∈ T , j ∈ T \ {i}, and S ⊂ T such
that 1 ≤ |S| ≤ n− 1,

|〈L∗
i z

∗
ij , νS〉| <

n2

(n− 1)2
. (3.25)

From (3.14) we see that

L∗
i z

∗
ij = zi − zj − 〈zi − zj , zi〉ni

= zi − zj − n2

(n− 1)2
ni.



Convex duality and the Skorokhod Problem. II 221

To show (3.25), we first observe that due to (3.10) in Lemma 3.1,6n
i=1zi = 0

and thus for any S ⊂ T , S 6∈ {∅, T }, νSc = −νS . We now fix i ∈ T

and j ∈ T \ {i} and consider the four types of sets S ⊂ T such that
1 ≤ |S| ≤ n− 1.

Case 1:S ∩ {i, j} = ∅, S 6= ∅.
From (3.14) we have 〈zi − zj , νS〉 = 0. Hence for such S, 1 ≤ |S| ≤ n− 2
and ∣∣〈L∗

i z
∗
ij , νS〉

∣∣ =
∣∣∣∣− n2

(n− 1)2
〈ni, νS〉

∣∣∣∣ < n2

(n− 1)2
, (3.26)

where the last inequality follows from (3.24).

Case 2:S ∩ {i, j} = {i, j}, S 6= T .
Then Sc ∩ {i, j} = ∅ and Sc 6= ∅. Thus (3.26) applies to Sc and since
νSc = −νS we obtain

|〈L∗
i z

∗
ij , νS〉| = |〈L∗

i z
∗
ij , νSc〉| <

n2

(n− 1)2
.

Case 3:S ∩ {i, j} = {i}.
Then from (3.14) 〈zi − zj , νS〉 = n2

(n− 1)2
and hence

|〈L∗
i z

∗
ij , νS〉| =

∣∣∣∣ n2

(n− 1)2
− n2

(n− 1)2
〈ni, νS〉

∣∣∣∣ = n2

(n− 1)2
|1 − 〈ni, νS〉| .

(3.27)
If S = {i} (so that νS = zi), then 〈ni, zi〉 = 1 implies that the condition
(3.25) is satisfied automatically. Otherwise j 6∈ S, i ∈ S, and 2 ≤ |S| ≤
n− 1. If this is the case, we define S ′ .= S \ {i} so that S ′ ∩ {i, j} = ∅ and
1 ≤ |S| ≤ n− 2. Then using (3.27) and applying (3.26) to S ′ we get

|〈L∗
i z

∗
ij , νS〉|=

n2

(n− 1)2
|1 − 〈ni, zi〉 − 〈ni, νS ′ 〉|= n2

(n− 1)2
|〈ni, νS ′ 〉| < 1.

(3.28)
Case 4:S ∩ {i, j} = {j}
Here once again we use the facts that Sc ∩ {i, j} = {i}, and νSc = −νS to
conclude from (3.28) that |〈L∗

i z
∗
ij , νS〉| < 1.

Since the four cases considered above exhaust all sets S ⊂ T for which
1 ≤ |S| ≤ n− 1, the theorem is established. ut

Corollary 3.6. The map0 : ψ → φ for the equal sharing case with
ρ = ( 1

n
, . . . , 1

n
) is Lipschitz continuous on its domain of definition.
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Proof.When n = 2, the mapping was shown in Section 3.2 to be Lipschitz
continuous. For the equal sharing case, we verify the conditions of Theorem
3.5 for normals ni = ei , i = 1, . . . , n. Since 〈ei, zj 〉 = − 1

n−1 < 0 whenever
j 6= i,

max
S⊂T \{i}:1≤|S|≤n−2

|〈ei, νS〉| = n− 2

n− 1
< 1

and so (3.24) holds. Thus by Theorem 3.5 the setB∗ satisfies property (1.4),
and therefore the mapping is Lipschitz continuous. ut

B. The general case (arbitraryρ)

Theorem 3.7. For any givenρ andn, consider the GPS SP{(di, ni, 0), i =
1, . . . , n+ 1}, whereni = ei , di = (ei − ρ)/(1 − ρi) for i = 1, . . . , n, and
en+1 = dn+1 = 6n

i=1ei/
√
n. The associated SM is Lipschitz continuous.

Proof.Let {zi, i = 1, . . . , n+ 1} be the directions of constraint associated
with the equal sharing GPS SP which has ρ = (1/n, . . . , 1/n). Let C be the
collection of SPs {(zi, wi, ki), i = 1, . . . , n+1} that satisfy (3.24). Then by
Theorem 3.5, Assumption 1.1 is satisfied for all SPs inC. For any probability
vector ρ consider the associated GPS SP {(di, ei, 0), i = 1, . . . , n + 1}.
Recall from Lemma 3.1 that

6n
i=1ρi(1 − ρi)di = 0. (3.29)

In particular for the equal sharing case,

6n
i=1
n− 1

n2
zi = 0. (3.30)

For i = 1, . . . , n define

d̃i
.= ρi(1 − ρi)di and ñi

.= 1

ρi(1 − ρi)
ei, (3.31)

and d̃n+1 = ñn+1 = dn+1. Then 〈d̃i , ñi〉 = 1, and it is clear that {(d̃i, ñi , 0),
i = 1, . . . , n + 1} satisfies Assumption 1.1 if and only if {(di, ei, 0), i =
1, . . . , n+1} does, since they both represent the same SP. We first show that
there exists an invertible matrix A such that Ad̃i = zi for i = 1, . . . , n+ 1.
By Lemma 3.1 {d̃i , i = 1, . . . , n− 1} and {zi, i = 1, . . . , n− 1} are bases
for the space orthogonal to d̃n+1 = zn+1. SupposeA is the unique invertible
matrix such that

Ad̃i = zi, i = 1, . . . , n− 1,

Ad̃n+1 = zn+1.
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Then by the definition in (3.31) and the relations (3.29) and (3.30),

Ad̃n = A[ρn(1 − ρn)dn]

= −A[6n−1
i=1 ρi(1 − ρi)di]

= −6n−1
i=1 Ad̃i

= −6n−1
i=1 zi

= zn.

Thus Ad̃i = zi , i = 1, . . . , n+ 1. Consider the SP {(zi, (AT )−1ñi , 0), i =
1, . . . , n+ 1}. Since ρi ∈ (0, 1) for any i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \
{i},

〈(AT )−1ñi , zj 〉 = 〈(AT )−1ñi , Ad̃j 〉 = 〈ñi , d̃j 〉 = ρj (1 − ρj )

ρi(1 − ρi)
〈ei, dj 〉

= ρj (1 − ρj )

ρi(1 − ρi)
(− ρi

1 − ρj
)

= − ρj

1 − ρi

< 0.

If ν̃S
.= 6i∈Sz̃i then the maximum value of 〈(AT )−1ñi , ν̃S〉 for S ⊂ N \ {i}

with 1 ≤ |S| ≤ n− 2 is

max
j 6=i

∣∣∣∣−6k∈N\{i,j}
ρk

1 − ρi

∣∣∣∣ . (3.32)

Since ρj > 0 and 6n
j=1ρj = 1, for every i ∈ N and j 6= i, we have

1 − ρi = 6k∈N\{i}ρk > 6k∈N\{i,j}ρk > 0,

from which it directly follows that the quantity in (3.32) is strictly less
than 1. Thus {(zi, (AT )−1ñi , 0), i = 1, . . . , n} satisfies (3.24) and hence
belongs to C. Then by [6, Theorem 3.7] the transformed SP {(A−1zi,

AT (AT )−1ñi , 0), i = 1, . . . , n+ 1} = {(d̃i, ñi , 0), i = 1, . . . , n+ 1} satis-
fies Assumption 1.1. Thus so does the GPS SP {(di, ei, 0), i = 1, . . . , n+1}
and consequently by [6, Theorems 3.2 and 2.1], the associated SM is Lips-
chitz continuous. ut
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3.4. Existence of solutions to the generalized processor sharing SP

The terminology and tools used here to establish existence of solutions to
the GPS SP are taken from [6, Section 4]. Recall that the GPS SP described
in Section 3 takes the form {(di, ni, 0), i = 1, . . . , n + 1}, where for i =
1, . . . , n,

di = ei − ρ

1 − ρi
, ni = ei,

and dn+1 = nn+1 = 6n
i=1ei/

√
n.

Theorem 3.8. Consider the GPS SP specified above. The SM is well defined
and Lipschitz continuous onFG and has a Lipschitz continuous extension
toDG([0,∞) : IRn).

Proof.Let Ĩ = {1, . . . , n+ 1} and

cki
.=




− 1
k

i ≤ n,

0 i = n+ 1.

Then the GPS SP described above can be approximated by the sequence of
simple SPs P k

.= {(di, ni, cki ), i = 1, . . . , n + 1}, k ∈ IN , each of which
has n vertices given by

vkj = (∩i∈Ij {x : 〈x, ni〉 = −1/k}) ∩ {x : 〈x, nn+1〉 = 0},
where Ij = {1, . . . , n} \ {j}. The standard SPs associated with P k are

P kj
.= {(di, ni, cki ), i ∈ Ĩ \ {j}}.

The approximating simple SPs and the associated standard SPs correspond-
ing to the two-dimensional GPS SP are shown in Figure 7.

We now show that every P kj for j = 1, . . . , n and k ∈ IN is of the gH–R
class. Define V = [vij ] = [〈di, ej 〉] to be the n×nmatrix that is associated
with the standard SP P kn . Note that the matrix is independent of the value
of k. We have

vij =




1 if i = j ≤ n

− ρi

1 − ρj
if i, j < n, i 6= j,

0 if i < j = n

1√
n

if j < i = n.

(3.33)
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Fig. 7. The two-dimensional GPS SP, an approximating simple SP and its associated standard
SPs

Then Q = |I − V | has the form[
Q′ 0
A 0

]
,

where Q′ is an (n − 1) × (n − 1) substochastic matrix whose ith row
sums to (1 − ρi − ρn)/(1 − ρi) < 1, and A is the 1 × (n − 1) row vector
[1/

√
n, . . . , 1/

√
n]. Thus σ(Q′) < 1. Since the spectrum of Q is equal

to zero plus the spectrum of Q′, it follows that σ(Q) < 1. As shown in
Section 2.3 solutions exist on D([0,∞) : IRn) for standard SPs satisfying
the gH–R condition. Thus in particular a global projection exists for every
such standard SP. The matrix V for P kj is analogous to that for P kn which
was defined above, and in fact the same spectral radius condition holds for
P kj for every j = 1, . . . , n and k > 0. Thus a projection exists for each P kj .

Since the standard SPs P kj , j = 1, . . . , n are derived from the simple
SP P k, it is easy to see that they form a consistent collection of SPs, whose
composite SP is P k. For every j = 1, . . . , n,

∂Gk \
(
∂Gk ∩ ∂Gk

j

)
= {x : 〈x, nj 〉 = −1/k} ∩ ∂Gk.
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Since
n⋂
j=1

{x : 〈x, nj 〉 = −1/k} = {−6n
i=1ei/k

}

is not contained in Gk, we conclude that
n⋂
j=1

∂Gk \
(
∂Gk ∩ ∂Gk

j

)
= ∅.

Thus the consistent collection {P kj , j = 1, . . . , n} satisfies the condition
given in Theorem 4.5 of [6] for every k ∈ IN . It was proved in Theorem
3.7 that Assumption 1.1 is satisfied for the GPS SP. Consequently it is also
satisfied for each approximating simple SP P k since Assumption 1.1 is
independent of the values ci in the representation of the SP. Hence each P k,
k ∈ IN , satisfies the conditions of [6, Theorem 4.5] and therefore possesses
a global projection. [6, Theorem 4.10] then guarantees the existence of a
projection for the GPS SP. By [6, Theorem 4.2] the SM is well defined
and Lipschitz continuous on FG, (which includes all functions of bounded
variation inDG([0,∞) : IRn)) and has a Lipschitz continuous extension to
DG([0,∞) : IRn). ut

Remark 3.9.Since the GPS SP does not satisfy [6, Assumption 4.1], we
cannot apply [6, Theorem 4.2] to conclude that η has bounded variation
for all ψ . However, it turns out that a principal functional of interest is
the component of η that lies along nn+1 and this is of bounded variation.
This functional represents the idle time process which measures the amount
of time that the buffer is empty. Finally we note that the analysis of the
SP arising from the GPS model considered in this section would also be
useful in establishing the existence of a corresponding non-semimartingale
Brownian motion on the n-dimensional orthant.

4. SPs with normal directions of constraint

We consider the class of SPs on polyhedral domains with normal directions
of constraint di = ni . Any problem in this class has the representation
{(ni, ni, ci), i = 1, . . . , N} for some N < ∞. Lipschitz continuity of the
SM for this class of SPs was first established in [4]. The proof presented
there, which involves the construction of a set B satisfying property (1.2)
for the associated SP, is rather long and complicated. Here we exploit the
dual formulation developed in [6, Section 3.2] to provide a simpler and
more succinct proof of the same result. We show that any SP with normal
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directions of constraint satisfies Assumption 4.1 stated below. Since this
property was shown to be equivalent to Assumption 1.2 in [7, Theorem
3.2], this establishes Lipschitz continuity of the map.

Assumption 4.1. LetL∗
i , i = 1, . . . , N , be the adjoint operators defined

in (1.3) and letHi be the corresponding invariant spaces. Then there exists
a symmetric compact setS with span(S) = IRn such that forB∗ .= conv[S]
and eachi = 1, . . . , N ,

cl
(
L∗
i [S \Hi]

) ⊂ (B∗)◦. (4.34)

We first introduce some notation that will be used in the proof. For
r > 0, define Sr

.= {x ∈ IRn : ||x|| = r} and Qr
.= {x ∈ IRn : ||x|| ≤ r}.

The set D
.= {n1, n2, . . . , nN } is used to denote the set of directions of

constraint, where the usual normalization implies that ‖ni‖ = 1. For each
j = 1, . . . , n− 1, we define the collection of sets

Dj .= {A ⊂ D : dim[span(A)] = n− j and

∀w ∈ D \ A, dim[span(A ∪ {w})] = n− j + 1}.

Thus Dj is the set of subsets of D that span (n− j)-dimensional subspaces
of IRn, where each subset is maximal in the sense that it contains all vectors
of D that lie in its span. Let

HA
.= {x ∈ IRn : 〈x, ni〉 = 0 for ni ∈ A}.

For A ∈ Dj , HA is the j -dimensional subspace orthogonal to span(A). If
A ∈ Dn−1, then A contains just one element, say ni , so that HA = H{ni}
is the hyperplane orthogonal to ni . For notational convenience we denote
H{ni} byHi . If A ⊂ B, then clearlyHB ⊂ HA. The δ-fattening of the linear
space HA is defined to be

Hδ
A

.= {x ∈ IRn : d(x,HA) < δ},

where d(x,HA) = infy∈HA ||x − y||, with ‖ · ‖ representing the usual Eu-
clidean norm.

Theorem 4.1. Consider any SP{(ni, ni, ci), i = 1, . . . , N}, whereN <

∞. Then the associated SM is Lipschitz continuous.

Proof.To establish Lipschitz continuity of the SM it suffices to construct a
setB∗ ∈ S that satisfies Assumption 4.1. We now describe the construction
of B∗, which is built as the convex hull of a sequence of flattened spheres of
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decreasing radius and increasing dimension. The set is defined in terms of
the parameters δk > 0, k = 2, . . . , n − 1 and r1 > r2 > · · · > rn > 0 as
follows.

B∗ .= conv
[∪ni=1Ci

]
, (4.35)

where

C1
.= Sr1 ∩ (∪A∈D1HA

)
, (4.36)

for k = 2, . . . , n− 1

Ck
.= Srk ∩

[
∪A∈Dk

(
HA \ ∪{j :nj∈D\A}H

δk
j

)]
, (4.37)

and

Cn
.= Srn. (4.38)

The set B∗ is clearly convex and symmetric. For any r > 0 and δ > 0,
Sr , HA and HA \ ∪{j :nj∈D\A}Hδ

j are closed. Thus Ci is closed for every
i ∈ {1, . . . , n} and since B∗ ⊂ Sr1 we conclude B∗ is compact. Moreover,
0 ∈ (Cn)◦ = (Srn)

◦ ⊂ (B∗)◦ and thus B∗ ∈ S.
For j = 1, . . . , n let

ρ̃j
.= max
i=1,...,N

max
x∈Cj\Hi

‖L∗
i x‖ and ρj

.= max
l=1,...,j

ρ̃l . (4.39)

Consider the adjoint operators

L∗
i x = Lix = x − 〈x, ni〉ni.

The bound

‖L∗
i x‖ = (‖x‖2 − |〈x, ni〉|2

)1/2 ≤ ‖x‖

shows that these operators have norm no greater than one. Let r ∈ (0,∞)

be given. Since Sr \ Hδ
i is a compact set and |〈x, ni〉| is a non-negative

continuous function that is zero only on Hi , given any δ ∈ (0, r) we have
δ′ .= minx∈Sr\Hδ

i
|〈x, ni〉| ∈ (0, r). Hence

max
x∈Sr\Hδ

i

‖L∗
i x‖ = (r2 − δ′2)1/2 < r. (4.40)

This fact, that the points on a sphere that lie a certain minimum distance
away from a hyperplane are mapped strictly into the interior of the same
sphere by the associated projection operator, is central to the construction
of the set B∗.
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Claim. There exist δk > 0, k = 2, . . . , n − 1 and r1 > r2 > · · · > rn > 0
such that B∗ defined in (4.35) satisfies (4.34). In other words, we claim that

N⋃
i=1

[
cl

(
L∗
i

[∪nk=1Ck \Hi
])] ⊂ (B∗)◦. (4.41)

To prove the claim we consider the increasing sequence of sets Aj
.=

∪jk=1Ck, j = 1, . . . , n. EachAj+1 is chosen so that every projection operator
L∗
i mapsAj \Hi into the interior of the convex hull ofAj+1. The procedure

terminates with An = ∪nk=1Ck, since (as we will show) the interior of the
convex hull of An contains L∗

i [An \Hi] for every i = 1, . . . , N .
First set r1 = 1 and let C1 be as defined in (4.36). For every A ∈ D1,

S1 ∩ HA is a pair of points on S1 which lie a finite distance away from
every hyperplane Hi = H{ni} for which ni ∈ D \ A. Thus from (4.39) and
(4.40) (with r = r1) we obtain ρ1 = ρ̃1 < r1. We then choose r2 so that
ρ1 < r2 < r1.

We claim that there is δ2 > 0 so that for every A ∈ D2

Sr2 ∩HA
⊂ conv

[
Sr2 ∩

(
HA \ ∪{j :nj∈D\A}H

δ2
j

)
, Sr1 ∩ (∪{B∈D1:A⊂B}HB

)]
(4.42)

Note that if A ∈ D2 (so that HA is a two-dimensional linear space) and
nj ∈ D \ A (so that Hj is an (n − 1)-dimensional linear space that does
not contain HA), then HA \ Hj is a plane with a line removed. Therefore

Sr2 ∩
(
HA \ ∪{j :nj∈D\A}H

δ2
j

)
is a circle of radius r2 with a finite number of

arcs excised, each of whose chords has width 2δ2. Clearly δ2 > 0 can always
be chosen small enough to ensure that the chords do not intersect. Now for
B ∈ D1 such thatA ⊂ B,B has the formA∪{j} for some nj ∈ D\A. Thus
Sr1 ∩

(∪{B∈D1:A⊂B}HB
)

is a collection of points lying a distance r1 > r2 from
the origin. Each pointp in the collection lies on the line in the planeHA that is
orthogonal to the chordK of an excised arc of Sr2 ∩

(
HA \ ∪{j :nj∈D\A}H

δ2
j

)
.

Thus, as shown in Figure 8, for the entire circle Sr2 ∩ HA to be contained
in the convex hull defined on the right hand side of (4.42), it is necessary
that each point p lie above the intersection of the tangents to the circle at
the end-points of the corresponding chordK . An elementary trigonometric

calculation shows that this is satisfied if 0 < δ2 <
r2
r1

√
r2

1 − r2
2 , in which

case (4.42) is established. Note that this argument does not rely on the fact
that we are dealing with the two-dimensional case, and can therefore be
used to show the existence of a δj that satisfies (4.44).

We now use induction to construct the setB∗ with the required property.
Assume that for some k < n− 1, there exist rj > 0, δj > 0, j = 2, . . . , k
such that
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r2

r1

p

δ 2

Fig. 8. The choice of δ2 in the construction of B∗

ρj−1 < rj < rj−1, (4.43)

and for every A ∈ Dj ,

Srj ∩HA
⊂ conv

[
Srj ∩

(
HA \ ∪{l:nl∈D\A}H

δj
l

)
, Srj−1 ∩ (∪{B∈Dj−1:A⊂B}HB

)]
.

(4.44)
Then, as we now show, the conditions (4.43) and (4.44) also hold for j =
k + 1. Fix i ∈ {1, . . . , N}, k ≤ n− 1 and δ > 0. Note that ni ∈ A implies
HA ⊂ Hi , and that for everyA ∈ Dk such that ni 6∈ A,Hδ

i ⊂ ∪{j :nj∈D\A}Hδ
j .

Therefore⋃
A∈Dk

(
HA \ ∪{j :nj∈D\A}Hδ

j

)
= [∪{A∈Dk :ni∈A}

(
HA \ ∪{j :nj∈D\A}Hδ

j

)]
⋃ [∪{A∈Dk :ni 6∈A}

(
HA \ ∪{j :nj∈D\A}Hδ

j

)]
⊂ Hi ∪

[(∪{A∈Dk :ni 6∈A}HA
) \Hδ

i

]
.

Thus using (4.37) and the last display we obtain

Ck \Hi =
(
Srk ∩

[
∪A∈Dk

(
HA \ ∪{j :nj∈D\A}H

δk
j

)])
\Hi

⊂ Srk ∩
[(∪{A∈Dk :ni 6∈A}HA

) \Hδk
i

]
⊂ Srk \Hδk

i .

(4.45)

Now define ρ̃k by (4.39). Then (4.40) along with (4.45) ensures that ρ̃k < rk,
which in turn implies that ρk = max(ρ̃k, ρk−1) < rk since ρk−1 < rk by
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(4.43). Choose rk+1 so that ρk < rk+1 < rk so that (4.43) is satisfied for
j = k+1. Using an argument analogous to the one used for the case k = 2,
there exists δk+1 > 0 that satisfies (4.44) for j = k + 1. Let Ck+1 be as
defined in (4.37) with the chosen values of rk+1 and δk+1. Since r2 and δ2

were chosen earlier to satisfy (4.43) and (4.44), by induction there exist
positive decreasing rj , non-decreasing ρj , and δj > 0 for j ≤ n − 1 that
also satisfy the same conditions. Since ρn−1 < rn−1, there exists rn such that
ρn−1 < rn < rn−1. By the definition Cn

.= Srn in (4.38) it follows that ρ̃n
as defined by (4.39) equals rn, and consequently ρn = max[ρ̃n, ρn−1] = rn.
The properties stated in the last two sentences imply

max
i

max
x∈(∪nk=1Ck)\Hi

||L∗
i x|| = ρn = rn < rn−1.

DefineQr
.= {x ∈ IRn : ‖x‖ ≤ r}. Since L∗

i (IR
n) ⊂ Hi for every i, the last

display implies

∪Ni=1L
∗
i

(∪nk=1Ck \Hi
) ⊂ ∪Ni=1

(
Qrn ∩Hi

) ⊂ (
conv

[∪Ni=1

(
Srn−1 ∩Hi

)])◦
.

(4.46)
Recall from (4.41) that our objective is to show that

∪Ni=1

[
cl

(
L∗
i

(∪nk=1Ck \Hi
))] ⊂ (

B∗)◦ = (
conv

[∪nk=1Ck
])◦
.

This will follow from (4.46) if we prove that

∪Ni=1

(
Srn−1 ∩Hi

) ⊂ ∪n−1
k=1Ck. (4.47)

To show (4.47) we use the fact that (4.44) is satisfied for j = 1, . . . , n− 1.
Taking the union over all A ∈ Dj in (4.44), using the definition (4.37) for
Cj , and noting that ∪A∈Dj {B ∈ Dj−1 : A ⊂ B} = Dj−1, we see that for
any j ≤ n− 1,

⋃
A∈Dj

[
Srj ∩HA

] ⊂ conv

[
Cj,

⋃
B∈Dj−1

[
Srj−1 ∩HB

] ]
.

Substituting j = 2 in the above display and using definition (4.36) for C1,
we see that ⋃

A∈D2

[
Sr2 ∩HA

] ⊂ conv [C2 ∪ C1] .

Thus from the last two displays we infer that⋃
A∈Dn−1

[
Srn−1 ∩HA

] ⊂ conv
[
∪n−1
j=1Cj

]
.
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IfA ∈ Dn−1, thenA is single valued and equal to {ni} for some i = 1, . . . , N
and soHA = H{ni} = Hi . Thus the last display is equivalent to (4.47), which
completes the proof. Thus the set B∗ satisfies [6, Assumption 3.1] for the
SP. Consequently, by [6, Theorems 3.2], it also satisfies Assumption 1.2,
which establishes Lipschitz continuity of the SM [6, Theorem 3.3]. ut

Existence of solutions.Existence of solutions for the normal case was
proved in [4]. For the notation used in the rest of this paragraph we refer the
reader to [6, Section 4]. Since the domainG is convex, for normal directions
of constraint the projection π(x) is defined as the unique point in G that is
closest to x. As shown above, Assumption 1.1 always holds for this class
of SPs and thus the SM is Lipschitz continuous wherever defined. In [4] it
was shown that [6, Assumption 4.1] is also satisfied when G◦ 6= ∅. By [6,
Theorem 4.2] we therefore conclude that for any SP in this class, the SM is
well-defined and Lipschitz continuous on FG. If in addition,G◦ 6= ∅, then
FG = DG([0,∞) : IRn).

5. Conclusion

In this paper we have demonstrated how the techniques of [6] can be used to
derive algebraic conditions for Lipschitz continuity of the Skorokhod Map
for classes of Skorokhod Problems. The examples described, in particular
the successful analysis of the processor sharing model, indicate that the
convex duality approach has some power. In this section we discuss some
relatively subtle features of the approach. Section 5.1 postulates why tight
algebraic characterizations of Lipschitz continuity for SPs on polyhedral
domains may not be possible. Section 5.2 discusses the singularity of the
structure of the set B∗ across classes of Skorokhod Problems. Section 5.3
deals with the non-uniqueness of representations for a SP and indicates how
the choice of representation is linked with the structure of the set B∗, which
in turn depends on the complexity of the underlying Skorokhod Problem.

5.1. Finite algebraic characterizations

We believe that a finite algebraic characterization (that is a characterization
in terms of a finite set of polynomial equations) of those SPs for which
the Skorokhod Map is Lipschitz continuous is not possible. This is based
in part on a conjecture in [9], which asserts that there is no semi-algebraic
characterization of the SPs on IRn+ with n directions of constraint for which
solutions are unique. However, it is also based on an examination of three-
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WITH n2 - n + 2  SIDES

GENERALIZED PROCESSOR SHARING SP :

SET  B

HARRISON-REIMAN  SP :

SET  B  WITH  2n  SIDES

Fig. 9. Structure of the simplest B for two classes of Skorokhod Problems

dimensional SPs in this class – in particular the example considered in
Section 2.4. This example shows that if one uses a more complicated set
B∗ than that required for the gH–R class, (i.e. if B∗ is assumed to have
8 vertices rather than 6) then one carves out a strictly larger class of SPs
for which there exists a set B∗ that satisfies Assumption 1.2. In particular,
the Skorokhod Map is found to be Lipschitz continuous for some SPs for
which the gH–R spectral radius condition fails. The fact that the gH–R class
is included in the class for which more complicated sets are required follows
automatically from the monotonicity property stated in Theorem 3.5 of [6]:
the set of SPs for which Lipschitz continuity can be proved with a set of
a given complexity always includes those for which a simpler set suffices.
The important point is that one can deal with a strictly larger collection
when the number of faces of B is increased. This property seems to persist
as more faces are added to B, which supports the conjecture made in [9].

5.2. Singularities in the structure of the set

In this paper, we have shown how Lipschitz continuity of the Skorokhod Map
associated with a Skorokhod Problem P can be established by constructing
a set B∗ that satisfies Assumption 1.2 for P . To facilitate the derivation of
an algebraic condition for the existence of B∗, it is desirable to construct a
set that has the smallest number of vertices possible. Thus the objective is
to find the “simplest” polytope B∗ for which Assumption 1.2 is satisfied.
Note that this corresponds to finding a set B that satisfies Assumption 1.1
with the least number of faces.

In Section 2 we saw that the simplest set for the gH–R class of SPs has
2n vertices in IRn. This is the least number of vertices that any set in S (i.e.
any bounded, symmetric set with 0 in its interior) possesses. On the other
hand, the simplest set for the GPS class of SPs, as shown in Section 3, has
n2 −n+2 vertices in IRn. The two sets are contrasted in Figure 9. Note that
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for any SP of the GPS class, one can find a sequence of SPs from the gH–R
class (with domain IRn+) which converge to the processor sharing model, in
the sense that the directions of constraint converge for each point in ∂G. This
gives a particularly striking illustration of the singular behaviours associated
with the SP, in that one can analyze all the prelimit SPs using sets with 2n
faces, but in the limit one must use a set with n2 − n + 2 faces. Thus the
structure of the simplest set B∗ is preserved within a class of SPs but can
be discontinuous across classes. Observe that the condition in Theorem 3.5
identifies a class of SPs for which a set B∗ having n2 − n+ 2 vertices can
be used. This class not only includes all the GPS SPs, but also a class of
SPs arising from single class closed networks.

5.3. Representations

In [6, Section 2.2] it was shown that Skorokhod Problems on polyhedral
domains with a constant direction of constraint associated with each face can
be represented by a finite collection of triplets {(di, ni, ci), i = 1, . . . , N}. It
is important to observe that this description is not unique. The two different
representations

P1
.= {(n1, n1, 0), (n2, n2, 0)} and

P2
.= {(n1, n1, 0), (n2, n2, 0), (n3, n3, 0)},

with n1 = (1, 0), n2 = (0, 1) and n3 = 1√
2
(1, 1) give rise to the same

Skorokhod Problem in the sense that they have the same domain G1 = G2

and directions of constraint d(x). As illustrated in Figure 10, this is due to
the fact that the extra direction of constraint n3 specified at the origin 0 in
the second description is already contained in the set of allowed directions
at the origin d(0) specified by the first description. Moreover, the extra face
{x : 〈x, n3〉 = 0} in the second description is a supporting hyperplane to
the domain G1 at the origin. We refer to the face {x : 〈x, n3〉 = 0} as a
“fictitious face”, since it is not an actual face of the domain of the SP.

As illustrated by the example in Figure 10, it is often possible to add
certain faces and associated directions to a given representation without
changing the nature of the underlying SP. However in some cases like the
GPS SP, it becomes necessaryto introduce “fictitious faces” in order to ob-
tain a proper description of the SP. This usually arises when the SP specifies
an additional constraint d at the intersection I of two or more faces. If d
lies outside the convex cone generated by the constraint directions associ-
ated with those faces, an additional face has to be introduced with d as its
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Fig. 10. Non-uniqueness of description of the Skorokhod Problem

constraint direction in order for the allowable constraint directions on all
parts of the domain to properly represent the SP. This “fictitious face” must
clearly be a supporting hyperplane to the domain at I.

The need for fictitious faces is not restricted to the GPS SP, and in fact
several other important classes of SPs require them as well. These classes
include SPs associated with single class closed networks, certain multi-class
single queue models, and also some multi-class networks. The first two
classes are similar to the GPS SP, while the third combines features of the
gH–R and GPS models and in fact requires more than one fictitious face. All
three classes indicate important directions for further research into the SP.
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