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Abstract. We consider the massless field with zero boundary conditions oulide=

DN (Z?/N) (N € 7*), D a suitable subset @&¢, i.e. the continuous spin Gibbs measure
Py onRZ/N with Hamiltonian given byH (¢) = > eyl V(@) —@(y)) andp(x) = 0

for x € D$,. The interactiorV is taken to be strictly convex and with bounded second de-
rivative. This is a standard effective model fofda+ 1)-dimensional interfaces represents
the height of the interface over ttiase Dy. Due to the choice of scaling of the base, we
scale the height with the same factor by setiRg= ¢/N.

We study various concentration and relaxation properties of the family of random sur-
faces{¢y} and of the induced family of gradient field&¥" &y} as the discretization step
1/N tendsto zero — o0). In particular, we prove a large deviation principle fog} and
show that the corresponding rate function is givelfpy(Vu(x))dx, whereo is the surface
tension of the model. This is a multidimensional version of the sample path large deviation
principle. We use this result to study the concentration properti€,ainder the volume
constraint, i.e. the constraint theit/ N¥) ern,v &y (x) stays in a neighborhood of a fixed
volumev > 0, and the hard—wall constraint, i&.(x) > O0forallx. Thisis therefore a model
for a droplet of volumey lying above a hard wall. We prove that under these constraints
the field{&y} of rescaled heights concentrates around the solution of a variational problem
involving the surface tension, as it would be predicted by the phenomenological theory of
phase boundaries. Our principal result, however, asserts local relaxation properties of the
gradient field{V¥&y(-)} to the corresponding extremal Gibbs states. Thus, our approach
has little in common with traditional large deviation techniques and is closer in spirit to
hydrodynamic limit type of arguments. The proofs have both probabilistic and analytic as-
pects. Essential analytic tools drgestimates for elliptic equations and the theory of Young
measures. On the side of probability tools, a central role is played by the Helfistre$jd
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[31] PDE representation for continuous spin systems which we rewrite in termsdafm
walk in random environment and by recent results of T. Funaki and H. Spohn [25] on the
structure of gradient fields.

1. Introduction and main results
1.1. Problems of phase separation

In various models of Statistical Mechanics pure phases are expected to be separated
on the macroscopic scale along a deterministic surface of minimal energy, that is
along a solution to a certain constrained isoperimetric type variational problem. A
thermodynamical formulation of this fact was developed by Wulff [49]: the equi-
librium shapeK’ of a crystal of the prescribed volumehould minimize the value

of the integral surface tension functional

K~ /aKr(n(s))ds , (1.2)

under the fixed volume constraint &) = v, wherer is the direction dependent
surface tension between the crystal and its vapour g&s)ds the outward normal
to 0K ats).

In probabilistic terms such statements should correspond to very peculiar limit
results as the size (number of random variables) of the statistical mechanical system
tends to infinity. In a sense these results lie beyond the framework of the theory
of large deviations ([23], [40], [19]) for Gibbsian random fields, and not only for
merely technical reasons: the phenomenon in question ismdk@ne and all the
key issues have to be settled in the regime of zero specific relative entropy. More-
over the very notion of the bulk entropy is irrelevant here, since phase separation
manifests itself precisely in the breaking of translation invariance.

A rigorous probabilistic approach to the problems of phase separation was
developed by Dobrushin, Kotegland Shlosman around 10 years ago in the mono-
graph [22], where it was also brilliantly and comprehensively implemented in the
context of the two-dimensional low temperatuge>$ 1) Ising model.

The results of [22] triggered a wave of investigations which, however, have
been confined to the original two-dimensional DKS-setting and to the attempts to
relax their formidable proofs and to push their results all the way up to the critical
temperature ([4], [42], [32], [33], [46], [17], [43]). Only recently the issue was
completely resolved in the whole of the phase transition region [34].

The results of [22] and [34] have been obtained directly under the canonical
constraint, thatis on the level of local limit theorems with sharp finite volume correc-
tions. Roughly speaking, the DKS approach of [22] is to split the problem into two:

1. Study the statistics of the phase boundaries;

2. Give refined local estimates on the fluctuations of the order parameters inside
and outside these phase boundaries, that is in large but still finite volumes and
in various metastable regimes.
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The solution to both of these problems was strongly linked in [22] and [34] to
the particular structure of the 2D Ising model, and it is not immediately clear how
to extend it not only to higher dimensions but even to other ferromagnetic two-
dimensional models with a more complex structure of interactions, e.g. next near-
est neighbour Ising model.

In the physically more interesting case of higher dimensions, rigorous results
have been so far obtained only on the level of weak integral limit theorems: a Gauss-
ian one-droplet model with prescribed wetted region has been worked out in [6],
and a sort of deterministic Winterbottom construction [48] of a small equilibrated
particle placed on a foreign substrate has been obtained in the scaling limit of the
gas of Gaussian droplets [10]. The Gaussian framework of these works, however,
was so specific, that the corresponding results could be obtained essentially without
shedding much light on how to deal with the intrinsic issues of phase separation in
a generic situation.

In the context of Kac models , the solution to the isoperimetric problem (liquid
drop) has been recovered in [3], [7] and [8]. In the latter works the renormalization
estimates have been linked to the analytic tools of geometric measure theory, and,
as a result, an interesting and robust procedure of proving integral large deviation
estimates has been developed. Since, however, the authors were able to recover
the surface tension only in the Lebowitz-Penrose limit, these estimates remained
imprecise at each finite value of the interaction length.1

In arecentremarkable work [15] a version of the above mentioned approach has
been combined with a relaxed definition of the surface tension and with profound
coarse graining techniques of [41], and then used to prove a form of the 3D Wulff
construction for the supercritical independent Bernoulli bond percolation. The rep-
resentation [15] of the surface tension and the general renormalization philosophy
[7], [8], again implemented via Pisztora’s coarse graining procedures [41], have
been adopted in [9] for the proof of a similar result for the nearest neighbour Ising
model in any dimensiod > 3 at sufficiently low temperatures. Finally, the results
of [9] have been extended, in the percolation context of [15], to all temperatures
below the slab percolation threshold in [16].

Our approach is different from that of [9] and [15] and yields more information
on local relaxation properties of interfaces, i.e. the local response of the measure
describing the interface to external perturbations, in the less realistic context of
effective interface models. In order to explain it in informal terms recall that on the
macroscopic scale the surface tension is produced locally and does not depend on
the global setup of the ensemble around. In particular, the statistical properties of
the 2D Ising interface could be completely recovered in the simplified setting that
we now explain.

Consider the Ising Gibbs measure in the strip

SNz{(x,y)GZZZ—N<x<N,y€Z} . (1.2)
at a value of inverse temperatyse> 8. and=+-boundary conditions on dSy;

n(=N,y) =n(N,y) =sign(y) . (1.3)
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Any configuration of spins oSy with such boundary conditions contains the
unigue crossing:-contour going from the poin{—N, 1/2) to the point(N, 1/2)

in the dual lattice (see e.g. [22]). Essentially this contour is viewed as the graph
of the randomt- interface. One way then to perform a renormalization analysis of
this interface is to start perturbing the model with magnetic fiélds y) which

are constant in the vertical direction and slowly varying in the horizontal direction,
that is

hx,y) =h (%) , (1.4)

with, for examples € Cg°([—1, 1)).

Of course, in order to ensure a competition between the bulk effect of the mag-
netic field and the surface effect of the crossing contour on the sc&g,adne
should multiply the corresponding magnetic fields by the factor/of 1

It can be shown, using, for example, a much more detailed analysis of [34],
that for each: € C3°([—1, 1]) the corresponding distribution of the scaled cross-
ing +-contour is concentrated near the solutioa I]-ﬂ(l,([—l, 1)) to the following
semi-linear Dirichlet boundary value problem:

d ,d
Ea/;(d—‘t‘) = —2m*(B)h(1) | (1.5)

whereog (1) = 18(1, u), 75 is the surface tension of the Ising model amti ) is
the spontaneous magnetization.

The equations (1.5) give rise to a large deviation principle for the scaled crossing
+-interface with the rate functioR g having the effective domain i[H]é([—l, 1)

1
Xg(u) =/loﬂ(u'(t))dt=/rﬂ(n(s))ds , (1.6)
- 14

wherey is the graph of: considered as a curve ®?, s is the length parameter
alongy andn(s) is the direction of the normal at In other wordsX is just the
integral surface tension ¢f. In particular, the distribution of the scalegicrossing
interface concentrates, under a canonical constraint, around the appropriate portion
of the Wulff curve.

If one tries to model the pinned Ising interface above by a path of a one-dimen-
sional random walk conditioned to return to the origin iN 8tep, then the result
which we have informally sketched above becomes much easier to prove and, in
fact, happens to be nothing but a form of the sample path large deviation principle
[11].

In this work we try to derive a higher dimensional analog of (1.5), and hence to
prove the corresponding concentration properties, for what would be a higher di-
mensional counterpart of the random walk path approximation of the Ising interface,
namely for a class of effective interface models of the gradient type. These results
could be reformulated in terms of multi-dimensional sample path large deviations
principles. The reader should be aware, though, that traditional large deviations
techniques and ideas play a very marginal role in our considerations. The essential
part of the analysis is to identify the surface tension via an investigation of local
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relaxation properties of effective interfaces under slowly varying magnetic fields
with a subsequent derivation of formulas similar to (1.5).

In the next subsection we systematically describe the class of models we con-
sider and set up the key notation. Main results are stated and briefly discussed in
Subsection 1.3 and a rough outline of the proof is given in Subsection 1.4. Finally
Subsection 1.5 contains a guide to the rest of the paper and is designed to facilitate
the orientation of the reader.

1.2. The model and the notation

Let D be an open bounded subsefRff. We discretizeD as
Dy=DnNZ4 , (1.7)

whereZ;{, = (1/N)7?. A scaled random interfacgy over Dy is always either a
scalar lattice fieldsy € RPY with zero boundary conditions outsiday,

€N|Z(1i\/\DN =0 s (18)

or its continuous interpolatiofy which we define in (1.17) below. Our main ob-
jective is to study concentration propertiesgafasN — oo for a class of nearest
neighbour effective interface models which we proceed to describe: the formal

Hamiltonian# y on RZx is given by

Hn@) =Y V(e - () . (1.9)

X~y

where the suny " is overz4, or products of it and: ~ y denotes the restriction
of the sum over nearest neighbor sitegndy of Zﬁ{,. The corresponding finite
volume Gibbs stat®y is then defined via

—HN(p)

mydy) | (1.10)

~(dp) py (do) 7y

where the reference measurg tis given by,

myg) = [] de) [] do(dpw)) . (1.12)

xeDy x€Z4\Dy
Our scaled versiogy is then defined as

En(x) 2 %, xeZd . (1.12)
Notice that undePy the random interfacgy automatically satisfies zero boundary
conditions (1.8). The important conditions are those imposed on the interaction po-
tential V: we assume that : R — R is sufficiently smooth{ € C%(R, R),
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§ € (0, 1), whereC?? is the space of functions withdtder continuous second de-
rivative, is enough — see Section 2 for more details), even and that thare-isl
such that

gt <V'(r) <cy (1.13)

for all r € R. These are severe limitations which rule out, for example, continuous
versions of the solid-on-solid models (for whiéh(r) = |r|, and#y is then the
area of the random interfage-)). On the other hand, we stress that no restriction
on the constanty is imposed (excepty < o0), that is our analysis is a fully
non-perturbative one.

The concentration properties &f are intimately related to the notion of sur-
face tension of the model. The latter is well defined for formal Hamiltoni#is
we consider [25], [37]. Let us briefly recall the corresponding construction: given
avector € R, useZ y (v) to denote the partition function of the random surface
with the Hamiltonian (1.9) and-wired boundary conditions outside the discreti-
zation Vy of the unit cubeVy = (0, 1)¢ N Z‘I{,. By this we mean that the heights
¢(x) of the interface outsid®y are pinned as

x € Z9\Vy = ¢(x) = N(v,x) , (1.14)

where(., -) is the usual scalar product &f. Then,

. P
o= — lim_ Na o9 zgig ’

(1.15)

see [37] for a proof of the existence of this limit. Eventually, we are going to
prove that the scaled interfagg satisfies, under thg®y} family of measures, a
large deviation principle with the rate function being the integrated surface tension
3 (see 1.41 for the precise formula),

E(M)é/ o (Vu(x))dx . (1.16)
D

which, thanks to (3.63) and the differentiability af [25], is well defined (and
finite), for everyVu € L2(D). Of course§y was defined so far only on the ver-
tices of the Iatticelfv, and, in order to make the statement of the corresponding
theorem meaningful, we should interpolate it to the whol@fThere are several
natural ways to do so, the simplest one being just the plaquette reconstruction of
&y . Ithappens, however, to be more convenient to work with the following Sobolev
space oriented polilinear interpolation: fore R¢ define

- d [Nx] +v
Ev = Y ]'[(vi{Nx,-} + @ —v)(L—{Nx;}) | &n <T> :
ve{0,1}¢ Li=1
(2.17)
where [] and{-} denote the integer and the fractional parts respectively.
Notice that the interpolation is consistent with the valuesyobn the vertices
of Z;{,. Moreover, at a generic point € R¢, £y(x) defined above is a convex

combination of the values gfy at the vertices of thé;{,-plaquette containingx.
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The interplay between the lattice quantities and their interpolations is very im-
portant for us. Given a scalar lattice field Z¢, — R, we useV™u to denote the
discrete approximate gradient

VVux) = (VVu(), ..., VYu@))

1.18
éN(u(x+%)—u(x),...,u(x+%d)—u(x)) . ( )

Similarly, given a vector lattice fielg : Zj’v — R?, we use diyyg to denote its
discrete approximate divergence

d
divgn) 2N Y (000 = 9ix = ) - (119)
i=1

Notice that in the interpolation formula (1.17), the (continuous) gradvant is
almost everywhere defined, anditth entry is given by

d - 1
Soivw =5 30 | TTNx + a—vpa—(Nx))

ve{0,1)4 [ j#i
N 0.
xVNey (—[ X1+ 5 ) , (1.20)
N
where
Ui = (v, ..., -1, 0, vi41,...,0q) . (1.21)

Alook at (1.20) reveals that/dx; £y (x) is again the convex combination Of¥én
overthe correspondir@‘,{,—lattice points. Using Jensen’s inequality and elementary
estimates, we then immediately infer that for every poper 1 and every finitely
supported scala&fj’v lattice fieldu, there exists a constant(d, p) > 0, such that

1 N - 1 N
g VN < [ wards < SN @22)
X X

As far as the norms are considered, we shall use the generic ndfatiiar), both

for
1 N Yr 1/p
(WZ IVNulf’) and </|va|1’dx> , (1.23)

respectively in the case of finitely supported scalar lattice fields and in the case of
their continuous counterparts. Similarly, for a lattice figlde use]| - ||, both for

1/p 1/
(%ZNW’) and (/de) " (1.24)

The very same notation and convention remain valid also foRthealued vector
lattice fields, in the latter case we shall interpolate Zf\, — R? according to
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(1.20): thei-th entry of the interpolatiod, (x) at a generic point € R¢ is given
now by

gi(x) = % > {l‘[ (vj{Nxj} + (L — v - {ij})} 9i ([Nx]%>
ve{0,1)d [ j#i
(1.25)
As it was indicated in Subsection 1.1 one of the focal points of our work is to study
local relaxation properties of the scaled random interfacéor of its continuous
interpolatioréy given by (1.17)) under a slowly varying external fiéld Cy (D).
To set up the appropriate notation let us definetthed Hamiltonians# y j as

1
Hnn@) =3 V@ =) = 23 h@ee) | (1.26)

x~y
Then the tilted measui@y 5 is given by

)

Pna(de) = Ppyn(de) = g

my (dg) . (1.27)
where the reference measurg was defined in (1.11).

Alternatively, one could think oy (or of Py ;) as of the probability distri-
butions on the field of height differences

() 2 VVey () = (0(x + e1r/N) — (), ... p(x +ea/N) — p(x)) . (1.28)

The fieldn of height differences is the random object to be studied. In this respect
our investigation was motivated and prompted by the recent work [25], where the
study of the thermodynamics of the shift invariant fields of bound differences was
essentially initiated. Let us, therefore recall some of their results and notations:

It is also possible to view the field of height differenagas being defined on
the nearest neighbour bondszgf,: thei-th coordinatey; (x) corresponds in this
way to the value)(b) of n on the bond = (x, x 4+ ¢;/N). The orientation of the
bonds is then reflected in the conventipiix, y)) = —n({y, x)). We are going to
employ both the site and the bond notationfarithout further comment. Due to
the symmetry oV, the formal Hamiltonian (1.9) can be rewritten as

AN = Z Z () = 33" V() - (1.29)
b

A fruitfull idea of T. Funaki and H. Spohn was to consider txéeld in its own
right (for the moment we refer either to [25] or to Section 4 for the exact DLR set-
ting). They were able to prove that for everge R? there is unique infinite volume
ergodic square integrable Gibbs stﬁfé on the space of height differences, such
that,

<|n(x)|2>P53 < 00 and (n(x))P53= v . (1.30)
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Moreover, for each € R the Funaki—Spohn stal& Senjoys the following crucial
relation to the surface tensien

<V/(77(0)))[p55 =Vo(v) . (1-31)

where, for any function : R — R, we use the shortcut notation

P = (o), ..., p(na)) € R . (1.32)

Here, and in the rest of the paper, by we mean the expectation with respect to
the probability measurB. Also we use the shortcut notatiof¥sy and(-)y , for
the expectations und@y andPy j respectively.

1.3. Main results

All of our results remain true wheneveD is sufficiently regular to ensure the
validity of certain Poinca&—-Sobolev type inequalities used in the proof of Lem-
ma 3.4. In particularg D of Lipschitz regularity is enough and it will be assumed
throughout the paper. For a test functior C3° (D) set

1 1
Ap(h) = lim = log <exp<NZN<p(x)h(x)>> . (1.33)
x N

Our principle result relates the log-moment generating functigrto the surface
tensiono defined in (1.15). LeH]%(D) be the closure of3°(D) with respect to
the Hilbert norm|| - ||1,2. We have the following:

Theorem 1.1. Assume thab has a Lipschitz boundayD. ThenAp in (1.33) is
well defined for any: € C3°(D). Moreover,

1
AD(h):// uep) (x)h(x)dr dx (1.34)
D JO

where, for eachf € La(D), we useu[s] € Hi(D) to denote the unique weak
solution inl]-ﬂ(l,(D) to the semi-linear elliptic equation

diV(VU(Vu)) =—f. (1.35)
An alternative way to describ&p is:

Ap(h) = mai({/;)u(x)h(x)dx — E(u)} = /Du[h](x)h(x)dx — X (up)
(1.36)

ueHy

whereX (u) = [, o (Vu(x)) dx.
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The equation (1.35) is the promised multidimensional counterpart of the equa-
tion (1.5) of the previous subsection. Moreover, in the heart of the proof of Theo-
rem 1.1 lies the following statement, which describes the relaxation of the averaged
interfaceuy ¢,

un.f = (EN)N (= <%>N f) , (1.37)

and hence, as we shall see, the concentration properties of the random scaled in-
terfacey underPy ¢, or, in other words, under a slowly varying external field
f e CF(D):

Theorem 1.2. Assume thab D is Lipschitz. Then, for every € Cg3°(D), the
sequence of (interpolated) mean profilasy ¢} converges strongly iihﬂé to the
solutionu( ) of the semi-linear elliptic problem (1.35) & — oo:

lim iy, ¢ —uspll2 =0 . (1.38)
N—o00

The scaled random interfadg, concentrates, undefPy ¢} aroundugs in the
following sense:

. ~ 2 _
Jim (1éy —upi3), =0 (1.39)

Furthermore, unde®y , the gradient field;(-) = VNEn () locally relaxes to
the Funaki—Spohn staﬂ@w 1O More precisely, for every € L2(D) and ev-
ery bounded continuous Iocal functidgnon the space of height differences (see
Subsection 4.2 for the precise definitions)

NI@ I 163 ) / GONF ) 1+ (L40)

whered, is the translation operator on the space of height differenégs(y) =
n(y +x)).

In a sense, (1.38) and (1.40) are the main results of this work, and their proof
requires most of the techniques developed throughout the paper. The result (1.40)
is a form of weak local equilibrium, in the hydrodynamic limit language [35], and
it gives some information on the fluctuations of the interfagearound its mean
value. Itis a first step toward a Central Limit Theoremgt For a Funaki—Spohn
stateP''S, v € RY the CLT has been established (see [28] and [39]) and the limiting
field is a continuum free field with covariance which depends on the.tilt/e
believe that the fluctuations féty ; are determined by the spatially varying tilt
Vur (), however the extension of the quoted results to the case presented here
seem rather challenging, due to the non constant tilt and to the presence of boundary
conditions.

The concentration property (1.39) falls in the framework of large deviation
results which follow more or less in a standard way once Theorem 1.1 is verified:
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Theorem 1.3. Assume thad D is Lipschitz. Then the family of random surfaces
&y obeys a strong LDP Oﬂlz(D) with speedV? and rate function given by the
integrated surface tension (1.16)

S 2 {fDa(Vu(x))dx if ueH(D), (1.41)
+o00 otherwise, '

that is, for every measurablé C L>(D) we have that
. . 1 -
—ugo Y(u) < Iwn;gg‘ Na log [PN (gN € E)]

< lim sup% log [IPN (éN c E)] < —inf T(u) , (1.42)

N—oo uek
whereE° and E are respectively interior and closure [Q(D) of E.

The main application of the previous Theorem is the construction of a droplet
with fixed volume over a hard wall: we interprgfand its rescaled versidy) as
the height of the phase separation surface of a droplet lying on a wall with a given
quantity of liquidv > 0. Our result shows that the rescaled prafijeconverges as
N — oo to the deterministic Wulff curve ™, unique minimizer of the variational
problem

inf{S(u) :uce Hol(D),/ u(x)dx = v} , (1.43)
D

Note that:™ solves the corresponding Euler equation
div(Vo (Vu')) = —c,1p | (1.44)

wherec, is an appropriate constant.
More precisely, we give the following two definitions.

Definition. The hard wall (or entropic repulsion) conditioklVe restrict ourselves
to non-negative configurations, that is we will consider the conditioned measure

Py +2Py(- |QF) where Qf = {(p € RZV : ¢(x) > O for everyx € Dy

(1.45)

The study of this measure, aimed at understanding the effect of a forbidden region
on a random interface, is interesting in its own right and the arising phenomenon
goes under the name efitropic repulsion (see e.g. [20] and references therein).

Definition. The volume conditiaror givenv > 0, let us introduce the event

1 1
Av) =lp e RV 03 o = 3 evm =0l . (146)

We can obviously reformulate this event as

{p € RPN : / En(x)dx > v}, (1.47)
D

introducing a negligible error.
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Theorem 1.4. Assume thad D is Lipschitz. Then for every > 0 the scaled ran-
dom interfacety, under the measur®y 4 conditioned onA y (v), concentrates
aroundu™, unique minimizer of the variational problem (1.43), in the following
sense: for every fixetl> 0

lim PN,+(||§N —u®lp > 8’AN(v)> —0. (1.48)
N—o0

Remark 1.5. Instead of the volume conditioAy (v), one could also consider a
volume shell of thickness > O:

An.(v) = {(p € [szlv v—€/2< %ZNSN()C) <v —|—6/2} . (1.49)

By letting first N — oo and thene — O yields the same concentration result.
Moreover, as it will be clear from the proof, Theorem 1.4 holds also if we replace
Py + with Py in the statement.

1.4. Sketch of the proof

In order to identify the limitA p (k) in (1.33) we use the following decomposition
of the finite volume log—moment generating functions:

1 1 N S —
Wlog(exp(ﬁz h(x)ga(x)))N= /0 a2 MEEN )N dr
(1.50)

This step immediately shifts our attention to the main assertion (1.38) of Theorem
1.2. In fact the identification formula (1.34) would follow from (1.50) even if only
aweaker form of convergence is secured. In any case let fisdiX3° (D), and, in

order to facilitate notations, let us use a shortcut notamuﬂA: uy, (= En)n, r)-
Our analysis ofiy relies on the following simple observation:

ad )
for everyx € Dy, < e‘(/’N-f(‘p)> =0, (1.51)
dp(x) my

where, as before, gis the reference measure defined in (1.11). In fact, uBing
to denote the unit ball ifRP~,

X

By = {go eRPY g% = Yo < 1} , (1.52)

by performing the integration with respectggx) we obtain

exp{—ny,f}>

< 24"Vl (By_1) eXp{— min %N,f(qo)}
piN=a

+/
peaBy

3
‘<3¢(x)

my

300 exp{—#'n.r(9)} ‘ my (de) .

(1.53)
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However, due to the quadratic lower bound (1.13)qrfor somec = c¢(f, N) we

have that 5

min #y. f j—v)»EN —CN, fa, (1.54)

lpln=a
whererr, > Ois the leading eigenvalue of the discrete Dirichlet Laplaciamgn

with Dirichlet boundary conditions andy, ; = N~1t/2| f||,. Equation (1.51)
then follows in the limita — oo, by applying (1.54) after having developed the
derivative in the last term in (1.53).

Performing the differentiation in (1.51), we see that at any poiatDy,

divi ((V@@))y ) ==f @0 (1.55)

wheren is the field of height differences defined in (1.28). Summing (1.55) by parts
against test functions, we obtain that for ghg C3°(D),

Ndz (Ve Vi) = NleNﬂx)f(x) . (1.56)

The latter equation lies in the heart of our approach, and the statement on con-
vergence ofuy happens to be nothing but the statement on the local relaxation
properties of the-field under the slowly varying (on the microscopic scali?gi)

tilt /. We shall see that und®_; ourn-field in an appropriate sense locally relax-

es asV — oo nearx € Dy into the Funaki—Spohn state in the averaged direction
MmN, = V™uy(x). Much of Section 4 is devoted to the attempts to give a
precise meaning to this assertion. Meanwhile formally substltLQWhgy(x))) N,

by the expectatioRW o (VNu y (x)) of n under the Funaki-Spohn st&t@s " (see
(2.31)), we obtain from (1.56),

%ZN(VU(V uy (x)), vV (x)) 1dZNj(x)f(x). (1.57)

Various a-priori bounds on the sequereg } which we derive in Section 3 will
enable us to conclude at this stage that this sequence is pre-compact, and, moreover,
any limit pointu of {iiy} has to satisfy,

/ (VU(Vu(x)),Vj(x))dx:/ f@)j(x)dx  foreveryj e CF(D) ,
D D

(1.58)
and, by the uniqueness of the solution of (1.58), this implies that there is only one
limit point, which is precisely[ 7).

1.5. Guide to subsequent sections

In our approach we drew inspiration from two recent sources of results and ideas.
The first one is the paper by Funaki and Spohn which we have already mentioned.
Equally important for us are the representation techniques developed in the series
of articles by Helffer and $jstrand (see e.qg. [31]) as well as applications of these
techniques to non-Gaussian fields@hwe consider here [39].
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In Section 2 we develop a probabilistic counterpart of the Helfférst&nd
representation. We feel that the results of Section 2 might be of independent inte-
rest, and, accordingly, try to present them in a closed form in the general setting of
Gibbs states on finite graphs. The appropriate notation is set up in Subsection 2.1,
where also the probabilistic representation formulas for the covariance (Proposi-
tion 2.2) and for the mean (Proposition 2.5) are derived for arbitrary tilting fields
and boundary conditions.

Our probabilistic interpretation of Helffer-&trand ideas provides a useful
intuition for studying the correlation structure of random fields with strictly con-
vex potentials. We return to the, theory in Subsection 2.2: In Lemma 2.8 we
prove a partial inverse to the Brascamp-Lieb inequilin important entropic
upper bound on thie; oscillation of theVg field is formulated in Proposition 2.10.

At last, the issue of exponential tightness of théield is briefly worked out in
Lemma 2.11.

In Subsection 2.3 we adjust and specify the above mentioned results to the
setting of the square lattice.

Much of the weight of technical estimates falls on Section 3. The ubiquitous
oscillation bound and thi, estimate on the expectations of tWe field under
various tilted measures are proven in Subsections 3.1 and 3.3 respectively. Strict
convexity of the surface tensienhas been established in Subsection 3.4, see [28,
Appendix A] for an alternative proof, whereas the implications for the properties
of the functionalX have been discussed in Subsection 3.5.

The claim 1.38 of Theorem 1.2 follows by taking the limvit,” coin (1.56). A
rigorous treatment of such a limit requires an analysis of local relaxation properties
of the n-field along the lines of 1.40. This is constituted by two main steps: the
proof of the local weak convergence to Funaki-Spohn states (Subsection 4.1) and
the analysis of the related families of Young measures (Subsection 4.2). In both in-
stances the crucial compactness conditions follows from the oscillation bound (3.1)
and from thel , estimate of Lemma 3.4, which are, in this respect, indispensable.

Finally the proofs of Theorem 1.3 and Theorem 1.4 are completed in Section 5.

2. The random walk representation

In this section we derive some useful estimates orgtield, by taking advan-

tage of a representation of continuous spin systems in terms of the solution of a
suitable elliptic problem. This representation has been introduced by B. Helffer
and J. Spstrand [31]: we will reinterpret it in a probabilistic way, by using the
well known fact that the solution of elliptic problems can be given via diffusion
processes (see e.g. [24]). Since we are in a discrete setting, the diffusion process
is a discrete random walk, but only in the case of quadratic potentials (i.e. in the
Gaussian setting) the random walk is simple, that is the transition rates are inde-
pendent of time: in the general non-Gaussian setting we obtain formulas involving
a random walkin time dependent random environment.

1 See also [12] for a reproduction of our proof and a clever application to the CLT for the
Hopfield model.
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We will first introduce the random walk version of the Helfferé&rand (H-S)
representation. We will do this in a rather general setting, i.e.¢efiald on a graph
(Subsection 2.1). Then we will apply the representation to get some estimates (Sub-
section 2.2). Finally we will restrict ourselves to tiedimensional square lattice
and we will make the estimates explicit in this setting (Subsection 2.3).

We sum up the simplifications arising in the Gaussian case at the end of Sub-
section 2.1.

2.1. The H-S representation for fields on a graph

We start with a finite connected graph= (E, &). We decompose the set of sites
E = I U B into its interior! # ¢ and its boundarnB # @. & is the set of oriented
bondsb, i.e.b = (x, y), for somex, y € E, and we write—b = (y, x) for the
reversed bond: we assume thabik & then—b € &. Moreover, giverb € &,
we denote by (b) andy(b) the two entries of the bond: that istf= (x, y), then
x(b) = x andy(b) = y. Letgp € Qr = RF andb = (x, y) € &, then

Vo) = o(y) — p(x) (2.1)

is the discrete gradient. Throughout this section we identify th&getA C E,
with the set of functions frond to R.
We consider a familyy = {V,},c¢ Of potentials with the following properties:

1. smoothnessV;, € C23(R; R) for somes € (0, 1);

. symmetryfor everyb € &, V, is an even function antf, = V_,.

3. strict convexitythere exist two constant§; andCo, with0 < C; < C2 < o0,
such that

N

C1 <V, <Cy, beé& . (2.2)
The Hamiltonian#¢ : Qr — R is defined by
1 1
Hy(p) =3 ; Vo (p(y(B) — p(x (b)) = 5 ; Vi (Vo(b)) . (2.3)

Unless otherwise stated, an element Q; will be viewed also as element of
QY ={p € Qp : p(x) = 0forx € B}). Next, letp € Q% and set

Hgp(@)=Hg@) —(p, @) , (2.4)

where(p, ¢) = )" g p(x)@(x). For a given boundary conditiofp € Qp, let us
define the configurationp A ¢ € Qg which agrees witlp on I and withy on B,

that is

e, ifxel,
and writejf}/;, (p) = H'g ,(p A ). Consider now the probability meas@fgp
on 2y definedpby

1
Py (dg) = e exp(— Ay (9)m; (dp) . (2.6)
Y,p
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wherem;(dg) = [],; de(x) andff}é’ » € R* is the normalizing constant.

Notation. We denote b%- >u:> and<-, '>u:> the expectation and the scalar product with
respect to a measufe However we will often use simplified notations, like

< . >fp and < -)fp , (2.7)

respectively for the expectation with respect[RI§ 0 and the scalar product in

(e 00 0 @9

are respectively the expectation with respect to

[LZ(P}”’p). Moreover

[FD],,O9 [FD}//5 [FDI ’ (29)

which, in turn, ardm}”’p with (respectivelyyy = 0, p = 0, bothp = 0 andys = 0.
Analogous short-cut notation for the scalar product.

In order to introduce the H-S representation let us introduce the second order
elliptic operator

LIW _ e%/}iﬁp(‘p) Z L |:€<7/}i’/,p((p) ad :|
’ = 9p(x) 99 (x)

2 anY
| 509 9 ) (2.10)
dp(x) dp(x)  dp(x)

xel

with domain
Cop(QiR) = {F e C3(Q;R) 1 3e =&(F) > 0sit.
SUP|OF (x, @)l exp(—e Y lp(x)]) < 00} . (2.11)
¥ X

where 3 F(o)
%
0F (x, @) = ,
Y= et
andd F (x, -) = 0 atthe boundary pointse B = E\ I . Then a simple integration
by parts shows that for all functiorfs, G in the domain ofL,‘”’p
v 14 _ 14 _ v 1
(r.(-t1,) o), = Lrwosceo), =(0.(-11,) F),, -
(2.13)
that isL,‘/”p is symmetric with respect ﬂB,‘/”p(dw). We can then [26] introduce the

xel , (2.12)

closed self-adjoint extension df}fp in [LZ(P‘,/fp), denoted again by;'{fp, which

acts on a domai@"

Lo’ and the corresponding Dirichlet form

v
Ly (F.G) = («oF. 86))(@)“’ : (2.14)
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where we have introduced the notation

(fog() =Y f(x,9)8(x,9) , (2.15)

xel

for f, g : I x Qg — R. By the standard theory Dirichlet forms [26], interpreting
dF anddG as weak derivatives, every term in (2.13) (and (2.14)) is well defined

and the equalities in (2.13) hold fét, G € J‘,”
The basic step for the H-S representatlon is the following observation: let

G e Cexp(§21, R) be of mean zero

(G)ﬁp -0, (2.16)

and letH < @Iw o satisfy
v _ v
(-LY)H=G with <H> —0. (2.17)
, Ip
The first equality has to be interpreted in the weak sense: for every Cexp

(= C3f@1: R),
4
(wor.om)), =(r.G)f, . (218)

Let us first give a result of existence, uniqueness and regularity for (2.17). Recall
the regularity assumptions dn listed at the beginning of this section:

Lemma 2.1. There exists a unique solutighto (2.17). MoreoveH < C3’Bm@‘,’fp
and therefore it is a classical solution.

Proof. Let us first introduce the Hilbert spad®, closure of
Wo = {F € C¥(QrR) N Co( QR (P, = (L F)Y 0} ., (2.19)

under the norm defined by

2 2,V v
”F”W = (F >’»P+<((8F’8F>)>1,p . (2.20)
The bilinear functional in (2.14), viewed as a map fréfnx W —> R is clearly

bounded and its coercivity follows from the spectral gap of the opelaﬁgrthere
existse > 0 such that

v
<((8F, 8F))>[ z el Ry, (2.21)

foreveryF € W. This can be proven from classical results on 8dhrger operator
using the unitary transformatiof < [LZ(P'I’fp) — exp(—%g,p/Z)F € La(myp)
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which maps the operatoFL}’fp unitarily to the Schidinger operator-A + V
whereA = Y _,(3%/3¢(x)?) andV : R’ — R a multiplicative operator

W 2 82
(w)) 1 (<p) 2.22)

1 8%{%)
V=2, Z( dp) 2 gy

xel

In particular the spectral gaps efL"’p and—A + V agree. Sincé/ is bound-
ed below and, by (2.2), I||;§1_>00|nfz L o2=r V(9) = F00 (cf. (1.54)), all the
points in the spectrum 6fA 4+ V are |solated cf. [44, Th.XIII.64 and Th.XII1.69].

v
Since, forF € W, <((8F, 8F))>I = 0 implies F = 0 and since we are dealing
N

with non-negative operators, (2.21) is prO\?gn.
Observe now that the functional G) : W — R is bounded. By the Lax—
Milgram Theorem [30] we obtain the existence of a uniglie W which satisfies

(2.18) for everyF € W. Since(G)‘” = 0, (2.18) holds without the restriction

(F)‘/’ = 0 and the existence-uniqueness part of the Lemma is proven.

To prove the regularity of such a solution we refer to results which can be
found in [30], to which we refer also for the Sobolev space notation. For notational
convenience, in this proof we writ@), = /99 (x) and

—_ 7V _ 52
L:Ll,p_g —C-

3, (2.23)

with (c(¢))x = 347 (9)/d9(x) (cf. (2.10)). SinceV, € C2?, (o), € CLH(Q)).
First of all note that the solutio#/ we found is a weak solution in the sense of
formulas (8.2), (8.3) and (8.4) of [30] in any open ball®f (equipped with the
Euclidean norm). In particulafl € WI By [30, Cor.8.36], since both and G

are locally boundedd e 1« for everya € (0, 1) and by [30, Th.8.8], since both

c andG are differentiable H € WI 2. We can therefore differentiate once with
respect tap(x), anyx € I, both 5|des of the equation in (2.17) and we obtain that
v: Q — Rdefined byy = 9 H/d¢(x) solves weakly the equation

f\
QJ

9 9
82v—c- G % sy=—;. (2.24)
S p(x) | dg(x)

whereg is locally bounded. Therefore, again by [30, Cor.8.36% C1¢ for every

a € (0,1). ThereforeH € C%* andH is a classical solution of (2.17). We can
now use the Schauder interior regularity theorem [30, Th.6.17] to conclude that,
since both: andG areC'?, H e €379, O

2 A more explicit lower bound on the spectral gap can be obtained by using the Bakry—
Emery criterion and the fact that we have an explicit lower bound on the Hessmg f
in such a way it can be shown that in (2.219an be chosen equal @ A%, whereir’, is the
leading eigenvalue of discrete the Laplaciangymwith Dirichlet boundary condltlons oR
(see (2.79) below).
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In view of (2.13) and (2.17), foF € C&,, we have

v
covf, (F.G) = (F.(-L] ) H) | =((0F.0M)) () (2.25)

v
Lp

At this stage, let us introduce the jump process gene@ﬁo‘?, acting on functions
ji E—> R,

0rYjy= Y. a'b.eVib) . (2.26)
be&:x(b)=x
where
a’ b, ¢) =a(b, o AY), with a(b, ) = V' (Ve (b)) . (2.27)

Note that the jump rates are symmetric, that is
Cl(b, 90) = Cl(—b, 90) ) (228)
for everyb € & and everyy € Q;. Then, using

L yH )
dp(ry e

BN V() ZGZ%EZ,p(w)BH(@
T e (x) dp(x)dp(z) d9(2)

= (=L} )IH (x, )
— Y ViYW Ae) b)) [H(y(b), ) — dH (x(b), 9)]

bed:x(b)=x

zel

(2.29)
we see that = 9 H satisfies the equation
(=LY Dh(x, @) + (0¥ )h(x.¢) = 3G (x.9). xel ¢eQ . (2.30)
with 0-boundary conditions, i.e.
h(x,9) =0, X €B, (2.312)

forall ¢ € Q;. Let us denote by# g the space of functions: E x Q; — R and
write ,ﬂ% ={f e Mg : f(x,) = 0if x € B}. For uniformity, every function
f I x Q — Rwill be implicitly extended to a functiory e .#%, by setting
f(x, ) =0 foreveryx inthe boundanB. If u, w € ﬂ% we have,

1
(. Q5 w)(@) = 3 %aw(b, O)Vub. 9)Vwb. ¢) =T pup (1, ) (9) -
| (2.32)
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This implies that the operator
<y =LY+ 0% (2.33)
with domain

C2o(E x Qi R) = {f € MY fx,) € Cop(Q; R for eachx e 1] ,
(2.34)
is symmetric with respect to the measﬁw’p =€g® P}”’p, with e the counting
measure ork. More precisely forf, g € égxp(E x Qr; R), we have that

v
(s 2% pan@),

4 i
= /15><S21 f(x,9) (—EE,» g(x, )P , (dx, dp)

=(ur.(-2t,) ), + %§<a¢ b9V b. Vo0 0],
I v
=T, U6 0 )+ (s 0 ),

defines a Dirichlet fornffg onla(e; ® P}/fp).

Following Freidlin [24, §2], let us give a process representatiormfer ¢).
Consider the joint Markov proce$sX (1), ® (1))},eg+ On E x Q2. (pre)generat-
ed bycsﬁ‘,é’p. Due to the fact that the generator is sum of two terms and that the
first part of the generator acts only on thevariable, we can construct the process
by constructing first the finite dimensional diffusion procé®st)},cp+ generat-
ed bnyp and then by constructing the random wgX(¢)};cg+ Which makes
jumps fromx to y at timer with time dependent rate” ((x, y), ®(¢)). We will be
interested only up to the moment that the random walk Bitherefore we set

t=infr>0:X@) ¢1} . (2.36)

Letus denote b?}f’,’j the law onD ([0, 00); E) x C°([0, c0); ;) (D is the Skoro-
hod space of right continuous trajectories: the topologyox 2, is the product
topology, while2; is equipped with the uniform topology anfd with the dis-
crete one) of this process starting@t ¢) € E x ;. We have the following
representation of the solution of the elliptic problem (2.30) and (2.31)

h(x, @) =EVp Ur AG (X (s), D(s)) ds] ) (2.37)
0

We state this result in the following proposition.

3 Beware that this is not a probability measure!
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Proposition 2.2. Representation of covariances. For evétyG € C?
we have

cov) (F.G) = Z<8F(x, ¢), EVL UOT 3G (X (s), @(s))ds:| >pr . (2.38)

xel

In the special casé (¢) = ¢(x) and G(¢) = ¢(y) for somex, y € I, then we
simply have

(€213 R)

exp

cov}p’p@(X), o(y)) = EV’ |:/0 1,(X(s)) ds:| , (2.39)
where
Py’ E/ Py (dg)PYL, xel . (2.40)
ExQ; ’

Proof.Itis simply based on the observation that, with respect to the natural filtration
associated td(X (z), ®(1))};ecp+,

t
M) =8H(X(t),d>(t))—8H(x,g0)—/ LY BH(X(5), ®()ds . (2.41)
, ~E

is aPY#-local martingale.

Now observe that < oo P}f,;f-almost surely, since the graph is finite and
connected, and the jump rates are bounded away from zerscamdbreover we
will show below that
SUpEY. [(M(t A T)) ] (2.42)

teRt

for everyx andP'” -a.e.p. Therefore, by the Optional Stopping Theorem [45] for
u.i. martingales, the result is easily achieved by consideriag (2.41) and taking
expectations, recalling thatH (x, -) = 0 forx € B. We are therefore left with the
proof of (2.42).

Let us set

ROH)(x.¢) = LY, (3H)? (x,¢) —20H Ly 0H (x. p).

9 2
= 22 (—BH(x w)) Z a’ (b, ) (VOH (b, 9))?

9 ( ) b:x(b)=x
(2.43)
and
R*OH)(9) = Y R (OH) (x,9) . (2.44)
xel
Observe that
<R (8H)> Z(E)H(x Y9G (x, )>
xel
1/2 v 12
< <((8H,8H))>1,p <((3G,8G))>I’p <00 . (2.45)
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By standard martingale theory and by dominat®@ H) with R*(d H) we obtain
o
BV [(M@ n)?] = /O EVS [R*GH)(®(5) o1 (s)] s

=/O EVL [R*(OH)(®(s)EY? 10,11 ()]0 (@ (s)]] ds .

(2.46)
but since by (2.2) there exists> 0 such that uniformly in, ¢ and®(s)
PV2 (1 = so(@(s) <& texp—es) (2.47)
from (2.45) and (2.46) we conclude that
<;§$E EVy [(M(t A r))z] >j’p < 8*2<R*(3H)>‘ip <00 . (2.48)
This proves (2.42) and the proof of Proposition 2.2 is complete. O

Remark 2.3. Actually, the representation is more general, for example we can re-
place the linear self-potentiap, ¢) by a nonlinear self-potential. In this case the
Hamiltonian is

Hou(@) = Hg(@) =) Udgy) (2.49)
xel
and we assume that, € C2(R; R) and that
Ul <0, (2.50)

for everyx € I. For simplicity we will assume also that, for alle 7, U > —C3
for some constanfz € R*. Then denoting byffu the corresponding diffusion

generator, and proceeding as before (in particwaﬁ}”’U)H = G with G andH
of mean zero) we see thaH (x, ¢) satisfies the equation

(=LY )IH(x,9) + (—=QY)IH (x, 9) + U/ (9(x))IH (x, )
=dG(x,p), xel, (2.51)

with boundary conditions (2.31). This yields

0H(x,p) =ElY [/0 exp(/os Ui 1 (®(1)) dt) IG(X(s), @(s))ds} :

(2.52)
cf. [24]. In particular

covl , (F. G) =EWY [aF(X(O), 0 [ texp( / S U;g(,)(cp(t))d;)
' 0 0

x BG(X(s),CD(s))ds} , (2.53)
and
covf  (p(), () = ELY [ 5 exp(f3 Ug (@) dr) 1, (X () ds]
(2.54)
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Remark 2.4. On the FKG inequalitylLet F,G < ngp(sz,; R) be such that
d0F >0,0G > 0.Thend H > 0and therefore cdﬂlU(F, G) > 0. Thusthe measure
[P",/f y satisfies the FKG property.

The main result of this section is a representation for the mean (and exponential
expectations). As it will be clear from below, dealing with the change in the mean of
the field due to the presence of an external magnetic field (or chemical potential)
will essentially reduce, via a differentiation trick, to the previous covariance repre-

sentation. More delicate is the situation in the case of non zero boundary conditions.
We give the following

Proposition 2.5. Representation of the mean. blete Qp andp € Q% be given,
then

v vt
(o), =(ow) + [ coit, e tponar . @55)

where the first term in the right-hand side can be expressed as

v 1 1
o) = [ Lrram=ywma = [ B el d . @)
I 0 \cB 0

and .
cov,, (¢(x), (p. ) = EL"” [ /O p(X(s»ds} . (2.57)
Proof. Let
v
v e expato o))
o = (o) = L (2.58)
Ltp ¥
(exptio. o))
1
then

v
(o) 0. 9) expt (o, o))

W =
t (expieio. o)’

(vcrexpto.n), {10, 0 expttt0. 90 )

(exiio.on)  (expuio o)’

¥

= COV[’tp ((p(x)v (107 (ﬂ>) 9 (259)

which is given by (2.39). Therefore the second term in the right-hand side of (2.55)
v

(and (2.57)) is justified. In order to take care<¢(x)>l , let

v (eem(=#aen))

L e nu)

o = () "L (2:60)

my
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then by symmetryf (0) = 0 and, as above,

d
f'(6) = —cov? (w(x), 3o A mm) =cov/ (p(x), G (9)) . (2.61)

where
d A 4(P)
GV(p)=——Hg(@ A1) = — _ . 2.62
(@) == Ho@ A1) yZB 50) ¢=¢At1/f1/f(y) (2.62)
By (2.25)
ty
coV)’ (¢(x). G () = (n(x. 9)) . (2.63)
whereh(x, ) solves
92 1y
oy Hg G (9)
(—L)h(x, ¢>+Z—8 ool ¥ N WG 0) = el
(2.64)
with boundary conditioi(y, -) =0, y € B. Let
_ | hrG,e), yel
then since
A g(p A1) 3G () A 4(P)
— TNz, _ — _ - ,
ZZE,: 10 P et Z 3050 gy "
= (- Q"” Dw(x. ) (2.66)
we see thatv(x, ¢) solves
“/“pw(x ) =0, xel, (2.67)

with boundary conditiomw(x, -) = ¥ (x), x € B. Now the result (2.56) follows as
before from the argument in [24, 82],

wx, @) =Y YOPY, X (@) =y =EY, [v (X ()] . (2.68)
yeB
and the proof is complete. O

Remark 2.6. Of course nothing prevents us to replaegr) with F(g) € Cexp [
this case we get

v vt
(Fo), ={r); + [l Forpona . (269

where the first term in the right-hand side can be expressed as

v ot
(F@) =(F@) + /0 EY [DF (X0, @)y (X(x)] dr . (2.70)
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Also, interchanging the order of differentiation yields a similar formula:
¥ 0
(Fo), = (ro),
1 T
+/ ElV-P [8F(X(0), ®(0)) </,0(X(s))ds +v (X (r)))] dr .
0 0
(2.71)

, . 0 v
In particular it follows from the argument, that, p) : Qp x Qp — (F(<p)>1
P
is monotone iny and p for any monotond Cexp

With the following Corollary we give the tool to compute the moment generat-
ing function with generaly andp.

Corollary 2.7. The exponential moment. Letp € Q%, then
¥ o\\Y
log(exp((v.¢) —{(v.0), ),
/ / var, e (V2 0)) ds dr

=/ / Zv(x)E}f’pH" [/ v(X(u))du] dsdr . (2.72)
0 JO vel 0

Proof. It follows again from the differentiation trick. Set

1 v
f= Iog<eXp{t [(v, 9) — ((v, ‘”>>1_J } )I . (2.73)
then £(0) = 0 and
oo VoW

F'o=| {<v, o) — (v, so>),,p} - (2.74)

Thus f/(0) = 0 and
Fro =vary L ((v.9) . (2.75)
Integrating and using (2.39) yields the result. O

2.1.1. The homogeneous Gaussian case

We single out the very particular case of quadratic potentials, independent of the
particular bond, by putting a superscriptTherefore

1
Vi (Vo) =3 (Ve)?,  bes (2.76)
and we write %, (¢) for the harmonic Hamiltonian, that 5, (Ve ())?, and

for the corresponding measure. The Gaussian measure will be used as a com-
parlson tool and we will mostly use it only with = 0 andp = 0: as before, in
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this case we will omity andp in the notation. Note thd®} is a Gaussian measure

on ; and therefore it is completely characterized by its mean (in this case 0) and
its covariances. Let us observe that, in the Gaussian dased X, in this case
denoted byX*, evolve independently. In fadt” = 1 for all b € &, and therefore
(2.39) reduces to computing the time spent for the simple random walk starting

atx (or vice versa). In particular fa@ (¢) = (v, ¢) a linear function, the equation
(2.30) reduces to an equation independeni:of

(—QHR*x)= Y Vph* =v(x) 2.77)

beé& x(b)=x

with solutionz*(x) = Ex[for v(X*(s))ds], and Q* is just the Laplacian on the
graph. As it is well known, in the Gaussian case we can express also the mean of
the field in terms of a simple random walk. For example, in the case of boundary
conditionsyr € Q2p andp = 0 and denoting by, the law of the simple symmetric
random walk starting from € I, we have (see formula (2.56))

(o), .y = Exly (X0 (2.78)

for everyx € I (see [27, Ch. 13]) for the case in whidhis still quadratic, but

bond dependent, and £ 0). Every expression with a superscriptefers to the
homogeneous Gaussian case: in partictdr= L* + Q*. In general the Gauss-

ian computations may cast some light in understanding the general (non-Gaussian)
behavior. As already remarked before, this is not the only advantage: itis in fact pos-
sible to get some inequalities on non-Gaussian quantities with respect to Gaussian
quantities. This is the subject of the next subsection.

2.2. Inequalities and estimates fotfields on a graph

For simplicity, in this subsection we will only deal with 0-boundary conditions, i.e.
Y, =0,x € B.

A general inequality for log-concave measures, due to H. Brascamp and E. Lieb
[13] and applied to the massless field case for the first time in [14], says that any
moment, including the exponential one, @f ¢) — <u, (p>11/f is bounded above
by the corresponding moment for the field with Hamilfgnm(w) equals to
%Zb C1V*(Vo(b)), whereC is the lower bound orv,’. We start by reviewing
this result in our set up and by giving a (partial) reverse inequality, i.e. we will find
a lower bound on variances in terms of the corresponding Gaussian expectation,
with potentialC,V*, whereCy is the upper bound oW’

LetA7; be the principal eigenvalue of the random walk on the graph with Dirich-
let boundary conditions:

1
A =inf { o« (u, u) = > Z(Vu(b))z cu e Q8 with Jlul| = (,u)? =1

be&
(2.79)
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Note thatA}, > 0 sinceB # ¢ and the graph is finite and connected. Next, for
F CIlet

Ay p = inf {FQ* (u, u) = %Z(Vu(b))z ue QY with Y (u(x)® =1
bed xeF
(2.80)

Note that7 . = A% andA p > A%. Forgiveno : & —> R define the divergence
div(e) € Q9

1)) —a(x, )], I
dvia) () = {yg [o((y, x)) — a((x, )] xe 281)
0, xXeB.

Note that the divergence is characterized by the following summation by parts
formula: for allg € Q.,

(o, Vo) = > a(b)Ve(b) = Y div(@)(x)g(x) . (2.82)
beé& xel
where we have extended the notation) to denote also the scalar product in
L2(&; R).
2.2.1. Brascamp-Lieb and reverse Brascamp—Lieb inequalities

Lemma2.8.1f v e Q%, whereF C E andQ% = {v € Q¢ 1 v(x) =0 for x €
E\F}, then

1 1
vars , (v, 9)) < C—lvar; (o)) = s Iv)? . (2.83)
F.E
and 1
vary,, ({(v, @) > C—zvaf}((v,w) . (2.84)

Moreover, for eachr € Qs = R¢, we have
1 1 1 2
—-var; ({(a, V) < var, ({a, Vo)) < —var, (@, Vo)) < —|l«||” . (2.85)
C2 Cl Cl

Proof. TakeG € C3,,, then sinceééxp is a dense set of thie domain of(— % ),
we get by simplé., calculus

vari (G) = (G, (~2£.,) 96N,

= sup {2{«86, @) =T, (f. f)} . (286)

N ]’
fechp r
Next, in view of V/ > C1, we have

Loe (f; ) (@) = C1lo= (. ) (9) . (2.87)
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Thus, by Jensen’s inequality,

o, (D)2 Y Tuy, (FG ), £ )+ CofTor (£ ) @)

xel

> C1T o+ (f1.0: f1.0) (2.88)

Lp

wheref; ,(x) = (f(x, g0)>1 ) In view of (2.88), withdG(x, -) = v(x), and (2.86),
we get ’

vary, (v, ¢)) = sup {2(<<v, @) =T, (. f)}

. I,
fngxp r

< sup {2(1), fl,p> - ClFQ* (fl,pa fl,p)}

fechp

< Civar; (o) . (2.89)
1

which proves (2.83), since, for anywith support inF, by the definition of the
Gaussian measure and Cauchy—Schwarz

2
var; (v, o)) = sup — W o v

< 2.90
ue? Lo«(u, u) )‘?,E ( )

Finally, again using (2.86), restricting ourselvesto, ¢) = B(x) independent of
@, we get

varz , (v, @) > sup()){2<v,ﬂ) —Ty,, (8.8} . (2.91)
Be;

Moreover, sinced/” < C, we have

Lo, (B.8) =3 [ab.9), (VB®)? < ClguB.p) . (292)

I,
beé&

which implies (2.84). The inequality (2.85) trivially follows from (2.82):

vary,, ({a, Vo)) = vary , ((div(e), ¢))

1 . 1
< G Vi (dv(@). o)) < C—lnan2 : (2.93)

since, by Cauchy—Schwarz

_ , 2
vart ((div(@), o)) = sup V@ WT g fo Vi) 2

< (2.94)
ueQ? FQ* (u, u) ueQ(I) (Vu, Vu)

We now pass to exponential estimates.
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Lemma 2.9. For eachv € Q% anda € Qg

vary ((v, ¢))
—%c, < Iog<exp<<”’ ¢) - <<”’ (p>>1,p>>1,p

var; ((v, ) 1 2
S0 ° 2C1,\;’E””” (2.95)
and
var; ({a, Vo))
T log(exp<<a Vo) — (e, V‘”>>1,,,> b
var} (o, Vo)) 1 2
< 2—C1 = f”a” (2.96)
In particular, for eachT > 0, we have
C1T?
Prp <<(v, ¢) _<<v’w>>1,p> ) =¢ ( 2var*t (v, (p )
Cl)\.
< e
=P 2||v||2
, (2.97)
C1T
PL (((a Vo) — (e vw)l’p) ) <e p( S (Ve w>>)
C1T?
=° ( 2||a||2> '

and

—2log2C; -1
P,p((w o) - (<v,<p>>lp> >T)z it Lk

2c3 12
XeXp<_C_1—var;(<v, (p))) . (2.98)

Proof. The inequalities in (2.95) and (2.96) are immediate consequences of Corol-
lary 2.7 and Lemma 2.8. The upper bounds (2.97) are just an easy consequence of
Chebychev inequality. In order to prove the lower bound (2.98), using the rescaling

T’ = T//var;({v, ¢)) we may assume that Vav, ¢)) = 1. Letu(x) = (<p(x))1’p
and, for simplicity, let us writ@®’ = Pl,poTu—l,whereTMp(x) =px)—ux),x €
1. SetP) (dp) = %(‘;)“’)P’(d@. Using an entropy inequality [21, Lemma 5.4.21],
we have
P'((v.g) > T) _ CHE'[P) +et
Pi(v,o)>T) =~ Pi((v,9) >T)

, (2.99)



78 J.-D. Deuschel et al.

where for two probability measure® and Q, defined on the same measurable
space, theelative entropy of Q with respect to P is defined as

d
H(QIP) = {f (log§f)de o< (2.100)
00 Q&K P .
Therefore
/ / ! dI]:D; ! !
H(P,|P) =, [Iog dP’} =tE[(v, )] —logZ'(t) , (2.101)
and since
d / ! d /
EIOQZ(t)=[E,[<v,<p>], E[E,[<v,<p>] = var((v, ¢)) , (2.102)
we have
EH([P’/|U1’/) —tE[E’[( )+ E[(v, ¢)] — E|0 Z'(t) = tvar((v, ¢))
dr ! =gt e (v ¢ ar 9 = VAL @)

(2.103)
Thus, in view of the Brascamp-Lieb inequality (second inequality in (2.83))

2

t
HP|P) < — . 2.104
P < 55 (2.104)

On the other hand, using the reversed Brascamp-Lieb inequality (first inequality
in (2.83))

A 1 2
—|OgZ/—(t) = /t_tSVaI;((U,QDD ds > 2—(j2(2t1' — T ) . (2105)

In particular, forr > CoT, this implies

logP;((v,¢) <T) < —ijg—Tr —log %@)T)} = —z—éz(t — CzT)2 .
(2.106)
Choose = CoT + ,/2log 2C,, thent? < 2C3T2 + 2log 2C2, andP; (v, ¢) >
T) > 1— 1992 = 1/2 which implies (2.98) by (2.99). O

2.2.2. Entropy estimates

Let us consider two probability measurBsand Q on Q. The following proposi-
tion shows that we can control the difference of the expectatiopsnth respect
to P and Q with the relative entropy.

Proposition 2.10. Let P be the restriction oP; , on Qr, whereF C 1. Then for
any measurg) on Qr we have

3 (Ep lp)] — Eg [p)])® <

xeF

H(QIP) , 2.107
it £ (QIP) ( )
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2
3 (Ep [Vo®)] - Eg [Vo®)])® < ) (2.108)
beF
whereZ = {b € & : x(b), y(b) € F}. As a consequence

2\ Lol
< ol
(ZF <‘”(")>1,p) = Copt 7

2\ Lol
_ el
(b§<vw(b)>l,p) = C1G.p)Y2 -

Proof. First note that for any € Qp,

> B [Eole)] — Ep [p()]]

xeF

(2.109)

—logEp [eXp<Zﬂ(x) (w(x)—b[w(x)])ﬂ <H(QIP) . (2.110)

xeF

(see [21, 3.2.12]). Next, in view of Lemma 2.9, we have

2
l0gEp [exp<2ﬁ<x><¢<x>—rEpw(x)])ﬂ< I~ (2w

— *
x€eF 2C1)‘F,E

Choosingd(x) = C1r% (Egp[e(x)] —Ep[p(x)]) yields the first equality. The sec-
ond follows with the very same argument. As for the last two statements: choose
P =P;,andQ = P;. Then

do 1
where Z = Ep[exp(—{p,¢)] = 1/Eplexp({p,¢))]. Thus, using again

Lemma 2.9, we have
H(QIP) =Eg[—(p,¢)] —logZ = —log Z

= logEg [exp((p. ¢))] < Lol
0 eI = 2C1)»75 ’

(2.113)
which implies the result. O
2.2.3. Exponential tightness

Lemma?2.11l. Letp € Q%, then for eacke < C1/2and F C I we have

log exp(ek}é,E Z(cp(x>>2> ), =log(exp (e Z(W(b))z) )
’ beé& ’

xeF
7]

<cy + e\ llpll?, (2.114)

wherec; and ¢z depend only orC1, C2 and € (see (2.116) below for explicit
expressions).
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Proof. This resultis quite elementary. The first inequality follows immediately from
the definition ofA%. ... For the second one, usit@y < V" < C2 we have

Crt7y(9) < Hy(p) < Coy(p) . (2.115)

Thus

bed
(exp(~#0,p0))

<( Co >|1|/Zex <Mvar*(( )))
“\C1—2¢ P 2C2(C1—2¢) ! P 7
(2.116)

(exp(e > (Vo(b))? — %”{e,p(tp)> >
<exp(e Z(V(‘/’))2> >1,p = =

beé

and vat ((p. ¢)) < A%llpl12 .

2.3. H-S representation and estimatesgefields on the square lattice

We are now going to focus on the framework of the introduction (Subsection 1.2).
In this case the grap¥ depends oV € Z+. More precisely

I=Dyc7%  B=0d"Dyczd . (2.117)

whered™ denotes the external boundary of a subse?fi)fandf are the bonds
inherited from the nearest-neighbor graph structurg“ofhat is

E={(x,y):x,ye E=BUI, |x—y|l=1/Nandxorye I} . (2.118)

We will restrict ourselves once again to the 0-boundary condition case, therefore
the superscripty will never be present. Moreover we will use all the notations
and short-cuts of Subsection 1.2, in particular the Hamiltoo#an (2.3) will be
simply denoted by# y (1.9), the measur®y j, defined in (1.27), corresponds

to P; , with p = Lh (defined in (2.6) and (2.9)) and we will omit from the
notation ifz = 0. Observe also thaf; = c;l andCz = cy (compare (1.13)

and (2.2)). Moreover also here we use the notalibiix, ¢) = 9 F(¢)/d¢(x) and

G (x, ) = 0G(9)/9p(x).

2.3.1. Some H-S formulas @,

Below we restate, in this particular context, some of the formulas introduced in
Proposition 2.2, Proposition 2.5 and Corollary 2.7.

On the square lattice, we will denote the stochastic process behind the H-S
representation by Xy (¢), ®(¢))};cr+, corresponding to thex, ®)-process intro-
duced in Subsection 2.1. If we pass from the bond notation to the site notation, the
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pregenerator of this process can be written as

a

. N HNn(p) =~
(ZNng) (x,9) = XZ: ¢ 99(2)

_ g
H N1 (9)
[e 09(z) . q))}

1 a * ”
v [V on@nvi¥e] .0
= (Ln.ag) (x, 9) + (Ong) (x, 9) (2.119)

whereg : Dy x RPY — R is a smooth function of, for all x. The factor ¥ N2
in front of the jump term of? y_; is due to the fact tha?V is rescaled byv. We
denote byry the exit time ofX y () from Dy.

There are three formulas that will be particularly relevant for our analysis: the
representation of the covariances and the representation of tilted expectations and
exponential expectations of linear functionals. FoIG ¢ CEXP(RDN; R) we have

cow.ii (F. G) = ((0F. (~Z ) 3G (9))

= <ZN8F(x, 9EL, (fN IG(XnN (1), d>(t))) dt>
- 0

N.,h
(2.120)

Here by—.ff;,’lhaG we mean the solutioh of the elliptic problem-%x ,h = 0G
(see (2.51)). The tilted averages are given by

<¢(x)> - %/01«(1{"}’ (_gN,th)_lh»(sD))M dr

N.,h th
1 1
_ ﬁ/o <E;}fw(h(XN(t))>N dr (2.121)

and the exponential expectation value of linear functionals of

Iog(exp<<h1, o) = (ths, ) h) )
1 1 pt 1
—5/0 /0 <<<h1, (=L N htshy) hl>>>N,h+sh1det’ (2.122)
whereh; is a function supported ib.

2.3.2. The Brascamp-Lieb inequalities, the lattice case

If we setAy = —VV*V¥ and we denote bay 1 : Dy x Dy — R the Green
function associated ta ; (with Dirichlet boundary conditions), a change of no-
tation in Lemma 2.8 and Lemma 2.9 leads, fion:1 € C§°(D), to the following
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inequalities, uniform inv:

1
=SV hi@) Ay VY R) < var, (ZNhl(xm (x))

CVX’y "
< cy N[5 . (2.123)
1 N 9%
Wlog(exp{; [hl(xm(x) —<h1(x)ni(X)>N’h”>N’h < - llhal3 .
(2.124)
1 N
Wlog(exp{; [hlmszv(x)—(hl(xm(x))N’h”)N,h < el .
(2.125)

wherec is a constant, independentiofindh 4, which can be easily estimated from
the definition (2.79) ok*DN. Here we simply use the fact that, sinbds bounded,

there existg’ such that.p, > ¢’N~2. In the first term in (2.123) we recognize the
variance onNhlm with respect to the Gaussian massless field.

2.3.3. Entropy estimate on the gradient and exponential tightness

Again by using the fact thatp, > ¢/N~2, from (2.109) we obtain the following
important bulk estimate

\/ %;N@@));ﬁ = |VMuwa], = Sinle . @126)

For the next estimate we need some notationD%t: {x € Dy : dist(x, D%) >
2/N} and denote b)ﬁo the restriction ofPy ; to RPN . Moreover letQq be the
restriction ofPy_ s o (9Y¥)71, le| = 1, to RPY, with 6N the translation operator:
0N f(x) = f(x +e/N). Note thav¥ DS, ¢ Dy. Recall now thatf is compactly
supported inD: therefore forN sufficiently largef is supported irD?,. By apply-

ing Proposition 2.10, formula (2.108), we obtain the control of the oscillations in
our profile in terms of a relative entropy:

) [(n (x + %) >N’h - <n(X)>N,h]2 < 2cyH (n%\@o) . (2.127)

0
xeDy

We conclude this section by giving the estimate that implies the exponential tight-
ness for the sequence of processes we are looking at: from Lemma 2.11 we obtain
that there existsp > 0 such that for every € (0, ¢p) there exist< such that

1 2
supmlog<exp{eZN |:|5;'N(x)|2+ ‘VNSN()C)) “> <C. (2128
NeN X

N,h
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3. A priori bounds and technical estimates
3.1. The oscillation inequality: statement and strategy of the proof

Recall the notationiy, r(x) = ((x)/N)n f = (En(x))n,r. Belowe € 74,
le] = 1. We have the following result, which controls the oscillations of the gradi-
entofuy r.

Lemma 3.1. Let us assume thatD is Lipschitz. Then for every € C3°(D) one
can choose a functiofr : N — R* with Nlim Y (N) = 0, such that,
—00

%ZN Xd: [Vz‘N”N,f (x + %) - V,'N”N,f(x)]Z < YN, (3.1)
=1

In fact our proof gives a control over the rate of convergence in (3.1): the function
¥ (N) can be chose® ((1/N)?%) for somes > 0 (cf. (3.7)).
The scheme of the proof is the following:

1. By (2.127) the term we have to estimate is bounded byl theorm of the
gradientnear the boundary plus a relative entropy:

Y [V, (x+ %) - v,.NuN,f(x)]z

d
X i=1

d
= Y D [uws (x+ %) - vl.NuN,f(x)]ZJr 2d evH (fPo|Qo)
xeDy\DY i=1

=T1+1T> . (3.2)

Note that in7T7 the sum is only over points at a distance smaller thaw #om
the boundary.

2. With Lemma 3.2 we will show that the relative entropy tefsrcan be decom-
posed into a bulk term and a boundary term: the boundary term is essentially
the same ag1, in the sense it is the sum of the squareWﬁuN,f (x) with x
within a distance /N from the boundary oDy this timek will be equal to 3.

3. The bulk term is controlled by applying the Brascamp—Lieb inequality (2.123).

4. Thel 2-norm of the gradientear the boundary will be shown (Lemma 3.3) to
be bounded by th&,-norm of the gradient in the bulky > 2, and the latter
will be controlled by adapting thie, theory of elliptic equations to our discrete
setting (see Lemma 3.4)

The proof Lemma 3.1 can be found in Subsection 3.2, where one can find also the
preparatory results we just described, with the exception df flestimates, which
are delayed till Subsection 3.3.

4 Actually, Stefan Miller showed us a simple proof of the control of thenorm of the gra-
dient at boundary using the equation (3.34). His technique works for very general domains,
cf. [38]. Here we rely on ouk, estimates, since they play a key role in our compactness
argument.
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3.2. From the entropy estimate kg estimates

We recall that the notation for the lemma we are going to state has been intro-
duced right before formula (2.127). In particular recall tmﬁ; ={x € Dy :
dist(x, D$) > 2/N}.

Lemma 3.2. There exist& > 0 such that for everyy

H (Bol@o) +H (@o|Po) = €| NIV flall fllz+ 167 DY

2
: (3:3)

>

X€EBy

(neo),,

whereBy = {x € Dy : dist(x, D¢ ) < 3/N}.
We postpone the proof of Lemma 3.2.

Lemma 3.3. Assume thad D is Lipschitz, then there exis < oo such that for
everyp > 1

> vy uNf(x)‘ < CN41+YP ”vNuNfH (3.4)

XeBy

Proof. It follows directly from Holder inequality

Z ‘VNMN’f(X)‘Z = ZN ‘VNMN,f(x)‘ZlBN(x)

x€By

1/p
N 2
s<2 ]vNuN,f(x>]”> ByIHP L (35)

X
Sinced D is Lipschitz, we haveBy| = O(N?~1), which implies the result. O

Proof of Lemma 3.1By using (2.127), Lemma 3.2 and Lemma 3.3 we, obtain that
there exists a constant such that

d
N e 2
S [y (4 ) = 0]
i=1
2
< [Nd—l+N(d—1+l/p) HVNMN,fuz i| ) (36)
P

By Lemma 3.4 below, we can chooge> 1 such that|VNuy rll2, is bounded
uniformly in N. Therefore

Z Z[ UN,f ( —l) — ViNuN’f(x)ilz < Csz*1+l/P — O(Nd) i

(3.7)
and we are done. O



Large deviations and concentration propertiesMorinterface models 85

Proof of Lemma 3.2SetD} = 6 DY and denote by (respectivelyQ1) the
restriction of Py ; (respectivelyP o oM YHto D}V. Let p;(¢),i = 0,1, be the
density of®; with respect to the Lebesgue measure:

P; (dg)
() = ——— 3.8
pi(p My (dp) (3.8)
wheregp € RPN Observe that, since
- N
Qode) _ p1(0%¢) (3.9
Po(dg) po(p)
we have the following expressions for the relative entropies:
D | _ o N
H (Po|@o) = (log pote)  —(log @), . (310)
A | _ _ N
H (@olPo) = (logpatp) —(logpo@'e)) . (31D)

We now look for a convenient expression for the densitiesi@t: Dy\D), and
decompose the Hamiltonian (with = 0) in the following way

HN(p) = H{(9)+ Hi(p) | (3.12)

where
A (@) = Z Vip(x) — o)) , (3.13)

x~y:x,yeD5v

is the Hamiltonian inDjV, with free boundary conditions. In (3.12)is an element

of RPV (or RZ?dV, with zero boundary conditions outsid&y), but it is clear that
A7 and.# i (¢) do not depend on all the coordinatesgofA simple computation
leads to

=29 el ez )+3§j () f @) (3.14)
pily) = I s iy N e 2 ) .
whereZ y ; is the normalization in (1.27) and
Zi(p) = / exp{ =i (Vj.4)} M- (d) (3.15)
with L
()= 19w if xeD 3.16
Vo0 (0) {go(x) otherwise . (3.16)

Note thatZ; () depends o only throughe(x) with x € 8~ DY,. If we take into
account that

#o) = #5(0)0) . (3.17)
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from (3.10), (3.11) and (3.14) we obtain that

H (Pol@0) + H (Golo) = (% igo(x)f(x) +10gZ1(6%,0))

N.f

N
(5 20N () +l0gZo(e) ,

N
1 Y pe )+ logZie)

N.f
18 _
~(y Zedewsw +leaZielv), (3.18)
1 N
=3 X [200) — 8o (0) — 0200 F00))
Zo(9) Z1(9)
I = I — A
+< og (Zo(eef"w)> >N’f +< 0g (Zl(QNe(p)> >N’f (3.19)
=J1+Jo+ J3.

By summation by parts and Cauchy—Schwarz we obtain

J1 =

1 N
EOBAARICITIEINS

= (i [v¥ f(x)]z)

X

1/2 1/2

N 2
(Z(:yi(x))N’ f) . (@20

wherei is such that = ¢;. By using (2.126) and the regularity gf one easily

see that/; is bounded by-onst. N4~1| f]12||V fl2, which is compatible with the

bound we claimed (cf. (3.3)), and therefore we are left with estimakrend /3.
We use once again the differentiation trick, to interpolate betweands? ¢:

o=@ +1t[0.0—¢], tel0,1] (3.22)

We have:

d __ _ d_—
2 logZote = F, [—E%ow%)} , (3.22)

where this timeyg ,, (x) € RPN U~ DY

3 J o) if xeo DY,
Vo () = {a(x) otherwise N (323)



Large deviations and concentration propertiesMorinterface models 87

andP,, E, for the expectation, is the measure®Rv, with zero boundary condi-
tions outsideD andg, boundary conditions o6~ DIC\’,. Note that we are using
for the field distributed according #@,. By taking another derivative we obtain

2

A _
e log Zo(¢:) = L [—

d_—
dtszo(w,w,)}rvarpt <E‘%°(W“")) , (3.24)

2

and by integrating twice, observing tHag(-) = [P’N,f(-|%3,D9V), we obtain

Zo(p) —[d—
IOQ(W) = [Eo[a%o(l/fw,(p,)]t:o}
lpes(_ d2 o q_
+/0/0 {[E, [@%o(%,w,)}—varpt<a,7fo(%’%)>} drds

d__
<Ewns [E%O(W@%)L_o‘ga—D%} (@)

1 ps _ d2 -
+ / / E, [—Z%O(w(p,w,)} drds . (3.25)
o Jo dr
Now, by usingV” < cy, we obtain that

d—
37 Wrelio= 2 Yo Ve -0 @k +e) — ()
XEE’*DR/ y€D71Q,1|y—x|:l

sov Y [0 =700+ @0 —e0n?]

x~y:x68*DR,

(3.26)
and
(o
gz Wee) = 3 V(0w —3,0) 9k +e) — p(x)?
x~y:x€3*D?V
<2cy Y (px+e)—p(x)? . (3.27)
xed~ DY,

Using (3.26) and (3.27), from (3.25), recalling thatr) — ¢(y) = n((y, x)) and
thatn(x) = n(x —e;) —n(x), we obtain that there exists a constapfdepending
only onC> andd) such that for every

2 * 2
nza 3 (m@Pror), (3.28)
xed~ DY,
Of course the same type of estimates applyso

B 3 (@R P (3:29)

N
x~y:xei)—D11V
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To conclude the proof is sufficient to observe that by the Brascamp-Lieb inequality
(2.123) there exists, such that for everyy

2

> {reord,, = % [|feo),,

XEB_D;] xeB_DﬁV

= 0 Dyl+ Y (1)

x€d~ Dy

+vary, s (n(X))}

2
: 3.30
N.f (3:30)

and the proof is complete. O
3.3. L, estimates oVVuy ¢
Ourl, estimate orVNuN,f is based on the analysis of the main equation (1.55);

divw ((V'0)y ) = =f (o) . (3.31)

Introducing thed x d diagonal matrix;

1
AN(X) = d|ag (</(; V”(ni (.X) - (1 - l‘)(’?i (.X))N’f)dl‘> ) ) (332)
N.f

and thez4, -field
ClN(X) = (V/(U(X) - (n(x)>N’f))N!f ’ (333)

we rewrite (3.31) as
divy (AN(x)VNuN,f(x)> = —divN(aN(x)) — f(x) (3.34)
Notice that by the choice of € C3°(D) and due to our assumptions on the potential

Vu

1
—I1 < Ay < cyl . (335)
cy

Furthermore, by the Brascamp-Lieb inequality (2.123) € L.

Lemma 3.4. There existy = p(D, cy) > 2and a constant = ¢(D) < oo, such
that uniformly innN,

lun,fllsp < c(llanllp +1£1p) - (3.36)

The claim of the lemma follows by an adaptation to the current discrete setting
of various facts from thé , theory of elliptic PDE-s. Below we sketch the main
steps and provide the corresponding references.

Remark 3.5. If no further information on the regularity of y is available, then
(3.36)might, in general, fail for large enough values p{see[36]).
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Step 1 (Reduction to the Laplaciahe arguments of [36] imply that under the uni-
form ellipticity condition (3.35), the bound (3.36) follows once there exjsts 2,
such that

mf an(D, )2 inf inf  sup %ZN(VNu(x),VNv(x)) >0, (3.37)

N lullng=1 jyyy <1 =

whereq’ is the Holder conjugate of, and| - ||, and|| - |1, are the norms of

[Hl(l)“’(DN) andﬂ-ﬂé“’/(DN) respectively. Since the proof of the latter claim is greatly
simplified in the discrete setting, we sketch it here for the sake of completeness:
Let us define

Dn(u,v) = %ZN(AN(x)VNu(x), vVu(x)) . (3.38)

Suppose that for some > 2,
inf sup Zn(u,v) > 0. (3.39)

lella,p =2 oy <1

Then, using the integral form of (3.34),
Zn(un.v) NdZ (an(x), V v(x))+—dZ v () (3.40)

and taking supremum over ||v|l1,,» < 1, in both hand sides above, one immedi-
ately recovers thi, estimate (3.36) we are after.
On the other hand, writing,

AN =Cvﬂ— (Cvﬂ—AN) (3.41)

we obtain that

sup Zn(u,v) >cy sup Z (VNu, v¥)

vl pr<1 ol p<t N9
1 N
—(cv — — p — (VNu, v¥)
v ully =1 NdXX:
1 N 1
>c inf su (VNu, VM) — (1 - =
v <||u|1 p<1|\u\|lpP<1 N Zx: ( c%,)
. 1
>cy |infau(D,p)—(1- )] . (3.42)
M CV

As in [36] it follows from the Riesz-Thorin interpolation theorem that for each
M the functioni, (D, p) is log-concave irp with the maximumiy, (D, 2) = 1.
Consequently (3.37) implies that

lim ay(D, p) =1 (3.43)
p—>2
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uniformly in N. Sincecy < oo, itis then possible to choose some- 2, such that

. 1
IQ/If rm(D, p) — (1— g) >0, (3.44)

which, by the last line in (3.42), implies thecoercivity bound (3.39) and hence
the conclusion of the lemma.

It remains, therefore, to study the properties of discrete Laplaciafyomn
equivalent reformulation of (3.37), asserts that uniformIywin

lowllng < cillballig » (3.45)
whenevemwy is the solution to the discrete Poisson equation

diVN (VNUN) = —diVN(bN) on Dy
Zo (3.46)

N
z4\Dy

We conjecture that (3.45) is indeed true as soon as similar bounds hold for the
solutions of the continuous Poisson equation/nrwhich, in view of the Calder-
on—Zygmund inequality and the results of [2], would provide natural requirements
on the regularity ob D.

Since, however, we were not able to verify this seemingly obvious conjecture,
our proof of (3.45) rely on a completely different approach toltheegularity: by
(1.20) it would be enough to prove (3.45) for the continuous interpolafigrend
EN;

IOnllLgy < c1llballeg - (3.47)

In order to prove (3.47) we shall refer to the invers@dér inequality techniques
of [29], while the input for these techniques is to be provided by the structure of
solutions to (3.46) via a discretized version of the Caccioppoli inequality.

Step 2 (Caccioppoli inequality)t happens to be convenient to split (3.46) into
two problems in the following way: Lef be a large enough cube Rf such that
0e D C C.SetCy = CNZ%,and letwy be the solution to

diVN(VNu)N) = —diVN(bN) on4Cy

oy (3.48)

o

)

Z4\4Cy
where we extendly = 0 outsideDy. Also letpy to denote the solution to

diVN(VNpN) =0 onDy

) (3.49)

N 2Cn\Dn =N

Then, of courseyy = wy + py is the solution to (3.46).
Givenx € R4, we useBr(x) C R? to denote the cube of the side-length

centered at, and we useBg y(x) to denote its discretizatioBg y = Br N Z‘/\,.
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For eachR andx there exists a smooth functioik € C5°(Bg), such thatyg = 1
onBgr;2,0<nr <land

IVARlloo < c2(d)/R . (3.50)

Let nowx andR be such that the cub®g (x) C 2C. Then for any choice of € R
andé > 0,

- 2 (b YRy = ]w)

YEBR, N (x)
d
e; N
= — Z ZbN’i (T}R(y + ﬁ)vi [nR(wN - )\)]()’)
yeBr N i=1

+nr(wy = DOV 1R())

@+ Y bvlro Y (Ve -n]o)

YE€BR N (X) YEBR N (X)
c2(d) 1) 351
ez D (v —R)°. (3.51)
YEBR N (X)

On the other hand, by (3.48),

= X (bw VRN = M]0))

YEBR N (X)

=y (VNwN(y),VN[nfg(wzv —)\)](y)> - (3.52)
YEBR N (X)

However,

V¥ wy VN [k wy = 2)] o) ,
= (VN [nrwy = 0)])" = (wn () = 2) (wn & + 55 — 1) (VVr(»)” .
(3.53)
Choosingd < 1 in 3.51 and successively substituting the left hand side there by
3.52 and 3.53, we, using the bound (3.50)\onR, infer that there exist constants
c3 = c3(d) andca = c4(d) such that, for allR and N,

> (Vlnron ~0]0) =es Y IwIPH o Y w22

YEBR N (X) YEBR N (X) YEBR N (X)
(3.54)
Sinceng = 1 on Bg,2(x) we finally obtain from (3.54):

3 (vaN<y>)2§c3 Yoo bvmP gy Y -2

YEBR/2, N (X) YEBR N (X) YEBR,N(X)
(3.55)
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Step 3 (Reversedtder inequality). By (1.20) a similar inequality is valid for the
continuous interpolation®y andby. Thus, (3.55) implies,

f Viow (y)|*dy < 05/ |15N<y)|2dy+%/ (Vibn (y) —2)°dy .
Bry2(x) Br(x) Br(x)

(3.56)
Let us choose

- 1 -
A =Ag =][ By ()dy 2 ——— wy(y)dy . (3.57)
B IBR| JBg(x)

By the Poincak-Sobolev embedding theorem,

2(q—d)

f (B (y) — Ag)2dy < 7R3 ( / (va(w)qdy)q , (3.58)
Bg(x) Bgr(x)

whereq = q(d) = 2d/(d + 2) is the Sobolev exponent of 2. Consequently,

1 q
ol (v -’y < o (][ (va)my))‘fdy) . (359
R% JBg(x) Bg(x)

and we finally obtain:

][ (Vi ())2dy Scs][ (By () dy-+cs (][ (vwmy))qdy)"
Bgja(x) Br(x) Bpr(x)

(3.60)
Thereforewy satisfies the assumptions of [29, Prop. 1.1, page 122] and, since
the constantsg andcg in (3.60) do not depend oN, we infer that there exists an
exponeniy = g(d) > 2 and a constantyg, such that thé; (2C) norms ofVioy
are bounded above by

IVinllg < crollbally - (3.61)

The treatment of (3.49) follows a similar pattern (c.f. p.152 in [29]), with the only
exception that this time one should employ a different form of the Pa@agabolev
inequality, as provided, for example by the Corollary 4.5.3 in [50], and which is
secured by our assumption on the Lipschitz characténfOne then eventually
obtains that thé;(C) norm of V oy is bounded above as

IVonllg < cuallVinllg (3.62)

and (3.47) follows as well as the claim (3.36) of Lemma 3.1.
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3.4. Strict convexity of

Lemma 3.6. For any Hamiltonian# with theC?, even interaction potential sat-
isfying (1.13), the surface tensieris strictly convex. Moreover, for any v € R?,

cvlu —v|?
2

_ 2
> o) —o(u) — (Vo'(u)’v_u) - lu — vl

3.63
- 2cy ( )

Proof.In [25] the surface tensian(x) in the direction(u, 1) € R?*1 was identified
as the limit

o(u) = MlinOo o) , (3.64)

where thefinite volume surface tension oy is defined via the Gibbs statey, ,
on the finite graph(T¢,, £4,), whereT¢, is just thed-dimensional lattice torus

Tj@ 2 Zmod(M), andg;{l is the corresponding set of all nearest neighbour orient-
ed bonds. Tofit the framework of Section 2 we use the decompoﬁjpﬂ IyUB,

where the boundary contains only one point, the origirB(= {0}), and the in-
teriour Iy is, accordingly, given by, = T‘,@ \ {0}. Thus the reference measure

A . .
m;,, = my on R is given by

My (dg) = ]‘[ do(x) . (3.65)
xeT4,\{0}

We impose the zero boundary condition Bng(0) = 0. Thus the field of bond
differences); (x) = ¢(x +¢;) — ¢(x) is defined on the whole df¢,, wherex + ¢;
is understood this time as the appropriate shifﬂT@p

With this notationsry, is defined as

d
o2 - %Iog(exp{ =Y S vew ) (3.66)

my
d j=1
xeTy,

Furthermore, it has been proven in [25], thai actually converges te in
C&JC(R"). Consequently, the strict convexity assertion (3.63) of the Lemma fol-
lows as soon as the similar statement is verifiedsfgrfor eachM large enough.

To this end let us investigate the Hessiawgf atu:

For anyx € R?,

d

(Do, 1) = DRV (i (0) + ).
i=1

d
1
— V. Z Z LiVmix)+u) | . (3.67)

i=1 d
xeTy,
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where the subscrigitV/, 1) corresponds to the expectation with respect to the Gibbs
measure®yy ,;

e Mu(9)
P (de) = WmM(d@
U d
= 7o exp{ — > Y Vi) +u)}my(dg) . (3.68)

xe'ﬂ";(/l i=1

Notice that we have used above the obvious fact that the distribution of the height
differences{n(-)} underP,, , is invariant with respect to the shifts (Tr‘b.

Our next step is to take advantage of the HelfféisBjand representation in
order to develop the variance term on the right hand side of (3.67): Forxeach
Iy = T4, \ {0} define

d
(> Zx Vi) +un)) =Y ViV i (x) + i)

Enlx, @) =
a(p(x) yer i=1 i=1
(3.69)
As in Section 2 we use the notation
(LN@2 Y f.e)sx ) . (3.70)
xely
Then,
d
varM,u(Z > MV (i) +u,~)) = ((=Lora = Ol Y60 800)
izlxe‘ﬂ"[f,l a
(3.71)
where the diffusion part of the operatbfs , + Q. IS given by
d , 0
L u= ej{)M u(‘ﬂ) (e_][M.u(‘ﬂ)—) , 372
M, Z dp(x) dp(x) ( )

xely

and Qs is the generator of a transient random walklﬁb \ {0} killed upon
reaching the origin, that is

d
Omuf(x,0) =Y ViV i(x) +uVif(x, 9) , (3.73)
i=1
where, of course, we have used the convention
f@©,) =0, (3.74)
and the meaning oL, — QM,,,]*ls,\ is the same as in (2.120). On the other
hand (again with the above convention (3.74) in mind),
((-Lara = Quad 80 0))

= supy {2(<<f, 6)@), (Lot = Qualf. f>)(<p)>M’u}
(3.75)
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However, in view of the formula (3.69), we, after the summing by parts, obtain:

d
((renw) =3 YulVirw oV ow+u),, - (676)

xe'ﬂ'%’ i=1

In a similar fashion,

d
(Lot = Quad £ 1D@) = 30 IV i) +ud Vi (5. 9))y,

xer i=1

DI

x€T4\{0}

3.77
sO(x) ( )

As a result we derive from (3.67) and (3.75) the following variational formula:

(D%0 4 (), 1)

1 o
=~ inf 4> > (Vi +ud i — vif)2>M,u

(2
feCep XET%’ i=1

DI

x€T4,\{0})

3.78
<p(X) ( )

But er-ﬂ—dM V, f = 0, and we immediately infer from (1.13), that for amye R?

d

cv Y A= (DPouh, h) = —Z,\Z (3.79)

i=1 i=1

Since for any two vectors, v € R4,
om ) — oy () — (Vou (), u —v)

1 pt
:/ / (DZGM(v—i—s(u—v))(u—v),u—v) dsdr , (3.80)
0o Jo
the proof of Lemma 3.6 is concluded. O
3.5. The functionak

For eachf € La(D) letus definez s : Hj — R via

() =/D0(Vu(x)) dx—/Du(x)f(x)dx . (3.81)

The functionalX ; is then everywhere finite oHé(D) and, moreover, by Lem-
ma 3.6 it is strictly convex continuous and coercive on the later space. It has,
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thereby, a unique minimizer which is precisely the variational solutignto the
Euler equation (1.35). Using this and the right hand side inequality in (3.79) we
obtain

Sr(urs +8) — Sy (ugs)

1 pt
= lim f / / (DZUM(Vu[f](x)~|—ng(x))Vg, Vg) dx ds dr
o Jo JD

M— o0

1 2
> — . 3.82
Z 2y gl 2 ( )

There are two simple consequences of (3.82). First of all, itimmediately follows
the minimum is stable:

Lemma 3.7. Assume that

Jim 3 (un) = min 3y (u) = 2y (ur) - (3.83)
Then,
nll_)moo Un = U[f] (3.84)

strongly inH3(D).
Secondly, the mag : Lo(D) + H}(D) given by
() 2urp (3.85)
is Lipschitz. Indeed, for every couple g € Lo(D);
0 < Zp(ugg) — Zp(ugn)
= Zo(ugg)) — Telupny) + /D (8(x) = h(x)) (ugg)(x) — uppy (x))

S/D(g(X)—h(X)) (ugg(x) — upp(x)) (3.86)

Proceeding as in 3.82, we, therefore, conclude;

1
E”u[g] @) —upgly < llg = hll2 lugg (x) — upnllz (3.87)

which, in view of the Poincd@ inequality, yields the Lipschitz property 6.

We are now in a position to prove that, still pending the proof of Theorem 1.2,
two different identifications of\ p in (1.34) and, respectively, in (1.36) are consis-
tent, that is:

Proposition 3.8. For any f € La(D),

1
Sr(up) = —/0 /Df(X)u[zf](X)dx dr . (3.88)
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Proof.Let ,, = (10, ..., t;) be an increasing sequence partitioningl) with
to = 0 ands,, = 1. Then, by using the fact thdt (cf. (3.85)) is Lipschitz, we obtain

/ o (Vu[f] (x))dx
D

= /D (o (Vury 1) — o (Vugy_,p)) dx
k=1

= - ZfD (Vo (Vugy ). Vg = gy 7)) dx + O(I 113 ) (0 — te41))
k=1 k=1
n

= u /D FE ) — gy DEdx + O £15 ) (4 — t-1)?) . (3.89)
k=1

k=1
The second summand in the last line above tends to zero with the mésh of
and, summing by parts, we obtain:

/G(Vu[f](x))dx =/ F@upp(x)dx
D D

- Z(lk —f-1) /D f@up s1(x)dx +0(1) ,  (3.90)

k=1
which, in view of the continuity of the map (3.85), implies (3.88). O

Recall now that we have definétlin the whole of_>(D) by settingZ (1) = oo,
whenevew ¢ H}(D). We claim that;

T(u)= sup {/Dh(x)u(x)Jrzh(u[h])} . (3.91)

heCg (D)
Actually there is almost nothing to prove: By the very definition
Eh(u[h]) = —Z*(h) , (3.92)

whereX* is the Fenchel-Young transform &f onL2(D). SinceX itself is obvi-
ously convex and lower-semicontinuos;* = X, which would yield (3.91) with
the supremum taken over the wholelof(D). By the virtue of (3.82), however,
X* is locally Lipschitz, thus any dense subspacé D), in particularC3> (D),
suffices.

4. Convergence of average profiles
4.1. Proof of Theorem 1.2

To recall the notation: Giverf € C3°(D), we define the average profilg, under
PN,f as

uN<x)=<sN(x)>N,f=<‘”l(j)> . xezd (4.1)
N.f

and we denote by its polilinear interpolation cf. (1.17).
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Lemma 4.1. For everyj € C3°(D),

/ (Vj(x),Va(VﬁN(x))dx —/ j@) f(x)dx — 0, (4.2)
D D

and
/ (VﬂN(x),VU(VﬂN(x))dx—/ uy@x)f(x)dx — 0 . (4.3)
D D

Theorem 1.2 is a straightforward consequence of the above lemma: As it immedi-
ately follows from (4.2), (4.3) and convexity ef (Lemma 3.6)

IiAr/n inf (S(j) —ZpGan)) = Ii}{ln inf {/ (Vo (Viiy(x)), Vj(x) — Viiy(x)) dx
— 00 — 00 D
—/Df(x)(j(x) —ftzv(x))dx}= 0, (4.4)

for everyj € C3°(D). Therefore,

IimsupEf(ﬁN) < inf Ef(]) = Ef(u[f]) , (4.5)
N—o00 Jj€CF (D)

which by the variational stability result of Lemma 3.7 implies the assertion (1.38)
of Theorem 1.2.

The rest of the section is devoted to the proof of the weak convergence in Lem-
ma4.1. The input data is provided by the basic equation (1.56). Obserthat

induces a measure on the space on height differeticesn € (RZ)4 : 3p € RZ’

such that) = Ve} and, with some abuse of notation we will writg; ¢ (dn). The
relation to the local relaxation properties undigy,  of the fieldn of bond differ-
ences enters the picture in the following fashion: in order to locdtigg near a
pointx € Z¢, define the shifted measure

P?V,f(dn) = [FDNJ o GX (d?]) . (46)

Consider now the following regularization of the fam{ly;‘\,’f}:

1
Qu (dy, dn) = 7 D 8e(@dyPy ;(dn) . 4.7

xeDy

Notice that for eachy € C3°(D),

1 N
fRd f[ (Vj(), V'(n(0))Qy(dy, dy) = WZ (Vj(y), (V’(n(y)))N,f) :
(4.8)
which is up to a ¢1)-term exactly the left hand side of the master equation (1.56).
In Subsection 4.2 we show th@ty relaxes to a certain integral mixtué of
Funaki—Spohn states (Lemma 4.3 below). The proof is inspired by the correspond-
ing arguments in [25]. This result, however, is not sufficient for (4.2), since, in this
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way, we do not keep track of the running aver&g&: . The crucial connection be-

tween the representation (4.26)@fnd the limit properties of the familgw ™ u v}

is established in Lemma 4.4 of Subsection 4.3 on the level of Young measures.
Similarly, in order to prove (4.3) we define the following sequence of measures:

Vy (dv, dn) = Z Sy (o) (AV)PY () . (4.9)
Notice, that this time,
[ @ v, dn = > (P @, (VO p)

= WZ un(x) f(x) . (4.10)

The relaxation properties ¢¥/y} are stated in the second part of Lemma 4.3, and
they are related to the limit properties of the running avefagu v}, again via

the notion of Young measures, in Subsection 4.3. We would like to stress that the
L, estimate of Lemma 3.4 is crucial for the proof of (4.3), since the method simply
does not go through without such a uniform integrability condition.

In what follows we shall frequently switch back and forth from discrete sumsin
terms ofV" u y to continuous integrals in terms of the corresponding interpolations
Viiy. In all the cases the passage is secured by the following fact, which follows
from our basic oscillation Lemma 3.1:

Assume that a functio® : R? — R satisfies

for everyu, v € R? | +v) — D) < ci|v>+ colvllul ,  (4.11)
andg € Co(D). Then,

1
Fi L ey w) - [ gmeivm)y — 0. @12)

asN — oo. Actually the rate of convergence depends only on the upper bounds on
the norms{||V¥u v |2}, the modulus of continuity of, the functiomy (N), which
controls the oscillations in Lemma 3.1, and the constandsdco, as the following
simple proposition shows:

Proposition 4.2. Leth : 74, — R? be a square integrable vector lattice field.
Define

NdZ Z h(x + —) —h0]*2a (4.13)
Then for any functiod satlsfymg (4.11) above and for agye Co(D),
‘ S @ (h0) — f g(y)ob(l%(y))dy‘
= ||g||sup(cla+c2\/_||h”2)+C‘)g( NI (4.14)

where, as usual, we ugeto denote the interpolation (1.25) af and wy is the
modulus of continuity of.
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The proof of (4.14) is a one line computation based on (4.11) and Jensen’s
inequality: For each € Z?’V let Cy (x) to denote the elementary plaquette centered
in x:

Cv(x)2 lyeRre: |y—x|<i . (4.15)
2N

Then,

1 -
'WZNg(X)q) (h(x)) —/ g(y)CD(h(y))dy‘

< NdZ |g<x>|f

£y fc()|<1> h(y))||g<x>—g<y>|dy. (4.16)
N (x

D (h(x)) — ®(h(2))|dy

By (4.11) the second term is bounded aboveupy%)nhng. Using (4.11) and the
assumption (4.13) on the oscillation/ofve, furthermore, bound the first term as

lglisupd {cl / Ih(r) — R Pdy + calh@)] [ 1hx) — ﬁ(y)|dy}
” ” Cn(x) Cn(x)
SN 3 el =R + calh@line — ol
ly—xll<2
< 2||gllsup(c1a + c2llhll2v/a) . (4.17)

4.2. Regularization and Funaki-Spohn states

Itis an appropriate moment to recall the construction of [25] in more details: First
of all, as far as distributions of height differences are considered, we are going to
identify the Iatticeij{, andz4, so that it makes sense to talk about limit properties
of the family of measure@j‘\,’f}. To fix further notations le®? to denote the set of

all oriented bounds of¢. The basic spac of height differences? c (R)’%d, is
characterized by the following plaguette condition: for any closed laop. ., b,
of oriented bonds,

Y i) =0, (4.18)

for everyn e Z. In particular,y(b) = —n(b), wheneveb andb are two different
orientations of the same edge ®f. Clearly 2 is a linearZ¢-shift invariant sub-
space. Following [25] we also introduce a scelé }, g, of shift-invariant Hilbert
subspaces of’,

Zr=3neZ: InlZ= > e Mpwl? < oo (4.19)

d
xelly
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Given a finite sett c 74, let us define
A*é{(x,y)e.%d:xerryeA} : (4.20)

For any configuratiols € % of height differences the finite volume Gibbs state
P4+ ¢ is defined on the affine space

Tpes = [n eRY: pAEe x} : (4.21)

where the symba} A & stands for the composite configuratigm & (b) = n(b), if
b € A*, andn A&(b) = £(b) otherwise. There is a natural correspondence between
a4 4+ ¢ andRA: just ground a pointxo outsideA, and for eachx € A define

px) =Y nAEb) . (4.22)
i=1

along any finite chainy, . . ., b, of oriented bonds leading fromy to x. By (4.18)
the valuep(x) does not depend on the particular choice of the chain in (4.22). As
a result, there is a natural uniform measurg: ¢ on 2 4+ ¢. Set,

1
U:DA*,S (dn) = g

1
o exp(—E > V(n(b))> mas £ (dn) . (4.23)

be A*

By the definition [25] a probability measui@ on Z is an infinite volume Gibbs
state for the interaction potenti#l, if for each finiteA ¢ R?,

P (|7 pivas) §) = Parg(-) (4.24)

P-a.s., whereZ 4.\ 4+ is theo-algebra generated by the height differences on the
bonds from#? \ A*.

At last let #>(%) to denote the family of all shift-invariant Gibbs stafé®n
Z which in addition satisfy

(In0)%), < oo . (4.25)

As we have already mentioned it had been proved in [25] that foreacR? there
is precisely one ergod[@ﬁS € S 2(%) such thatn(0))prs = u.

We are now in a position to state the results on the limit properties of the fami-
lies of regularized measur¢®y} and{Vy} which were defined in (4.7) and (4.9)
respectively:

Lemma 4.3. For eachr > 0 both the family of measurg®&)y} and the family of
measure$V y} are tight onR? x Z,. Moreover, every limit poin@ of {Qy} enjoys
the following representation in terms of Funaki-Spohn states:

Q(dy, dn) = /R ) vo(dy, dr)PES(dn) | (4.26)

wherevg is a non-negative Radon measure®h x R¢.
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Similarly, each limit poinl/ of {Vy} has the following representation:
V(dv, dn) = f vy(dv, dA)PEg(dn) | (4.27)
R4

wherewy, is again a non-negative Radon measureitfhx R?.

Our proof essentially follows the scheme laid down in [25] (proof of Theo-
rem 4.1 on p. 23 there) subject to the necessary adjustments to our case:

Step 1.For eachr > 0 the family{Qy} is tight onZ, x R?. Indeed, sinceD is
bounded it is only thel’, component that we should take care of. To this end we
simply use the fact that the embedditig — %', is compact for any pair & s < r,

and that for every € %4,

ZM Ry, ,
> Yo, + s N Vary, p(1(x) (4.28)

< ||14N||1,2+61 <c2,

(In®1%)g, < 7
N

A

where the last two inequalities follow respectively from th Brascamp-Lieb in-
equality (2.123) and the boundness{af;} in I]-I]%. The proof of the tightness of
the family {Vy} follows a similar track, except that now one needs an additional
argument to ensure the tightness in thdirection. This, however, readily follows
from Chebychev’s inequality based on the bound,

(I + lImli2),, < csllunlifz+co - (4.29)

For simplicity we proceed to consider only the casd@fy} measures. The
proof for {Vy} measures is identical with the only difference that one should use
the oscillation Lemma 3.1 to take care of the proof of the translation invariance on
Step 3 below.

Because of the tightness we can assume (passing to a subsequence if necessary),
thatQy is convergent an@ = lim Q. For eaclg € C3°(D) define the sequence
of measure$gy} on 2, via

gn (dn) = gn[g](dn) = /R O (dx, dngx) - (4.30)

Let
qg=Ilimgy . (4.312)

Step 2 For eachg € Co(D) the (signed) measueg(dn) = g[g](dn) is Gibbs in
the following sense: for every finit¢ C Z¢ and for eactF € C,(Z,); F € F a+;

(F), = [EarsF), . (4.32)

We deduce (4.32) as a consequence of the following observation:

(Fly s = (EasF)y | = caDIFIsudAVBN) . (439)
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wheres;(N) = N~2logN if d = 2 ands;(N) = N~2 in the case of higher
dimensions. Indeed, once (4.33) is verified, we readily obtain that

(F),,, = (ExsF),,|
diam(A
< ||g||sup<64(f)||FllsupIAIx/5d(N)+65(D)||F||sup%> . (4.34)

and, since the functiof — E4« ¢ F belongs toC, (%) as well, one can pass to
the limit N — oo in the above inequality, and (4.32) follows.
In order to check (4.33) notice, first of all, that

(Fly. ;= (Ea<eF)y s » (4.35)

wheneverf = 0 on A. Given then an arbitrary’ € C3°(D), let us simply Kill it
on A and definefs (x) 2 l4¢(x) f(x). For every® € C, (%) we then obtain:

(@expl Toca o))

(d)) = (4.36)
M (ewld Sea roell)
In order to facilitate notations let us define
1
ey = D) FO@E = @Wv. 1) - (4.37)

xeA

Unfolding (4.36), we then compute (with an obvious abuse of notation):

(@)y ;= (z)::vN)zj}m -

= <¢>N,fA + fol COVN, fr+rey (D, €n) dr

(q))Nva"réN (4.38)

where

< q)”SUptreT[]Oa)l(] VAN, fytrey (€N)

< c6() 1@ supl Alv/Sa(N) (4.39)

as a consequence of the Brascamp-Lieb inequality (2.123).
Since bothF andE4« ¢ F belong toC;, (%), the bound (4.33) follows now in
a straightforward way:

(Fly.; = {Fly.;, + O (IFlsupl A1)
= (Ea~F)y.;, + O (IF lsupl A1v/64(N))
= (EaFly  + O (IFlsu AlVE W) - (4.40)

1
|/ COVN, futtey (P, €n ) dt
0
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Step 3 The measure is translation invariant: LeF € % 4+ be a localCy (%)
function. Then

1 1 |
(F09y>qN = W Z g(x)[E)]Cv’fFOQy = m Z g(x)[E;Cvf}‘F

xeDy xeDy

1
= (Fl,y + O Fllsup Y 18+ ) = g) - (44D)

q
Step 4 At this point we decomposgas
gx) =g(x)vO—(-gx) VO , (4.42)

and immediately conclude that the translation invariant Gibbs megsdrg =
q[g](dn) is subject to the Choquet decomposition with respect to the (extremal)
Funaki—Spohn states:

alslen) = [ PES(En)valel@h) (@.43)

It remains to prove, therefore, that there exists a non-negative Radon megsure
onR? x Z,, such that for every e C3 (D),

volg] (dn) = /Rd vg(dx, dn)g(x) . (4.44)
This, however, almost literally follows by the arguments in [25] (Step 3 on p. 24
there). o

4.3. Young measures

By (4.8) and the master equation (1.56) the first of the two crucial convergence
statements (4.2) would follow, as soon as we show that for everyC3° (D),

/ (Vjx), Vo (Viiy(x)))dx —fRd J(V’(n(O)),Vj(X))@N(d&dn) — 0.
D XX

(4.45)
Notice that so far we do not require the individual convergence of each of the two

terms above. Since by the assumptidnis sublinear, and in view of the tightness
computation (4.28), it follows from Lemma 4.3 that

lim /Rd , (V/(n),Vj(x))@N(dx,dn)zf va(dx, dv) (Vo (v), Vj(x)) |

N—o0 DxRd
(4.46)
along any convergent subsequefitg — Q.
Similarly, the second crucial convergence statement (4.3) follows as soon as
we show that

/ (VﬁN(x),VO(VﬁN(x)))dx—/ (V'(), v)Vn(dv,dp) — 0 . (4.47)
D R x &
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Since, by thel, bound of Lemma 3.4, the famil{Vii v} is uniformly integrable
oninly, we, in view of Lemma 4.3, obtain that

lim / (V). v)Vn (dv, dn) = / wy(dv, d)(v, Vo (1)) , (4.48)
RIx T R9 x R4

N—o00

along any convergent subsequefige — Q.

In order to describe possible limits of the first integrals in (4.45) and (4.47) we
need to recall the notion of Young measures (see, for example, [5]):

Let Q be a bounded open subsetR®f. A sequencefy € L1(22, RY) is said
to generate the family of (probability) Young measufges}.cq if for every ¢ €
Co(RD),

V) = G0 = [ Gy (4.49)

weakly inlL1 (22, R) asN — oo.

If { fv}is bounded iriL1($2, RY), then it necessarily has a subsequence, which
generates such a family. If, in additiofyy } is bounded irl, (€2, R%) (and gen-
erates a family of Young measurgs, }.cq), then the representation (4.49) is, in
fact, valid for anyyr € C(R), which does not grow too fast on infinity;

i O _

t—00 |t|P

(4.50)

In particular, let us assume (possibly going to subsequence)Mtiat} gener-
ates a family of Young measurég.}.cp. By thel, estimate of Lemma 3.4 the
condition (4.50) is satisfied for functions of quadratic growth. Consequently, for
everyj e C3°(D),

lim /(Vj(x),Vo(VﬁN(x)))dx=/ dx/ e (dv)(Vj(x), Vo (v)) ,
D D R4

N—o0
(4.52)
and
lim /(VﬂN(x),VU(VﬁN(x)))dx:/ dx/ /Lx(dv)(v, Va(v)) . (4.52)
N—oo Jp D R4

Lemma 4.4. Assume (possibly after going to a subsequence) that{lapth and
{Vy} converge, and, furthermore, thé¥u x} generates the familfj, } of Young
measures. Then,

VO (dx, dv) = [y (dv)dx , (4.53)

and,
o (dv, di) = / sy (dv) s (A1) = / drdy (M)us(dv) . (4.54)
D D

Both (4.45) and (4.47), and hence the claim of Theorem 1.2, are immediate
consequence ofthe lemma above. Indeed, substituting (4.53) into (4.46) we obtain
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precisely the right hand side of (4.51). Similarly, the substitution of (4.54) into
(4.48) gives the right hand side of (4.52).

Proof of Lemma 4.4(4.53) follows if, for example, we show that for any
F e CL(R?) andg € CF(D);

/ vQ(dx,dk)F(A)g(x)zf g(x)dx/ wy(dVF(L) . (4.55)
D xR D R4

Due to the ergodicity of the Funaki—Spohn states,
F(\) = I|m [EFSF(Avm) , (4.56)
for everyx € R?, where thd-average&vl is defined via
A 4.57
vin2 (21 ] > ) . (4.57)

llxli<

Therefore it is possible to rewrite the left hand side of (4.55) as

lim / g(x)v@(dx dk)[EFSF(AVm)
DxR4

[—o0

= lim lim — g(x) AVm) . (4.58)

[—00 N—00

On the other hand,

‘(F(AVm)))]CV’f — F(Av, VY N(x))‘
= |iF(@vin)y, , — F (v, )

172
1
< [IFlly,00varn, s (m Z Tl()’)) . (4.59)

ly—xl=l

By the Brascamp—Lieb inequality (2.123) the latter expression is bounded above
by Cl/\/l_d.
Finally, by the oscillation bound (3.1), for eatFixed,

lim IViy —Av;Viy|2=0, (460)
N—o00

which, in particular, implies th&tViiy } and{Av,;Viiy} generate the same family
of Young measure§u, }. Thus, in view of (4.14),

\ Z g)(F (Avin)fy, / g()dx /R RAQINCY

I Fllz00llgllsup+ 0(1) (4.61)

\/_
and (4.55) follows.
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The proof of (4.54) follows the same pattern: for egle CL(R? x RY),

/ vv(dv, dk)G(v, A) = lim / v\/(dv, dA)(G(v, AVm))ES
Rd x R4 l=00 JRrd x R4
= lim lim (G(v,Avm))\/N ) (4.62)

l%ooNa
On the other hand,
1
‘(G(v, avim)y, = 7 Y6 (vNuy, NuN)’
1 N
< 2alGlne) S {[Avin(o) — (1w sy, 5

1 N
< wallGlleed oy Vary, (Avin(o)

S — N N
@y 2 sV N ) = Vw0

c2 c3
< IGll1,00 (ﬁ"ﬁ‘ W) , (4.63)

where the first and the second terms in the last line above follow by the Brascamp—
Lieb inequality (2.123) and by the oscillation bound (3.1) respectively.
As aresult, by (4.12),

/RdXRdw(dudx)G(v,x) Jim —Z Nun, VNuy)
= lim /G(VMN,VMN)CIX

N—oo Jp

- / dx / Gk, My (dr) . (4.64)
D R4

Since (4.64) holds for everg € CL(R? x R?),

vy (dv, di) = / dhr 85 (o) (1) = / drsy (dW)us(dv) . (4.65)
D D
as it has been claimed.

5. Large deviations and concentration results

Proof of Theorem 1.3he proof of the upper bound:

lim supi logPy(éy € E) < — |nf 2, (5.1)

N—o0

where we recall thaf denotes the closurein (D) of E, follows from Theorem 1.1
and exponential tightness which is a simple consequence of (2.128), since closed
balls with respect to thg - ||1,2-norm are compact ihz(D).
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Because of the Lipschitz property of the mépin (3.85) the large deviation
lower bound

o1 - .
|I/I\’]]LI£|I Na logPy(én € E) > —|1r513c ¥, (5.2)
whereE° denotes thé (D) interior of E, follows as soon as we show that
lim inf 1 logPy(En € E) > =S (ujf) (5.3)
N—oo N4 gFNsw € - ‘- '

for any couple(f, ujs)) € Cg°(D) x E°. This, however, follows from Theo-
rem (1.1), Theorem (1.2) and the usual change of measure argument: first note
that by (1.38) and (1.36);

1 .
N|1T1OO WH(PNJ'WN) = }J@w[DuN,f(x)f(x)dX
im L 1Y
— lim = log(exp(% ¢ £ (o)
- /Dum 0@ dr — Ap(f) = Sy - (5:4)
On the other hand, by 1.39, we know that
Nlim Py sy € E)=1 (5.5)

Now the lower bound (5.3) is just a consequence of the standard entropy estimate:

Pvév € E) _ HEy [Py +e
PvsEveE) PyyséyveE)

cf. [21, Lemma 5.4.21]. O

log (5.6)

Proof of Theorem 1.ANe first take care of the hard wall conditimfg and prove
that it can be neglected, more precisely, we claim that there exists a cafistast
such that

exp(—CN?LlogN), d=>3
exp(—C N (log N)?) d=2.

Actually, one can show with a more refined argument that the correct order is
exp(—CN91), for d > 2, cf. [20], but for the sake of completeness we give a
simple argument of the above estimate: for a giweN) > 0, Iet[P”fV(N) denote the
measure with boundary conditioggx) = a(N), x ¢ Dy. Note that this corre-
sponds to constant shift of the configuratiens) + a(N), x € Dy. In particular,
using Taylor formula, the symmetry &f

Pyh) = { (5.7)

oA
/ ﬂpN(d(p) =0, for everyx € Dy , (5.8)
RPN 0@y
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(1.7) and the fact thatD is Lipschitz we see that the relative entrop;RﬁfN ) with
respect tdPy can be easily estimated by

HEYY [Py = /R o, N@ = A x (@ +aN )P )

= / (Hnlp—aN)) = A n(9))Py(dg)

RON

< cyCNLa(N)? . (5.9)

On the other hand, by FKG we have that

PAV@h = [T PV e 20 = [T (1- P < —a@v) .

xeDn xeDy
(5.10)
In view of the Brascamp-Lieb inequality (2.125) we have
_ exp(—ca(N)?), d=>3
Py(p(x) < —a(N)) < {exp(—ca(N)Z/ logN), d=2 . (5.11)

Thus choosing(N) = a,/logN, ford > 3, ora(N) = alogN, ford = 2, with
a > 0 sufficiently large, yield@"]‘\,(N)(Q;) > % and the above estimate follows by
the entropy inequality [21, Lemma 5.4.21], as in (5.6).

Now the result follows from Theorem 1.3. Simply note that by FKG

Py ({IlEy —u@]l2 > 8} N An(v))

Pyl — 4@ slotnA <
W (I =l > 8182 N Aw () < =g e o)

(5.12)
Theorem 1.3 implies that, for al > 0O fixed
. 1 - )
lim sup— log Py ({llEy —u™]l2 > 8} N An(v))
N—oo N
< —inf{Sw):uce [I-I]%(D),/ u(x)dx = v} , (5.13)
D
whereas in view of (5.7) estimate and Theorem 1.3
o1 n
iminf - log ([P’N (QN)[P’N(AN(v))))
> —inf{S):ue [H]%(D),/ u(x)dx = v} . (5.14)
D
a
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