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Abstract. We de®ne stochastic integrals with respect to free Brownian
motion, and show that they satisfy Burkholder-Gundy type inequal-
ities in operator norm. We prove also a version of ItoÃ 's predictable
representation theorem, as well as product form and functional form
of ItoÃ 's formula. Finally we develop stochastic analysis on the free
Fock space, in analogy with stochastic analysis on the Wiener space.

Mathematics Subject Classi®cation (1991): 60H05, 46L50, 81S25

Introduction

In this paper we develop a stochastic integration theory with respect
to the free Brownian motion. A strong motivation for undertaking
this work was provided by two sources. On one hand the stochastic
quantization approach to Master Fields, as described in [D], requires
the development of a stochastic calculus with respect to free Brownian
motion, in order to be implemented in a mathematically rigourous
way. On the other hand, the theory of free entropy developped by
D. Voiculescu suggests the study of ``free'' Gibbs states, whose de®-
nition is analogous to the classical Gibbs states, but with free entropy
replacing classical entropy, and as in the classical case, these free
Gibbs states can be realized as invariant measures for some non-
commutative di�usion processes driven by free Brownian motion.
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Actually, these two sources are very much related, but we shall not say
more about that subject in the present paper, and will come back to it
in a subsequent work. Here we shall concentrate on the purely sto-
chastic calculus aspects of the problems.

D. Voiculescu has shown (see [V2], [VDN]) that independent
N � N random matrices give rise, in the large N limit, to free random
variables. In this sense, free Brownian motion is the large N limit of
Brownian motion with values in N � N hermitian matrices. Likewise,
the stochastic calculus with respect to free Brownian motion that we
are going to develop can be viewed as the large N limit of stochastic
calculus with respect to N � N hermitian matrix valued Brownian
motion, the processes to be integrated being matrix valued stochastic
processes. Due to the non-commutativity of matrix algebras, a process
to be integrated can be multiplied either to the right or to the left of
the increments of the integrator process. One can even take two
processes and multiply one of them on the right and the other on the
left. The ItoÃ formula for such matrix valued stochastic integrals is easy
to obtain, from the ItoÃ formula for the components. Indeed, nor-
malizing the covariance of Brownian motion by

E
�
1

N
tr�X 2

t �
�
� t

ItoÃ 's formula takes the formZ t

0

As dXsBs

� � Z t

0
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� �
�
Z t
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Z s

0

Cu dXuDu

� �
�
Z t

0

Z s

0

Au dXuBu

� �
Cs dXsDs �

Z t

0

As
1

N
tr BsCs� �Ds ds

for adapted matrix valued processes A;B;C and D. The ItoÃ formula we
are going to prove in section 4 is the large N limit of this formula. We
shall however not use large matrix approximations for free Brownian
motion, but rather take a direct approach starting from the de®nition
of free Brownian motion.

Stochastic calculus with respect to free noise has already been con-
sidered before, namely in [KS], [S] and [F], inspired by the Hudson and
Parthasarathy's quantum stochastic calculus [HP]. In the direct ap-
proach that we develop in this paper, we do not de®ne stochastic in-
tegrals with respect to creation and annihilation processes, but only
with respect to free Brownianmotion, which does not require the use of
free Fock space. This allows us to give a Burkholder-Gundy type in-
equality in operator norm, which means that the operator norm of a
stochastic integral can be controlled by a suitable norm of its quadratic
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variation. It has been shown recently by Pisier and Xu [PX] that the
classical Burholder-Gundy inequalities formartingales can be extended
to a general non-commutative context. However as is well known these
inequalities hold only in Lp for 1 < p <1, and break down at p � 1.
So our result does not follow from this, it is intimately related with the
freeness property, and with Haagerup's inequality on free groups.
These inequalities allow us to derive a reasonable functional calculus
version of the ItoÃ formula, based on the product form which has been
obtained in the previous works on free stochastic calculus.

It is well known that the classical Fock space associated with an
in®nite dimensional Hilbert space can be interpreted as the L2 space of
Wiener measure, and this gives rise to a rich analytical theory known
as ``analysis on Wiener space''. Here we shall see that many results
from Wiener space analysis have analogues when the Boson Fock
space is replaced by the free (i.e. unsymmetrized) Fock space, and the
free Brownian motion plays the role of the classical Brownian motion.
Indeed, the free Fock space modelled on L2�R�� can be interpreted as
giving chaos decomposition of the L2 space of a free Brownian mo-
tion. Then we will de®ne a free gradient operator, and its adjoint,
which will play the role of a free Skorokhod integral, and we will have,
among other results, free versions of the ItoÃ Predictable Representa-
tion Theorem and the Bismut-Clarke-Ocone formula. Since the semi-
circular distribution, or ``Wigner distribution'' plays here the role of
gaussian distribution in the classical theory, we have coined the name
``analysis on Wigner space''.

This paper is organized as follows. In section 1, we give some
preliminary material on free probability theory and functional cal-
culus. In section 2 we introduce simple bi-processes and de®ne their
stochastic integrals with respect to free Brownian motion. Section 3 is
devoted to the Burkholder-Gundy inequality and extension of sto-
chastic integrals to more general classes of bi-processes, and in section
4 we prove ItoÃ 's formula. Finally in section 5, inspired by Nualart's
presentation of analysis on Wiener space in [N], we introduce the
parallel theory of ``analysis on Wigner space''.

1. Preliminaries and notations

1.1. Free Brownian motion and martingales

We refer to [VDN] for the basic facts about free probability theory.
Throughout the paper we shall denote by �A; s� a W �-non-commu-
tative probability space, namelyA is a von Neumann algebra, and s is
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a faithful normal tracial state on A. We shall denote by Lp�A; s� the
non-commutative Lp spaces obtained by completion ofA with respect
to the norms kXkLp � s�jX jp�1=p, for 1 � p � 1, where the L1 norm is
just the algebra norm. We shall assume that A is ®ltered, so that there
exists a family �At�t2R� of unital, weakly closed �-subalgebras of A,
such that As �At for all s; t with s � t. Further we shall assume that
there exists an �At�t2R�-free Brownian motion �Xt�t2R� i.e. each Xt is a
self adjoint element of A with semi-circular distribution of mean zero
and variance t, one has Xt 2At for all t � 0, and for all s; t with s � t,
the element Xt ÿ Xs is free with As, and has semi-circular distribution
of mean zero and variance t ÿ s.

A concrete example of such a situtation is the following. Let �B;x�
be a non-commutative probability space, and consider, on the full
Fock space

F �L2�R��� � XC�a
1

n�1
L2�R��
n

the creation and annihilation operators lt � l1�0;t� , l�t � l�1�0;t� (see section
5 for de®nitions, we shall not use this before). Let W be the von
Neumann algebra generated by the operators Xt � lt � l�t for t � 0,
with the state q induced by the pure state X. Take now
�A; s� � �B;x� � �W;q� the reduced free product, and let At be the
weakly closed �-subalgebra of A generated by B [ fXs; s � tg, then
�A; s�, �At�t2R� and �Xt�t2R� satisfy the required properties.

Returning to the general situation, since the state s is tracial, for
any unital, weakly closed �-subalgebra B of A, there exists a unique
conditional expectation onto B. Following a probabilistic tradition
we shall denote by s�:jB� this conditional expectation. Recall that it
extends to a contraction on all Lp spaces for 1 � p � 1. A map t 7!Mt

from �0;�1� to Lp�A; s� will be called an Lp-martingale with respect
to the ®ltration �At�t2R� if for every s � t one has s�MtjAs� � Ms.

1.2. Functional calculus and di�erentiation

Let B be a unital C�-algebra, then for any X ; Y 2 B, one has Duha-
mel's formula

eX ÿ eY �
Z 1

0

eaX �X ÿ Y �e�1ÿa�Y da

Let now f : R! C be a function such that f �x� � RR eixyl�dy�, where
l is a ®nite complex measure satisfying I1�f � �

R
R jyjjlj�dy� <1,

then for any two hermitian elements in B, one has
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f �X � ÿ f �Y � �
Z 1

0

Z
R
iyeiayX �X ÿ Y �ei�1ÿa�yY l�dy� da

where the integral is uniformly convergent. This implies that

kf �X � ÿ f �Y �k � kX ÿ Y kI1�f �
hence the function X 7! f �X � is globally Lipschitz on Bh, the space of
hermitian elements of B. Furthermore this map is also FreÂ chet dif-
ferentiable at any point X , with di�erential

df �X �:A �
Z 1

0

Z
R
iyeiayX Aei�1ÿa�yX l�dy� da

We refer to Peller [P] for a discussion of conditions on the function f ,
ensuring that the map X 7! f �X � is di�erentiable or globally Lipschitz.
We shall be content with the preceding space of functions. If moreover
one has I2�f � �

R
R jyj2jlj�dy� <1 then f is twice di�erentiable,

meaning that there exists a continuous bilinear map d2f �X � on Bh

with

d2f �X � � �A1;A2� � lim
e1;e2!0

1=e1e2�f �X � e1A1 � e2A2�
ÿ f �X � e1A1� ÿ f �X � e2A2� � f �X ��
� lim

e!0
1=e�df �X � eA2� � A1 ÿ df �X � � A1�

where the limits are in operator norm. One has

d2f �X � � �A1;A2� �
ZZ

a;b�0
a�b�1

Z
R
ÿy2eiayX A1e

ibyX A2e
i�1ÿaÿb�yX l�dy� da db

�
Z Z

a;b�0
a�b�1

Z
R
ÿy2eiayX A2e

ibyX A1e
i�1ÿaÿb�yX l�dy� da db

1.3. Piecewise constant maps

A map de®ned on R� will be called piecewise constant if there exists a
partition of R� into ®nitely many intervals �s; t� on which the function
is constant.

1.4. Tensor products and bimodules

Let �A; s� be a non-commutative probability space. Together with A
we shall also consider the opposite algebra Aop, with the trace sop,
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namely s � sop as a linear map on A, but the notation is meant to
stress the algebra structure we are using. The spaces A and A
A
have natural AÿA bimodule structures given by multiplication on
the right and on the left, namely a � u � b � aub and a �
�u
 v� � b � au
 vb, or equivalently they have a left A
Aop-
module structure (here we are considering the algebraic tensor prod-
uct). We shall denote by ] these actions, namely one has
�a
 b�]u � aub and �a
 b�]�u
 v� � au
 vb. Of course, the action
of A
Aop on A
A corresponds to the multiplication on the left
in the algebra A
Aop.

The map s
 sop de®nes a tracial state on the �-algebra A
Aop,
and we shall denote by Lp�s
 sop� the corresponding Lp-spaces, thus
L1�s
 sop� is the von Neumann algebra tensor product ofA andAop.

2. Stochastic integrals of simple biprocesses

In this section we shall investigate stochastic integrals with respect to
free Brownian motion. The de®nition of such stochastic integrals will
follow the classical procedure of ®rst de®ning integrals of piecewise
constant processes, and then after some norm estimates, extending to
more general classes of processes. One peculiar feature, however, of
non commutative integration is that, since the integrator is composed
of operators which do not commute with the process to be integrated,
we have the choice of multiplying the integrand with the increments of
the integrator either on the left or on the right. In fact, we will even
consider a more general kind of integration, where the integrand is
multiplied both on the right and on the left of the integrator, and thus
we will be lead to integrate what we call biprocesses. It turns out that
this is a rather natural thing to do, as will be shown in section 5.3
below when we prove the ItoÃ predictable representation Theorem (see
5.3.8). Let us start by de®ning biprocesses.

2.1. Biprocesses

De®nition 2.1.1. A simple biprocess is a piecewise constant map t 7!Ut

from R� into the algebraic tensor product A
Aop, such that Ut � 0
for t large enough.

By de®nition of a simple biprocess there exists ®nitely many
piecewise constant maps, t 7!Aj

t , t 7!Bj
t ; j � 1; . . . ; n, with values in A,

such that Aj
t � Bj

t � 0 for t large enough, and Ut �
Pn

j�1 Aj
t 
 Bj

t for all
t � 0.
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De®nition 2.1.2. A simple biprocess is called adapted if one has
Ut 2At 
At for all t � 0.

If a simple biprocess is adapted, it is clear that one can choose a
decomposition Ut �

Pn
j�1 Aj

t 
 Bj
t as above in which Aj

t and Bj
t belong

to At for all t � 0. The simple biprocesses form a complex vector
space, which we shall endow with the norms

kUkBp
�

Z 1
0

kUsk2Lp�s
sop� ds
� �1=2

The completion of the space of simple biprocesses for these norms will
be denoted by Bp. Note that B2 is the Hilbert space associated with
the inner product

hU ; V i �
Z 1
0

hUs; Vsi ds

where the inner product hUs; Vsi is in L2�A; s� 
 L2�A; s�.
The closed subspaces of Bp generated by adapted simple processes

will be called Ba
p.

The space of adapted simple biprocesses has an antilinear involu-
tion, coming from the antilinear involution on A
AX

aj 
 bj
� ��

�
X
�bj�� 
 �aj��

This involution can be extended isometrically to either one of the
spaces Bp, or B

a
p.

2.2. Stochastic integrals of adapted simple biprocesses

Let U be a simple adapted biprocess, one can choose a decomposition
U �Pn

j�1 Aj 
 Bj such that there exists times 0 � t0 � t1 � � � � � tm
with Aj

t � Aj
tk 2Atk , Bj

t � Bj
tk 2Atk for t 2 �tk; tk�1�, Aj

t � Bj
t � 0 for

t � tm (in the sequel we shall always assume that the decompositions
we choose satisfy such properties).

De®nition 2.2.1. Let U be simple adapted biprocess, with a decompo-
sition as above, then the stochastic integral of U is the operatorZ 1

0

Us] dXs �
Xmÿ1
k�0

Utk]�Xtk�1 ÿ Xtk� �
Xn

j�1

Xmÿ1
k�0

Aj
tk�Xtk�1 ÿ Xtk�Bj

tk

This is clearly independent of the decomposition chosen.
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Remark. The adjoint of the stochastic integral is again a stochastic
integral, namely with the adjoint of a biprocess de®ned as in 2.1, one
has Z 1

0

Us] dXs

� ��
�
Z 1
0

U�s ] dXs

For a simple adapted biprocess U , and s � t, we shall denote U �s;t� the
stopped simple adapted biprocess given by U �s;t�r � Ur for s � r < t
and U �s;t�r � 0 for r < s and r � t. Then we de®ne

R t
s Ur] dXr

� R10 U �s;t�r ] dXr.

Proposition 2.2.2. Let U be a simple adapted biprocess, then
t 7! R t

0 Us] dXs is a martingale.

Proof. Let us prove it for a process of the form Ut � A
 B1�t1;t2��t�
where A;B 2At1 . Let s � t and Y 2As, we have to check that s�R t

s Ur]
dXrY � � 0. One has

R t
s Ur] dXr � A�X�t_t1�^t2 ÿ X�s_t1�^t2�B. Since X�t_t1�^t2

ÿX�s_t1�^t2 is centered, free withAs_t1 , andA;B and Y are inAs_t1 , we get
the result. The general case follows since linear combinations of mar-
tingales are martingales. (

The following result, which is a weak version of the ItoÃ formula we
shall prove in section 4, will be crucial for proving inequalities on
stochastic integrals, see section 3 below.

Lemma 2.2.3. Let U1; . . . ;Ur be simple adapted biprocesses with de-
compositions

Uk �
Xnk

j�1
Ak;j 
 Bk;j for k � 1; . . . ; r and nk � 1

and let Nk
t �

R t
0 Uk

s ] dXs, then one has, for any t � 0,

s�N1
t N2

t � � �Nr
t �

�
Z t

0

X
1�k1<k2�r

X
1�j1�nk1
1�j2�nk2

s�N1
s � � �Nk1ÿ1

s Ak1;j1
s Bk2;j2

s Nk2�1
s � � �Nr

s �

� s�Bk1;j1
s Nk1�1

s � � �Nk2ÿ1
s Ak2;j2

s � ds

Proof. Since A and B are piecewise constant, one has for s > 0 small
enough

Nk
t�s ÿ Nk

t �
Xnk

j�1
Ak;j

t �Xt�s ÿ Xt�Bk;j
t �1�
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hence kNk
t�s ÿ Nk

t k � O� ��sp � as s! 0. Let us compute for small s > 0

s�N1
t�sN

2
t�s � � �Nr

t�s� ÿ s�N1
t N2

t � � �Nr
t �

�
Xr

k�1
s�N1

t � � � �Nk
t�s ÿ Nk

t � � � �Nr
t �

�
X

1�k1<k2�r

s�N1
t � � � �Nk1

t�s ÿ Nk1
t � � � � �Nk2

t�s ÿ Nk2
t � � � �Nr

t � � O�s3=2�

Using �1�, the adaptedness of A and B, and the freeness assumption, we
get that the terms in the ®rst sum of the right hand side are zero, and

s�N1
t � � � �Nk1

t�s ÿ Nk1
t � � � �Nk2

t�s ÿ Nk2
t � � � �Nr

t �
� s

X
1�j1�nk1
1�j2�nk2

s�N1
t � � �Ak1;j1

t Bk2;j2
t Nk2�1

t � � �Nr
t �

� s�Bk1;j1
t Nk1�1

t � � �Nk2ÿ1
t Ak2;j2

t �
Here we used the fact that if S is free with fX ; Y g and s�S� � 0 one has
s�XSYS� � s�S2�s�X �s�Y �. Hence we obtain

@

@t
s�N1

t N2
t � � �Nr

t �
�

X
1�k1<k2�r

X
1�j1�nk1
1�j2�nk2

s�N1
t � � �Ak1;j1

t Bk2;j2
t Nk2�1

t � � �Nr
t �

� s�Bk1;j1
t Nk1�1

t � � �Nk2ÿ1
t Ak2;j2

t �

Integrating from 0 to t gives the result. (

3. Extensions of stochastic integral

3.1. ItoÃ isometry

We will now extend the stochastic integrals to square integrable
processes in the space Ba

2, using an isometry property for the sto-
chastic integral.

Proposition 3.1.1. For all adapted simple biprocesses U and V , one has

s
Z 1
0

Us] dXs

 Z 1
0

Vs] dXs

!�" #
� hU ; V i
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Proof. By bilinearity it is enough to prove it for processes
Ut � A1�t0;t1��t� and Vt � C 
 D1�t2;t3��t�. The left hand side is then,
denoting by k the Lebesgue measure

s�A�Xt1 ÿ Xt0�BD��Xt3 ÿ Xt2�C�� � k��t0; t1�\�t2; t3��s�BD��s�AC��
� hU ; V i

as claimed. (
Corollary 3.1.2. The map U 7! R1

0 Us] dXs can be extended isometri-
cally from Ba

2 into L2�A; s�.

3.2. Burkholder-Gundy inequality

We have seen that stochastic integrals of adapted simple biprocesses
give rise to martingales. Using this fact, it is possible to use some
general results of Pisier and Xu [PX], on non-commutative mar-
tingales, in order to control the Lp norms (for 1 < p <1) of sto-
chastic integrals in terms of their quadratic variation, and we shall
do this in section 4.2 below. However, it is well known that such
estimates break down when one tries to estimate the L1 norms. So
it is quite remarkable that in our context the L1 norm of the
stochastic integral is controlled by a suitable quadratic variation L1

norm of the integrand, namely the norm in the space B1. This will
allow us to extend stochastic integrals in a continuous way to this
space of biprocesses. More precisely we shall now prove the fol-
lowing free L1 version of the well known Burkholder-Gundy in-
equalities.

Theorem 3.2.1. For any simple adapted process U , one has
Z 1
0

Us] dXs


L1�s�

� 2
���
2
p
kUkB1 :

We do not know which natural norm to put on the space of
adapted biprocesses in order to have an equivalence of norms, but see
nevertheless the end of section 4.2.

Proof. Choose a decomposition U �Pj Aj 
 Bj. Let us denote
Mt �

R t
0 Us] dXs, we apply Lemma 2.2.3 to Nk � M for k odd and

Nk � M� for k even,

382 P. Biane, R. Speicher



s�jMtj2m� � s��MtM�t �m�

�
X

1�k�m

X
1�j1;j2�n

Z t

0

s��MsM�s �kÿ1Aj1
s �Aj2

s ���MsM�s �mÿk�s�Bj1
s �Bj2

s ��� ds

�
X

1�k1<k2�m

X
1�j1;j2�n

Z t

0

s��MsM�s �k1ÿ1Aj1
s Bj2

s M�s �MsM�s �mÿk2 �

� s�Bj1
s M�s �MsM�s �k2ÿk1ÿ1Aj2

s � ds

�
X

1�k1<k2�m

X
1�j1;j2�n

Z t

0

s��MsM�s �k1ÿ1Aj1
s �Aj2

s ���MsM�s �mÿk2 �

� s�Bj1
s M�s �MsM�s �k2ÿk1ÿ1Ms�Bj2

s ��� ds

�
X

1�k1<k2�m

X
1�j1;j2�n

Z t

0

s��MsM�s �k1ÿ1Ms�Bj1
s ���Aj2

s ���MsM�s �mÿk2 �

� s��Aj1
s ���MsM�s �k2ÿk1ÿ1Ms�Bj2

s ��� ds

�
X

1�k1<k2�m

X
1�j1;j2�n

Z t

0

s��MsM�s �k1ÿ1Ms�Bj1
s ��Bj2

s M�s �MsM�s �mÿk2 �

� s��Aj1
s ���MsM�s �k2ÿk1ÿ1�Bj2

s ��� ds

Applying HoÈ lder's inequality for the trace s
 sop, one has e.g.���� X
1�j1;j2�n

s��MsM�s �k1ÿ1Aj1
s Bj2

s M�s �MsM�s �mÿk2 �s�Bj1
s M�s �MsM�s �k2ÿk1ÿ1Aj2

s �
����

� ��s
 sop��M�s �MsM�s �mÿk2�k1ÿ1 
 1�]
X

1�j1�n

Aj1
s 
 Bj1

s

 !

]
X

1�j2�n

Bj2
s 
 Aj2

s

 !
]�1
M�s �MsM�s �k2ÿk1ÿ1����

� s�jMsj2mÿ2k2�2k1ÿ1�s�jMsj2k2ÿ2k1ÿ1�

�
 X

1�j�n

Aj
s 
 Bj

s


L1�s
sop�

 X
1�j�n

Bj
s 
 Aj

s


L1�s
sop�

This gives us an upper bound on the second term in the right hand side
of the above equality. We can treat the other terms in a similar way,
and after regrouping, since

P
1�j�n Aj

s 
 Bj
s


L1�s
sop� �

P
1�j�n Bj

s

Aj

s


L1�s
sop�, we get
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s�jMtj2m� � m
X2mÿ2

k�0

Z t

0

s�jMsjk�s�jMsj2mÿ2ÿk�kUsk2L1�s
sop� ds

For any X 2A, and nonnegative integers p; q, one has

s�jX j2p�1�s�jX j2q�1� � �1=2��s�jX j2p�s�jX j2q�2� � s�jX j2p�2�s�jX j2q��
Indeed, let l be the image by s of the spectral measure of jX j, one has

s�jX j2p�1�s�jX j2q�1� �
Z

R�

Z
R�

x2p�1y2q�1l�dx�l�dy�

�
Z

R�

Z
R�
�1=2�x2py2q�x2 � y2�l�dx�l�dy�

� �1=2��s�jX j2p�s�jX j2q�2� � s�jX j2p�2�s�jX j2q��
Using this inequality we can get rid of the terms of odd degree in the
inequality and this yields

s�jMtj2m� � 2m
Xmÿ1
k�0

Z t

0

s�jMsj2k�s�jMsj2mÿ2ÿ2k�kUsk2L1�s
sop� ds

The Catalan numbers Cn � 1
n�1

�2n�!
n!n! satisfy the recursion relations

Cn �
Xnÿ1
k�0

CkCnÿkÿ1

From this we infer, by induction on m, that

s�jMtj2m� � Cm 2

Z t

0

kUsk2L1�s
sop� ds
� �m

Since �Cm�1=2m ! 2 as m!1, one has

kMtk � lim
m!1 s�jMtj2m�1=2m � 2

���
2
p Z t

0

kUsk2L1�s
sop� ds
� �1=2

We can also put t � 1 in this inequality. (

Corollary 3.2.2. The stochastic integral map U 7! R1
0 Us] dXs can be

extended continuously to the space Ba
1.

Once again we can extend the martingale property

Proposition 3.2.3. Let U 2 Ba
1, then t 7! R t

0 Us] dXs is an L1 martin-
gale.

Observe that the map t 7! R t
0 Us] dXs is continuous in the L1 norm.
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Remark. The following example shows that the inequality in reverse
order does not hold. Let Tn�x� be the nth Tchebyche� polynomial,
Tn�2 cos h� � sin�n�1�h

sin h , then one has

Tn�X1� �
Z 1

0

t
nÿ1
2

Xnÿ1
k�0

Tk�tÿ1=2Xt� 
 Tnÿkÿ1�tÿ1=2Xt�
 !

] dXt

This follows from section 5.1 and the Bismut-Clarke-Ocone formula
(Proposition 5.3.12), but see also [B1]. The norm of the left hand side
is clearly equal to n� 1. But the B1-norm of the integrated process
on the right hand side isZ 1

0

tnÿ1 dt ess supÿ2�x;y�2j
Xnÿ1
k�0

Tk�x�Tnÿkÿ1�y�j2
 !1=2

� 1���
n
p
Xnÿ1
k�0
�k � 1��nÿ k�

since the maximum is assumed for x � y � 0. This is of the order n5=2

when n!1.

4. ItoÃ 's formula

4.1. Product form

We shall now state the analogue for our stochastic integrals of the
classical ItoÃ formula. Such a formula was proved in [KS] for stochastic
integrals with respect to annihilation and creation processes on the
free Fock space. We start with the product form, before going to the
functional calculus form of the formula. First we need some prelim-
inaries.

De®nition 4.1.1. Let X �Pi xi 
 x0i and Y �Pj yj 
 y0j, be elements in
the algebraic tensor product A
A, de®ne their bracket as

hhX ; Y ii �
X

i;j

xiy0js�x0iyj� 2A :

In more intrinsic notations, denoting ~Y �Pj y0j 
 yj one has

hhX ; Y ii � IA 
 sop�X ]~Y �
clearly,

khhX ; Y iikL1�s� � sup
s�jaj��1

s�ahhX ; Y ii�

� sup
s�jaj��1

s
 sop��a
 1�]X ]~Y �
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� kXkL1�s
sop�k~Y kL1�s
sop� � kXkL1�s
sop�kY kL1�s
sop�

Let U and V be simple adapted biprocesses, then one has, by Cauchy-
Schwarz inequality,Z 1

0

hhUs; Vsiids

  � kUkB1kV kB1
hence the bracket �U ; V � 7! R1

0 hhUs; Vsii ds can be extended continu-
ously to the spaceBa

1 with values inA. Let U and V be biprocesses in
Ba
1 then, by Theorem 3.2.1, s 7! R s

0 Ur]dXr is a continuous and
bounded map with values in A, furthermore,

Z s

0

Ur] dXr 
 1

� �
Vs


L1�s
sop�

� 2
���
2
p
kUkB1kVskL1�s
sop�

hence s 7! �R s
0 Ur] dXr 
 1�Vs is an element in Ba

1, and one has
Z 1
0

Z t

0

Us] dXs 
 1

� �
Vt] dXtk � 8kUkB1kV kB1

With these remarks at hand, we can now state ItoÃ 's formula.

Theorem 4.1.2. (ItoÃ 's formula). Let U ; V be in Ba
1, then one hasZ 1

0

Ut] dXt

� � Z 1
0

Vt] dXt

� �
�
Z 1
0

Z t

0

Us] dXs 
 1

� �
Vt] dXt

�
Z 1
0

Ut 1

Z t

0

Vs]dXs

� �
] dXt

�
Z 1
0

hhUs; Vsii ds :

Proof. Owing to the remarks before the statement of the proposi-
tion, we need only prove the formula for U and V simple adapted
biprocesses, since then both sides extend by continuity to bipro-
cesses in Ba

1. By bilinearity, it is also enough to prove it for
biprocesses of the form Us � A
 B1�t0;t1��s� and Vs � C 
 D1�t2;t3��s�
with A;B 2At0 and C;D 2At2 . In this case one hasR1
0 Us] dXs � A�Xt1 ÿ Xt0�B and

R1
0 Vs] dXs � C�Xt3 ÿ Xt2�D. By

bilinearity again we can assume that either �t0; t1�� �t2; t3�, or these
intervals are disjoint. The second case is easier and will be left to
the reader. We shall only do the ®rst case. There is no loss in
generality in assuming that t0 � 0 and t1 � t, and that X0 � 0, then
it follows that
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Z 1
0

Ut] dXt

� � Z 1
0

Vt] dXt

� �
�
�Xnÿ1

k�0
A�Xk�1

n t ÿ Xk
nt
�B
�

�
�Xnÿ1

k�0
C�Xk�1

n t ÿ Xk
nt
�D
�

�
Xnÿ1
k�0

AXk
nt

BC�Xk�1
n t ÿ Xk

nt
�D

�
Xnÿ1
k�0

A�Xk�1
n t ÿ Xk

nt
�BCXk

ntD

�
Xnÿ1
k�0

A�Xk�1
n t ÿ Xk

nt
�BC�Xk�1

n t ÿ Xk
nt
�D

Observe that kXs ÿ Xk
nt
k � 2

�������
t=n

p
for s 2 �kn t; k�1

n t�. This implies that
the simple biprocesses s 7! n�n�s �

Pnÿ1
k�0 AXk

nt
BC 
 D1�knt;k�1n t��s� converge

in Ba
1, as n!1, towards s 7!AXs^tBC 
 D � �R s

0 Ur]dXr 
 1�Vs.
Thus we haveXnÿ1
k�0

AXk
nt

BC Xk�1
n t ÿ Xk

nt

� �
D

�
Z 1
0

n�n�s ] dXs !
Z 1
0

Z s

0

Ur] dXr 
 1

� �
Vs] dXs

as n!1 and similarlyXnÿ1
k�0

A Xk�1
n t ÿ Xk

nt

� �
BCXk

nt
D!

Z 1
0

Us 1

Z s

0

Vr] dXr

� �
] dXs

Let now Z 2A0 be an arbitrary element, then the elements

Xk�1
n t ÿ Xk

nt

� �
Z Xk�1

n t ÿ Xk
nt

� �
for k � 0; . . . ; nÿ 1

form a free family (see [NS], application 1.10).
By a result of Voiculescu (see e.g. [V1]), if X1; . . . ;Xn are free ran-

dom variables, with s�Xj� � 0, then kX1 � � � � � Xnk � supj kXjk�
�Pn

j�1 s�jXjj2��1=2, thus if s�Z� � 0 we haveXnÿ1
k�0

Xk�1
n t ÿ Xk

nt

� �
Z Xk�1

n t ÿ Xk
nt

� � � 4t=nkZk � t=
���
n
p kZk ! 0

as n!1. On the other hand, using the same estimate,
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Xnÿ1
k�0

Xk�1
n t ÿ Xk

nt

� �2
ÿt

 � 3t=n� t=
���
n
p ! 0

So ®nally, we get

lim
n!1

Xnÿ1
k�0

A Xk�1
n t ÿ Xk

nt

� �
BC Xk�1

n t ÿ Xk
nt

� �
D � tAs�BC�D

�
Z 1
0

hhUs; Vsii ds

This ends the proof. (

We can also extend ItoÃ 's formula to ordinary integrals, indeed, let
t 7!Kt be a weakly measurable map into A, such that Kt 2At for all
s � 0 and

R1
0 kKtk dt <1 thenZ 1

0

Kt dt
Z 1
0

Ut]dXt �
Z 1
0

Kt

Z t

0

Us] dXs

� �
dt

�
Z 1
0

Z t

0

Ks ds
 1

� �
Ut] dXt

which we leave to the reader to verify.

4.2. Lp estimates

Observe that from the proof of Theorem 4.1.2, we have for all adapted
biprocesses U 2 Ba

1, with Mt �
R t
0 Us]dXs,

lim
n!1

X1
k�0

Mk�1
n
ÿMk

n

� �
M�k�1

n
ÿM�k

n

� �
�
Z 1
0

hhUs;U�s ii ds

where the limit holds in L1�s�. Since the process �Mk
n
�k�0;1;... is a dis-

crete time martingale, we can apply Pisier and Xu's generalization of
Burkholder-Gundy inequality and obtain, for all p 2 �2;1�, setting
dk � Mk�1

n
ÿMk

n

cp sup

 X1
k�0

dkd�k


1=2

Lp=2�s�
;

X1
k�0

d�k dk


1=2

Lp=2�s�

!

�

Z 1
0

Us] dXs


Lp�s�

388 P. Biane, R. Speicher



� Cp sup

 X1
k�0

dkd�k


1=2

Lp=2�s�
;

X1
k�0

d�k dk


1=2

Lp=2�s�

!
for some universal constants cp;Cp. If we let n!1 we obtain

cp sup

 
Z 1
0

hhUs;U�s ii ds


1=2

Lp=2�s�
;


Z 1
0

hhU�s ;Usiids


1=2

Lp=2�s�

!

�

Z 1
0

Us] dXs


Lp�s�

� Cp sup

 
Z 1
0

hhUs;U�s iids


1=2

Lp=2�s�
;


Z 1
0

hhU�s ;Usiids


1=2

Lp=2�s�

!

The constants given by Pisier and Xu's proof do diverge as p!1,
but since we have in our special case the estimations of part 3.2, it is
tempting to think that the above inequality holds for p � 1, with
some constants 0 < c1 < C1 <1, however, we have not been able to
settle this question.

4.3. Functional calculus form

We shall now consider an integral of the form

Mt � M0 �
Z t

0

Ks ds�
Z t

0

Us] dXs

where M0 2A0, s 7!Ks is weakly measurable, Ks 2As for all s � 0
and

R1
0 kKskds <1, and U 2 Ba

1. Note that under these hypotheses
there is a constant U such that kMtk < U for all t � 0.

De®nition 4.3.1. Let @ : C�X � ! C�X � 
C�X � be the canonical deriva-
tion, namely on monomials it is given by

@X n �
Xnÿ1
k�0

X k 
 X nÿkÿ1

and let @2 : C�X � ! C�X � 
C�X � 
C�X � be the second derivative
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@2X n � 2
X
k;l�0

k�l�nÿ2

X k 
 X l 
 X nÿkÿlÿ2 :

Let m : A
A!A be the multiplication map, we consider the
contraction g � m � �IA 
 s
 IA� : A
A
A!A. Let ] denote
the product inA
Aop 
A. We de®ne, for X 2A and U 2A
A,

DU P�X � � g��1
 U�]@2P �X �]�U 
 1��
A more concrete formula can be obtained if we choose a decompo-
sition U �Pj Aj 
 Bj, and P �X � � X n, namely

DU X n � 2
X
j1;j2

X
k;l�0

k�l�nÿ2

X kAj1Bj2X
nÿkÿlÿ2s�Bj1X

lAj2�

One can check, as we did for the bracket hh:; :ii, that for all X 2A,
and polynomials P 2 C�X �, the map U 7!DU P �X �� extends by conti-
nuity to U 2 L1�s
 sop�, with values in L1�s� (as the quadratic map
associated with a bilinear continuous map).

Proposition 4.3.2. For all complex polynomials in one variable one has

P �Mt� � P �M0� �
Z t

0

�@P �Ms�]Us�] dXs �
Z t

0

@P�Ms�]Ksds

� 1=2

Z t

0

DUsP �Ms� ds

Proof. The formula can be checked for monomials X n, by induction
on n, using ItoÃ 's product formula of Theorem 4.1.2. The general case
follows by linearity. (

Observe that, with the obvious notation dMs � Us] dXs � Ks ds, we
can rewrite the formula

P�Mt� � P�M0� �
Z t

0

@P �Ms�] dMs � 1=2

Z t

0

DUsP �Ms� ds

We shall now further extend the functional form of ItoÃ 's formula, to
functions of the class considered in section 1.2. A similar idea has been
used by G. F. Vincent-Smith in order to state ItoÃ 's formula for
Hudson-Parthasarathy integrals, see [VS].

For this we shall need the following extension of Duhamel's for-
mula

Lemma 4.3.3. Let M be a Banach algebra with unit, and B be a Banach
space, then for every continuous multilinear map u : Mk ! B, one has
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X1
n�k

zn

n!

X
n1;���;nk2N

n1�����nk�nÿk

u�an1
1 ; . . . ; ank

k �

� zk
Z

. . .

Z
a1;...;akÿ1�0

a1�...�akÿ1�1
u�ea1za1 ; . . . ; eakÿ1zakÿ1 ; e�1ÿa1���ÿakÿ1�zak� da1 � � � dakÿ1

Proof. We can expand the right hand side in powers of z. Inter-
changing integration and summation is easily justi®ed by uniform
estimates, so we are left with the evaluation of the integralZ

. . .

Z
a1;...;akÿ1�0

a1�...�akÿ1�1
an1
1 . . . ankÿ1

kÿ1�1ÿ a1 ÿ . . .ÿ akÿ1�nk da1 . . . dakÿ1

� n1! . . . nk!

�n1 � � � � � nk � k�!
which is a classical result. (

Let f �x� � RR eixyl�dy� with I2�f � <1, then for any self-adjoint
X 2A one can de®ne

@f �X � �
Z 1

0

Z
R
iy�eiayX 
 ei�1ÿa�yX �l�dy� da

For U 2A
A, let

DU f �X � �
Z Z

a;b�0
a�b�1

Z
R
ÿy2g��1
 U�]�eiayX 
 eibyX 
 ei�1ÿaÿb�yX �

]�U 
 1��l�dy� da db

The ®rst integral converges in L1�s
 sop� and the second in L1�s�.
One can check again that the map U 7!DU f �X � extends continuously
to U 2 L1�s
 sop�. Note that any polynomial P coincides on the
spectrum of a self-adjoint X with some function f with I2�f � <1,
and that the formulas for @f �X � and DU f �X � de®ne the same elements
as @P �X � and DU P �X �.
Proposition 4.3.4. Suppose that Us � U�s and Ks � K�s for all s � 0, and
M0 � M�0 , so that Mt � M�t for all t � 0. Then one has, for all functions
f with I2�f � <1

f �Mt� � f �M0� �
Z t

0

�@f �Ms�]Us�] dXs

�
Z t

0

@f �Ms�]Ks ds� 1=2

Z t

0

DUsf �Ms� ds
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Proof. For y 2 R, expand eiyMt �P1n�0 �iy�nn! Mn
t and apply the Lemma

4.3.3 twice, as well as ItoÃ 's formula for Mn
t , to obtain the result when

l � dy . The result follows for arbitrary functions with I2�f � <1 by
integration. All exchanges of summation and integration are easily
justi®ed using the Burkholder-Gundy inequalities. (

Let us restate Proposition 4.3.4 in the special important case where
Us � �1
 1�1�0;T ��s�, i.e. Mt � M0 � Xt �

R t
0 Ks ds for t � T . If we de-

note by ms the distribution of the self-adjoint element Ms, namely ms is
characterized by Z

R
h�y�ms�dy� � s�h�Ms��

for bounded Borel functions h, and we let Dsf be the function

Dsf �x� � @

@x

Z
R

f �x� ÿ f �y�
xÿ y

ms�dy�

then we have

f �Mt� � f �M0� �
Z t

0

@f �Ms�] dMs � 1=2

Z t

0

Dsf �Ms� ds

The ItoÃ correction term 1=2
R t
0 Dsf �Ms� ds turns out to be nicely con-

nected with free entropy. We shall say more about these topics
somewhere else.

5. Analysis on Wigner space

In this section we shall develop the ®rst elements of the natural ana-
logues of many results known commonly under the name of ``analysis
on Wiener space'' (see e.g. [J], [M], [N], [U]). We shall start with an
abstract version which corresponds to considering a semi-circular
system modelled on an abstract Hilbert space. Then we shall investi-
gate in more details the case where the Hilbert space is L2�R�� and the
semi-circular system is the free Brownian motion. Most of our pre-
sentation is inspired by, and follows quite closely, the book of Nualart
[N].

5.1. Free Fock space

Let H be a real Hilbert space with complexi®cation HC, and F �H� the
associated free Fock space.

F �H� �a
1

n�0
H
n

C
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where H
0C is by de®nition the one dimensional Hilbert space gener-
ated by a unit vector X.

For each h 2 HC, we let lh and l�h be the left annihilation and
creation operators de®ned as

lhX � 0

lhh1 
 � � � 
 hn � hh1; hih2 
 � � � 
 hn

l�hh1 
 � � � 
 hn � h
 h1 
 � � � 
 hn

For each h 2 HC, lh and l�h are bounded operators and adjoint of each
other on F �H�. For each h 2 H we let X �h� � lh � l�h. Let SC�H� be
the von Neumann algebra of operators on F �HC� generated by
X �h�h2H , and let s be the restriction to SC�H� of the pure state as-
sociated to the vector X, i.e. s�T � � hTX;Xi for T 2SC�H�. Then the
state s is a faithful normal trace on SC�H� and the operators
fX �h�; h 2 Hg form a semi-circular system in the non-commutative
probability space �SC�H�; s�, in the sense of Voiculescu, see e.g.
[VDN].

Furthermore, let �Tk�1k�0 be the Tchebyche� polynomials, deter-
mined by T0�x� � 1, T1�x� � x, and by the recursion (k � 1)

xTk�x� � Tk�1�x� � Tkÿ1�x�;
and let �ej�dim�H�j�1 be an orthonormal basis of H . Then for any choice of
integers k1; . . . ; kn and j1; . . . ; jn such that j1 6� j2 6� j3 � � � 6� jnÿ1 6� jn,
one has

Tk1�X �ej1��Tk2�X �ej2�� � � � Tkn�X �ejn��X � e
k1
j1 
 � � � 
 e
kn

jn

see e.g. [VDN].
The map X 7!XX extends to a unitary isomorphism from

L2�SC�H�; s� to F �HC�.
There exists a free analogue of the second quantization functor, for

which the analogue of Nelson's hypercontractivity estimates hold. For
this compare [B2].

We de®ne now the free analogue of the classical gradient and di-
vergence operator on Wiener space.

De®nition 5.1.1. We de®ne the gradient operator

r : F �H� ! F �H� 
 H 
 F �H� ;
with domain the algebraic sum a1

n�0H

n, by

rX � 0
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rh1 
 � � � 
 hn �
Xn

j�1
�h1 
 � � � 
 hjÿ1� 
 hj 
 �hj�1 
 � � � 
 hn�

De®nition 5.1.2. We de®ne the divergence operator

d : F �H� 
 H 
 F �H� ! F �H�;
with domain the algebraic sum an;m�0�H
n 
 H 
 H
m�, by

d
ÿ�h1 
 � � � 
 hjÿ1� 
 hj 
 �hj�1 
 � � � 
 hn�

� � h1 
 � � � 
 hn

It is easy to check that hru; vi � hu; dvi for all u 2a1
n�0 H
n, and

for all v 2an;m�0�H
n 
 H 
 H
m�, so that r and d are closable and
their closures are mutually adjoint. In the following we will denote by
D�r� and D�d� the domains of the closures of r and d, respectively.

In the classical approach, although the gradient operator on
Wiener space is a purely Hilbertian object, determined in terms of the
Fock space structure only, it is often de®ned using derivatives of
Wiener functionals along directions in the Cameron Martin space.
The fundamental property of the gradient operator which makes these
two de®nitions coincide is that the gradient operator is a derivation
with respect to the product structure on Fock space induced by the
probabilistic representation as a space of Wiener functionals. It turns
out that there is a similar property of the gradient operator on Wigner
space with respect to the underlying semi-circular system. This deri-
vation property of r will be presented in the next section.

5.2. The gradient operator

In the following we will suppress in our notation the dependence on
the Hilbert space H and just write SC �SC�H�.

Up to now, we have looked upon r as a mapping on the full Fock
space. Since the latter can be identi®ed with the L2-space L2�SC�, we
can also consider the restriction of r to the Lp-spaces for p � 2. Our
particular emphasis will be on the case p � 1, i.e. we can also view r
as acting on the operator algebra SC, where we take as domain the
image of the algebraic sum a1

n�0H

n under the map A 7!AX, i.e. the

space

SCpolynom :� unital �-algebra generated by all X �h�; h 2 H

which is dense in all the Lp spaces, for p <1 (it is only weakly dense
in L1). We consider now SCpolynom 
 H 
SCpolynom and SCpolynom
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SCpolynom as a SCpolynom-bimodule in a canonical way, namely by
linear extension of

A1 � �B1 
 h
 B2� � A2 :� �A1B1� 
 h
 �B2A2�
and

A1 � �B1 
 B2� � A2 :� �A1B1� 
 �B2A2�:
Then we can formulate the derivation property of r.
Proposition 5.2.1. 1� The mapping

r : SCpolynom !SCpolynom 
 H 
SCpolynom

is a derivation, i.e. we have

r�AB� � A � �rB� � �rA� � B for allA;B 2SCpolynom:

2� In particular, we have for all n 2 N and all h1; . . . ; hn 2 H the for-
mula

r�X �h1� � � �X �hn�� �
Xn

j�1
�X �h1� � � �X �hjÿ1�� 
 hj 
 �X �hj�1� � � �X �hn��:

Proof. 1) Let �ej� be an orthonormal basis of H . Since linear combi-
nations of all Tk1�X �ej1�� � � � Tkn�X �ejn�� for j1 6� j2 6� � � � 6� jn generate
SCpolynom, it su�ces to prove the assertion for the product of two
operators of the above form. Furthermore, it su�ces to consider the
case A � X �ei� for some i. One sees easily that this reduces further to
the consideration of r�X �ei�Tk�X �ej���. If i 6� j then the statement
follows directly by the de®nition ofr. For i � j, on the other side, one
can calculate explicitely that one has with Tk :� Tk�X �e�� for kek � 1

r�X �e�Tk� � X �e� � r�Tk� � r�X �e�� � Tk;

by using the recursion formula for the Tk.

2) Part 2 follows immediately from Part 1 by taking into account
r�X �h�� � r�T1�X �h��� � 1
 h
 1: (

We will now consider the question whether r is closable as an
operator on the Lp-spaces and what can be said about its domain. For
this we will need the following technical lemma.

We will extend the scalar product on H in a canonical way also to a
pairing of SC
 H 
SC with H , which takes values in SC
SC,
by linear extension of

hA
 h1 
 B; h2iH � A
 B � hh1; h2i:
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Lemma 5.2.2. 1� For Y 2SCpolynom and h 2 H we have

s
 s�hrY ; hiH � � s�YX �h��:
2� For Y ; Y1; Y2 2SCpolynom and h 2 H we have

s
 s�Y1 � hrY ; hiH � Y2� � s�Y1YY2X �h�� ÿ s
 s�Y1Y � hrY2; hiH �
ÿ s
 s�hrY1; hiH � YY2�

Proof. It su�ces to consider Y of the form Y � X �h1� � � �X �hn�. Then
it is well-known that the expectation of YX �h� can be written recur-
sively in the following way

s�X �h1� � � �X �hn�X �h��

�
Xn

j�1
hhj; his�X �h1� � � �X �hjÿ1��s�X �hj�1� � � �X �hn��:

By using the concrete form of rY according to Proposition 5.2.1 this
gives exactly the left-hand side of our assertion.
2) Just apply the ®rst part to Y1YY2 and use the derivation property of
r. (

From now on we will specialize to the case where H � L2�R��. In
this case, the process Xt � X �1�0;t�� is a free Brownian motion. For
Y 2SCpolynom the gradient rY can be considered as a function on
R�, t 7!rtY , with values in SC
SC. Thus rY is a biprocess.

We can consider rY with respect to the Bp norms, yielding the
following family of norms for elements Y 2SCpolynom:

kY k1;p :� ÿkY kp
Lp�s� � krY kp

Bp

�1=p

and

kY k1;1 :� max�kY k; krY kB1�:
Let us denote by Dp the closure of SCpolynom with respect to k � k1;p.

Note that the pairing between SC
 H 
SC and H , which reads
now

hU ; hi �
Z

R�
Uth�t� dt;

can, by the Cauchy-Schwarz inequality

khU ; hikL1�s
sop� � kUkB1khkL2�R��;

be extended continuously to a pairing between B1 and L2�R�� with
values in L1�s
 sop�, where s is the trace onSC (and in the same way
for the Lp-spaces).
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Proposition 5.2.3. Let 1 � p <1, then the operator r is closable as an
operator from Lp�SC� to Bp and the domain of its closure is Dp.

The case p � 1 is slightly more subtle since the closure of
SCpolynom for the L1 norm is not L1�s�, but rather the C�-algebra
generated by SCpolynom.

Proposition 5.2.4. The operator r is closable on C��SCpolynom�, and
also on L1�s� for the weak topology.

Proof of 5.2.3 and 5.2.4. Assume we have a sequence of elements
Yn 2SCpolynom such that Yn ! 0 in Lp (resp. weakly), andrYn ! U in
B1. We have to show that U � 0. It will su�ce to show

s
 s�Z1 � hU ; hi � Z2� � 0

for all Z1;Z2 2SCpolynom and all h 2 L2�R��:
By Lemma 5.2.2, we have

s
s�Z1 � hU ; hi � Z2�
� lim

n!1 s
 s�Z1 � hrYn; hiH � Z2�
� lim

n!1�s�Z1YnZ2X �h�� ÿ s
 s�Z1Yn � hrZ2; hiH �
ÿ s
 s�hrZ1; hiH � YnZ2�� � 0

since Yn ! 0 in Lp (resp. weakly). (

5.3. Multiple stochastic integrals and chaotic decomposition

We now investigate the case where H � L2�R��. In this case, the
process Xt � X �1�0;t�� is a free Brownian motion. We shall de®ne sto-
chastic integrals Z

f �t1; . . . ; tn� dXt1 . . . dXtn

for f 2 L2�Rn
�� � L2�R��
n. This will give an explicit description of

the isometry F �H� � L2�SC�L2�R���� (chaotic decomposition).
Using this isometry we can give more concrete formulas for the gra-
dient and divergence operators.

De®nition 5.3.1. Let Dn � Rn
� be the collection of all diagonals, i.e.

Dn :� f�t1; . . . ; tn� 2 Rn
�j ti � tj for some1 � i; j � n with i 6� jg:

For a characteristic function f � 1A with A � Rn
� of the form
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A � �u1; v1� � � � � � �un; vn�
with A \ Dn � ;, we de®ne the multiple stochastic integral

I�f � �
Z

f �t1; . . . ; tn� dXt1 � � � dXtn

by

I�f � :� �Xv1 ÿ Xu1� � � � �Xvn ÿ Xun�
and extend this by linearity to simple functions of the form

f �
Xk

i�1
ai1Ai ;

where

Ai � �ui
1; v

i
1� � � � � � �ui

n; v
i
n�

are disjoint n-dimensional rectangles as above which do not meet the
diagonals.

A simple computation shows that

hI�f �; I�g�iL2�SC� � hf ; giL2�Rn
��:

Since each f 2 L2�Rn
�� can be approximated in L2-norm by functions

of the above form we can extend the de®nition of I�f � �R
f �t1; . . . ; tn� dXt1 � � � dXtn to all f 2 L2�Rn

��.
Let now f � �1n�0fn 2a1

n�0L
2�Rn

�� � F �L2�R���. Then one easily
sees that

hI�fn�; I�fm�iL2�SC� � 0 for n 6� m;

and thus we haveX1
n�0

I�fn�
2

L2�SC�
�
X1
n�0
kfnk2L2�Rn

�� � kf k
2
F �L2�R��� :

In this way we can assign to each f � �fn 2 F �L2�R��� the multiple
integral

I�f � :�
X1
n�0

I�fn� �
X1
n�0

Z
fn�t1; . . . ; tn� dXt1 � � � dXtn 2 L2�SC�:

Proposition 5.3.2. The map

I : F �L2�R��� ! L2�SC�
f 7! I�f �

is determined by

398 P. Biane, R. Speicher



I�f �X � f ;

and the map I is an isomorphism.
Proof. One sees directly that the ®rst statement is true for simple
functions as used in the de®nition of I�f �, and thus it extends to all
f 2 F �L2�R���. As we argued before, in Section 5.1, by using
Tchebyche� polynomials, this map has also to be onto, i.e. it is an
isomorphism. (

This isomorphism yields the ``chaos'' decomposition of the space
L2�SC�: Each element in L2�SC� can be represented in a unique way
as a multiple integral

I�f � �
X1
n�0

Z
fn�t1; . . . ; tn� dXt1 � � � dXtn ; with f � �fn 2 F �L2�R���:

The ItoÃ -formula in this frame is now just a rule for expressing the
product of multiple integrals as a sum of multiple integrals.

Notation. For functions f 2 L2�Rn
�� and g 2 L2�Rm

�� we denote by

f_
p

g 2 L2�Rn�mÿ2p� for 0 � p � min�n;m�
the functions given by

�f_p g��t1; . . . ; tn�mÿ2p�
:�
Z

f �t1; . . . ; tnÿp; sp; . . . ; s1�g�s1; . . . ; sp; tnÿp�1; . . . ; tn�mÿ2p�
� ds1 . . . dsp

In particular, for p � 0, we have f_
0

g � f 
 g.

Proposition 5.3.3. For f 2 L2�Rn
�� and g 2 L2�Rm

�� we have

I�f �I�g� �
Xmin�n;m�

p�0
I�f_p g�:

Proof. Just check for simple functions as in the de®nition of multiple
integrals. (

We will now compare the L1-norm of a multiple integral with its
L2-norm. This result, which is a semi-circular version of Haagerup's
inequality [H], is due to Bo_zejko [Boz], but we will reprove that
statement here in a more combinatorial way-very much in the same
spirit as our proof of the Burkholder-Gundy inequality.
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Theorem 5.3.4. For f 2 L2�Rn
�� we have Z f �t1; . . . ; tn� dXt1 � � � dXtn

 � �n� 1�kf k2 :

Proof. We use

kI�f �k � lim
m!1�s��I�f �I�f �

��m��1=2m :

We note that for calculating the moment s��I�f �I�f ���m� we have to
pair all arguments of the appearing functions in such a way, that the
pairing is non-crossing and that no arguments within each f are
paired. Each such pairing contributes to the moment an nm-fold in-
tegral over f
2m where, according to the pairing, pairs of arguments of
that function are identi®ed and integrated; by an iterated application
of Cauchy-Schwarz this integral can be estimated against kf k2m

2 - in-
dependently of the pairing. Let us denote by dn

m the number of non-
crossing pairings of 2mn numbers which ful®ll the constraint that we
do not pair within any of the 2m sets f1; . . . ; ng,...,
f�2mÿ 1�n� 1; . . . ; 2mng. (For n � 1 we have d1

m � Cm.) Then the
constant we will get for our norm estimate is given by limm!1�dn

m�1=2m.
We have not been able to calculate this number by combinatorial
means, but we can recover this limit by looking at the above problem
for a special choice of f . Namely, if we take f � �1�0;1��
n, then I�f �
will be nothing but Tn�X1�, where Tn is the n-th Tchebyche� polyno-
mial and X1 is the semi-circular variable of variance 1. But as a special
case of the above reasoning we obtain that

lim
m!1�d

n
m�1=2m � kTn�X1�k :

On the other side, this norm of Tn�X1� can be calculated as

kTn�X1�k � sup
jtj�2
jTn�t�j ;

which is equal to n� 1 ± as follows directly from the concrete repre-
sentation

Tn�2 cos h� � sin�n� 1�h
sin h

: (

In order to get a representation of square-integrable biprocesses in
terms of multiple integrals we have to extend our notion of multiple
integrals to ``bi-multiple'' integrals ± essentially this means that we
work with I 
 I instead of just I.
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Notation. For a function f 2 L2�R�; L2�Rn
�� 
 L2�Rm

���,

t 7! ft 2 L2�Rn
�� 
 L2�Rm

�� � L2�Rn�m
� �;

we denote

�I 
 I��f � 2 L2�R�; L2�SC� 
 L2�SC�� � B2;

corresponding to the process

t 7! �I 
 I��ft� 2 L2�SC� 
 L2�SC�;
also by

�I 
 I��ft� �:

Z
ft�t1; . . . ; tn; s1; . . . ; sm� dXt1 � � � dXtn 
 dXs1 � � � dXsm :

For clarity, we will also write sometimes I �n� 
 I �m� instead of I 
 I.
Because of the properties of I , it is clear that

h�I 
 I��f �; �I 
 I��g�iB2
� hf ; giL2�R�;L2�Rn

��
L2�Rm
���;

and that for

f �ni;mi� 2 L2�R�; L2�Rni�� 
 L2�Rmi� �� �i � 1; 2�
we have

h�I 
 I��f �n1;m1��; �I 
 I��f �n2;m2��iB2
� 0; if n1 6� n2 or m1 6� m2:

Thus we obtain for

f � �1n;m�0 f �n;m� 2 L2�R�; F �L2�R��� 
 F �L2�R����
with

f �n;m� 2 L2�R�; L2�Rn
�� 
 L2�Rm

��� :
that  X1

n;m�0
�I 
 I��f �n;m��

2
B2

�
X1

n;m�0
kf �n;m�k2 � kf k ;

and thus I 
 I gives an isometry

I 
 I : L2�R�; F �L2�R��� 
 F �L2�R���� ! B2

f � a
1

n;m�0
f �n;m� 7! �I 
 I��f � :�

X1
n;m�0
�I 
 I��f �n;m��:

The following proposition is clear from the corresponding properties
of I .
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Proposition 5.3.5. The map

I 
 I : L2�R�; F �L2�R��� 
 F �L2�R���� ! B2

is uniquely determined by

�I 
 I��ft��X
 X� � ft;

and I 
 I is an isomorphism.

De®nition 5.3.6. We call a process

f � a
n;m�0

f �n;m� 2 L2�R�; F �L2�R��� 
 F �L2�R����

adapted, if the following holds (almost surely): For all n;m 2 N with
n� m � 1 we have

f �n;m�t �t1; . . . ; tn; s1; . . . ; sm� � 0 if max�t1; . . . ; tn; s1; . . . ; sm� > t:

The proof of the following proposition is straightforward.

Proposition 5.3.7. 1� For a process f 2 L2�R�; F �L2�R���

F �L2�R���� the following statements are equivalent:

a� f is adapted.
b� �I 
 I��f � is an adapted biprocess, i.e. �I 
 I��f � 2 Ba

2:
2� Let f � �f �n;m� 2 L2�R�; F �L2�R��� 
 F �L2�R���� be adapted.
Then we haveZ
�I 
 I��ft�] dXt

�
X1

n;m�0

Z Z
f �n;m�t �t1; . . . ; tn; s1; . . . ; sm� dXt1 � � � dXtn 
 dXs1 � � � dXsm

� �
] dXt

�
X1

n;m�0
f �n;m�t �t1; . . . ; tn; s1; . . . ; sm� dXt1 � � � dXtn dXt dXs1 � � � dXsm :

Theorem 5.3.8 (predictable representation theorem). For every element
Y 2 L2�SC�; there exists a unique adapted U 2 Ba

2 such that

Y � s�Y � �
Z 1
0

Us] dXs

Proof. By the chaos decomposition, each Y 2 L2�SC� is of the form
Y � I�f � for some f � �f �n� 2 F �L2�R���. It will be su�cient to
consider the case f � f �n� for ®xed n. Then we de®ne processes
(k � 0; . . . ; nÿ 1)
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t 7! f �k;nÿkÿ1�
t 2 L2�Rk

�� 
 L2�Rnÿkÿ1
� �

by

f �k;nÿkÿ1�
t �t1; . . . ; tk; s1; . . . ; snÿkÿ1�

:�
f �t1; . . . ; tk; t; s1; . . . ; snÿkÿ1�; if max

�t1; . . . tk; s1 . . . ; snÿkÿ1� � t

0; otherwise

8<:
It is clear that all f �k;nÿkÿ1� are adapted and that with

Ut :�
Xnÿ1
k�0
�I �k� 
 I �nÿkÿ1���f �k;nÿkÿ1�

t �

we have

Y � I�f � �
Z

Ut] dXt:

Uniqueness follows from the isometry property. (

In terms of multiple integrals the gradient and the divergence op-
erator can be written in a more concrete form. The statement is clear
for simple functions and the general case follows by approximation.

Proposition 5.3.9. 1� The gradient operator r considered as a mapping

r : L2�SC� ! B2

is given by

rt

Z
f �t1; . . . ; tn�dXt1 � � � dXtn

� �
�
Xn

k�1

Z
f �t1; . . . ; tkÿ1; t; tk�1; . . . ; tn� dXt1 � � � dXtkÿ1 
 dXtk�1 � � � dXtn :

2� The divergence operator d considered as a mapping

d : B2 ! L2�SC�
is given by

d
Z

ft�t1; . . . ; tn; s1; . . . ; sm� dXt1 � � � dXtn 
 dXs1 � � � dXsm

� �
�
Z

ft�t1; . . . ; tn; s1; . . . ; sm� dXt1 . . . dXtn dXt dXs1 � � � dXsm :

By using the chaos decomposition for an element in L2�SC� it is
easy to describe the domain D�r� � D2 and the action of r on that
space. The proof is again straightforward.
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Proposition 5.3.10. Let Y 2 L2�SC� have chaos decomposition
Y �P1n�0 I�fn� with fn 2 L2�Rn

��. ThenZ
R�
krtY k22dt �

X1
n�0

nkfnk2L2�Rn
��

and Y belongs toD2 if and only if the latter sum converges to a ®nite value.

Note also that for functions u : R! R with I1�u� <1 we have a
kind of chain rule for r: If Y 2 D1, then

rtu�Y � � @u�Y �]rtY

with @ as de®ned in Sect. 4.3.
The concrete form of d shows that the divergence operator can,

as in the classical case, be seen as a kind of stochastic integral (the
Skorohod integral). Indeed, by combining Propositions 5.3.7 and
5.3.9, we get that d is a canonical generalization of the Itô-inte-
gral.

Proposition 5.3.11. For an adapted biprocess U 2 Ba
2; one has U 2 D�d�

and
R1
0 Us] dXs � d�U�.

This Proposition justi®es to call d the free Skorohod integral.

Proof. We write U in the form Ut � �I 
 I��ft� for an adapted
f � �f �n;m� 2 L2�R�; F �L2�R��� 
 F �L2�R����. Then we haveZ

Ut] dXt �
Z
�I 
 I��ft�] dXt

�
X1

n;m�0
f �n;m�t �t1; . . . ; tn; s1; . . . ; sm� dXt1 � � � dXtn dXt dXs1 � � � dXsm

�
X1

n;m�0
d
ÿ�I �n� 
 I �m���f �n;m�t ��

� d
ÿ�I 
 I��ft�

�
� d�U� :

Since
R

Ut] dXt 2 L2�SC�, this equality also shows that U belongs to
the domain of d. (

We also have a free analogue of the Bismut-Clark-Ocone formula.
Denote by C : B2 ! Ba

2 the orthogonal projection onto the space of
square integrable adapted bi-processes.
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Proposition 5.3.12 (free Bismut-Clark-Ocone formula). For any
Y 2 D2; one has

Y � s�Y � � d�CrY �

Proof. For Y � I�f �n�� with f �n� 2 L2�Rn
�� we obtain

CrtI�f �n��

�
Xn

k�1

Z
t�maxftiji6�kg

f �t1; . . . ; tkÿ1; t; tk�1; . . . ; tn�

� dXt1 � � � dXtkÿ1 
 dXtk�1 � � � dXtn

yielding

d�CrI�f �n��� �
Xn

k�1

Z
tk�max�t1;...;tn�

f �t1; . . . ; tn� dXt1 � � � dXtn

�
Z

f �t1; . . . ; tn� dXt1 � � � dXtn : (

The fact that stochastic integrals de®ne martingales is again true
for generalized stochastic integrals, namely one has the following.

Proposition 5.3.13 (martingale representation theorem). A map t 7!Mt

from R� to L2�SC� is a martingale bounded in L2�SC� if and only if
there exists an adapted U 2 Ba

2 and a M0 2 C, such that
Mt � M0 �

R t
0 Us] dXs for all t � 0.

Proof. By the predictable representation theorem, for all T � 0, there
exists a U �T � 2 Ba

2 such that MT � M0 �
R

U �T �s ] dXs. Since for t � T

Mt � s�MT jAt� � M0 �
Z t

0

U �T �s ] dXs;

we see that U �T �t is for t � T independent of T . Put U :� limT!1U �T �.
Since

1 > sup
T�0
kMTk2L2�SC� � kMtk2L2�SC�

� jM0j2 �
Z t

0

s�hUs;Usi�ds � kUk2B2
;

we have
R1
0 s�hUs;Usi� ds <1 and thus U 2 B2. Adaptedness of U is

clear. This establishes the necessary condition, and the converse is
easy. (
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5.4. The Skorohod integral

As seen before, the Skorohod integral

d : B2 ! L2�SC�
is the adjoint of the gradient operator, i.e. we have

s�d�U�Y � �
Z

R�
s
 s�UtrtY � dt for U 2 D�d� and Y 2 D�r� :

More important than the natural domain D�d� of the Skorohod in-
tegral will be a special subclass. To de®ne this class we have to extend
the action of

r : L2�SC� � L2�R0
�; L2�SC�� ! B2 � L2�R�; L2�SC� 
 L2�SC��

to
r : B2 � L2�R�; L2�SC� 
 L2�SC��

! L2�R2
�; L2�SC� 
 L2�SC� 
 L2�SC��

in the canonical way: For Ut � At 
 Bt we put

rs�At 
 Bt� :� �rsAt� 
 Bt � At 
 �rsBt�:
The relevant subclass for our considerations is now given by the do-
main of this version of r.

Notation. We denote by L2 the class of biprocesses U 2 B2 such that

rU 2 L2�R2
�; L2�SC� 
 L2�SC� 
 L2�SC��:

L2 is a Hilbert space with the norm

kUk2L2 :� kUk2B2
� krUk2L2�R2

�;L2�SC�
L2�SC�
L2�SC��:

Ona formal level,r and d ful®ll theHeisenberg commutation relations.

Proposition 5.4.1. For U 2 D�d� with ®nite chaos expansion we have

rt�d�U�� � Ut � ds�rtUs�;
where the subscript at ds indicates that the Skorohod integration acts in
the variable s.

Proof. It su�ces to consider U of the form

Ut � �I�n� 
 I�m���ft� �
Z

ft�t1; . . . ; tn; s1; . . . ; sm� dXt1 � � � dXtn 
 dXs1 � � � dXsm

with f 2 L2�R�; L2�Rn
�� 
 L2�Rm

���. Then we have
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rt�d�U�� � rt

Z
fs�t1; . . . ; tn; s1; . . . ; sm� dXt1 � � � dXtn dXsdXs1 � � � dXsm

� �
� Ut �

Xn

k�1

Z
fs�t1; . . . ; tkÿ1; t; tk�1; . . . ; sm� dXt1 � � � dXtkÿ1
 dXtk�1 � � � dXsm

�
Xm

k�1

Z
fs�t1; . . . ; skÿ1; t; sk�1; . . . ; sm� dXt1 � � � dXskÿ1 
 dXsk�1 � � � dXsm

� Ut � ds�rtUs�: (

This commutativity relation between r and d yields the following
relation for the covariance between two Skorohod integrals.

Proposition 5.4.2. 1� We have L2 � D�d�. 2� Let U ; V 2 L2. Then we
have

s�d�U�d�V �� �
Z

R�
�s
 s��UtVt�dt �

Z
R2
�

�s
 s
 s���rsUt��rtUs�� ds dt:

Proof. We have for U ; V 2 B2 with ®nite chaos expansion

s�d�U�d�V �� �
Z

R�
�s
 s��Ut�rt�d�V ��� dt

�
Z

R�
�s
 s��UtVt� dt �

Z
R�
�s
 s��Utds�rtVs�� dt

�
Z

R�
�s
 s��UtVt� dt �

Z
R2
�

�s
 s
 s���rsUt��rtVs�� dt ds:

Put now V � U�. The right hand side of the above formula extends
continuously to all U 2 L2. This implies that s�d�U�d�U��� is ®nite, i.e.
U 2 D�d�, for all U 2 L2. Hence we get the ®rst part of the proposi-
tion. The second part follows by continuous extension of the above
formula to all U ; V 2 L2. (

Note that Proposition 5.4.2 represents the generalization of the Ito
isometry (Proposition 3.1.1) from the case of the ItoÃ integral to the
Skorohod integral. For adapted biprocesses the second term in the
above formula vanishes.

It is conceivable that there should also exist analogues of the above
formula for the other Lp-spaces. In view of our Burkholder-Gundy
inequality one might suspect that we even have an estimate in oper-
ator norm for the Skorohod integral involving the gradient operator.
In the classical case such estimates rely, for p <1, on so-called
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Meyer's inequalities. It would be interesting to ®nd an analogue of this
for our case. Up to now, we could not prove such an estimate.
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