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Abstract. In this paper it is shown that the unique multiplicative
functional solution to a di�erential equation driven by a geometric
multiplicative functional consitutes a ¯ow of local di�eomorphisms.
In the case where the driving geometric multiplicative functional is
generated by a Brownian motion, the result in particular presents an
answer to an open problem proposed in Ikeda and Watanabe [4].
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0. Introduction

The study of solution ¯ows of deterministic dynamical systems is a
well developed topic. Given N vector ®elds A1; . . . ;AN on the euclidean
space Rd , we consider a di�erential equation:

dYt �
XN

i�1
Ai�Yt� dX i

t ; Y0 � x ; �1�

where Xt � �X i
t � is a continuous path in RN as a driving force. If the

path t! Xt is smooth and each Ai 2 C1b �Rd�, then Eq.(1) possesses a
unique solution, denoted by Ft�X ; x�. We call the map X ! F��X ; �� the
ItoÃ map associated to vector ®elds A1; . . . ;AN , although the name
usually has been used only for semimartingale paths.

If we ®x a smooth path X and regard the unique solution Ft�X ; x� as
a map
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Ft�X ; ��: Rd ! Rd ; x! Ft�X ; x� ; �2�
then a fundamental theorem in the theory of ordinary di�erential
equations asserts that the map Ft�X ; �� is smooth, its tangent map
Ft�X ; �� � �x� is non-degenerate, and therefore �Ft�X ; ��� is a ¯ow of
di�eomorphisms. A similar result has been established for some sto-
chastic dynamical systems. For example, if t! �X i

t � is an N dimen-
sional Brownian motion, then there is a solution ¯ow �Ft�X ; x�� to
Eq.(1). Indeed such results have been established for more general
stochastic processes, see Elworthy [2; 3], Ikeda and Watanabe [4], and
Kunita [5; 6] for more details and more references.

The present paper aims to describe a new approach to constructing
a (stochastic) ¯ow of di�eomorphisms. In fact what we show is that
the unique multiplicative functional solution to a di�erential equation
driven by a geometric multiplicative functional constructed in Lyons
[9] forms a ¯ow of local di�eomorphisms. If the driving path Xt is a
Brownian motion (or more generally, a continuous semimartingale),
then we provide a precise version of the solution ¯ow to a stochastic
dynamical system. However our result can be applied to a more
general rough path.

We next describe the setting of this paper. The concept of a mul-
tiplicative functional as a genuine rough path has been proposed in
Lyons [7; 8; 9], and a calculus for multiplicative functionals has been
established in [9].

Note that ItoÃ map Ft�X ; x� obtained by solving Eq. (1) depends
essentially on the interpretation of a di�erential dX we give to a path
X . For example, if X is a Brownian motion, then ItoÃ di�erential and
Stratonovich di�erential lead to totally di�erent ItoÃ maps.

Let X be a continuous path in a vector space V . If we are going to
de®ne a kind of path integral of a 1-form a along the path X ,R

a�X � dX , it seems reasonable that one can also de®ne iterated inte-
grals Xk

st of X :

Xk
st �

Z
s<t1<���<tk<t

dXt1 
 � � � 
 dXtk : �3�

In fact it su�ces to de®ne Xk, k � p, where p is a constant relating to
the roughness of the path X , the higher order iterated integrals are
uniquely determined by Xk, k � p, and therefore one may de®neR

a�X �dX for any a which is smooth enough. For example, if X is a
continuous and piece-wisely smooth path, then X1

st � Xt ÿ Xs, and
consider Xk

st (k � 2) to be the conventional iterated integrals. That is,
Xk

st is recursively de®ned by
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Xk
st � lim

m�D�!0

Xm

l�1

X
i�j�k
i;j�1

Xi
stlÿ1 
 X

j
tlÿ1tl ; �4�

where D � fs � t0 � � � � � tm � tg, and we regard Xk
st as a tensor in the

tensor product V 
k. Therefore we only need to know X1
st, that is, the

path t! Xt itself. Moreover, such choices of Xk
st lead to the following

scaling control:

sup
D

X
l

Xk
tlÿ1tl

�� ��1k<1; k � 1; 2; . . . ; �5�

where sup takes over all ®nite dissection D of �s; t�.
An advantage of using tensor form of Xk

st is that the basic property
of any reasonable integral can be expressed via K.T.Chen formula (see
[1]):

Xst 
 Xtu � Xsu; 8 0 � s � t � u ; �6�
where we set

Xst � �1;X1
st; . . . ;Xn

st�; 0 � s � t ;

and regard it as an element in the truncated tensor algebra T �n��V �:

T �n��V � �
Xn

k�0
�V 
k; V 
0 � R :

It is easily seen that if Xst � �1;X1
st; . . . ;Xn

st� satis®es the analytic
condition (5) and the algebraic relation (6), then X2

st; . . . ;Xn
st are

uniquely determined by X1
st, that is, by the path t! Xt itself.

However, most rough paths we are interested rarely satisfy the
analytic condition (5) even for X1

st. For example, almost all sample
paths of a Brownian motion do not satisfy (5). On the other hand,
almost all Brownian motion paths X are 1

p-HoÈ lder continuous for any
p > 2 (but not for p � 2), and therefore

sup
D

X
l

X1
tlÿ1tl

�� ��p<1 :

Hence if X is a rough path, if we were able to de®ne a kind of path
integral, and therefore the iterated integrals Xk

st make sense, then by
scaling property we expect that Xk

st satisfy a weaker analytic condition
that

sup
D

X
l

Xk
tlÿ1tl

�� ��pk<1 �7�

for some p � 1, even (5) does not hold.
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It is shown in Lyons [9] that if Xst � �1;X1
st; . . . ;Xn

st� satis®es (6) and
(7), then Xk

st (k � �p� � 1) are uniquely determined by X1
st; . . . ;X

�p�
st .

Moreover, given X1
st (that is, a path t! Xt), then there are many

di�erent choices of X2
st; . . . ;X

�p�
st , such that Xst � �1;X1

st; . . . ;X
�p�
st � sat-

is®es the algebraic relation (6) and analytic condition (7).
Following Lyons [9], a genuine rough path is a combination

�X1
st; . . ., X

�p�
st � satisfying (6) and (7). We call such a combination a

multiplicative functional with ®nite p-variation by an obvious reason
(see section 1 below for a precise de®nition).

The paper is organised as following. In Sect. 1, we collect several
results about multiplicative functionals and establish notations as
well. Also we add several new results about multiplicative functionals.
In Sect. 2 we show that the procedure of iterating the integrals of a 1-
form gives the unique solution to a di�erential equation driven by a
multiplicative functional. In the ®nal Sect. 3, we prove that the unique
multiplicative functional solution of a di�erential equation driven by
a geometric multiplicative functional is smooth in initial date, and
forms a ¯ow of di�eomorphisms provided the vector ®eld is smooth
enough.

1. Integration

In this section we recall several basic facts about multiplicative
functionals, and establish notations as well, for more details, see Ly-
ons [9]. Given a T > 0, we will use I to denote the interval �0; T �, and
4 to denote the set �s; t�: 0 � s � t � Tf g.

A continuous function x on4 with values in R� is called a control
function if

x�s; t� � x�t; u� � x�s; u�; 8 �s; t�; �t; u� 2 4 ;

and x is regular, that is, x�s; s� � 0 for all s 2 I.
Given a real and separable Banach space V , we use T �n��V � to

denote the truncated tensor algebra over V of degree n:

T �n��V � �
Xn

k�0
�V 
k; V 
0 � R :

Each V 
k (k � n) is endowed with any but ®xed compatible Banach
tensor norm.

We say a map X:4! T �n��V � is of ®nite p-variation controlled by
a regular control function x if Xst � 1;X1

st; . . . ;Xn
st

ÿ �
, Xk

st 2 V 
k, and
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jXi
stj �

x�s; t� i
p

b i
p

� � ; 8 �s; t� 2 4; i � 1; . . . ; n ; �8�

where b is a ®xed positive constant depending only on p. For the
precise value of b, see Lyons [9]. Such a function X is called an almost
multiplicative functional with ®nite p-variation controlled by x if in
addition n � �p� and
�Xst 
 Xtu�i ÿ Xi

su

�� �� � K1x�s; t�h; 8 �s; t� 2 4; i � 1; . . . ; �p� �9�
for some constants K1, h > 1.

A functional X:4! T �n��V � is called a multiplicative functional (of
degree n) if Xst � �1;X1

st; . . . ;Xn
st� and X satis®es K. T. Chen formula

(see [1]),

Xst 
 Xtu � Xsu; 8 �s; t�; �t; u� 2 4 : �10�
If X:4! T �n��V � is a multiplicative functional of degree n, and
Xst � �1;X1

st; . . . ;Xn
st�, then we say X1 is the ®rst level path, X2 is the

second level path and etc. In this case, we use either Xt or X 1
t to denote

X1
0t, unless otherwise speci®ed.
A calculus for multiplicative functionals has been established in

Lyons [9]. Here we recall several results in [9] we need later.
Let X:4! T �n��V � be a multiplicative functional of degree n.

Then

Xk
st �

Xm

l�1

�
Xk

tlÿ1tl �
X
i�j�k
i;j�1

Xi
stlÿ1 
 X

j
tlÿ1tl

�
; k � 1; . . . ; n ;

for any ®nite dissection D � fs � t0 � t1 � � � � � tm � tg of �s; t�.
If in addition X is of ®nite p-variation and n � �p�, then it is shown

in Lyons [9] that the following limits exist,

Xk
st � lim

m�D�!0

Xm

l�1

X
i�j�k
i;j�1

Xi
stlÿ1 
 X

j
tlÿ1tl ; 8 �s; t� 2 4; k � �p� � 1; . . . ;

m�D� � maxl�tl ÿ tlÿ1�. Moreover

~Xst � �1;X1
st; . . . ;Xn

st�
is the unique extension among those ~X which satis®es K.T.Chen
formula and possesses ®nite p-variation for each n > �p�, and the ex-
tension X! ~X is continuous in the following sense: if X;Y are
two multiplicative functionals with ®nite p-variation controlled by x,
and
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Xi
st ÿ Yi

st

�� �� � ex�s; t� i
p; 8 �s; t� 2 4; i � 1; . . . ; �p� �11�

for e � e0, where e0 > 0 is a ®xed constant depending only on p, then
the inequality (11) remains true for any i.

The following is a result in Lyons [9] which shows how to construct
a multiplicative functional from an almost one.

Theorem 1 (Lyons [9]). Let X:4! T �n��V � be an almost multiplicative
functional with ®nite p-variation (so that n � �p�). Then there is a unique
multiplicative functional X̂ with ®nite p-variation, such that

X̂
i
st ÿ Xi

st

��� ��� � K2x�s; t�h; 8 �s; t� 2 4; i � 1; . . . ; �p� ;
for some control function x, constants K2, h > 1. Moreover, the map
X! X̂ is continuous in the following sense: if X;Y are two almost
multiplicative functionals with ®nite p-variation controlled by x and if

Xi
st ÿ Yi

st

�� �� � ex�s; t�; 8 �s; t� 2 4; i � 1; . . . ; �p� ;
then

X̂
i
st ÿ Ŷ

i
st

��� ��� � K3K�e�x�s; t�
i
p; 8 �s; t� 2 4; i � 1; . . . ; �p� ;

for some constants K�e� depending only on p, h and e > 0 such that
lime!0 K�e� � 0, and K3 depending on p, maxx, h.

Indeed X̂
k
can be obtained by the following recursive de®nition:

X̂
k
st � lim

m�D�!0

X
l

�
Xk

tlÿ1tl �
X
i�j�k
i;j�1

X̂
i
stlÿ1 
 X̂

j
tlÿ1tl

�
; 8 �s; t� 2 4 ; �12�

k � 1; . . . ; �p�.
De®nition 1. 1) A multiplicative functional X:4! T �n��V � is called a
classical multiplicative functional, if t! Xt � X1

0t is continuous and
piece-wisely smooth, and

Xk
st �

Z
s<t1<���<tk<t

dX 1
t1 
 � � � 
 dX 1

tk ;

where the right hand side is in the sense of the conventional integral.
2) Let X:4! T �n��V � be a multiplicative functional with ®nite p-

variation.We say it is geometric if there is a control function x such that
X is of ®nite p-variation controlled by x, and for any e > 0 there is a
classical multiplicative functional X�e�:4! T �n��V � which is of ®nite p-
variation controlled by x, and
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X�e�ist ÿ Xi
st

�� �� � ex�s; t� i
p; 8�s; t� 2 4; i � 1; . . . ; �p� :

It is easily seen that if X is a geometric multiplicative functional, then
the symmetric part of Xi

st is
1
i! �X1

st�
i for each i.

Example 1 If W is a continuous semimartingale on a probability space
�X; P�, then we can prove that

~W�r�st �
�
1;W�r�1st;W�r�2st

�
is a geometric multiplicative functional with ®nite p-variation for any
2 < p < 3 and for almost all r 2 X, where W1

st � Wt ÿ Ws and

W2
st �

Z
s<t1<t2<t

�dWt1 
 �dWt2 ;

where the right hand side is in the sense of Stratonovich's integral.
Let V ;U be two real, separable Banach spaces. Then we will use

hom�V ;U� to denote the Banach space of all continuous linear op-
erators from V to U endowed with the usual operator norm. A map
f : V ! U is called a Lip�r� map, if all j-th derivatives f j up to degree
�r� exist and

f j�xt��v� �
X

i�j��r�
f i�j�xs��xi

st 
 v� � Rj�xs; xt��v�; 8 v 2 V 
j ;

jf j�x�j � M ; jRj�x; y�j � M jxÿ yjrÿj ; �13�
for j � 0; . . . ; �r�, and any smooth path t! xt, where M is a positive
constant (called Lipschitz constant of f ), and

xk
st �

Z
s<t1<���<tk<t

dxt1 
 � � � 
 dxtk ; k � 1; . . . ;

where the right hand side is in the sense of the conventional iterated
integrals.

Since f j 2 hom�V 
j;U� is symmetric, so that we can replace xi
st by

its symmetric part 1
i! �x1st�
i in (13). Hence we have

Proposition 1. If f : V ! U is a Lip�r� map, and X:4! T �n��V � is a
geometric multiplicative functional of degree n, n � �r�, then

f j�Xt��v� �
X

i�j��r�
f i�j�Xs��Xi

st 
 v� � Rj�Xs;Xt��v�; 8 v 2 V 
j ;

for j � 0; . . . ; �r�. (14)
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In the sequel, for simplicity, we will assume that 2 � p < 3. Ex-
ample 1 shows that our next discussion can be applied to almost all
sample paths of a continuous semimartingale.

Proposition 2. Let f : V ! U be a Lip�r� map, and let r > 2. Then

f �y� ÿ f �x� ÿ f 1�x��y ÿ x� � F �x; y� 1
2�y ÿ x�
2
� �

;

and

f 1�y� ÿ f 1�x� � G�x; y��y ÿ x�
for any x; y 2 V , where

F :V � V ! hom�V 
2;U�;
G:V � V ! hom�V ; hom�V ;U��

are two Lip�r ÿ 2� maps.
A map a: V ! hom�V ;W � is called a W -valued 1-form on V . We

make the following convention. Be the de®nition, ai is a map from V
to hom�V 
i; hom�V ;W �� which we identify as hom�V 
�i�1�;W �, and
we regard ai as a map (and use the same notation) which takes values
in hom�V 
�i�1�;W � by

ai�x��n1 
 � � � 
 ni�1� � ai�x��n1��n2 
 � � � 
 ni�1� :
Given a multiplicative functional with ®nite p-variation
X:4! T �2��V �, and a 1-form a: V ! hom�V ;W � which is of Lip�r�,
r > 1. Then following Lyons [9] we de®ne a functional
Y:4! T �2��W � by

Yst � 1;Y1
st;Y

2
st

ÿ �
;

Y1
st � a�Xs��X1

st� � a1�Xs��X2
st� ;

Y2
st � a�Xs� 
 a�Xs��X2

st� :
It is shown in Lyons [9] that if r�1

p > 1, then Y:4! T �2��W � is an
almost multiplicative functional with ®nite p-variation. The associated
multiplicative functional Ŷ is called the integral of the 1-form a
against the multiplicative functional X, and denoted by

R
a�X �dX. For

simplicity we will use
R t

s a�X �dX to denote �R a�X �dX�st and
R t

s a�X �dXi

to denote the i-th component �R a�X �dX�ist, respectively.

Proposition 3 (Lyons [9]). There is a KM > 0 depending only on M ; r; p,
where r�1

p > 1, such that if a: V ! hom�V ;W � is a Lip�r� map with a
Lipschitz constant M , if X:4! T �2��V � is a geometric multiplicative
functional with ®nite p-variation controlled byx, and ifx � 1 on4, then
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Z t

s
a�X �dXi

���� ���� � �KMx�s; t�� ip
b i

p

� �
!

; 8�s; t� 2 4; i � 1; 2 : �15�

The following two propositions are crucial in our next development.
In what follows, we will use K (with or without a lowerscript) to
denote a constant which may be di�erent from line to line.

Proposition 4. Let X; ~X:4! T �2��V � be two geometric multiplicative
functionals with ®nite p-variation controlled by x, and let a: V !
hom�V ;W � be a Lip�r� 1-form, p < r � 3. If

Xi
st ÿ ~X

i
st

��� ��� � ex�s; t� i
p; 8 �s; t� 2 4; i � 1; 2;

where e � 1, then

�Zst 
 Ztu�1 ÿ Z1
su

h i
ÿ �~Zst 
 ~Ztu�1 ÿ ~Z

1

su

h i��� ���
� Kerÿ2x�s; u�r

p ; �16�
and Z t

s
a�X �dX1 ÿ Z1

st

� �
ÿ

Z t

s
a� ~X �d~X

1 ÿ ~Z
1

st

� ����� ����
� Kerÿ2x�s; t�r

p �17�
for �s; t�; �t; u� 2 4, where K is a constant depending only on maxx, p,
r, and Lipschitz constant, and Zst � �1;Z1

st;Z
2
st�,

Z1
st � a�Xs��X1

st� � a1�Xs��X2
st�;

Z2
st � a�Xs� 
 a�Xs��X2

st� ;
and similarly to ~Z.

Proof. A simple calculation shows that

�Zst 
 Ztu�1 ÿ Z1
su � a�Xt� ÿ a�Xs� ÿ a1�Xs��X1

st�
� ��X1

tu�
� a1�Xt� ÿ a1�Xs�
� ��X2

tu� ;
and a similar equality for ~Z, so that

�Zst 
 Ztu�1 ÿ Z1
su

h i
ÿ �~Zst 
 ~Zsu�1 ÿ ~Z

1

su

h i
� �H ÿ ~H��X1

tu�
� a� ~Xt� ÿ a� ~Xs� ÿ a1� ~Xs��~X1

st�
h i

�X1
tu ÿ ~X

1

tu�
� �E ÿ ~E��X2

tu� � a1� ~Xt� ÿ a1� ~Xs�
� ��X2

tu ÿ ~X
2

tu� ; �18�
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where for simplicity, we have used the following notations:

H � a�Xt� ÿ a�Xs� ÿ a1�Xs��X1
st�;

E � a1�Xt� ÿ a1�Xs� ;
and similarly for ~H , and ~E. We ®rst estimate the ®rst term of the right
hand side in (18). By Prop. 2 we let

a�y� ÿ a�x� ÿ a1�x��y ÿ x� � F �x; y� 1
2�y ÿ x�
2
� �

;

where F : V � V ! hom�V 
2; hom�V ;W �� is a Lip�r ÿ 2� map. Since
~X, X are geometric multiplicative functionals, so that

H � F �Xs;Xt��X2
st�;

~H � F � ~Xs; ~Xt��~X2

st� :
�19�

However,

F �Xs;Xt� ÿ F � ~Xs; ~Xt� � RF �� ~Xs; ~Xt�; �Xs;Xt�� ; �20�
where RF denotes the remaining term of Lip�r ÿ 2� function F . Similar
notation is applied to other Lip functions. Hence

jF �Xs;Xt� ÿ F � ~Xs; ~Xt�j � K ex�s; t�1p
� �rÿ2

: �21�
Note that

H ÿ ~H � F �Xs;Xt� ÿ F � ~Xs; ~Xt�
ÿ ��X2

st�
� F � ~Xs; ~Xt��X2

st ÿ ~X
2

st� ;
so that

�H ÿ ~H��X1
tu� � F �Xs;Xt� ÿ F � ~Xs; ~Xt�

� ��X2
st 
 X1

tu�
� F � ~Xs; ~Xt� �X2

st ÿ ~X
2

st� 
 X1
tu

� �
:

Using (21) we get that

�H ÿ ~H��X1
tu�

�� �� � Kerÿ2x�0; t�rÿ2p x�s; u�3p
� Kex�s; u�3p : �22�

Since

a� ~Xt� ÿ a� ~Xs� ÿ a1� ~Xs��~X1

st� � Ra� ~Xs; ~Xt� ;
where

jRa�x; y�j � M jxÿ yjrÿ1 ;
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so that

a� ~Xt� ÿ a� ~Xs� ÿ a1� ~Xs��~X1

st�
h i

�X1
tu ÿ ~X

1

tu�
��� ���
� Kx�s; t�rÿ1p ex�t; u�1p : �23�

Now we estimate the third term in (18). Let

a1�y� ÿ a1�x� � Q�x; y��y ÿ x� ;
where Q: V � V ! hom�V ; hom�V 
2;W �� is a Lip�r ÿ 2� map, so that

Q�Xs;Xt� ÿ Q� ~Xs; ~Xt�
�� �� � RQ�� ~Xs; ~Xt�; �Xs;Xt��

�� ��
� K ex�0; t�1p

� �rÿ2
:

Hence we have

jE ÿ ~Ej � j�Q�Xs;Xt� ÿ Q� ~Xs; ~Xt���X1
st�j

� jQ� ~Xs; ~Xt��X1
st ÿ ~X

1

st�j
� K ex�0; t�1p

� �rÿ2
x�s; t�1p

� Kex�s; t�1p ;
so that

j�E ÿ ~E��X2
tu�j � Kerÿ2x�0; t�rÿ2p x�s; u�3p � Kex�s; u�3p : �24�

It is easily seen that

a1� ~Xt� ÿ a1� ~Xs�
� ��X2

tu ÿ ~X
2

tu�
��� ��� � Kex�s; u�r

p : �25�

Combining (22)±(25), we ®nally get that

�Zst 
 Ztu�1 ÿ Z1
su

h i
ÿ �~Zst 
 ~Zsu�1 ÿ ~Z

1

su

h i��� ���
� Kerÿ2x�0; t�rÿ2p x�s; u�3p � Kex�s; u�3p
� Kex�s; t�r

p � Kerÿ2x�0; t�rÿ2p x�s; u�3p
� Kex�s; u�3p � Kex�s; u�r

p

� Kerÿ2x�s; u�rp : �26�
Thus we have proved (16). Now we prove (17). For simplicity, we
denote by q � erÿ2. By (12), we haveZ t

s
a�X �dX1 � lim

m�D�!0
ZD

st ;
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where we denote by

ZD
st �

Xm

l�1
Z1

tlÿ1tl ;

if D � fs � t0 � t1 � � � � � tm � tg is a ®nite dissection of �s; t�. Similar
notation used for ~X. Let tl 2 D, and let D0 � Dÿ ftlg. Then we have

ZD
st ÿ ZD0

st � �Ztlÿ1tl 
 Ztltl�1�1 ÿ Z1
tlÿ1tl�1 :

Using the estimate (16), we obtain that

ZD
st ÿ ZD0

st

� �
ÿ ~Z

D
st ÿ ~Z

D0

st

� ���� ��� � Kqx�tlÿ1; tl�1�
r
p :

Choosing tl 2 D such that

x�tlÿ1; tl�1� � 1

mÿ 2
x�s; t�; if m > 3 ;

� x�s; t�; if m � 3 ; �27�
we have

ZD
st ÿ ZD0

st

� �
ÿ ~Z

D
st ÿ ~Z

D0

st

� ���� ��� � Kq
1

mÿ 2

� �r
p

x�s; t�r
p :

Repeating the same procedure and using the fact that r
p > 1, we ®nally

get that

ZD
st ÿ Z1

st

ÿ �ÿ ÿ~Z
D
st ÿ ~Z

1

st

���� ��� � Kqx�s; t�r
p : �28�

Letting m�D� ! 0 to get (17).

Proposition 5. Keep the same assumptions and notation as in Prop. 4.
Then

Kst 
 Ktu� �2ÿK2
su

h i
ÿ ~Kst 
 ~Ktu
ÿ �2ÿ~K

2

su

h i��� ���
� Kerÿ2x�s; u�r

p ; �29�
and Z t

s
a�X �dX2 ÿ K2

st

� �
ÿ
Z t

s
a� ~X �d~X

2 ÿ ~K
2

st

� ����� ����
� Kerÿ2x�s; t�r

p ; �30�
where

Kst � �1; Ẑ1

st;Z
2
st�; Ẑ

1

st �
Z t

s
a�X �dX1 ;

and similarly to ~K.
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Proof. It is easily seen that

�Kst 
 Ktu�2 ÿ K2
su � Z2

st � Z2
tu ÿ Z2

su � Ẑ
1

st 
 Ẑ
1

tu

� a�Xt� 
 a�Xt� ÿ a�Xs� 
 a�Xs�� ��X2
tu�

� Ẑ
1

st 
 Ẑ
1

tu ÿ a�Xs� 
 a�Xs��X1
st 
 X1

tu� :
However

Ẑ
1

st 
 Ẑ
1

tu ÿ a�Xs� 
 a�Xs��X1
st 
 X1

tu�
� �Ẑ1

st ÿ Z1
st� 
 Ẑ

1

tu � a�Xs��X1
st� 
 �Ẑ

1

tu ÿ Z1
tu�

� a1�Xs��X2
st� 
 Ẑ

1

tu

� a�Xs��X1
st�a1�Xt��X2

tu�
� a�Xs��X1

st� 
 H�X1
tu�

� a�Xs��X1
st� 
 a1�Xs��X1

st 
 X1
tu� ;

and similarly for ~X, where

H � a�Xt� ÿ a�Xs� ÿ a1�Xs��X1
st� :

Hence we have

�Kst 
 Ktu�2 ÿ K2
su

h i
ÿ �~Kst 
 ~Ktu�2 ÿ ~K

2

su

h i��� ��� � Kqx�s; u�r
p :

By (14), we have Z t

s
a�X �dX2 � lim

m�D�!0
YD

st ;

YD
st �

Xm

l

Z2
tlÿ1tl � Ẑ

1

stlÿ1 
 Ẑ
1

tlÿ1tl :

However it is clear that

YD
st ÿ YD0

st � �Ktlÿ1tl 
 Ktltl�1�2 ÿ K2
tlÿ1tl�1 ;

so that a similar argument as in the proof of Prop. 4 leads to the
inequality (30).

Corollary 1. Let a: V ! hom�V ;W � be a Lip�r� 1-form, p < r � 3, and
let X; ~X:4! T �2��V � be two geometric multiplicative functionals with
®nite p-variation controlled by x. If

Xi
st ÿ ~Xi

st

�� �� � ex�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 ;
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e � 1, then Z t

s
a�X �dXi ÿ

Z t

s
a� ~X �d~X

i
���� ����
� Kerÿ2x�s; t� i

p; 8 �s; t� 2 4; i � 1; 2 ; �31�
where K is a constant depending only on p; r;maxx and the Lipschitz
constant of a. In particular, if a is a Lip�r� 1-form, r � 3, thenZ t

s
a�X �dXi ÿ

Z t

s
a� ~X �d~X

i
���� ���� � Kex�s; t� i

p; 8�s; t� 2 4; i � 1; 2 ; �32�

for some constant K depending only on p; r;maxx and Lipschitz con-
stant M of a.

Proof. It is easily seen that

Z1
st ÿ ~Z1

st

�� �� � K
ÿ
ex�0; s�1p�rÿ2

x�s; t�1p ;
so that by (17), we haveZ t

s
a�X �dX1 ÿ

Z t

s
a� ~X �d~X

1
���� ����
� Kerÿ2x�s; t�1p :

Using above estimate, we have

K2
st ÿ ~K

2

st

��� ��� � K
ÿ
ex�0; s�1p�rÿ2

x�s; t�2p

� Kerÿ2x�s; t�2p :
By (30) we deduce thatZ t

s
a�X �dX2 ÿ

Z t

s
a� ~X �d~X2

���� ����
� Kerÿ2x�s; t�2p :

2. Di�erential equations

Suppose that t! xt is a smooth path in V , and f : W ! hom�V ;W � is
a V -valued vector ®eld on W . We consider the following di�erential
equation,

dyt � f �yt� dxt; y0 � z : �33�
By setting yst � yt ÿ ys and xst � xt ÿ xs, (33) can be written
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yst �
Z t

s
f �z� y0u� dx0u; yt � z� y0u : �34�

Note that

xst �
Z t

s
dx0u : �35�

Combining (34) and (35), and letting Zst � �xst; yst�, we can rewrite (33)
to be

Zst �
Z t

s
az

f �Z0u�dZ0u ; �36�

where az
f : V � W ! hom�V � W ; V � W � is a 1-form on V �W de-

®ned by

az
f �x; y��n; g� � �n; f �z� y��n��; 8�x; y�; �n; g� 2 V � W : �37�

Note (36) has a meaning for a multiplicative functional of any degree.

De®nition 2. Let f : W ! hom�V ;W � be a Lip�r� vector ®eld, r > 1,
and let X:4! T �2��V � be a multiplicative functional with ®nite p-
variation. Then a multiplicative functional with ®nite p-variation
Z:4! T �2� �V � W � is called a solution of the di�erential equation

dY � f �Y �dX; Y0 � z ; �38�
if pV �Z� � X, and

Z �
Z

az
f �Z�dZ ; �39�

where az
f : V � W ! hom�V � W ; V � W �,

az
f �x; y��n; g� � �n; f �z� x��n��; 8�x; y�; �n; g� 2 V � W ; �40�

and pV (resp. pW ) is the lift map over T �2��V � W � of the natural pro-
jection V � W ! V (resp. V � W ! W ). In this case Y � pW �Z� is
called a multiplicative functional solution of Eq. (38).

The following proposition is obvious.

Proposition 6. If Z:4! T �2��V � W � is a solution of Eq. (38), then
Y � pW �Z�:4! T �2��W � is a multiplicative functional with ®nite p-
variation.

The following theorem has been established in Lyons [9].

Theorem 2. Let X:4! T �2��V � be a geometric multiplicative func-
tional with ®nite p-variation, and let f : W ! hom�V ;W � be a Lip�r�
vector ®eld, r

p > 1. Then for any z 2 W , there is a unique solution
Z:4! T �2��V � W � to the di�erential equation
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dY � f �Y �dX; Y0 � z : �41�
Moreover, if X is of ®nite p-variation controlled by x, then Z is of ®nite
p-variation controlled by Kx, where K is a constant depending only on p,
r, maxx and Lipschitz constant of f .

In this case, we call Y � pW �Z� the unique multiplicative functional
solution of Eq.(38), and denote it by F �X; z�. The map X! F �X; z�
for any ®xed z 2 W is called the ItoÃ map associated with the vector
®eld f .

Furthermore, the ItoÃ map X! F �X; z� is continuous. More pre-
cisely, we have

Theorem 3 (Lyons [9]). Let f : W ! hom�V ;W � be a Lip�r� vector
®eld, r

p > 1. If X; ~X:4! T �2��V � are two multiplicative functionals with
®nite p-variation controlled by x, and if

Xi
st ÿ ~X

i
st

��� ��� � ex�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 ;

then

F �X; z�ist ÿ F �~X; z�ist

�� �� � KK�e�x�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 :

Where K�e� depending only on p, r, maxx and the Lipschitz constant
M, and lime!0 x�e� � 0.

The ®rst goal of this paper is to show that if f is a Lip�r� map,
r � 3, then the sequence of multiplicative functionals obtained by it-
erating the integrals of 1-form az

f against a geometric multiplicative
functional X converges to the unique solution Z of Eq. (38). More
precisely, de®ne a sequence of multiplicative functionals
Z�n�:4! T �2��V � W � recursively by

Z�n� 1� �
Z

az
f �Z�n��dZ�n�; n � 0; 1; . . . ; �42�

and

Z�0�st � 1;Z�0�1st;Z�0�2st

� �
;

Z�0�1st ��X1
st; 0�; Z�0�2st � �X2

st; 0; 0; 0� ; �43�
then we shall prove that Z�n� converges to the unique solution Z of
Eq. (38).

In order to simplify our notations, we will suppress the uperscript z
in az

f , and simply denote az
f by af (as z will be ®xed as an initial value).

De®ne a sequence of almost multiplicative functionals ~Z�n� as
follows,
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~Z�n� 1�st � �1; ~Z�n� 1�1st;
~Z�n� 1�2st�;

~Z�n� 1�1st � af �Z�n�s��Z�n�1st� � a1f �Z�n�s��Z�n�2st�;
~Z�n� 1�2st � af �Z�n�s� 
 af �Z�n�s��Z�n�2st� :

�44�

To estimate Z�n� and ~Z�n�, we need a decomposition of
T �2��V � W �. Let

H1 � �v; 0� 2 V � W : v 2 Vf g;
H2 � �0;w� 2 V � W : w 2 Wf g :

Then we have

V � W � H1 � H2; H1 � V ; H2 � W �45�
by obvious identi®cation. Now consider �V � W �
2. It is obvious that

�u; v� 
 �n; g� � �u; 0� � �0; v�� � 
 �n; 0� � �0; g�� �
� �u; 0� 
 �n; 0� � �0; v� 
 �n; 0�
� �u; 0� 
 �0; g� � �0; v� 
 �0; g� :

Let

H20 � span �u; 0� 
 �n; 0�: u; n 2 Vf g � V 
2

H1
11 � span �u; 0� 
 �0; g�: u 2 V ; g 2 Wf g � V 
 W ;

H2
11 � span �0; v� 
 �n; 0�: n 2 V ; v 2 Wf g � W 
 V ;

H02 � span �0; v� 
 �0; g�: v; g 2 Wf g � W 
2 :

Then �V � W �
2 has a direct sum decomposition

�V � W �
2 � H20 � H1
11 � H2

11 � H02 : �46�
Under this decomposition, if K:4! T �2��V �W � is a functional,
X � pV �K� and Y � pW �K�, then we write

K1
st � �X1

st;Y
1
st�;

K2
st � �X2

st;K
10
st ;K

01
st ;Y

2
st� : �47�

By de®nition, it is easily seen that

af �x; y�: H2 ! �0; 0�; 8 �x; y� 2 V � W ;

and

a1f : V � W ! hom��V �W �
2; V � W � ;
a1f �x; y� �n; g� 
 �u; v�� � � �0; f 1�z� y��n��v��; �48�

for any �x; y�; �n; g�; �u; v� 2 V � W . In particular we have
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a1f �x; y�: H20 � H2
11 � H02 ! �0; 0�;

a1f �x; y� �u; 0� 
 �0; g�� � ! �0; f 1�z� y��u��g�� : �49�

Proposition 7. For any f 2 �V � W �
2, we have
af �x; y� 
 af �x; y��f� � af �x; y� 
 af �x; y��p�f�� ; �50�

and

af �x; y� 
 af �x; y�
� ��f�
� �p�f�; 1
 f �z� y��p�f��; f �z� y� 
 1�pV �f��;

f �z� y� 
 f �z� y��p�f��� ; �51�
where

1
 f �z� y�: V 
2 ! V 
W ; u
 v! u
 f �z� y��v�;
f �z� y� 
 1: V 
2 ! W 
 V ; u
 v! f �z� y��u� 
 v;

f �z� y� 
 f �z� y�: V 
2 ! W 
2; u
 v! f �z� y��u� 
 f �z� y��v� :
Proof. Let �n; g� 
 �u; v� 2 �V �W �
2. Then we have

af �x; y� 
 af �x; y�
� � �n; g� 
 �u; v�� �
� �n; f �z� y��n�� 
 �u; f �z� y��u��
� af �x; y� 
 af �x; y�
� ���n; 0� 
 �u; 0�� ;

and

�n; f �z� y��n�� 
 �u; f �z� y��u��
� �n; 0� � �0; f �z� y��n�� � 
 �u; 0� � �0; f �z� y��u�� �
� �n; 0� 
 �u; 0� � �0; f �z� y��n�� 
 �u; 0�
� �n; 0� 
 �0; f �z� y��u�� � �0; f �z� y��n�� 
 �0; f �z� y��u�� :

All conclusions follow immediately.

Proposition 8. 1) For any n,

pV �Z�n�� � X; pV �~Z�n�� � X : �52�
2) For any �s; t� 2 4,

~Z�n� 1�2st � af �Z�n�s� 
 af �Z�n�s��X2
st; 0; 0; 0� : �53�

3) For any n and �s; t� 2 4,
af �x; y� Z�n� 1�1st ÿ Z�n�1st

� �
� 0 : �54�

The proof of Prop. 8 is an easy calculation.
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It is easy to check that

~Z�1�1st � �X1
st; f �z��X1

st��;
~Z�1�2st � X2

st; 1
 f �z��X2
st�; f �z� 
 1�X2

st�; f �z� 
 f �z��X2
st�

ÿ �
:
�55�

To show that Z�n� are uniformly bounded, we need a scaling estimate.
If e; c 2 R, then we use C�e; c� to denote the second quantisation of
the linear map �u; v� ! �eu; cv�: V � W ! V � W .

Lemma 1. If Z:4! T �2��V � W � is a multiplicative functional, then so
is C�e; c�Z.

Proposition 9. Let Z:4! T �2��V � W � be a multiplicative functional
with ®nite p-variation, and let f : W ! hom�V ;W � be a Lip�r� vector
®eld, rÿ1

p > 1. Then for any e 2 R,

C�e; e�
Z

af �Z�dZ
� �

�
Z

af �C�e; 1�Z�dC�e; 1�Z : �56�

Proof. By de®nition, the integral
R

af �Z�e��dZ�e� is the associated
multiplicative functional of ~K�e� (see Prop. 7), where

~K�e�1st � af �Zs�e���Z�e�1st� � a1f �Z�e�s��Z�e�2st�;
� �eX1

st; e�f �Ys��X1
st� � f 1�Ys��Z�e�10st ���;

~K�e�2st � �e2X2
st; e

21
 f �Ys��X2
st�; e2f �Ys� 
 1�X2

st�;
e2f �Ys� 
 f �Ys��X2

st�� ;
X � pV �Z� and Y � pW �Z�, and for simplicity, we denote C�e; 1�Z by
Z�e�. Hence

~K�e� � C�e; e�~K ;

where ~K � ~K�1�. However R af �Z�dZ is the associated multiplicative
functional of ~K, so that

C�e; e�
Z

af �Z�dZ
� �

�
Z

af �C�e; 1�Z�dC�e; 1�Z :

Lemma 2. For any real numbers c 6� 0 and e, we have

C�1; cÿ1�C�e; c� � C�e; 1� : �57�

Proposition 10 (Lyons [9]). Let Z:4! T �2��V � W � be a multiplicative
functional with ®nite p-variation, and let X � pV �Z�. If

Flow of di�eomorphisms 109



jXi
stj �

x�s; t� i
p

b i
p

� �
!
; jZi

stj �
�Kx�s; t�� ip

b i
p

� �
!

; 8 �s; t� 2 4; i � 1; 2 ;

then

�C�1; c�Zst�i
�� �� � �Kcx�s; t��

i
p

b i
p

� �
!

; 8 �s; t� 2 4; i � 1; 2 ; �58�

where

Kc � max
�
1; c

kp
j K: 1 � k � j � 2

	
: �59�

In particular if c < Kÿ
2
p, then

�C�1; c�Zst�i
�� �� � x�s; t� i

p

b i
p

� �
!
; 8 �s; t� 2 4; i � 1; 2 : �60�

In the sequel we ®x the following data:

1) The constant KM � 1 is determined by Prop. 3, which depends
only on maxx; p and Lipschitz constant M of f .

2) Let c > 0 be a constant such that c < K
ÿ2

p

M .
3) Let e � cÿ1 > 1.

Theorem 4. Under above conditions, we have

�C�e; 1�Z�n��ist

�� �� � ~x�s; t� i
p

b i
p

� �
!
; 8 �s; t� 2 4; i � 1; 2 ; �61�

for ~x � epx on an interval I , such that ~x � 1 on I .

Proof. Note

C�e; e�Z�0� � C�e; 1�Z�0�; 8 e 2 R ;

and

jC�e; 1�Z�0�istj � ei x�s; t�
i
p

b i
p

� �
!

� �e
px�s; t�� ip
b i

p

� �
!

:

Let ~x � epx and choose I such that ~x � 1, so that

C�e; 1�Z�0�ist

�� �� � ~x�s; t� i
p

b i
p

� �
!
; 8 �s; t� 2 4; i � 1; 2 :
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Now we use induction. Assume that

C�e; 1�Z�n�ist

�� �� � ~x�s; t� i
p

b i
p

� �
!
; 8 �s; t� 2 4; i � 1; 2 :

Let

K�n� 1� �
Z

af C�e; 1�Z�n�� �dC�e; 1�Z�n� :

Then by Prop. 3, we have

K�n� 1�ist

�� �� � �KM ~x�s; t�� ip
b i

p

� �
!

; i � 1; 2 :

so that by Prop. 10, we have

C�1; c�K�n� 1�ist

�� �� � ~x�s; t� i
p

b i
p

� �
!
; 8 �s; t� 2 4; i � 1; 2 :

However by Lemma 1,

K�n� 1� � C�e; e�Z�n� 1�
� C�e; cÿ1�Z�n� 1� ;

so that

C�1; c�K�n� 1� � C�e; 1�Z�n� 1� :
Therefore

C�e; 1�Z�n� 1�ist

�� �� � ~x�s; t� i
p

b i
p

� �
!
; 8 �s; t� 2 4; i � 1; 2 :

Corollary 2. There are constants T > 0, K depending only on p; r;maxx
and Lipschitz constant M , such that Kx�0; T � � 1, and

Z�n�ist

�� �� � �Kx�s; t�� ip
b i

p

� �
!

; 8 �s; t� 2 4; i � 1; 2 ; �62�

where I � �0; T �, and 4 � f�s; t�: s � t; s; t 2 Ig.

Now we can prove the following proposition.

Proposition 11. If f : W ! hom�V ;W � is a Lip�r� map, r � 3, then
there is a positive constant T depending only on maxx; p; r and Lips-
chitz constant M of f , such that
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Z�n� 1�ist ÿ Z�n�ist

�� �� � K0 Kx�0; T �1p
� �n

x�s; t� i
p; 8 �s; t� 2 �0; T � ;

�63�
for n � 1; 2; . . ., where K0;K are constants depending only on p; r;maxx
and Lipschitz constant M .

Proof. By Corollary 2, we can choose a T > 0 and a constant K1

depending only on p; r;maxx and M , such that X, Z�n� are of ®nite p-
variation controlled by K1x on �0; T �, and K1x�0; T � � 1 on this in-
terval. Set

K2 � 3max
M

b 1
p

� �
!
;
M2 � 2M

b 2
p

� �
!

8<:
9=; _ 1 ;

and K3 � Kp
2 . Let K4 � K be the constant appeared in (32). Now ®x a

positive constant T , such that

K4K3K1x�0; T � < 1 :

By (43) and (55), we have

~Z�1�1st ÿ Z�0�1st

��� ��� � f �z��X1
st�

�� ��
� M jX1

stj
� M

b 1
p

� �
!
x�s; t�1p ;

and

~Z�1�2st ÿ Z�0�2st

��� ��� � �2M �M2�jX2
stj

� 2M �M2

b 2
p

� �
!

x�s; t�2p ;

so that

~Z�1�ist ÿ Z�0�ist

�� �� � K3x�s; t�� � i
p; 8 �s; t� 2 4; i � 1; 2 :

By Corollary 1, we have

Z�1�ist ÿ Z�0�ist

�� �� � K4 K3x�s; t�� � i
p; 8 �s; t� 2 4; i � 1; 2 :

Now we use induction. Assume that

Z�n�ist ÿ Z�nÿ 1�ist

�� �� � h�nÿ 1; T �x�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 ;

�64�
where h�n; T � �̂K4 K2x�0; T �

1
p

� �n
.
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Using Prop. 7 and Prop. 8, we get

~Z�n� 1�1st ÿ ~Z�n�1st � af Z�n�1s
� �

ÿ af Z�nÿ 1�1s
� �h i

Z�n�1st

� �
� a1f Z�n�1s

� �
ÿ a1f Z�nÿ 1�1s

� �h i
Z�n�2st

� �
� a1f Z�nÿ 1�1s

� �
Z�n�2st ÿ Z�nÿ 1�2st

� �
;

so that

~Z�n� 1�1st ÿ ~Z�n�1st

��� ��� � M Z�n�1s ÿ Z�nÿ 1�1s
��� ���jZ�n�1stj
�M Z�n�1s ÿ Z�nÿ 1�1s

��� ��� Z�n�2st

��� ���
�M Z�n�2st ÿ Z�nÿ 1�2st

��� ���
� M

b 1
p

� �
!

Z�n�1s ÿ Z�nÿ 1�1s
��� ���x�s; t�1p

� M

b 2
p

� �
!

Z�n�1s ÿ Z�nÿ 1�1s
��� ���x�s; t�2p

�M Z�n�2st ÿ Z�nÿ 1�2st

��� ���
� M

b 1
p

� �
!
h�nÿ 1; T �x�0; t�1px�s; t�1p

� M

b 2
p

� �
!
h�nÿ 1; T �x�0; t�1px�s; t�2p

� M

b 2
p

� �
!
h�nÿ 1; T �x�s; t�2p

� K2h�nÿ 1; T �x�0; T �1px�s; t�1p :
Again using Prop. 7 and Prop. 8, we have

~Z�n� 1�2st ÿ ~Z�n�2st � af Z�n�1s
� �


 af Z�n�1s
� �h

ÿ af Z�nÿ 1�1s
� �


 af Z�nÿ 1�1s
� �i

X2
st; 0; 0; 0

ÿ �
;

which yields that

~Z�n� 1�2st ÿ ~Z�n�2st

��� ��� � M2 Z�n�1s ÿ Z�nÿ 1�1s
��� ��� X2

st

�� ��
� M2

b 2
p

� �
!
h�nÿ 1; T �x�0; t�1px�s; t�2p

� K2h�nÿ 1; T �x�0; T �1px�s; t�2p :
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Thus we have proved that

~Z�n� 1�ist ÿ ~Z�n�ist

�� �� � K2h�nÿ 1; T �x�0; T �1px�s; t� i
p ;

for any �s; t� 2 4, and i � 1; 2. Using Corollary 1 to get

Z�n� 1�ist ÿ Z�n�ist

�� �� � K4K2h�nÿ 1; T �x�0; T �1px�s; t� i
p ;

for any �s; t� 2 4; i � 1; 2. Now (63) follows immediately. Therefore
we have proved the proposition.

By Prop. 11, we know that there is a positive constant T depending
only on maxx; p; r and Lipschitz constant M of f , such that

Zi
st � lim

n!1Z�n�
i
st; on �0; T � ;

exists. It is easily seen that Zst � �1;Z1
st;Z

2
st� is a geometric multipli-

cative functional with ®nite p-variation controlled by x. Moreover we
have

Z �
Z

af �Z�dZ ;

i.e. Z is a solution of the di�erential equation

dY � f �Y �dX; Y0 � z : �65�
It is routine to extend the solution Z to the original interval I by the
uniform estimates obtained above.

Theorem 5. Let X; X̂:4! T �2��V � be two multiplicative functionals
with ®nite p-variation controlled by x, and let f : W ! hom�V ;W � be a
Lip�r� vector ®eld, r � 3. If

Xi
st ÿ X̂

i
st

��� ��� � ex�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 ;

then

Zi
st ÿ Ẑ

i
st

��� ��� � Kex�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 ; �66�

where Z (resp. Ẑ) is the solution of Eq. (65) with driving multiplicative
functional X (resp. X̂), K is a constant depending only onmaxx, p, r and
Lipschitz constant M of f .

Proof. We use notations as before, and use K�n� and ~K�n� to denote
the corresponding sequences Z�n� and ~Z�n� obtained by replacing X
by X̂, so that

lim
n!1K�n�

i
st � Ẑ; 8 �s; t� 2 4; i � 1; 2 :
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We have

~Z�n� 1�1st ÿ ~K�n� 1�1st

��� ��� � af Z�n�1s
� �

Z�n�1st

� �
ÿ af K�n�1s

� �
K�n�1st

� �
� a1f Z�n�1s

� �
Z�n�2st

� �
ÿ af K�n�1s

� �
K�n�2st

� �
� Mex�0; s�1px�s; t�1p �Mex�s; t�1p
� 4Mex�s; t�1p :

Similarly

~Z�n� 1�2st ÿ ~K�n� 1�2st

��� ��� � 2M2ex�s; t�2p ;
for any n. By Prop. 4 and Prop. 5 we deduce that

Z�n� 1�ist ÿ ~Z�n� 1�ist

ÿ �ÿ K�n� 1�ist ÿ ~K�n� 1�ist

ÿ ��� �� � Kex�s; t�3p ;
for any �s; t� 2 4; i � 1; 2, so that

Zi
st ÿ Ẑ

i
st

��� ��� � Kex�s; t� i
p; 8�s; t� 2 4; i � 1; 2 :

Remark. Theorem 5 is a slight improvement of Theorem 3 in the sense
that the ItoÃ map is in fact Lipschitz continuous in p-variation topol-
ogy if the vector ®eld is C3

b .

3. Flow of di�eomorphisms

In this section we assume that V � RN and W � Rd . Let
X:4! T �2��V � be a geometric multiplicative functional with ®nite p-
variation, and let f : W ! hom�V ;W � be a Lip�r� vector ®eld, r � 4.
Let F �X; z� be the ItoÃ map associated with the vector ®eld f , i.e.
F �X; z� is the unique multiplicative functional solution of the di�er-
ential equation

dY � f �Y �dX; Y0 � z : �67�
De®ne

Ft�X; ��: W ! W ; Ft�X; z� � z� F �X; z�10t :

We also call Ft�X; z� the ItoÃ map associated with the vector ®eld f .
For s 2 R�, hs denotes the natural shift, i.e. if X:4! T �2��V � is a

functional, then hsX:4! T �2��V �,
�hsX�ist � Xi

s�s;t�s; 8 �s; t� 2 4; i � 0; 1; 2 :

It is clear that if X is a geometric multiplicative functional, so is hsX.
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Proposition 12. If f : W ! hom�V ;W � is a Lip�r� vector ®eld, r � 3,
and X:4! T �2��V � is a geometric multiplicative functional, then

Ft�s�X; z� � Ft�hsX; Fs�X; z��; 8 �s; t� 2 R� :

Proof. Note that X! hsX is continuous, i.e. if

Xi
st ÿ ~X

i
st

��� ��� � ex�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 ;

then

�hsX�ist ÿ �hs
~X�ist

�� �� � e ~x�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 ;

where ~x�s; t� � x�s� s; t � s�. Now the conclusion follows from the
uniqueness of Eq. (67) and Th. 5.

The goal of this section is to show that �Ft�X; z�� is a ¯ow of local
di�eomorphisms.

Suppose X is a classical multiplicative functional, then Ft�X; z� is
the unique solution of the ordinary di�erential equation,

dYt � f �Yt� dX 1
t ; Y0 � z ;

so that �Ft�X; z�� is a ¯ow of di�eomorphisms, provided that f is
smooth. If Kt denotes the di�erential DFt�X; ���z�, then Kt 2
hom�W ;W � and satis®es the following di�erential equation:

dFt�X; �� � f �Ft�X; ��� dXt;

dKt � @f �Ft�X; ��� � Kt dXt;

�F0�X; ��;K0� � �z; id� :
where @f : W ! hom�V ; hom�W ;W ��,

@f �x��n��g� � lim
h!0

f �x� hg��n� ÿ f �x��n�
h

; 8 x 2 W ; n 2 V ; g 2 W :

Moreover, Kt is invertible and Kÿ1t satis®es the following di�erential
equation:

dFt�X; �� � f �Ft�X; ��� dXt;

dKÿ1t � ÿ Kÿ1t � @f �Ft�X; ��� dXt;

�F0�X ; ��;Kÿ10 � � �z; id � :
Let H � W � hom�W ;W �, and let @1f ; ~@1f : H ! hom�V ;H� be two
vector ®elds de®ned by

@1f �y; u�n � �f �y�n; @f �y��n� � u�;
~@1f �y; u�n � �f �y�n;ÿu � @f �y��n�� ;
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for all �y; u� 2 W � hom�W ;W �; n 2 V . Then we can rewrite above
two equations as following:

dHt � @1f �Ht�dXt; H0 � �z; id� ;
where Ht � �Ft�X; ��;Kt�; and

d ~Ht � ~@1f � ~Ht�dXt; ~H0 � �z; id� ;
where ~Ht � �Ft�X; ��;Kÿ1t �.
Theorem 6. Let X:4! T 2��V � be a geometric multiplicative functional
with ®nite p-variation, and let f : W ! hom�V ;W � be a Lip�r� vector
®eld on W , r � 4. F �X; z� denotes the ItoÃ map associated with the vector
®eld f and let Ft�X; z� � F �X; z�10t � z. Then

1) The ItoÃ map Ft�X; ��: W ! W is di�erentiable, and the di�erential
DFt�X; ���z� is invertible.

2) Let P, resp. Q, be the multiplicative functional solution of the dif-
ferential equation:

dP � @1f �P �dX; P0 � �z; id� ; �68�
resp.

dQ � ~@1f �Q�dX; Q0 � �z; id� ; �69�
respectively. Then

DFt�X; z� � id� phom�W ;W ��P�10t;

DFt�X; z�ÿ1 � id� phom�W ;W ��Q�10t : �70�
Proof. We prove the conclusions 1) and 2) together. Let X be of ®nite
p-variation controlled by x. Choosing a sequence of classical multi-
plicative functionals X�n�:4! T �2��V �, such that X�n� are of ®nite p-
variation controlled by x, and

X�n�ist ÿ Xi
st

�� �� � 1

n
x�s; t� i

p; �s; t� 2 4; i � 1; 2 ;

for n � 1; 2; . . . : By Th. 5, we have

P�n�ist ÿ Pi
st

�� �� � 1

n
Kx�s; t� i

p ;

Q�n�ist ÿQi
st

�� �� � 1

n
Kx�s; t� i

p; 8 �s; t� 2 4; i � 1; 2 ;

and

Z�n�ist ÿ Zi
st

�� �� � 1

n
Kx�s; t� i

p; 8 �s; t� 2 4; i � 1; 2 ;
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where K is a constant depending only on p;maxx; r and Lipschitz
constant M of f . For each n,

P�n�10t � �z; id� � Ft�X�n�; z�;DFt�X�n�; ���z�� �;
Q�n�10t � �z; id� � Ft�X�n�; z�;DFt�X�n�; ��ÿ1�z�

� �
;

so that

Ft�X�n�; z� ÿ Ft�X; z�j j � 1

n
Kx�0; t�1p ;

and

DFt�X�n�; ���z� ÿ id � phom�W ;W ��P�10t

� ���� ��� � 1

n
Kx�0; t�1p ;

which yields that DFt�X; ���z� exists, and
DFt�X; ���z� � id� phom�W ;W ��P�10t :

Moreover,

�id � phom�W ;W ��P�n��10t��id � phom�W ;W ��Q�n��10t�
� DFt�X�n�; z�DFt�X�n�; z�ÿ1
� id

for each n, so that

idÿ �id� phom�W ;W ��P�10t��id� phom�W ;W ��Q�10t�
��� ���
� 1

n
Kx�0; t�1p; 8 n :

Letting n!1 to get

id� phom�W ;W ��Q�10t � DFt�X; z�ÿ1 :

Corollary 3. Let X; ~X:4! T �2��V � be two geometric multiplicative
functionals with ®nite p-variation controlled by x, and let f : W !
hom�V ;W � be a Lip�r� vector ®eld on W , r � 4. If

Xi
st ÿ ~X

i
st

��� ��� � ex�s; t� i
p; 8 �s; t� 2 4; i � 1; 2 ;

then
Ft�X; z� ÿ Ft�~X; z�
�� �� � eKx�0; t�1p;
DFt�X; ���z� ÿ DFt�~X; ���z�
�� �� � eKx�0; t�1p; 8 t 2 I ;

and
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DFt�X; ���z�ÿ1 ÿ DFt�~X; ���z�ÿ1
��� ��� � eKx�0; t�1p; 8 t 2 I ;

where K is a constant depending only p; r;maxx and Lipschitz constant
M of f .

In particular, if X is generated by a Brownian motion (see Example
1), then Corollary 3 gives an answer to an open problem proposed by
Ikeda and Watanabe (see p.418 in [4]).

The following theorem follows from Th. 6 and Prop. 12 immedi-
ately.

Theorem 7. Assume that f : W ! hom�V ;W � is a C1b vector ®eld, and
that X:4! T �2��V � is a geometric multiplicative functional with ®nite
p-variation. Let F �X; z� be the ItoÃ map associated with the vector ®eld f ,
and let Ft�X; z� � F �X; z�10t � z. Then

Ft�X; ��: W ! W ; z! Ft�X; z�
is smooth, and �Ft�X; z�� is a ¯ow of local di�eomorphisms.
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