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Summary. For lattice models on Zd , weak mixing is the property that the
in¯uence of the boundary condition on a ®nite decays exponentially with
distance from that region. For a wide class of models on Z2, including all
®nite range models, we show that weak mixing is a consequence of Gibbs
uniqueness, exponential decay of an appropriate form of connectivity, and a
natural coupling property. In particular, on Z2, the Fortuin-Kasteleyn ran-
dom cluster model is weak mixing whenever uniqueness holds and the con-
nectivity decays exponentially, and the q-state Potts model above the critical
temperature is weak mixing whenever correlations decay exponentially, a
hypothesis satis®ed if q is su�ciently large. Ratio weak mixing is the property
that uniformly over events A and B occurring on subsets K and C, respec-
tively, of the lattice, jP �A \ B�=P �A�P �B� ÿ 1j decreases exponentially in the
distance between K and C. We show that under mild hypotheses, for example
®nite range, weak mixing implies ratio weak mixing.

Mathematics Subject Classi®cation (1991): Primary 60K35, Secondary
85B20

1. Introduction

For lattice models of all types, a fundamental question is as follows:
how do events in one region of the lattice in¯uence the probabilities
for events in another distant region? When these ``regions'' are single
points, the in¯uence is quanti®ed by the two-point function ± the
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covariance in spin systems, and the connectivity in percolation mod-
els. Even when this two-point function has good behavior ± expo-
nential decay as a function of separation distance ± it is not at all clear
that for large regions similar exponential decay must hold; one cannot
simply sum the two-point function over all pairs of sites, one from
each region, to measure the in¯uence of one region on the other. This
motivates the study of mixing ± the quanti®cation of dependence
between distant regions.

We will focus here on weak mixing, de®ned as follows for lattice
models. Let the single-spin space be a ®nite or countably in®nite set S,
and let rx denote the spin at site x. Let Var��; �� denote total variation
distance between measures and let j � j denote the `1 norm. Let P be a
measure on SZd

and let PK;g denote the distribution of the con®gura-
tion rK � frx; x 2 Kg under P given the boundary condition g 2 SKC

.
Following [24] we say that P has the weak mixing property if for some
C; k > 0, for all ®nite sets D;K with D � K,

supfVar�PK;g�rD 2 ��; PK;g0 �rD 2 ��� : g; g0 2 SKCg
� C

X
x2D;y2KC

exp�ÿkjxÿ yj� : �1:1�

Roughly, the in¯uence of the boundary condition on a ®nite region
decays exponentially with distance from that region. Of course this
implies that P is the unique distribution with conditional probabilities
fPK;g : K � Zd finite; g 2 SKCg. Weak mixing has been given various
names in the literature- it is the ``Very Strong Decay Property'' in [12],
and it is a special form of the w-mixing of [14].

A completely analogous de®nition can be made for percolation
models, with K;D replaced by sets of nearest-neighbor bonds and
distance between bonds measured by `1 distance j � j between their
midpoints.

For the Ising model a seemingly di�erent de®nition of weak mixing
appears in [26]-only D � f0g is required in (1.1). But in the Ising case
this is readily shown to be equivalent to the above de®nition (see [21],
proof of Theorem 2, 1st Step.)

Let d�A;B� :� minfjxÿ yj : x 2 A; y 2 Bg and write d�x;A� for
d�fxg;A�.

A related important property of measures on SZd
is strong mixing

for cubes, also examined in [24] and [25]. Roughly, strong mixing for
cubes says that when K is a cube, if two boundary conditions g, g0

di�er only at a single site z, then the in¯uence of this di�erence decays
exponentially in d�z;D�, instead of exponentially in d�KC;D� as in
(1.1). This means roughly that the in¯uence of the change at z cannot
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propagate along the boundary of K, whereas weak mixing only
guarantees that the in¯uence cannot propagate through the bulk of K.
In three and higher dimensions, there are examples due to Shlosman
[27] in which weak mixing holds but strong mixing for cubes fails,
essentially because the in¯uence of a single site does indeed propagate
along the boundary. But in two dimensions, it was shown in [25] that
for ®nite-range spin systems, weak mixing is actually equivalent to
strong mixing for squares, as well as being equivalent to several other
useful properties, such as exponential convergence to equilibrium of
the associated Glauber dynamics, and the Dobrushin-Shlosman
uniqueness condition of [12]. Unrestricted strong mixing (with K ar-
bitrary) is not equivalent ± it is a very strong property, not necessarily
satis®ed for common systems such as Ising models; see the example
due to Schonmann described in ([24], p. 458±459.)

In arbitrary dimension, Dobrushin and Shlosman showed in [6]
that weak mixing holds whenever their uniqueness condition is satis-
®ed. For the Ising model in two dimensions, weak mixing is known to
hold throughout the uniqueness region, other than at the critical
point. For all supercritical temperatures and arbitrary external ®eld,
this was proved by Higuchi in [21] (in fact for arbitrary dimension.)
For su�ciently low temperatures and arbitrary nonzero external ®eld,
weak mixing was proved in [24]. For su�ciently large ®elds at arbi-
trary temperature, weak mixing holds because the Dobrushin-Shlos-
man uniqueness condition is satis®ed. For the remaining temperatures
and external ®elds in the uniqueness region, weak mixing was proved
in [26]. For the q-state Potts model in two dimensions with su�ciently
large q, weak mixing above the critical temperature was proved in [28].
In this paper we will establish weak mixing for a very wide class of
two-dimensional models, which includes the Ising model throughout
the uniqueness region. For the Fortuin-Kastelyn random cluster
model (abbreviated to ``the FK model'') in two dimensions, we will
show that weak mixing holds everywhere in the uniqueness region
where the connectivity or dual connectivity decays exponentially. For
a Potts model in two dimensions above the critical temperature, we
will show that weak mixing holds provided correlations decay expo-
nentially, as is believed to always be the case. For general ®nite-range
models we will show that weak mixing is a consequence of uniqueness,
exponential decay of an appropriate form of connectivity, and a
natural coupling property.

Let r; g, etc. denote generic con®gurations in SZd
. We say a func-

tion f on SZd
is determined on A � Zd if f �r� � f �m� whenever rx � mx

for all x 2 A; an event A is determined on K if its indicator function dA
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has this property. An event is local if it is determined on some ®nite K.
Let FK denote the r-®eld of all events determined on K. An event
A 2 FK may be viewed as a subset of either SK or SZd

; we will use these
interpretations interchangeably, without serious risk of confusion.

Despite the exponential speed of the convergence given in (1.1),
weak mixing does not give enough independence between distant
events for certain applications. For example, for m > 0, consider the
following events for a bond percolation model P on the square lattice
having exponential decay of connectivity:

Am :� ��m; 0� $ �m� m2; 0� by a path in the square

f�x1; x2� : m � x1 � m� m2;ÿm2=2 � x2 � m2=2g�
Bm :� ��ÿm; 0� $ �ÿmÿ m2; 0� by a path in the square

f�x1; x2� : ÿmÿ m2 � x1 � ÿm;ÿm2=2 � x2 � m2=2g� :
Then P �Am� decays exponentially in m2, and one would like to know
that P �AmjBm� also decays exponentially in m2. The weak mixing
property (1.1) can be re-expressed as

supfjP �AjB� ÿ P �A�j : A 2 FD;B 2 FCg � C
X

x2D;y2C
exp�ÿkjxÿ yj� ;

so weak mixing only ensures that P �AmjBm� decays exponentially in m,
which is much weaker. The di�culty may be avoided if, instead of
knowing that di�erences in probabilities under di�erent boundary
conditions are exponentially small as in (1.1), one knows that ratios of
such probabilities are exponentially close to 1. Problems of this type
(with added complications) arise when one wishes to decompose a
long open path in a percolation model, or a contour in the Ising or
Potts model, into a number of segments, and express the probability
of the path or contour as approximately the product of the proba-
bilities of the segments, as in [2], [3], [5], [7] and [11]. We say that a
measure P on SZd

has the ratio weak mixing property it from some
C; k > 0, for all sets D;C � Zd ,

supfjP�A \ B�=P �A�P �B� ÿ 1j : A 2 FD;B 2 FC; P �A�P �B� > 0g
� C

X
x2D;y2C

exp�ÿkjxÿ yj� ; �1:2�

whenever the right side of (1.2) is less than 1. Ratio weak mixing
appears considerably stronger than weak mixing when the event A has
probability much smaller than the right side of (1.1). However, we will
show that in fact, in all dimensions weak mixing implies ratio weak
mixing for a large class of spin systems and percolation models. An
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analogous result for strong mixing (for general K, not restricted to
squares) was established by Dobrushin and Shlosman [13] using
completely di�erent methods.

2. Background and de®nitions

Spin systems. A spin system with single-spin space S � f1; . . . ; qg and
range r is speci®ed by an interaction U � fUC : C � Zd , diam�C� � rg
where UC is a real-valued function on SZd

determined on C. We as-
sume U is translation invariant: if skr is given by �skr�x�k � rx then
UC�k�skr� � UC�r�. Let �rg�K (or just �rg� if no confusion is likely)
denote the con®guration which coincides with r on K and with g on
KC; we will call such a con®guration a blending of r and g. The
Hamiltonian, or energy, of a con®guration rK on a ®nite K subject to
a boundary condition g 2 SKC

is given by

HK;g�rK� :�
X

C:C\K6�/

UC��rg�K� :

The interaction U may depend on one or more parameters p1; . . . ; pk.
The corresponding Gibbs measure on SK at inverse temperature b is
given by

PK;g;b�rK� :� exp�ÿbHK;g�rK��=ZK;g;b ;

where

ZK;g;b :�
X

rK2SK

exp�ÿbHK;g�rK��

is the corresponding partition function. We say (Gibbs) uniqueness
holds (at �p1; . . . ; pk�) if there is a unique limiting Gibbs measure as
K% Zd .
The FKG property and FKG ordering. If S is fÿ1; 1g or f0; 1g then SK

has a natural partial ordering. A measure P on SK has the FKG
property if for every pair f ; g of bounded nondecreasing functions on
SK, the covariance of f and g under P is nonnegative. P satis®es the
FKG lattice condition if for every ®nite subset C of K, every g 2 SKnC,
and every r; r0 2 SK,

PC;g�r _ r0�PC;g�r ^ r0� � PC;g�r�PC;g�r0� :
The FKG lattice condition implies the FKG property [17]. We say P
dominates Q (in the FKG sense) if for every nondecreasing function f ,Z

f dP �
Z

f dQ :
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There then exists a coupling ~P of P and Q such that ~P�f�r; r0� :
rx � r0x for all xg� � 1.
Potts and Ising models. The q-state Potts model, with external ®eld h
applied to spin 1 is a spin system with S � f1; . . . ; qg and Hamiltonian

HK;g�rK� :�
X
hxyi:x2K

d��rg�K�x���rg�K�y�� ÿ h
X
x2K

d�rx�1� ; �2:1�

where the ®rst sum is over all nearest-neighbor bonds hxyi, i.e. un-
ordered pairs with jxÿ yj � 1. We denote the corresponding Gibbs
distribution on SK by PK;g;q;b;h.

Let gs denote the con®guration with every site having spin s, and
de®ne qs similarly for bond con®gurations.

The model with free boundary condition is obtained by including
only x; y 2 K in the ®rst sum in (2.1). Alternatively, one can allow g to
be an element of f0; 1; . . . ; qgKC

; there is e�ectively no interaction of
rK with those sites x 2 KC where gx � 0, which we call empty sites.
(Note we allow empty sites only in the boundary condition; we are not
considering site-diluted models here.)

For each q and d there is a critical point 0 < bC�q; d� <1 such
that, for h � 0, uniqueness holds when b < bC�q; d� and not when
b > bC�q; d�.

The Ising model with external ®eld h has S � fÿ1; 1g and Hamil-
tonian.

HK;g;h�rK� :� ÿ
X
hxyi:x2K

�rg�K�x��rg�K�y� ÿ h
X
x2K

rx ;

which is equivalent to the Potts model with q � 2 and external ®eld 2h.
The FK model. The facts given here, with additional details, may be
found in [1], [16] or [19]. For K � Zd let B�K� denote the set of all
nearest-neighbor lattice bonds hxyi with x; y 2 K, and let B�K� denote
the set of all nearest-neighbor lattice bonds hxyiwith x or y in K. De®ne

@inK :� fx 2 Zd : x 2 K; x adjacent to KCg;
@exK :� fx 2 Zd : x 62 K; x adjacent to Kg;

�K :� K [ @exK ;

here adjacent means separated by distance 1. We call �K the closure of
K. We let 1 and 0 stand for the open and closed states, respectively, of
a bond, so the con®guration space for the model with set G of bonds is
f0; 1gG. The notation �xq�C applies to blendings as for site models,

for C � G. For K ®nite, q 2 f0; 1gB�KC� and x 2 f0; 1gB�K� let NK;q�x�
denote the number of clusters (that is, connected components) in
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�xq�B�K� which intersect K. Let B�x� denote the number of open
bonds in the con®guration x. We can construct an independent
measure Pind;K;p on f0; 1gB�K� by taking each bond to be independently
open with probability p, that is,

Pind;K;p�x� :� pB�x��1ÿ p�jB�K�jÿB�x� :

For q � 1 and p 2 �0; 1� the FK measure PK;q;q;p on f0; 1gB�K� is given
by

PK;q;q;p�x� :� Pind;K;p�x�qNK;q�x�=ZK;q;q;p; x 2 f0; 1gB�K� ;
where ZK;q;q;p is the partition function. When q is q1 or q0, we some-
times write w or f , for wired or free, in place of q1 or q0 respective-
ly. The set f0; 1gB�K� endowed with this measure is called the FK model
onB�K� with parameters �q; p� and boundary condition q. The measures

P�;q;p :� limK%Zd PK;�;q;p

on f0; 1gB�Zd � exist for � � w or f , and are translation-invariant FKG
measures. The set f0; 1gB�Zd � together with the measure Pw;q;p (resp.
Pf ;q;p) forms the FK model with parameters �q; p� and wired (resp. free)
boundary condition. Gibbs uniqueness holds for this model if and only
if Pw;q;p � Pf ;q;p. The measures P�;q;p satisfy the FKG lattice condition.
The FK model with external ®eld. An external ®eld can be introduced
into the FK model as follows. Let h � 0. We append to the integer
lattice a single ghost size z, connected by an external bond hxzi to each
site x of Zd . The bonds of B�Zd� are called internal bonds. Under the
independent measure, denoted Pind;K;p;h, each external bond is open
with probability 1ÿ �1ÿ p�h, and each internal bond is open with
probability p. Let E�K�denote the set of all external bond with an
endpoint in K � Zd . For K ®nite, in a slight abuse of notation we let
Kc denote the complement of K in Zd , that is, excluding the ghost site.

For q 2 f0; 1gB�Kc�[E�Kc� and x 2 f0; 1gB�K�[E�K� let N�K;q�x� denote the
number of clusters in �qx�B�KC�[E�KC� which intersect K and do not
contain z. We then have a corresponding FK measure

PK;q;q;p;h�x� :� Pind;K;p;h�x�qN�
K;q�x�=ZK;q;q;p;h; x 2 f0; 1gB�K�[E�K� :

As for h � 0, the measures

P�;q;p;h :� limK%Zd PK;�;q;p;h

on f0; 1gB�Zd �[E�Zd � exist for � � w or f :
The marginals on internal bonds of FK measures with an external

®eld are described as follows. For q 2 f0; 1gB�Kc� and x 2 f0; 1gB�K�
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let C�K;q;x� denote the set of clusters of �qx�B�Kc� which intersect K.
For C a connected subgraph of the integer lattice, let

wq;p;h�C� :� 1� �qÿ 1��1ÿ p�hjCj ;
where jCj denotes the number of sites in C. The marginal on B�K�
under boundary condition q is then

P in
K;q;q;p;h�x� :� Pind;K;p�x�PC2C�K;q;x�wq;p;h�C�=ZK;q;q;p;h; x 2 f0; 1gB�K� :
The marginal on f0; 1gB�Zd � of P�;q;p;h is denoted P in

�;q;p;h, for � � w
or f The set f0; 1gB�Zd � together with the measure P in

w;q;p;h (resp. P in
f ;q;p;h)

forms the FK model with parameters �q; p; h� wired (resp. free) boun-
dary condition. Gibbs uniqueness holds for this model if and
only if P in

w;q;p;h � P in
f ;q;p;h, in which case we omit the w or f from the

notation.

Lemma 2.1. The FK model with parameters �q; p; h��h � 0; q � 1� sat-
is®es the FKG lattice condition

Proof. Fix K ®nite, x;x0 2 f0; 1gB�K�, and a boundary condition q.
We write P for P in

K;q;q;p;h. Let F :� fb 2 B��K� : xb � 1;x0b � 0g,
g :� fb 2 B��K� : xb � 0;x0b � 1g and H :� B��K�n�F [ g�, so that
for a con®guration a 2 f0; 1gB�K� we can write a � �aF; ag; aH�. Note
xH � x0H. We wish to show that

P�x _ x0�=P �x� � P �x0�=P �x ^ x0� �2:2�
so it is su�cient to show that

f �aF� :� P ��aF; q1g;xH��=P ��aF;q0g;xH�� is an increasing func-
tion of aF, as (2.2) is equivalent to f ��q1�F� � f ��q0�F�. When an
open bond b is added to aF, there are three possibilities:

(i) the end points of b are in a single cluster, in both �aF; q0g;xH� and
�aF; q1g;xH�,

(ii) the endpoints of b are in distinct clusters C and D in �aF;q0g;xH�,
and in distinct clusters E and F in �aF; q1g;xH�,

(iii) the endpoints of b are in distinct clusters C and D in �aF;q0g;xH�,
and in a single cluster in �aF;q1g;xH�.

Under (i), adding b does not change the value of f . Under (iii) f gets
multiplied by the factor g�C;D� :� wq;p;h�C�wq;p;h�D�=wq;p;h �C[
D [ fbg�. Since wp;q;h�C� is a decreasing function of jCj, this factor is
at least 1. Under (ii) f gets multiplied by the factor g�C;D�=g�E; F �. It
is easily checked that g�C;D� is a decreasing function of �jCj; jDj�.
Since jEj � jCj and jF j � jDj, this shows the factor is again at least 1.

(
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The FK model with parameters �q; p; h� dominates Bernoulli bond
percolation at density p=�p � �1ÿ p�q� on internal bonds, that is, for
every K and q and every bond b 2 B��K�,

PK;q;q;p;h�xb � 1jxe; e 6� b� � p=�p � �1ÿ p�q� a.s. �2:3�
Let �x$ y� denote the event that x is connected to y by a path of open
bonds, and �x$1� the event that there is an in®nite path of open
bonds starting at x. (Throughout this paper, by a path we always
implicitly mean a self- avoiding one.) For each q � 1 there is a critical
point 0 < pC�q; d� < 1 such that P�;q;p�0$1� is 0 for p < pC�q; d�
and positive for p > pC�q; d�, for both � � f and � � w. For
p < pC�q; d� we have Pw;q;p � Pf ;q;p.

For bond con®gurations, in place of (1.1) a suitable de®nition of
weak mixing requires that

sup Var�PK;q�xB�D� 2 ��; PK;q0 �xB�D� 2 ��� : q; q0 2 f0; 1gB�KC�
n o
� CRx2D;y2KC exp�ÿkjxÿ yj� : �2:4�

Relations between FK and Potts/Ising models. Edwards and Sokal [15]
observed that it is possible to construct both an FK model and the
Potts model with boundary condition g, with the same value of q, on a
single probability space, when

p � 1ÿ eÿb :

The construction, adapted here to general h � 0, can be done via the

joint site-bond measure on SK � f0; 1gB�K�[E�K� given for a boundary

condition g by

~PK;g;q;p;h�r;x� :� Pind;K;p;h�x�dD�K;g��r;x�=~ZK;g;q;p;h ;

where the event

D�K; g� :�f�r;x� 2 SK � f0; 1gB�K�[E�K� :

xhxyi � 0 for all hxyi 2 B��K� with �rg�K�x� 6� �rg�K�y�;
and xhxzi� 0 for all external bonds hxzi2E�K� with rx 6�1g

prohibits open bonds with di�ering states at the two endpoints (here
we are implicitly assigning state gz � 1 to the ghost site), and ~ZK;g;q;p;h

is the partition function. The marginal of ~PK;g;q;p;h on SK is then
PK;g;q;b;h, the q-state Potts model on K with boundary condition g at
inverse temperature b and external ®eld h. The marginal on
f0; 1gB�K�[E�K� is PK;q1;q;p;h�. jA�K; g��, where A�K; g� is the event that
no two sites x; y 2 @exK [ fzg with gx 6� gy are connected by a path,
entirely within B�K� [ E�K�, of open bonds. Let
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K�K; g;x� :�jfx 2 K : x$ y for some y 2 @exK with gy 6� 1gj;
D0�K; g� :�fx 2 f0; 1gB�K� :

xhxyi �0 for all hxyi2 B�K� with �rg�K�x� 6� �rg�K�y�g :
The marginal of ~PK;g;q;p;h on internal bonds is the measure

P in
K;g;q;p;h�x� :� Pind;K;p�x��1ÿ p�hK�K;g;x�dD0�K;g��x�

�PC2C�K;q1;x�wq;p;h�C�=Z in
K;q;q;p;h;

x 2 f0; 1gB�K� :
The internal bonds together with this measure from the conditioned
FK model on B�K� with parameters �q; p; h� and boundary condition g.

Remark 2.2. The measure P in
K;g;q;p;h is the wired-boundary measure

P in
K;q1;q;p;h conditioned on D0�K; g� (a decreasing event) and weighted by
�1ÿ p�hK�K;g;�� (a decreasing function), so it is dominated by the wired
boundary measure. When g � g1, it is equal to the wired boundary
measure. When g � g0; P in

K;g;q;p;h is the free-boundary measure P in
K;q0;q;p;h.

One could similarly construct a joint measure corresponding to
nonnegative external ®elds applied to several spins simultaneously in
the Potts model, or apply a negative external ®eld to some spin i by
applying the opposite positive ®eld to every j 6� i, but we will not
consider these variations here.

All of this may be interpreted in terms of constructions of the FK
model from the Potts model and vice versa, as follows.
C1. Construction of the Potts model from the conditioned FK model.
Given K � Zd , an integer q � 2, a boundary condition g on KC for the
q-state Potts model, an inverse temperature b > 0 and an external ®eld
h � 0 applied to spin 1, ®rst construct a realization of the conditioned
FK model with parameters �q; p; h� and boundary condition g, where
p � 1ÿ eÿb. For each C 2 C�K;q1;x� which contains a site y 2 @exK
with gy � i, we assign spin i to each site x 2 C \ K. For each
C 2 C�K;q1;x� with C \ @exK � /, select independently a spin in
f1; . . ; qg, with probability proportional to 1 for spin 1 and to eÿbhjCj

for each spin i � 2; assign this spin to each site x 2 C. The resulting site
con®guration is the q-state Potts model on K with boundary condition
g, inverse temperature b and external ®eld h applied to spin 1.
C2. Construction of the conditioned FK model from the Potts model.
Suppose 0 � p � 1, h � 0; q � 1 is an integer and g is a boundary
condition on KC. De®ne b by p � 1ÿ eÿb. First construct a realization
of the q-state Potts model on K at �b; h� with boundary condition g.
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Then do independent bond percolation at density p on all bonds in
B�K� for which the states at the two endpoints are equal. The re-
sulting bond con®guration is the conditioned FK model on B�K� with
parameters �q; p; h� and boundary condition g.
Covariance versus connectivity. As is well known, it follows easily from
C1 that when h � 0 and p � 1ÿ eÿb,

q2covf ;q;b;h�d�rx�1�; d�ry�1�� � �qÿ 1�P in
f ;h;p;q�x$ y� ; �2:5�

where covf ;q;b;h denotes covariance for the q-state Potts model on the
full lattice, with parameters �b; h�
Exponential decay of connectivity. By a path from x to y in a site
con®guration we mean a sequence of distinct sites x � x0;x1; . . ; xn � y
such that xi is adjacent to xi�1 for each i. Let I � S. An I-site is a site
at which the spin is an element of I. An I-path is a path consisting of
I-sites. We write �x$I y� for the event that there is a I-path from x to
y. The I-cluster CI�C; r� of a set C of sites in a con®guration r
consists of those sites which are connected to C by an I-path. If P is a
measure on SZd

for which there exist positive constants C and k such
that

P �x$I y� � C exp�ÿkjxÿ yj� for all x; y ;

we say P has exponential decay of I-connectivity
The boundary coupling property. A coupling of two measures P1 and P2
on SK is a measure ~P on SK � SK with marginals P1 and P2 (in order).
The set of all such couplings is denoted j�P1; P2�. If P1 and P2 are
conditional distributions of some P given boundary conditions g1 and
g2, we also say ~P is a coupling of g1 and g2 under P ; we write jP �g1; g2�
for the set of all such couplings.

Let s0 2 S and let I be either fs0g or Snfs0g. We say that a measure P
on SZd

has the boundary coupling property with respect to I if for some
s 2 I , for every ®nite K and every boundary condition g on KC, there
exists a coupling ~P 2 jP �g; gs� with the property that

~P �f�r;r0� 2 SK � SK : rx � r0x for every

x 2 K \ CI�@ exK;r�C \ CI�@exK; r0�Cg� � 1 : �2:6�

For bond models, we say that a measure P on f0; 1gB�Zd � has the
boundary coupling property if for every ®nite K and every boundary
condition q on B�KC�, there exists a coupling ~P 2 jP �q; q1� with the
property that
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~P �f�x;x0� 2 f0; 1gB�K� � f0; 1gB�K� : xe � x0e for every

e 2 C�@exK;x�C \ C�@exK;x0�Cg� � 1 ; �2:7�
whereC�@exK;x� denotes the boundary cluster inx, that is, the union of
the connected components of the sites of @exK in the con®guration x.

The boundary coupling property says the two con®gurations can
be made to coincide outside the combined I-clusters of the boundary
in both con®gurations. For the Ising model with I � f1g or fÿ1g, this
property is a well-known consequence of the FKG and Markov
properties of the model; in fact the two con®gurations can be made to
coincide outside the I-cluster of the boundary in r0 alone. Similar ideas
carry over to other models, as we summarize in the next lemma, which
includes the Ising model as a special case.

Lemma 2.3. For a measure P on f0; 1gZd

, suppose that

(i) for every ®nite K, every pair of boundary conditions g; g0 on Kc with
g � g0, and every x 2 K,

PK;g�rx � 1� � PK;g0 �r0x � 1� ;

(ii) for every ®nite K, and every boundary condition g on KC with gx � 0
for all x 2 @exK,

PK;g � P �� j gx � 0 for all x 2 @exK� :

Then P has the boundary coupling property with respect to I � f1g.
Proof. Order the sites of K � fx1; . . ; xmg in such a way that x precedes
y in the ordering if d�x;KC� < d�y;KC� (for example, spiraling inwards
if K is a cube.) We select the pairs �rxi ; r

0
xi
� one at a time, as follows.

Let R0 � / and suppose some set Rn of sites has been selected, and the
corresponding values �rx;r0x� chosen, by time n. Suppose also that
rx � r0x for all x 2 Rn. At time n� 1, if Rn � C we let i be the least
index, if any, such that

site xi has not been selected and some site adjacent to xi is connected

to @exK in r0 by a f1g-path of previously selected sites: �2:8�
We then have �gKC ;rC� � �g0KC ; r0C�, so from (i),

PK;g�rxi � 1jrx; x 2 C� � PKnC;�gKC ;rC��rxi � 1�
� PKnC;�g0

KC ;r
0
C��rxi � 1� � PK;g0 �r0xi

� 1jr0x; x 2 C� : �2:9�
Let p and p0 denote the probabilities on the left and right sides of (2.9),
respectively. Then let �rxi ; r

0
xi
� be �0; 0� with probability 1ÿ p0, �0; 1�

with probability p¢)p and (1,1) with probability p. Let s be the ®rst
time at which there are no longer any sites satisfying (2.8). Then Rs is
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necessarily the closure Cf1g�@exK; r0�, so rx � r0x � 0 for all
x 2 @exCf1g�@exK;r0�. But then by (ii), the inequality in (2.9) becomes
an equality from time s onward. But this means the coupling we have
constructed satis®es

rx � r0x for every x 2 K \ CI�@exK; r0�c ;

which establishes the boundary coupling property. (
The analog of Lemma 2.3 for bond models if as follows; the proof

is the same.

Lemma 2.4. For a measure P on f0; 1gB�Zd �, suppose that

(i) for every ®nite set g of bonds, every pair of con®gurations q; q0 on
gc with q � q0, and every e 2 g,

P�xe � 1jxgC � q� � P �xe � 1jxgC � q0� ;

(ii) for every ®nite C, every con®guration q on B�K�C with qhxyi � 0 for
every x 2 @inK and y 2 @exK,
P �� jxB�K�C � qB�K�C� � P ��jxhxyi � 0 for every x 2 @inK and

y 2 @exK).
Then P has the boundary coupling property.

For a spin system, a natural way to create a coupling which es-
tablishes the boundary coupling property is to ®rst create a similar
coupling for a graphical representation of the model. This is exactly
what Lemma 6.2 below does for the Potts model and its graphical
representation, the FK model. In [4] the same method is applied to
establish the boundary coupling property with respect the set I of all
``nonempty'' spins in the Potts lattice gas. For a wide class of spin
systems, there is a graphical representation in which the probabilites
of bond con®gurations are given by weights which are products of
weights of individual clusters; see [6], [10]. The FK model is an ex-
ample of this, with the weight of an individual cluster C being
q�p=�1ÿ p��B�C�, where B�C� is the number of bonds in C. It is easy to
see that assumption (ii) of Lemma 2.4 holds for any such model.
Assumption (i), however, is essentially a special case of the FKG
property, so it will hold less generally. When Lemma 2.4 cannot be
used due to the failure of assumption (i), an alternative is to create a 3-
way coupling ~P of PK;q; PK;q1 , and a third measure P 0 which has the
FKG property and which dominates both PK;q; PK;q1 , For example, for
graphical representations of spin systems with group symmetry, P 0 can
be an FK model with parameters chosen as in ([16], Proposition 1.)
The 3-way coupling should satisfy
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~P�f�x;x0;x00�: x � x00 and x0 � x00g� � 1

and should be such that the three con®gurations coincide outside the
boundary cluster of the largest con®guration, x00. This coupling does
not quite establish the boundary coupling property as such, but its
existence can be substituted for the boundary coupling property e.g. in
our Theorem 3.1, provided that P 0 has exponential decay of connec-
tivity.
Uniqueness of distributions with given speci®cation. We say uniqueness
holds for a measure P on SZd

if P is the only measure with conditional
distributions fPK;g : K � Zd ®nite, g 2 SKCg. If P is quasilocal and
uniqueness holds, then for each ®nite D,

supfVar�PK;g�rD 2 ��; PK;g0 �rD 2 ��� : g; g0 2 SKCg ! 0 as K% Zd ;

�2:10�
this follows from ([18], Theorem 4.17.) Conversely (2.10) implies that
uniqueness holds. We will refer to (2.10) as boundary negligibility. For
®nite-range spin systems, then, boundary negligibility is equivalent to
uniqueness of Gibbs distributions.
Bounded in¯uence per site or bond. For K � Zd and r > 0 let

Kr :� fx 2 Zd : d�x;K� � rg :
We say that the measure P on SZd

has bounded in¯uence per site if
there exist r � 1 and c > 0 such that for every n � 1, every ®nite
K � Zd , every g; g0 2 SKC

which di�er at atmost n sites in KrnK, and
every A 2FK,

PK;g�A� � ecnPK;g0 �A� : �2:11�
The most obvious bond analog is not satis®ed by the FK model due to
lack of ®nite range, so for bond models we make a di�erent de®nition
as follows. Fix r � 1 and K ®nite. For q;q0 2 f0; 1gB�KC� let

RK;r�q� :� jfx 2 @exK : x$ @ex�Kr� in B�KC�gj
and

DK;r�q; q0� :� jfe 2 B�Kr�nB�K� : qe 6� q0egj
We say that the measure P on f0; 1gB�Zd � has bounded in¯uence per
bond if there exist r � 1 and c > 0 such that for every ®nite K � Zd ,

every q; q0 2 f0; 1gB�KC�, and every A 2FK,

PK;q�A� � exp�c�DK;r�q; q0� � RK;r�q� � RK;r�q0���PK;q0 �A� : �2:12�
For the FK model with parameters �q; p; h� this property is an easy

consequence of the fact that for x 2 f0; 1gB�K� and r � 1 we have
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jNK;q0 �x� ÿ NK;q�x�j � DK;r�q; q0� � RK;r�q� � RK;r�q0� : �2:13�
Controlling regions. For P a measure on SZd

;K � Zd ®nite, g 2 SKC
,

we call X � AC a controlling region for K and g if for every g0 2 SKC

such that g � g0 on X, we have PK;g � PK;g0 . We say P has exponentially
bounded controlling regions if there exists constants C; k > 0 such that
for every choice of ®nite sets K and X � KC,

P �fg 2 SKC
: X is not a controlling region for K and gg�

� C R
x2K;y2XCnK

exp�ÿkjxÿ yj� :

(These de®nitions adapt straightforwardly to bond models.) In ®nite-
range models KrnK is always a controlling region, where r is the range.
It follows easily from uniqueness of the in®nite cluster (which is
proved in [8]) that for the FK model on B�Zd� there is a.s. a ®nite
controlling region for a given K, but this region is not uniformly
bounded. However, it is easy to see that for

X � fy 2 KC : x$ y for some x 2 @exKg ;
B�X� is a controlling region (see the proof of Theorem 4.1 below.)
Therefore the FK model has exponentially bounded controlling re-
gions whenever the connectivity decays exponentially. In two dimen-
sions, it is also su�cient that the dual connectivity decay
exponentially.

3. Statement of main results

Our ®rst main result covers general two-dimensional models. The
proof will be given in Section 4.

Theorem 3.1. (i) Suppose S is ®nite or countably in®nite, s 2 S; I � fsg or
Snfsg, and P is a measure on SZ2

for which boundary negligibility,
bounded in¯uence per site, exponential decay of I-connectivity, and the
boundary coupling property with respect to I all hold. Then P has the
weak mixing property.

(ii) Suppose P is a measure on f0; 1gB�Z2� for which boundary negligi-
bility, bounded in¯uence per bond, exponential decay of connectivity,
and the boundary coupling property all hold. Then P has the weak
mixing property.

For a ®nite-range spin system, boundary negligibility is equiva-
lent to Gibbs uniqueness, so we have the following corollary.
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Corollary 3.2. Suppose S is ®nite or countably in®nite, s 2 S; I � fsg or
Snfsg, and P is a Gibbs distribution on SZ2

of a ®nite-range spin system.
If Gibbs uniqueness, exponential decay of I-connectivity, and the
boundary coupling property with respect to I all hold, then P has the
weak mixing property.

The next result strengthens the conclusion of Theorem 3.1 for
many models of interest. Note that it is not restricted to two dimen-
sions. The proof is in Section 5.

Theorem 3.3. Suppose S is ®nite or countably in®nite and P is a measure
on SZd

or f0; 1gB�Zd � which has the weak mixing property and expo-
nentially bounded controlling regions. Then P has the ratio weak mixing
property.

The remaining results in this section are for speci®c models. The
proofs are in Section 6. We begin with the FK model. For the Potts
model we assume the external ®eld, if any, is nonnegative and is ap-
plied to spin to 1 only. Being ®nite-range spin systems, Potts and Ising
models (i) have exponentially bounded controlling regions, (ii) are
quasilocal so that uniqueness of Gibbs distributions implies boundary
negligibility, and (iii) have bounded in¯uence per site.

Theorem 3.4. If the FK model on B�Z2� with parameters �q; p; h� and
wired boundary condition has exponential decay of connectivity, then it
has the ratio weak mixing property.

Remark 3.5. It follows from the de®nitions that in two dimensions,
weak mixing for the FK model with parameters �q; p� is equivalent to
weak mixing for the corresponding measure on dual bonds, which is
just the FK model with parameters �q; p��, where p� is dual to p.
Therefore for h � 0, exponential decay of dual connectivity under free
boundary conditions is also su�cient to yield ratio weak mixing.

Our next result, for the Potts model without external ®eld, will be
proved using Theorem 3.4 and the fact that exponential decay of
correlations in the Potts model corresponds to exponential decay of
connectivity in the FK model.

Theorem 3.6. For the q-state Potts model on Z2 without external ®eld at
inverse temperature b < bC, weak mixing holds if and only if correla-
tions decay exponentially.

When a positive external ®eld is applied to one of the spins of the
Potts model, exponential decay of correlations for the Potts model no
longer corresponds to exponential decay of connectivity for the FK
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model, so Theorem 3.4 cannot be used. However, we can substitute
the hypothesis of exponential decay of I-connectivity, as follows.

Theorem 3.7. Suppose that for some q � 1; b > 0 and h � 0, the q-state
Potts model on Z2 at inverse temperature b, with external ®eld h applied
to spin 1, has either exponential decay of 1-connectivity or exponential
decay of f2; . . . ; qg-connectivity, and uniqueness holds at �b; h�. Then
ratio weak mixing holds at �b; h�.

For ®xed b, as h varies one expects a sharp transition at some
critical point hC�b; q� � 0 from exponential decay of 1-connectivity to
exponential decay of f2; . . . ; qg-connectivity, with hC�b; q� � 0 for
b > bC�q�, where bC�q� denotes the critical point above which there is
phase coexistence when h � 0. This has not yet been proven except for
q � 2 ([9], [19]), but if it is true then Theorem 3.7 gives ratio weak
mixing for all �b; h� with h � 0, except where h � hC�b; q�.

For the Ising model on Z2, Chayes, Chayes and Schonmann [9]
established exponential decay of (ÿ1)-connectivity in the plus phase,
and of 1-connectivity in the minus phase, for h � 0 and b > bC. Since
the model with h � 0 dominates the model for ®xed h < 0 in the FKG
sense, the 1-connectivity also decays exponentially when h < 0 and
b > bC. If follows from Lemma 1 of [26] that for h < 0 the model at
�bC; h� is FKG-dominated by the model at �b; h0� for some h0 < 0 and
b > bC, so exponential decay of the 1-connectivity also holds when
h < 0 and b � bC. The results for h > 0 are symmetric. For the Ising
model on Zd , weak mixing when b < bC, with h arbitrary, was proved by
Higuchi [21]. Thus we obtain the following from Theorems 3.7 and 3.3.

Corollary 3.8. For the Ising model at �b; h� on Zd , ratio weak mixing
holds provided b < bC. For d � 2, ratio weak mixing also holds when-
ever h 6� 0.

For d � 2; b � bc, and h 6� 0, this provides an alternative to the
proof of weak mixing given by Schonmann and Shlosman in [26].

Finally, using Theorems 3.3 and 3.6 we will give an alternate proof, and
an improvement, of the weak-mixing result of [28], as follows.

Corollary 3.9. Suppose q � 26. For the q-state Potts model on Z2 without
external ®eld, ratio weak mixing holds at all inverse temperatures
b < bC.

4. Proof of Theorem 3.1

For simplicity of exposition we will consider only translation-invariant
P , but the proof works with no signi®cant changes for general P .
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Further, we will only prove (ii), as the proof of (i) is similar but simpler.
For bond models, let us write PK;q for P ��jxB�K�C � qB�K�C�. (This no-
tation makes sense even if q is a con®guration on a set larger than
B�K�C.) Given A � SZd

, r 2 SZd
and x 2 Zd de®ne sxr by �sxr�y � ryÿx

and let sxA :� fr : sÿxr 2 Ag. Let
K�L; x� :� fy 2 Zd : jy ÿ xj � Lg; K�L� :� K�L; 0� :

We begin with a sketch of the proof. Consider a bond model P , and
K � K�L� for some L > 0. For M < L the con®guration in
B�K�L��nB�K�LÿM��, together with the boundary condition on
B�K�L��C, acts as an ``inner boundary condition'' for events occurring
in B�K�LÿM��. We will show that, in the coupling of q1 and arbi-
trary q 2 f0; 1gB�K�L�C� promised by the boundary coupling property,
the inner boundary conditions seen by B�K�LÿM�� in the two cou-
pled con®gurations di�er in a sense at only a small fraction of the sites
in @exK�LÿM�, except with exponentially small (in L, the size of the
boundary) probability. This small probability is the ®rst term on the
right side of (4.10)±(4.12). For any event A 2FB�K�LÿM��, condition-
ally on this similarity of inner boundary conditions, the probabilities
of A under PK�L�;q1 and under PK�L�;q (or under P ) di�er by a factor of at
most exp�108ceL� for some constant c, by bounded in¯uence per
bond. This yields (4.10)±(4.12). In particular, since P �0$ @in�K�L=2���
decays exponentially, by choosing e small enough we can ensure that
the factor of exp�108ceL� does not destroy this exponential decay, so it
holds uniformly over all q ± see (4.13). Form this and the boundary
coupling property one easily obtains weak mixing. Note it is essential
for this argument that the size of the boundary be of order no more
than L, which is what restricts us to two dimensions.

Thus suppose K � K�L� for some L > 0. Fix e > 0; from expo-
nential decay of connectivity, there exists m � 1 such that
P �0$ @in�K�m��� < e=m. By boundary negligibility there exists M > m
such that

PK�M�;q�0$ @in�K�m��� < 2e=m for all q 2 f0; 1gB�K�M�C� : �4:1�
We need consider only L > 4M . Fix q 2 f0; 1gB�K�L�C�. By the boun-
dary coupling property there exists a coupling ~P 2 jP �q; q1� such that
(2.7) holds. Then for A 2FB�K�LÿM��,

PK�L�;q�A� �
Z
f0;1gB�K�L��

PK�LÿM�;�qa��A� PK�L�;q�da�

�
Z
f0;1gB�K�L���f0;1gB�K�L��

PK�LÿM�;�qa��A� ~P �da� dc� �4:2�
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and similarly

PK�L�;q1�A� �
Z
f0;1gB�K�L���f0;1gB�K�L��

PK�LÿM�;�qc��A� ~P �da� dc� : �4:3�

Essentially (4.2) says that one can compute the probability of A under
PK�L�;q by ®rst choosing a realization �a; c� on B�K�L�� �B�K�L�� of
the coupling of q and q1, then throwing away both c and aB�K�LÿM��,
then using the remaining portion of a on B�K�L��nB�K�LÿM��,
together with q onB�K�L�C�, as a boundary condition to calculate the
probability of A; this procedure is averaged over the choice of �a; c�. If
we instead throw away both a and cB�K�LÿM��, and use q1 instead of q,
the resulting probability is under PK�L�;q1 ; this is (4.3). Let

TK�LÿM�;m�a� :� jfx 2 K�LÿM � m�nK�LÿM� :

x$ @in�x� K�m�� in agj ; a 2 f0; 1gB�K�L�� :

Then from (2.7), with probability 1,

DK�LÿM�;m�a; c�
� C @exK�L�; a� � [ C @exK�L�; c� �� � \B K�LÿM � m�� �nB K�LÿM�� ��� ��
� 2TK�LÿM�;m�a� � 2TK�LÿM�;m�c� ; �4:4�

and
RK�LÿM�;m�a� � TK�LÿM�;m�a� ; �4:5�

and similarly for c. From (4.4), (4.5) and bounded in¯uence per site,
for c as in (2.12),

PK�LÿM�;�qa��A�
� exp c DK�LÿM�;m�a; c� � RK�LÿM�;m�a� � RK�LÿM�;m�c�

� �ÿ �
� PK�LÿM�;�qc��A�
� exp 3c TK�LÿM�;m�a� � TK�LÿM�;m�c�

� �ÿ �
PK�LÿM�;�qc��A� : �4:6�

With (4.2) and (4.3) this yields

PK�L�;q�A� � ~P TK�LÿM�;m�a� � TK�LÿM�;m�c� � 36eL
ÿ �
� exp�108ceL�PK�L�;q1�A�
� PK�L�;q TK�LÿM�;m � 18eL

ÿ �� PK�L�;q1 TK�LÿM�;m � 18eL
ÿ �

� exp�108ceL�PK�L�;q1�A� : �4:7�
Note that (4.6), and thus also (4.7), remains true if q and
q1 are interchanged. Let us show that the ®rst two terms on
the right side of (4.7) each decay exponentially in L. The set
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X :� K �LÿM � m�nK�LÿM� can be partitioned into 3Mm subsets
C1; . . . ;C3Mm in such a way that kCij ÿ jCjk � 2 for all i; j; jCij � L=M
(since L > 4M gives jXj � 4m�LÿM��, and

x; y 2 Ci; x 6� y implies jy ÿ xj � 2M and hence d�K�m; y�; x� > M :

�4:8�
De®ne the event

E :� 0$ @in�K�m��� �
and let

Yi :� Cij jÿ1
X
x2Ci

dsxE :

Since jXj � 6m�LÿM� we have

PK�L�;q TK�LÿM�;m � 18eL
ÿ �

� PK�L�;q jXjÿ1
X
x2X

dsxE � 3e=m

" #
�
X

i�3Mm

PK�L�;q Yi � 3e=m� � : �4:9�

By (4.8) and (4.1) we have

PK�L�;q�sxEjdsyE; y 2 Ci; y 6� x� � 2e=m a.s.

Therefore jCijYi under PK�L�;q is stochastically smaller than a Binomial
�jCij; 2e=m� random variable, which we denote Xi. Therefore by
Bernstein's inequality (see [23]),

PK�L�;q�Yi � 3e=m� � P �jCijÿ1Xi � 3e=m� � exp�ÿejC1j=3m�
� exp�ÿeL=3Mm� ;

which with (4.9) shows

PK�L�;q�TK�LÿM�;m � 18eL� � 3Mm exp�ÿeL=3Mm� ;

and similarity for q1. This and (4.7) show that for each e > 0 there is
an M such that

PK�L�;q�A� � 6Mm exp�ÿeL=3Mm� � exp�108ceL�PK�L�;q1�A�
for all L > 4M ; q 2 f0; 1gB�K�L�C� and A 2FB�K�LÿM�� : �4:10�
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As noted above, we can interchange q and q1 in this argument; we
obtain that for each h > 0 there is an M such that for all L > 4M , and
all q and A,

PK�L�;q1�A� � 6Mr exp�ÿhL=3Mm� � exp�108chL�PK�L�;q�A� : �4:11�
Averaging (4.11) over q under P we get

PK�L�;q1�A� � 6Mr exp�ÿhL=3Mm� � exp�108chL�P �A� : �4:12�
Now we focus on the particular event A � AL :� �0$ @in�K�L=2���.
From exponential decay of connectivity we have for some C, k that
P �AL� � CL exp�ÿkL� for all L. Choosing h < k=108c in (4.12) yields
that for some C1 and k1,

PK�L�;q1�AL� � C1 exp�ÿk1L� for all L :

We can now apply (4.10) with e < k1=108c to obtain that for some C2

and k2,

PK�L�;q�0$ @ex�K�L��� � PK�L�;q�AL� � C2 exp�ÿk2L� for all g and L :

�4:13�
Next let us consider arbitrary ®nite sets D � K, and
q 2 f0; 1gB�KC�;A 2FB�D�. Let ~P 2 jP �q;q1� be such that (2.6) holds.
We have using (4.4), for some C3

jPK�L�;q�A� ÿ PK�L�;q1�A�j
� ~P �f�x;x0�2f0; 1gB�K��f0; 1gB�K� : xe 6� x0e for some e 2 B�D��
� ~P �f�x;x0�2f0; 1gB�K� � f0; 1gB�K� : x$ @exK in x

or in x0 for some x 2 D�
� PK�L�;q�x$ @ex�K�d�x;KC� ÿ 1; x�� for some x 2 D�
� PK�L�;q1 �x$ @ex�K�d�x;KC� ÿ 1; x�� for some x 2 D�
� 2 R

x2D
C2 exp�ÿk2�d�x;KC� ÿ 1��

� C3 R
x2D;y2KC

exp�ÿk2jxÿ yj� ;

which proves weak mixing.

5. Proof of Theorem 3.3.

De®ne

t�D;C;C; k� :� C R
x2D;y2C

exp�ÿkjxÿ yj� :
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To prove Theorem 3.3, it is su�cient to establish (1.2) for D ®nite and
A consisting of a single con®guration aD satisfying P �rD � aD� > 0. In
that case, if CC is in®nite we can apply the result for C [ K�L�C in
place of C and let L!1 to see that it is su�cient to prove (1.2) when
CC (which we call K) is also ®nite. The problem is reduced to showing
that for some positive C and k, for all ®nite sets D � K, all aD 2 SD

satisfying P�rD � aD� > 0 and all g, g0 2 SKC
,

jPK;g�rD � aD�=PK;g0 �rD � aD� ÿ 1j � t�D;Kc;C; k� ; �5:1�
whenever t�D;KC;C; k� < 1 and at least one of the probabilities in
(5.1) is positive.

Fix g; g0 2 SKC
such that at least one of the probabilities in (5.1) is

positive. Let ~P 2 jp�g; g0� and let �r; r0� denote a generic con®guration
in SK � SK. Suppose C; k; ~P and an event H � SK � SK can be chosen
so that C; k do not depend on g; g0 and so that, for t � t�D;KC;C; k�,
provided t < 1 we have

~P�rD � aD� > 0 and ~P �r0D � aD� > 0 ; �5:2�
~P�HCjrD � aD� � t=2 and ~P�HCjr0D � aD� � t=2 ; �5:3�

and

H � �rD � r0D� : �5:4�
Then since �1ÿ t=2�ÿ1 � 1� t for t < 1, the quantity

PK;g�rD � aD�=PK;g0 �rD � aD�
� ~P�rD � aD�= ~P�r0D � aD�
� ~P�H \ �rD � aD�� ~P �H jr0D � aD�= ~P �H \ �r0D � aD�� ~P �H jrD � aD�
� ~P�H jr0D � aD�= ~P�H jrD � aD�

is between 1ÿ t=2 and 1� t, and (5.1) follows. Thus it remains to ®nd
C; k; ~P and H such that (5.2), (5.3) and (5.4) hold.

Since we do not a priori assume (5.2) we cannot assume that
conditioning on the events in (5.2) is necessarily well-de®ned. Hence
for this proof we make the following conditioning convention: if l is a
measure on con®gurations and A is a local event with l�A� � 0, then
l�. jA� means l.

We divide the region between D and KC into 3 ``strips,'' as follows.
Let

X1 :� fy 2 KnD : d�y;D�=d�y;KC� < 1=2g;
X2 :� fy 2 KnD : 1=2 � d�y;D�=d�y;KC� � 2g;
X3 :� fy 2 KnD : d�y;D�=d�y;KC� > 2g : �5:5�
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Loosely, X2 contains those points which are between 1/3 and 2/3 of
the way from D to KC. By weak mixing there exist constants C1 > 1
and k1 as in (1.1); in particular,

Var�PK;g�rX2
2� �; PK;g0 �rX2

2 ��� � t1 :� t�X2;K
C;C1; k1� : �5:6�

Therefore there exists a coupling Q 2 j�PK;g�rX2
2 ��; PK;g0 �rX2

2 ��� on
SX2 � SX2 such that

Q�rX2
6� r0X2

� � t1 :

Note that the event R :� �X2 is a controlling region for D [ X1� � SKC

is in FX2
. We now construct �r;r0� as follows:

(i) choose �rX2
; r0X2
� under the distribution Q;

(ii) choose rX3
under PK;g��jrX2

� and r0X3
under PK;g0 ��jr0X2

� indepen-
dently;

(iii) choose rD[X1
under PK;g��jrX2[X3

�;
(iv) if rX2

� r0X2
and rX2

2 R then let r0D[X1
� rD[X1

; otherwise choose
r0D[X1

under PK;g0 �. jr0X2[X3
�, independent of rD[X1

.

Let ~P denote the resulting distribution of �r; r0� on SK � SK. The fact
that ~P 2 jP �g; g0� follows from the fact that when rX2

� r0X2
and

rX2
2 R, the conditional distributions PK;g�� jrX2[X3

� and PK;g0 �� jr0X2[X3
�

are the same. Note that despite the seeming asymmetry in (iii) and (iv),
the construction is actually symmetric in the sense that the same ~P
would result if we interchanged the roles of g and g0. For every
A 2FX2

, by weak mixing,

~P�rX2
2 AjrD � aD� � PK;g�rX2

2 AjrD � aD� � PK;g�rX2
2 A� � t2 ;

�5:7�
where t2 :� t�KC [ D;X2;C1; k1�, and similarly

~P �r0X2
2 Ajr0D � aD� � PK;g0 �r0X2

2 A� � t2 :

Next for mX2
2 SX2 let

g�mX2
� :� ~P�rX2

6� r0X2
jrX2
� mX2

�
and

h�mX2
� :� ~P �rX2

6� r0X2
jr0X2
� mX2

� :
Let m be the largest integer such that 3m < d�X2;K

C�. De®ne
H 2FX2�X2

by

H : � �rX2
� r0X2

� \ �g�rX2
� � exp�ÿk1m�� \ �h�r0X2

�
� exp�ÿk1m�� \ �rX2

2 R� \ �r0X2
2 R� :
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Then (5.4) holds, so we must verify (5.2) and (5.3). Note that the last
event in the de®nition of H is actually redundant; it is written only to
emphasize the symmetry. We have

PK;g�g�rX2
� > exp�ÿk1m�� � ~P �g�rX2

� > exp�ÿk1m��
� exp�k1m� ~Eg�rX2

� � exp�k1m� ~P �rX2
6� r0X2

� � exp�k1m�t1 � t3 ;

�5:8�
where t3 :� t�X2;K

C;C1; 2k1=3� and ~E denotes expectation with re-
spect to ~P . Symmetrically,

PK;g0 �h�rX2
� > exp�ÿk1m�� � ~P �h�r0X2

� > exp�ÿk1m�� � t3 :

From (5.7) and (5.8),

~P �g�rX2
� > exp�ÿk1m�jrD � aD� � t3 � t2 �5:9�

and symmetrically,

~P �h�r0X2
� > exp�ÿk1m�jr0D � aD� � t3 � t2 : �5:10�

Since the controlling region is exponentially bounded, for some C2

and k2 we have

PK;g�rX2
62 R� � P �rX2

62 R� � t1 � t4 � t1 ; �5:11�
where t4 :� t�D [ X1;X3 [ KC;C2; k2�. From (5.7) and (5.11),

~P �rX2
62 RjrD � aD� � t4 � t1 � t2 : �5:12�

By assumption one of the probabilities in (5.2) is positive; we may
assume it is the ®rst one. Note that by (iii) in the construction
of �r;r0�;rD and r0X2

are conditionally independent given rX2
.

Therefore

~P �rX2
6� r0X2

; g�rX2
� � exp�ÿk1m�jrD � aD�

� ~P �rX2
6� r0X2

jg�rX2
� � exp�ÿk1m�;rD � aD�

� maxf ~P �rX2
6� r0X2

jrX2
� mX2

� : g�mX2
� � exp�ÿk1m�g

� exp�ÿk1m�
� t5 ; �5:13�

where t5 :� t�X2;K
C;C4; k1=3� with C4 :� exp�k1�, provided the LHS

of (5.13) is positive so that our conditioning convention need not be
used. If the LHS of (5.13) is 0, then of course the bound of t5 is valid
anyway.

Suppose now that we can show that C and k can be chosen so that
for t � t�D;KC;C; k�, we have
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ti � t=20 for i � 1; . . ; 5 : �5:14�
Observe that

�rD � aD� \ �rX2
� r0X2

� � �r0D � aD� \ �rX2
� r0X2

� : �5:15�
From (5.9), (5.13), (5.14) and (5.15), assuming t < 1,

~P �r0D � aDjrD � aD� � ~P �rX2
� r0X2

jrD � aD� > 0 ;

so that the second probability in (5.2) in positive. Therefore sym-
metrically to (5.13) we obtain

~P �rX2
6� r0X2

; h�r0X2
� � exp�ÿk1m�jr0D � aD� � t5 : �5:16�

We have from (5.10) and (5.16),

~P �h�r0X2
� > exp�ÿk1m�;rX2

� r0X2
jrD � aD�

� ~P �h�r0X2
� > exp�ÿk1m�jrX2

� r0X2
; r0D � aD�

� ~P �h�r0X2
� > exp�ÿk1m�jr0D � aD�=P �rX2

� r0X2
jr0D2
� aD�

� �t3 � t2�=�1ÿ t3 ÿ t2 ÿ t5� ; �5:17�
provided the LHS of (5.17) is positive so that our conditioning con-
vention need not be used. But again if the LHS of (5.17) is 0, then the
bound on the RHS is valid anyway. Combining (5.9), (5.12), (5.13)
and (5.17) we obtain

~P�HCjrD � aD� � 2t1 � 2t2 � t3 � t4 � �t3 � t2�=�1ÿ t3 ÿ t2 ÿ t5� ;
�5:18�

and the ®rst half of (5.3) follows; the second half is symmetric.
It therefore remains to establish (5.14). Let k < min�k1=9; k2=6�. If

y 2 X2 and x 2 D then jy ÿ xj � d�x;KC�=3. Similarly if y 2 X2 and
x 2 KC then jy ÿ xj � d�x;D�=3. Therefore we have for some constants
C5 and C6

t2 � t�KC [ D;X2;C1; k1�
� C1 R

x2D
R

y:jyÿxj�d�x;KC�=3
exp�ÿk1jxÿ yj�

� C1 R
x2KC

R
y:jyÿxj�d�x;D�=3

exp�ÿk1jxÿ yj�

� C5 R
x2D

R
k�d�x;KC�=3

kdÿ1 exp�ÿk1k�

� C5 R
x2KC

R
k�d�x;D�=3

kdÿ1 exp�ÿk1k�

� C6 R
x2D

exp�ÿ3kd�x;KC�� � C6 R
x2KC

exp�ÿ3kd�x;D��
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� 2t�D;KC;C6; 3k�
� t�D;KC; 40C6; k�=20 :

By essentially the same argument we get

t3 � t�D;KC; 20C6; 2k�=20 and t5 � t�D;KC; 20C6; k�=20 :

Note also that t1 � t2. Next suppose that x 2 D [ X1 and y 2 X3 [ KC.
We claim that

jy ÿ xj � d�x;KC�=2 : �5:19�
To see this, observe that d�x;KC� � jy ÿ xj � d�y;KC�, so either (5.19)
holds or d�y;KC� � d�x;KC�=2. But in the latter case we have

d�x;KC�=2 � d�y;KC� < d�y;D�=2 � jy ÿ xj=2� d�x;D�=2
� jy ÿ xj=2� d�x;KC�=4 ;

so (5.19) holds anyway. Similarly, we have also

jy ÿ xj � d�x;D�=2 : �5:20�

Using (5.19) and (5.20) we obtain that for some constants
C7; . . ;C10,

t4 � t�D [ X1;X3 [ KC;C2; k2�
� C2 R

x2D[X1

R
y:jyÿxj�d�x;KC�=2

exp�ÿk2jy ÿ xj�

� C7 R
x2D[X1

R
k�d�x;KC�=2

kdÿ1 exp�ÿk2k�

� C8 R
x2D[X1

exp�ÿ3kd�x;KC��

� C8 R
x2D[X1

R
y2KC

exp�ÿ3kjy ÿ xj�

� C8 R
y2KC

R
x:jyÿxj�d�y;D�=2

exp�ÿ3kjy ÿ xj�

� C9 R
y2KC

R
k�d�y;D�=2

kdÿ1 exp�ÿ3kk�

� C10 R
y2KC

exp�ÿkd�y;D��

� t�D;KC; 20C10; k�=20 :

The proof of (5.14), and thus of the theorem, is complete.
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6. Proofs for speci®c models

Proof of Theorem 3.4. It follows easily from the fact that probabilities
in the model are de®ned in terms of a product over clusters that (ii) of
Lemma 2.4 is satis®ed. Since by Lemma 2.1 the FK model satis®es the
FKG lattice condition, (i) also holds. Therefore by that lemma, the
model has the boundary coupling property with respect to f1g.

Since there is no percolation under the wired boundary condition,
there is an asymptotically negligible probability that the boundary
cluster meets a ®xed box, that is,

limn!1P in
K�n�;q1;q;p;h�Cf1g�@exK�n�; � � \ K�m� 6� /� � 0 for all m :

�6:1�
The FKG property (Lemma 2.1) ensures that the probability in (6.1) is
not increased if q1 is replaced with another boundary condition. To-
gether with the boundary coupling property, this establishes boundary
negligibility and hence uniqueness.

From (2.13) the model has bounded in¯uence per site. Therefore
weak mixing follows from Theorem 3.1 (ii).

For q 2 f0; 1gB�KC�, it is easy to see that the closure of the cluster
of @exK in q is a controlling region for B�K� and q. Therefore for
some C and k, for X � B�KC�, and C the set of endpoints of bonds in
X,

P in
q;p;h�fx 2 f0; 1gB�K

C� : X is not a controlling region for

B�K� and qg�
� rx2@exK;y2@in�K[C�P

in
q;p;h�x$ z for some z adjacent to y�

� R
x2K;y2CCnK

C exp�ÿkjy ÿ xj� ;

from which it follows that P in
q;p;h has exponentially bounded controlling

regions. Ratio weak mixing then follows from Theorem 3.3. (

Does weak mixing in the q-state Potts model at �b; h� ensure weak
mixing in the corresponding FK model with parameters �q; p; h�, with
p � 1ÿ eÿb, and vice-versa? The general answer is no, because by
Remark 3.5, we can have weak mixing in the FK model when there is
not even uniqueness in the Potts model. However, we do have the
following.

Theorem 6.1.Consider the q-state Potts model at �b; h� on Zd�h � 0� and
the FK model with parameters �q; p; h�, with p � 1ÿ eÿb.
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(i) If the Potts model is weak mixing, then the FK model is weak
mixing.

(ii) If the FK model is weak mixing and has exponential decay of
connectivity, then the Potts model is weak mixing.

Proof. Fix ®nite sets D � K � �K � C. Suppose ®rst that the Potts
model is weak mixing. The main point is that under the joint site-bond
measure, given the site con®guration on KC, the bonds there are in-
dependent of the site con®guration on D, by the construction C2;
similarly given the site con®guration on D, the bond con®guration
there is independent of the site and bond con®gurations on CC. For
the details, ®x q;q0 2 f0; 1gB�KC�; g 2 SKC

, and A � f0; 1gB�D�. Then
P in

K;q;q;p;h�xB�D� 2 A�
� limC%Zd PC;q0;q;p;h xB�D� 2 AjxB�C�nB�K� � qB�C�nB�K�

� �
� limC%Zd ~PC;g0;q;p;h xB�D� 2 AjxB�C�nB�K� � qB�C�nB�K�

� �
: �6:2�

Now by the above-mentioned conditional independence,

~PC;g0;q;p;h�xB�D� 2 AjxB�C�nB�K� � qB�C�nB�K�; rCnK � gCnK�
� EK;g;q;b;h� ~PD;g0;p;q;h�xB�D� 2 AjrD�� :

We denote the last quantity by u�g�. Then
f �qB�C�nB�K�� : � ~PC;g0;q;p;h xB�D� 2 AjxB�C�nB�K� � qB�C�nB�K�

� �
� ~EC;g0;q;p;h u�rCnK�jxB�C�nB�K� � qB�C�nB�K�

� �
:

Therefore since the Potts model is weak mixing, for some C and k,

f qB�C�nB�K�
� �

ÿ f q0
B�C�nB�K�

� ���� ��� � supuÿ infu � t D;Kc;C; k� � ;

which with (6.2) establishes weak mixing for the FK model (cf. (2.4).)
Next suppose the FK model is weak mixing and has exponential

decay of connectivity. Fix U � SD and g; g0 2 SKC
. Then

PK;g;q;b;h rD 2 U� � � EK;g;q;p;h ~PK;g;q;p;h rD 2 U jxB�K�
� �� �

: �6:3�
Let

F :� xB�K� : CI @exK;xB�K�
� �

\ D � /
n o

:

For xB�K� 2 F , the conditional probability on the right side of (6.3) is
not a�ected by the boundary condition g, so that

~PK;g;q;p;h rD 2 U jxB�K�
� �

� ~PK;g0;q;p;h rD 2 U jxB�K�
� �

for all xB�K� 2 F :
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Therefore by (6.3) and Remark 2.2, since F C is an increasing event,

PK;g;q;b;h rD 2 U� � ÿ PK;g0;q;b;h rD 2 U� ��� ��
� PK;g;q;p;h F Cÿ �� PK;g0q;p;h F Cÿ �
� 2P in

K;q1;q;p;h F Cÿ �
: �6:4�

Let Xi; i � 1; 2; 3; be as in (5.5). Then for some Ci and ki; i � 1; 2;

P in
K;q1;q;p;h F Cÿ � � P in

K;q1;q;p;h D$ @ex D [ X1� �� �
� P in

w;q;p;h D$ @ex D [ X1� �� � � t D [ �X1;K
C;C1; k1

ÿ �
� t D;X2;C2; k2� � � t D [ �X1;K

C;C1; k1
ÿ �

: �6:5�
As in the proof of Theorem 3.3 (cf. the bounds on t2 and t4), there exist
C and k such that the right side of (6.5) is bounded by t�D;KC;C; k�.
With (6.4) this completes the proof. (

Lemma 6.2. A Potts model on Zd with external ®eld h � 0 applied to spin
1 has the boundary coupling property, both with respect to f1g and with
respect to f2; . . . ; qg.
Proof. Fix K ®nite and g 2 SKC

, where S � f1; . . . ; qg. Let b > 0 be the
inverse temperature, and p � 1ÿ eÿb. By Remark 2.2, the conditioned
FK measure P in

K;g;q;p;h is FKG-dominated by the wired-boundary

measure P in
k;g1;q;p;h. This remains true if we condition both measures on

a ®xed con®gurations on a subset of B�K�; more precisely if
D � B�K� and qD 2 f0; 1gD, then P in

K;g1;q;p;h�x 2 :jxD � qD� dom-
inates P in

K;g;q;p;h�x 2 :jxD � qD�. Further, since P in
K;g1;q;p;h satis®es the

FKG lattice condition, if sD � qD then P in
K;g1;q;p;h�x 2 :jxD � sD�

dominates P in
K;g1;q;p;h�x 2 :jxD � qD� and hence also dominates

P in
K;g;q;p;h�x 2 :jxD � qD�. Finally, conditionally on either A or B,

condition (ii) of Lemma 2.4 is satis®ed. With these observations it is
easy to see that the sequential construction used in the proof of
Lemma 2.3 yields a coupling in j�P in

K;g;q;p;h; P
in
K;g1;q;p;h� such that the two

con®gurations �x;x0� agree outside the cluster C of @exK existing in
the (larger) con®guration x0. In particular there are no bonds in either
con®guration connecting sites in C to sites outside C, and every cluster
in x is either contained in C or disjoint from C. When states are
assigned to clusters as in construction C1, each cluster disjoint from C
is assigned a state with probability proportional to 1 for state 1 and to
eÿbhn for each of states 2; . . . ; q, where n is the number of sites in the
cluster; conditionally on the bond con®guration, the assignments are
independent for distinct clusters. Therefore the assignment can be
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done identically for those clusters of x and x0 disjoint from C,
yielding a coupling of the boundary conditions g and g1 such that the
two site con®gurations �r;r0� agree outside C, hence also outside the
1-cluster of @exK in r0. This establishes the boundary coupling prop-
erty with respect to f1g.

The boundary coupling property with respect to f2; ::; qg is es-
tablished in [4]. (

Theorem 3.7 follows directly from Lemma 6.2 and Theorems 3.1
and 3.3.

Proof of Theorem 3.6. That weak mixing implies exponential decay of
correlations follows immediately from the de®nitions. So suppose
correlations decay exponentially. From (2.5) and uniqueness, for
p � 1ÿ eÿb, the FK model with parameters �q; p� has exponential
decay of connectivity. From Theorem 3.4 this FK model is weak
mixing, and it follows from Theorem 6.1 that the Potts model is weak
mixing. (

Grimmett [20] proved that for q > 25:72 and p � pC�q; 2�, the FK
model on B�Z2� with parameters �q; p� and free boundary condition
has exponential decay of connectivity. With (2.5) and Theorems 3.3
and 3.6, this proves Corollary 3.9.
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