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Summary. In this article, we study the incompressible Navier±Stokes equa-
tions in R3. The non linear integral equation satis®ed by the Fourier trans-
form of the Laplacian of the velocity ®eld can be interpreted in terms of a
branching process and a composition rule along the associated tree. We
derive from this representation new classes where global existence and
uniqueness can be proven.
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0 Introduction

The motion of a viscous incompressible ¯uid in the whole space is described
by the Navier±Stokes equations:

@tu� u � ru � mDuÿrp � f ;
ut�0 � u0; div u � 0 ;

�
�0:1�

where u�t; x� 2 R3, denotes the velocity ®eld, p�t; x� is the pressure,
f �t; x� 2 R3, the force ®eld and m > 0, the kinematic viscosity. These equa-
tions were introduced in the works of Navier [9] and Stokes [11]. They
modify Euler's equation, which is Newton's law for an in®nitesimal volume
element of the ¯uid, by the addition of a dissipative term mDu, corresponding
to friction forces. The mathematical study of these equations began in the
thirties, in particular with the seminal paper [8] of Leray. Since then, there
has been an enormous literature on the subject, see for instance [1], [3], [4],
[5], [7], [13], [14] and references therein. Nevertheless some of the questions
raised in [8] are to this day open. A notion of weak solution for (0.1) has been
developed, see Temam [13]. Although one has a global existence result for
weak solutions, one can in general only prove uniqueness for a more re-
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strictive class of solutions, where a global existence result is not available.
However, in the case of ``suitably small data'', one has global existence of a
``good solution'' and uniqueness of weak solutions, see Kiselev±Ladyz-
henskaya [6], Serrin [10], p. 76, 83, 86.

The purpose of this article is to introduce a probabilistic interpretation of
(0.1) and to use this to derive certain global existence results in classes where
uniqueness holds. To this end we investigate a Fourier representation of
(0.1), namely the integral equation:

vt�n� � expfÿmjnj2tgv0�n� �
Z t

0

mjnj2eÿmjnj2�tÿs� 1

2
vs � vs�n� �

1

2
u�s; n�

� �
ds;

t � 0; n 2 R3nf0g ; with
�0:2�

v � 2

m
p
2

� �3=2
jnj2û ;�0:3�

u � 4

m2
p
2

� �3=2
f̂ ;�0:4�

and the �-operation is de®ned for C3-valued functions f1; f2 on R3nf0g, via:

f1 � f2�n� � ÿi
Z
�R3nf0g�2

f1�n1� �
n
jnj

� �
p�n�ÿf2�n2��Kn�dn1; dn2� ;�0:5�

where p�n� is the projection on the orthogonal of n and Kn the kernel:

Kn�h� � 1

p3

Z
R3nf0g

h�n1; nÿ n1�
jnj dn1

jn1j2jnÿ n1j2
:�0:6�

Thanks to the three dimensional situation, it turns out that K has a number
of remarkable properties (see Proposition 1.2). In particular, it is Markovian
(i.e. a probability kernel). As a result of the special features of K, we are able
to study existence and uniqueness questions for (0.2), with the help of a
critical branching process on R3nf0g, which we call the ``stochastic cascade''.
For this process, a particle located at n, after an exponential holding time of
parameter mjnj2, with equal probability either dies out or gives birth to two
descendants, distributed according to Kn.

We are able in section II to develop in a suitable setting, a representation
formula for solutions of (0.2), as the expectation of the result of a certain
operation performed ``along the branching tree generated by the stochastic
cascade''. This is somewhat reminiscent of the Wild sums for Boltzmann
equation (see Wild [15], [12] chapter IV, and also [16]).

We obtain a ``domination principle'' for existence and uniqueness ques-
tions in (0.2), see Theorem 2.2 and 2.4. Roughly speaking, if the scalar
integral equation

Xt�n� � expfÿmjnj2tgX0�n� �
Z t

0

mjnj2eÿmjnj2�tÿs� 1

2
Kn�Xs 
 Xs� � 1

2
U�s; n�

� �
ds

�0:7�
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with non negative data X0 and U, for which jv0j � X0, juj � U, has a ®nite
(minimal) solution Xt�n�, we have existence and uniqueness of solutions of
(0.2) in the class jvt�n�j � Xt�n�.

From this domination principle, we deduce concrete classes for which we
have existence and uniqueness in (0.2), see Theorem 3.2 and also
Theorem 3.4. It should be pointed out that these results do not rely on the
formal energy identity satis®ed by (0.1), (in our context see (4.12), (4.16)). In
fact we have some well de®ned evolutions with possibly in®nite energy.

We are then able to derive certain existence and uniqueness results for
weak solutions of (0.1), stated for simplicity in the case f � 0, see
Theorem 4.1. These statements seem to be new, see for instance Remark 4.3.
Although not directly comparable, some of them share a common ¯avor with
Cannone's existence and uniqueness results in Besov space, see [1].

Let us ®nally describe how the article is organized. In section I, starting
from a weak solution setting for (0.1), we derive (0.2), see Proposition 1.1,
and investigate some of the special properties of the kernel K.

In section II, we develop the domination principle and the representation
formula for solutions of (0.2), in terms of the ``stochastic cascade''. Our main
results are the existence Theorem 2.2 and uniqueness Theorem 2.4.

In section III, we give concrete examples for the results of section II, see
Theorem 3.2 and 3.4.

In section IV, we return to the Cauchy problem (0.1), for simplicity in the
case f � 0. We derive a certain global existence and uniqueness result in
Theorem 4.1.

1 Fourier representation of the Navier±Stokes equation

The object of this section is to derive an appropriate formulation of the
Fourier transform of the incompressible 3-d Navier±Stokes equation. Our
starting point is the notion of weak solutions of the Navier±Stokes equation
in R3, for instance as in Temam [13], p. 282. That is we consider the spaces

V � fu 2 C1c �R3�3; div u � 0g ;
H � closure of V in L2�R3�3 ;
V � closure of V in H 1�R3�3 :

�1:1�

Given an initial condition u0 2 H and a force f �t; x� 2 L2�0; T ; V 0�, T > 0, a
weak solution of Navier±Stokes equation on the interval �0; T � is a
u 2 L2�0; T ; V � with u0 2 L1�0; T ; V 0� such that for any g 2V and t 2 �0; T �:

hut; gi � hu0; gi �
Z t

0

mhus;Dgi � hus; usrgi � h fs; gi ds ;�NS�

where the notation hh; gi stands for
P3

1

R
h`�g`dx, (we shall later use this

notation for complex valued functions). The existence of solutions to (NS) is
known, see Temam [13] Theorem 3.1. Whenever it makes sense, we shall
denote by ĥ the Fourier transform of h:
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ĥ�n� � 1

�2p�3=2
Z

R3

expfÿix � ngh�x� dx :

For w1�n�, w2�n� two C3 valued measurable functions on R3nf0g, we shall
write

w1 � w2�n� � ÿ i

p3

Z ÿ
w1�n1� � en

�
p�n�w2�nÿ n1�

jnj dn1
jn1j2jnÿ n1j2

;�1:2�

for n 2 R3nf0g, for which the above integral is absolutely convergent, where
w � w0 �P3

1 wi �w0i, for w;w0 2 C3, en � n=jnj, and
p�n�w � wÿ en�w � en�; w 2 C3 ;�1:3�

stands for the projection on the orthogonal of n (in C3). Our representation
of the Fourier transform of Navier±Stokes equation comes in the following:

Proposition 1.1: If u is a solution of (NS), one can choose vt�n�, t 2 �0; T �,
n 2 R3, continuous in t, measurable in n, with

vt�n� �
2

m
p
2

� �3=2
jnj2ût�n�; a.e. n; for t 2 �0; T � ;�1:4�

vt�n� � n � 0; vt�ÿn� � vt�n�; 0 � t � T ; n 2 R3 ;�1:5�
such that for a.e. n,

vt�n� � expfÿmjnj2tgv0�n� �
Z t

0

mjnj2eÿmjnj2�tÿs� 1
2

vs � vs�n� �
1

2
u�s; n�

� �
ds ;

�1:6�
for 0 � t � T , where

u�s; n� � 4

m2
p
2

� �3=2
f̂s�n�; a.e. s; n; and

u�s; n� � n � 0 ; u�s;ÿn� � u�s; n� ; 0 � s � T ; n 2 R3 :

�1:7�

Proof: We can choose a measurable version f̂s�n� of the Fourier transform of
the real valued, weakly divergence free fs, such that:Z T

0

Z
�1� jnj2�ÿ1

����f̂s�n�
����2dn ds <1; and

f̂s�n� � n � 0; f̂s�ÿn� � f̂s�n�; 0 � s � T ; n 2 R3 :

�1:8�

Applying similar considerations to u0 2 L1�0; T ; V 0�, we can ®nd a measurable
version ûs�n� continuous in s such thatZ T

0

Z
�1� jnj2�jûs�n�j2 dn ds <1; and

ûs�n� � n � 0; ûs�ÿn� � ûs�n�; 0 � s � T ; n 2 R3 :

�1:9�
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It follows from (NS) that for t 2 �0; T �:

hût; ĝi � hû0; ĝi �
Z t

0

ÿmhjnj2ûs; ĝi � h f̂s; ĝi ds

� 1

�2p�3=2
Z t

0

Z
û`s�n�ûk

s �nÿ n0�ÿÿin0kĝ`�n0�� dn dn0 ds :
�1:10�

Since ûs�ÿn� � ûs�n�, the last term of (1.10) equals

ÿi
�2p�3=2

Z t

0

hnk�ûk
s � ûs�; ĝi � 2

p

� �3=2 m2

2

Z t

0

1

2
hvs � vs; ĝi ds ;�1:11�

using ĝ�n� � n � 0 in the last step, with vs as in (1.4), and as a result of (1.9),

sup
n

Z T

0

ds
Z
jvs�n1� � en j jvs�nÿ n1�j

jnj dn1
jn1j2jnÿ n1j2

<1 :�1:12�

It now follows from (1.10) that for t 2 �0; T �:

vt�n� �a.e. v0�n� �
Z t

0

mjnj2 ÿvs�n� �
1

2
vs � vs�n� �

1

2
u�s; n�

� �
ds :�1:13�

Using the continuity in t of vt�n�, the above equality holds a.e. in n for
t 2 �0; T �. It then follows by considering the derivative of the absolutely
continuous function expfÿmjnj2�t ÿ s�gvs�n� that (1.6) holds. (

We now introduce the kernel K from R3nf0g to
ÿ
R3nf0g�2 de®ned

through Z
h�n1; n2�Kn�dn1; dn2� �

1

p3

Z
h�n1; nÿ n1�

jnj dn1
jn1j2jnÿ n1j2

;�1:14�

for h � 0 measurable on �R3nf0g�2.
So with the notations of (1.3), for n 6� 0,

w1 � w2�n� � ÿi
Z ÿ

w1�n1� � en
�
p�n�w2�n2�Kn�dn1; dn2� ;�1:15�

whenever the integral is absolutely convergent.
As we shall now see, the kernel K has some remarkable properties which

are crucial for the later developments in this article. We introduce some
``angular variables'' to describe K. We de®ne

D � ��h1; h2; a� 2 �0; p� � �0; p� � �0; 2p�; h1 � h2 < p
	
:�1:16�

For �h1; h2; a� 2 D, we denote by n1�h1; h2; a� and n2�h1; h2; a� the unique
vectors of �R3nf0g�2 such that:

n1 � n2 � e3;
ÿ�ei�1� i�3 stands for the canonical basis of R3

�
;�1:17�

n1 has colatitude h1 and longitude a; n2 has colatitude h2 and longitude
a� p�mod 2p�.

We denote by W: D! ÿ
R3nf0g�2, the map
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�h1; h2; a� !
ÿ
n1�h1; h2; a�; n2�h1; h2; a�

�
:�1:18�

It is immediate to argue that W is a bijection from D onto the set of n1; n2 in
R3nRe3, with n1 � n2 � e3, and the restriction of U to D

�
induces a di�eo-

morphism.
For any n 6� 0, we denote by Sn the similitude of R3 sending e3 on n,

obtained as a composition of a rotation in the e3, n plane and an homothety
when e3 and n are not colinear, and multiplication by a scalar when e3 and n
are colinear. Finally we denote by A the set

A � ��r; r1; r2� 2 �0;1�3; r1 � r2 > r; r1 � r > r2; r2 � r > r1
	
:�1:19�

A is symmetric under permutation of coordinates in �0;1�3; it describes the
set of ordered triplets arising as side lengths of non degenerate triangles of
the Euclidean plane. We now collect some useful properties of K in the
following

Proposition 1.2: K is a Markovian kernel and for n 2 R3nf0g;

Kn�dn1; dn2� is the image of the probability
1

p3
1D dh1 dh2 da ;

�1:20� under the map �Sn 
 Sn� �W :

Under Kn; �jn1j; jn2j� has law
2

p2
1A�r; r1; r2� dr1

r1

dr2
r2
;

where r � jnj > 0 :�1:21�
The law of jn1j or jn2j under Kn is

2

p2
log

����r � r1
r ÿ r1

���� dr1
r1

:�1:22�

For h; g non negative measurable on �0;1�, i; j 2 f1; 2gZ
dn

jnj3 h�jnj�
Z

g�jnij�Kn�dn1; dn2� �
Z

dn

jnj3 g�jnj�
Z

h�jnjj�Kn�dn1; sn2� :

�1:23�

Proof: We begin with the proof of (1.20). With no loss of generality, we
assume that n � e3. For �h1; h2; a� 2 D, we write

r1 � jn1�h1; h2; a�j 2 �0;1�; r2 � jn2�h1; h2; a�j 2 �0;1� :�1:24�
Projecting the equality

e3 � n1 � n2 ;

on Re3 and on the e1; e2 plane we ®nd:

r1 cos h1 � r2 cos h2 � 1; r1 sin h1 ÿ r2 sin h2 � 0 ;

so that for �h1; h2; a� 2 D:
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r1 � sin h2
sin�h1 � h2� ; r2 � sin h1

sin�h1 � h2� :�1:25�

Now for g � 0 measurable on �R3nf0g�2, using polar coordinates we ®nd:Z
g�n1; n2�Ke3�dn1; dn2� �

1

p3

Z
g�n1; e3 ÿ n1�

dn1
jn1j2jnÿ n1j2

� 1

p3

Z
�0;1���0;p���0;2p�

g
ÿ
n1�r1; h1; a�; e3 ÿ n1�r1; h1; a�

�
� r21 sin h1

dr1dh1da

r21je3 ÿ n1�r1; h1; a�j2
�1:26�

with obvious notations,

��1:25� 1
p3

Z
D

g �W�h1; h2; a� sin
2�h1 � h2�
sin2 h1

sin h1
@r1
@h2

dh1 dh2 da

� 1

p3

Z
D

g �W�h1; h2; a� dh1 dh2 da :

This proves our claim (1.20). Let us now prove (1.21). Just as for the proof of
(1.20), it su�ces to consider the case n � e3, so that r � jnj � 1. Observe that
for �h1; h2; a� 2 D,

ÿ
1; r1 � jn1�h1; h2; a�j; r2 � jn2�h1; h2; a�j

� 2 A, where A is
de®ned in (1.19). In fact r1; r2 do not depend on a (see (1.25)), and

�h1; h2; a� 2 D! �r1; r2� with �1; r1; r2� 2 A�1:27�
is a bijection when restricted to a � a0 2 �0; 2p�. This is geometrically clear
and in fact analytically one has

cos h2 � 1� r22 ÿ r21
2r2

; cos h1 � 1� r21 ÿ r22
2r1

;

which uniquely determines h1; h2. Now a direct calculation shows that the
Jacobian of the above (restricted) map is:

J � @r1
@h1

@r2
@h2
ÿ @r1
@h2

@r2
@h1
� ÿ sin h1 sin h2

sin�h1 � h2�2
� ÿr1r2 :�1:28�

For g � 0 measurable on �0;1�3, we thus ®nd:Z
g�jn1j; jn2j�Ke3�dn1; dn2� ��1:20�

1

p3

Z
D

g�r1; r2� dh1 dh2 da

� 2

p2

Z
�0;1�2

1A�1; r1; r2�g�r1; r2� dr1
r1

dr2
r2

:

This proves (1.21). As for (1.22), (1.23), they are immediate consequences of
(1.21) and the symmetry of A (for (1.23)). (
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2 Existence and uniqueness principle

The object of this section is to derive an existence and uniqueness result for
the Fourier representation of the 3-d Navier±Stokes equation (see (2.4) be-
low). It will be the consequence of a ``domination principle''. This domina-
tion will involve the ``stochastic cascade'', that is the continuous time critical
branching process on n space, where a particle located at n 6� 0, with rate
mjnj2 and with equal probability 1=2 either dies out or gives birth to two
descendents n1; n2 distributed according to Kn�dn1; dn2�.

Let us ®rst precisely state what we mean by a solution of the Fourier
representation of Navier±Stokes equation (FNS). The data are measurable
functions:

v0 : R3nf0g ! C3; with v0�n� � n � 0; v0�ÿn� � v0�n�; n 2 R3nf0g ;�2:1�

u�s; n� : �0; T � � R3nf0g ! C3; with

Z T

0

ju�s; n�j ds <1 ;

u�s; n� � n � 0; u�s;ÿn� � u�s; n�; for s; n 2 �0; T � � R3nf0g :
�2:2�

A function v : �0; T � � R3nf0g ! C3, continuous in time, measurable in space
such thatZ T

0

ds
Z
jvs�n1� � enjjp�n�vs�n2�jKn�dn1; dn2� <1; for a.e. n;

vs�n� � n � 0; vs�ÿn� � vs�n�; �s; n� 2 �0; T � � R3nf0g ;
�2:3�

will be called solution of (FNS) if for a.e. n:

vt�n� � expfÿmjnj2tgv0�n� �
Z t

0

mjnj2 expfÿmjnj2�t ÿ s�g

� 1

2
vs � vs�n� � u�s; n�

� �
ds ; for t 2 �0; T � :�2:4�

Of course one can de®ne the notion of solution on �0;1� � R3nf0g in an
analogous fashion (the integrability condition (2.3) being then required for
arbitrary T 2 �0;1�).

We have seen in Proposition 1.1 (and (1.12)) that a weak solution u of
(NS) with data u0 and f gives rise to a solution of (FNS) with data v0;u.

We shall now investigate some existence and uniqueness results for so-
lutions of (FNS). To this end we now introduce the ``stochastic cascade''.
Loosely speaking, for n0 2 R3nf0g, t0 2 R, Pn0;t0 will be the law of a critical
continuous time branching process, ``going backward in time''. The common
ancestor ``generated'' at time t0 in n0 will branch at time t; < t0, with t0 ÿ t;
exponentially distributed with parameter mjnj2. With probability 1

2 it will
disappear and with probability 1

2 it will branch into two particles n1; n2 dis-
tributed according to Kn�dn1; dn2�. Then the process goes on.

Formally Pn0;t0 is a probability on the space X of marked trees x of the
form.
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x � ÿt; �tm; nm; mm�m2I

�
;�2:5�

where t is the time at which the common ancestor ``;'' is generated, I denotes
the set

S
`�0f1; 2g` of `` labels'', that is of ®nite sequences of 1,2, with variable

length `, (; denotes the unique label of length ` � 0). The variable mm 2 f0; 1g
indicates that the particle nm dies out at time tm, when mm � 0, or gives birth
to two descendants of label nm1; nm2, when mm � 1. Moreover for x 2 X, the
collection fm 2 I ; mm�x� � 1g is ®nite and such that (using the natural con-
catenation order on I):

m0 � m and mm�x� � 1�) mm0 � 1 ;�2:6�
the sequence of branching times is decreasing, i.e.:

m0 � m; mm0 �x� � 1�) t�x� > tm0 �x� > tm�x��2:7�
and ``everything stops at the death time'':

m0 � m; mm0 �x� � 0�) tm�x� � tm0 �x�; nm�x� � nm�x0� :�2:8�
Of course Pn0;t0 , a.s. n0 � n;�x�, t0 � t�x�.

We shall mainly be interested in the subset X� of marked trees x with
generation time t�x� � 0. A tree x 2 X�, together with the data v0;u will
give rise to a C3 vector

R�v0;u;x� ;�2:9�
which is the result of an operation along the tree, which we now describe. For
x 2 X�, we have a ®nite collection (in fact binary tree) N�x� � I of ``oper-
ation nodes'':

N�x� � �m 2 I ; tm�x� > 0; mm�x� � 1
	
;�2:10�

and the ®nite collection @N�x� � I of ``input nodes'':

@N�x� � �m 2 InN�x�; the direct predecessor of m belongs to N�x�	 :
�2:11�
By convention, when N�x� � ;, @N�x� � f;g. The set @N�x� of input nodes
is naturally partitioned into two disjoint subcollections:

@0N�x� � fm 2 @N�x�; tm�x� � 0g
@�N�x� � fm 2 @N�x�; tm�x� > 0g; so that

@N�x� � @�N�x� [ @0N�x�; x 2 X� :�2:12�
We have a (marked) node operation:

w1;w2 2 C3; n 2 R3nf0gÿ!w1 �n w2 � ÿi�w1 � en�p�n�w2 2 C3 ;�2:13�
and to each input node m 2 @N�x� we attach an input which is de®ned as:

v0
ÿ
nm�x�

�
; when 2 @0N�x�; and

u
ÿ
tm�x�; nm�x�

�
; when m 2 @�N�x� :�2:14�
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R�v0;u;x� is then the result of the recursively performed operation (2.13) at
each operation node in N�x�, with inputs given in (2.14). For instance

N�x� � f;; 1; 2; �1; 2�g
@0N�x� � f�1; 2; 1�; �2; 1�; �2; 2�g
@�N�x� � f�1; 1�; �1; 2; 2�g

R�v0;u;x� �
ÿ
u�t11; n11�

��n1
ÿ
v0�n121� �n12 u�t122; n122�

�
�n;

ÿ
v0�n21� �n2 v0�n22�

�
:

Given non negative measurable functions X0 on R3nf0g and U on �0; T ��
R3nf0g, we also consider

M�X0;U;x� ;�2:15�
which is de®ned analogously to R�v0;u;x�, except that the operation per-
formed at each operation node is the usual multiplication of numbers, instead
of (2.13). We shall now begin with a lemma which collects some useful prop-
erties of the function En;t�M �, which will play an important role in this section.

Lemma 2.1: Let X0 and U be non negative measurable functions respectively
de®ned on R3nf0g and �0; T � � R3nf0g. Then the function

�t; n� 2 �0; T � � R3nf0g ! Xt�n� � En;t
�
M�X0;U;x�

� 2 �0;1� ;�2:16�
is measurable and satis®es:

Xt�n� � expfÿmjnj2tgX0�n� �
Z t

0

mjnj2eÿmjnj2�tÿs�

� 1

2

Z
Xs�n1�Xs�n2�Kn�dn1; dn2� �

1

2
U�s; n�

� �
ds ;

�2:17� for 0 � t � T ; n 2 R3nf0g; �with the convention 0 � 1 � 0� :
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For each n 2 R3nf0g
t 2 �0; T � ! expfmjnj2tgXt�n� 2 �0;1� is non decreasing :�2:18�

Moreover, if t 2 �0; T � and either X0 or 1�0;t�U are symmetric (in n) and non
negligible functions, then:

Xt��� is bounded away from 0 on compact of R3nf0g :�2:19�

Proof: The measurability is obvious, and for t 2 �0; T �, n 2 R3nf0g:

Xt�n� � En;t
�
M�X0;U;x�

� � En;t�M ; t; � 0�
� En;t�M ; t; > 0; m; � 1� � En;t�M ; t; > 0; m; � 0� :

Using the strong Markov property at time t;, for the last two terms, we ®nd

Xt�n� � expfÿmjnj2tgX0�n� �
Z t

0

mjnj2eÿmjnj2�tÿs�

� 1

2

Z
En1;s�M �En2;s�M �Kn�dn1; dn2� ds�

Z t

0

mjnj2eÿmjnj2�tÿs� 1
2

U�s; n� ds :

�2:20�
This proves (2.17). If we now multiply both members of (2.20) by expfmjnj2tg
we immediately obtain (2.18).

We shall not use (2.19) in the sequel. Nevertheless we present this non-
degeneracy criterion for Xt�n�, having in mind the domination principle we
develop in this section.

Let us now prove (2.19). It su�ces to show that

Xt�n� > 0; for jnj 6� 0 :�2:21�

Indeed, applying this result to s < t close to t, it will follow thatZ
Xs�n1�Xs�n2�Kn�dn1; dn2� > 0 for jnj 6� 0 :�2:22�

Using the L2�dn1� continuity of translations (see (1.14)), the above function
remains bounded away from 0, when n varies in compact subsets of R3nf0g.
Together with (2.18) and (2.20) we see that (2.19) follows from (2.21).

Let us now prove (2.21).

Without loss of generality we can assume that either

X0 � c1A; where c > 0; A � R3nf0g is symmetric non negligible,�2:23�
or

U � c1B; where c > 0; B � �s1; s2� � R3nf0g
is symmetric in the n variable, non negligible and �s1; s2� � �0; t� :�2:24�

Using a similar continuity argument as above, we see that under (2.23):
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Kn�A� A� > 0 for small jnj ;�2:25�
and under (2.24)Z s2

s1
ds
Z

1B�s; n1�1B�s; n2�Kn�dn1; dn2� > 0; for small jnj :�2:26�

In the case of (2.23), it follows that for large n, small q > 0,

Pn;t

\
jmj�n

fmm � 1; tm � 1; jnmj � q; nm1 2 A; nm2 2 A; tm1 � 0; tm2 � 0g
24 35 > 0 :

This now implies (2.21). An analogous argument can be used in the case of
(2.24), (2.26). This ®nishes our proof. (

We are now ready to state an existence result for the solutions of (FNS).

Theorem 2.2: Assume

En;T
�
M�X0;U;x�

�
<1; for a.e. n ;�2:27�

if v0;u satisfy (2.1), (2.2) and

jv0j � X0; juj � U; then�2:28�

vt�n� � En;t
�
R�v0;u;x�

�
; on the convergence set of (2.27)

0; otherwise

�
�2:29�

de®nes a solution of (FNS) on �0; T � � R3nf0g, such that:

jvt�n�j � Xt�n� on �0; T � � R3nf0g :�2:30�

Proof: Denote by E the (Borel) set of convergence in (2.27). From (2.18), we
know that for n 2 E; t 2 �0; T �

En;t�M � <1 :�2:31�
Observe that for w1;w2 2 C3, n 2 R3nf0g,

jw1 �n w2j � jw1jjw2j; and thus�2:32�
jR�v0;u;x�j � jM�X0;U;x�j :�2:33�

It follows that vt�n� well de®ned in (2.29) and (2.30) holds. As a result of
(2.17), (2.27), (2.33), when n 2 E:Z T

0

Z
jvs�n1�jjvs�n2�jKn�dn1; dn2� <1 ;�2:34�

and thus the integrability condition part of (2.3) holds. For any x 2 X�,
R�v0;u;x� � n; � 0, so that

vt�n� � n � 0�2:35�
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on �0; T � � R3 and in fact on �0; T � � R3nf0g due to (2.29). Moreover, since
w1 �n w2 � �w1 �ÿn �w2, and for n 2 R3nf0g; Kÿn�dn1; dn2� � ÿIdC3�C3�
Kn�dn1; dn2�, it follows that for 0 � t � T , jnj 6� 0

�R�v0;u;x� under Pn;t has same law as R�v0;u;x� under Pÿn;t :�2:36�
It follows from this that E is symmetric and vt�n� � vt�ÿn� on �0; T ��
R3nf0g, i.e. (2.3) holds.

An application of the strong Markov property at time t; shows that for
n 2 E, t 2 �0; T �

vt�n� �En;t�R; t; � 0� � En;t�R; t; > 0�

� expfÿmjnj2tgv0�n� �
Z t

0

ds mjnj2 expfÿmjnj2�t ÿ s�g

� 1

2
u�s; n� � 1

2

Z
ÿiÿEn1;s�R� � en

�
p�n�En2;s�R�Kn�dn1; dn2�

� �
�E � E has full Kn�dn1; dn2� measure �

� expfÿmjnj2tgv0�n� �
Z t

0

ds mjnj2 expfÿmjnj2�t ÿ s�g

� 1

2
u�s; n� � 1

2
vs � vs�n�

� �
ds :�2:37�

It now follows that vt�n� is continuous in the t variable and de®nes a solution
of (FNS) with data v0;u. (

Remark 2.3:

1) In the case when E � R3nf0g, i.e. when En;T �M � <1 for all n, then vt�n�
satis®es (2.4) for all n 6� 0.

2) It follows from a routine iteration argument that under (2.27),
En;t
�
M�X0;U;x�

�
de®nes the minimal non negative solution of (2.17).

We shall not need this fact, but only state it for the sake of clarity. (

We now come to the uniqueness result.

Theorem 2.4: If vt�n� is a solution of (FNS) on �0; T � � R3nf0g with data v0;u,
and (2.27), (2.28), (2.30) hold, then for a.e. n

vt�n� � En;t
�
R�v0;u;x�

�
; t 2 �0; T � :�2:38�

Proof: We can choose a symmetric measurable set F � R3nf0g, with jF cj � 0,
such that En;T �M � <1, on F , the integral in (2.3) is convergent and (2.4)
holds for n 2 F .

We shall represent vt�n�, n 2 F , as the expectation of what turns out to be
a martingale. To this end, we de®ne for x 2 X� and n � 0, in analogy with
(2.10)±(2.11):
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Nn�x� � m 2
[

0�`�n

f1; 2g`; tm�x� > 0; mm�x� � 1

( )
�2:39�

and

@Nm�x� � fm 2 InNn�x�; the direct predecessor of m belongs to Nn�x�g;
with the convention @Nn�x� � f;g; if Nn�x� � ; :

�2:40�
It is also convenient to introduce the ``truncated'' and ``untruncated'' parts of
@Nn:

@N �t�n �x� � fm 2 I ; the direct predecessor of m belongs to Nn�x�
and has length ng�2:41�

@N �u�n �x� � @Nn�x�n@N �t�n �x� :�2:42�
We now de®ne for n � 0, x 2 X�:

Rn�v0;u; v;x� :�2:43�
The procedure is analogous to the de®nition of (2.9), except that we use
di�erent data at the input nodes. Namely, if m 2 @N �t�n �x�, the input attached
to m is

vtm0 �nm�; where m0 is the direct ancestor of m �with length n� ;�2:44�
and if m 2 @N �u�n �x�, the input attached to m is the same as in (2.14).

v0�nm�; if tm � 0;
u�tm; nm�; if tm > 0 .

�
�2:45�
In a similar way we de®ne for n � 0, x 2 X�:

Mn�X0;U;X ;x� :�2:46�
with the usual multiplication replacing (2.13) and of course X determined by
X0;U via (2.16). As a result of the domination assumption (2.30)

jRnj � Mn :�2:47�
We now introduce a ®ltration Fn, n � 0, on X�:

Fn � r
ÿ
Nn�x�; �tm; nm�m2Nn�x�[@N �u�n �x�; �nm�m2@N �t�n �x�

�
;�2:48�

where it should be observed that Nn determines @N �t�n and @N �u�n .
Observe that Rn and Mn are Fn-adapted. Moreover, it is easy to deduce

from the strong Markov property applied at times tm, for m of length n, on
the set fm 2 Nng 2 Fn, that

Mn � En;t�M=Fn�; Pn;t a.s. for t 2 �0; T �; n 2 F :�2:49�

356 Y. Le Jan, A.S. Sznitman



This and (2.47) shows the Pn;t-integrability of Rn, for t 2 �0; T �, n 2 F . We
shall now prove by induction the identity

vt�n� � En;t
�
Rn�v0;u; v;x�

�
; n � 0; t 2 �0; T �; n 2 F :�2:50�

In fact we shall see a posteriori that Rn is an Fn-martingale.
For n � 0, (2.50) simply boils down to (2.4). Assume now (2.50) holds for

n. Then from (2.4), when n 2 F , t 2 �0; T �:

vt�n� � expfÿmjnj2tgv0�n� �
Z t

0

ds mjnj2eÿmjnj2�tÿs�

�1
2

u�s; n� � 1

2

Z
ÿiEn1;s�Rn� � enp�n�ÿEn2;s�Rn�

�
Kn�dn1; dn2�

�
using the induction hypothesis ;

�En;t
�
Rn�1�v0;u; v;x�

�
;

applying the strong Markov property at time t;. This proves (2.50).
We can now conclude the proof of Theorem 2.4. We denote by An, the Fn

measurable event:

An � fx 2 X�; Nn�x� contains some m of length ng :�2:51�
Of course

R�v0;u;x� � Rn�v0;u; v;x� on Ac
n :�2:52�

We thus see that for n 2 F , t 2 �0; T �:

jvt�n� ÿ En;t
�
R�v0;u;x�

�j ��2:50�ÿ�2:52�
En;t
��Rn ÿ R�1An

��� ��
�

�2:33�ÿ�2:47�
En;t
��Mn �M�1An

� ��2:49� 2En;t�M1An � ! 0; as n!1 ;

since
T

n An � ;. This concludes our proof of (2.38). (

Remark 2.5:

1) If En;T
�
M�X0;U;x�

�
<1, for a.e. n for any T > 0, then Theorem 2.2 and

2.4 naturally provide global existence and uniqueness results.
2) Observe that it follows from the representation formula (2.38), and the

same conditioning argument used for the proof of (2.49), that:

En;t
�
R�v0;u;x�jFn

� � Rn�v0;u; v;x� ;�2:53�
for n � 0, n 2 E, t 2 �0; T � (in the notations of the beginning of the proof of
Theorem 2.2).

We thus see a posteriori that Rn�v0;u; v;x� de®nes an Fn-martingale, with
expectation vt�n�. (

We shall now close this section with a lemma which will be helpful in the
discussion of examples in section III.

For x 2 X, we denote by �N�x� the ®nite set of nodes m 2 I for which
mm�x� � 1, and de®ne @ �N�x� as in (2.11), with the same convention that
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@ �N�x� � f/g, when �N�x� � /. Of course �N ; @ �N have a distribution which is
the same under each Pn;t.

For w a non negative measurable function on R3nf0g, we introduce in
analogy to (2.15)

�M�w;x� �
Y

m2@ �N�x�
w�nm� ;�2:54�

as well as

X w�n� �def En;t
�

�M�w;x��; n 2 R3nf0g; t � 0 arbitrary :�2:55�
We have

Lemma 2.6: Assume that

X w�n� <1 ; for all n 2 R3nf0g ;�2:56�
then

X w�n� � 1
2 Kn�X w 
 X w� � 1

2 w�n�; n 2 R3nf0g ;�2:57�
and

X w�n� � En;t
�
M�X w;w;x��; n 2 R3nf0g; t � 0 :�2:58�

Proof: Observe that (2.57) follows from the strong Markov property at time
t/, whereas (2.58) is a consequence of the Markov property at time 0. (

Remark 2.7: Assume that w non negative measurable on R3nf0g, is such that
(2.56) holds, and u measurable R3nf0g with values in C3 is such that:

u�ÿn� � u�n�; u�n� � n � 0; and juj � w :�2:59�
We can then de®ne �R�u;x�, for x 2 X, in analogy to (2.9), except that
``operation nodes'' are now m 2 �N�x�, and ``input data'' are u�nm�, for
m 2 @ �N�x�. If we now introduce

vu�n� � En;t
�

�R�u;x��; n 2 R3nf0g; t � 0 arbitrary ;�2:60�
we can argue as in (2.57), that:

vu�n� � 1
2 vu � vu�n� � 1

2 u�n�; n 2 R3nf0g :�2:61�
The uniqueness argument in Theorem 2.4, can in fact be easily modi®ed to
show that any measurable v : R3nf0g ! C3, with jvj � X w, which satis®es
(2.61) in place of vu, coincides with vu. Note ®nally that the formula (2.60)
de®nes a stationary solution of (FNS) with data vu, u, and that

vu�n� � En;t
�
R�vu;u;x��; for n 2 R3nf0g; t � 0 :�2:62� (
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3 Some examples

We shall now discuss some classes of examples where the results of the
previous section apply.

For a � 0, we de®ne the functions wa on R3nf0g as
w0 � 1; if a � 0

wa�n� �
p2

2
ajnjeÿajnj ; if a > 0 :�3:1�

The interest of these functions stems from the

Lemma 3.1: For a � 0, n 2 R3nf0g, t � 0,

wa�n� � Kn�wa 
 wa� ;�3:2�
wa�n� � En;t

�
M�wa;wa;x�

�
:�3:3�

Proof: In the case a � 0, (3.2) and (3.3) are obvious. Let us prove (3.2) for
a > 0. If jnj � r > 0, it follows from (1.21) that

Kn�wa 
 wa� �
p2

2

Z
�0;1�2

1A�r; r1; r2�a2eÿa�r1�r2� dr1 dr2�3:4�

de®ning u � r1 � r2; v � r1 ÿ r2

� p2

4

Z
�r;1���ÿr;r�

a2eÿau du dv � p2

2
areÿar � wa�n�

which proves (3.2).
Let us now prove (3.3). In view of Lemma 2.6, we only need to check that

X wa � wa :�3:5�
Observe now that the conditional expectation

En;t� �M j �N � � wa�n� Pn;t a:s:; n 2 R3nf0g; t � 0 ;�3:6�
as can be seen by recursively integrating out all variables nm,
m 2 N�x� [ @N�x�, in the order dictated by the length of the operation
nodes in N�x�, and using (3.2). Our claim (3.3) then follows. (

We now consider v0 and u, C3-valued respectively de®ned on R3nf0g and
R� � R3nf0g, for which (2.1) and the second line of (2.2) hold. As a result of
Theorem 2.2 and 2.4, we have

Theorem 3.2: Assume that for some a � 0:

jv0j � wa; juj � wa ;�3:7�
(with a slight abuse of notations). Then (FNS) has a unique, up to null set,
globally de®ned solution in the class
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jvj � wa ;�3:8�
which is given by

vt�n� � En;t
�
R�v0;u;x�

�
; t � 0; n 2 R3nf0g :�3:9�

A second class of examples arises in the following situation. Consider a non
negative measurable rotationally invariant function w��� on R3nf0g. We have

Lemma 3.3: Assume that w is a bounded non negative rotationally invariant
measurable function and Z

w�n� dn

jnj3 � 2
���
2
p

p2 ;�3:10�

then X w is ®nite and for n 2 R3nf0g and t � 0,

X w�n� � En;t
�
M�X w;w;x�� � max�1; kwk1� :�3:11�

Proof: Consider the norm k k1 de®ned as

kf k1 �
���
2
p

p

Z 1
0

ess sup
jej�1

jf �re�j dr
r
; f : R3nf0g ! R ;�3:12�

as well as the supremum norm k � k1. Observe that for bounded rotationally
invariant functions f1; f2 on R3nf0g

K�f1 
 f2��3:13�
is bounded rotationally invariant and using (1.21), (1.23)

kK�f1 
 f2�k1 � kf1k1kf2k1
kK�f1 
 f2�k1 � kf1k1kf2k1
kK�f1 
 f2�k1 � kf1k1kf2k1
kK�f1 
 f2�k1 � kf1k1kf2k1 :�3:14�

This can be encoded into

kK�f1 
 f2�ka�b � kf1kakf2kb ;�3:15�
for a; b 2 f1;1g , with a multiplication table

1�1 � 1; 1� 1 � 1; 1 �1 � 1; 1 � 1 � 1 :�3:16�
In other words �f1; 1g; �� is the group on 2 elements with neutral element
1.

Just as in (3.5), (3.6), for n 2 R3nf0g; t � 0, and a ®nite subset �N0 of I such
that f �N�x� � �N 0g has positive probability under (any) Pn;t

En;t
�

�M�w;x�j �N � �N0

�
is obtained by recursively integrating out the variables nm, m 2 �N0 [ @ �N0. It
now follows that if we control the k k1 norm of all input data w�nm�,
m 2 @ �N0, the rule (3.15) implies that
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kE�;t� �M j �N � �N0�kA �
Y

m 2 @ �N0

kwk1 � 1�3:17�

where A is the result of the operation corresponding to operation nodes �N0,
input nodes @ �N0 with value 1, and node operation �. In other words:

A � 1; if #o�N 0 is even
A � 1; if #o�N 0 is odd :

�
If in the case of an odd value for #@ �N0, we control the k k1 norm of w�nm�,
with m 2 @ �N0 smallest in lexicographic order and the k k1 norm of all other
w�nm0 �, m0 2 @ �N0, we ®nd

kE�;t� �M j �N � �N0�k1 � kwk1; if #@ �N0 is odd :�3:19�
Our claim (3.11) now follows by integration, and Lemma 2.6. (

Theorem 3.4: Consider w � 0, bounded measurable, rotationally invariant, for
which (3.10) holds. If v0, u are such that (2.1) and the second line of (2.2) hold,
and

jv0j � X w; juj � w ;�3:20�
then (FNS) has a unique, up to a null set, globally de®ned solution in the class

jvt�n�j � X w�n� �� maxf1; kwk1g�; given by�3:21�
vt�n� � En;t

�
R�v0;u;x�

�
; t � 0; n 2 R3nf0g :�3:22�

Proof: This result follows directly from theorems 2.2, 2.4, and Lemma 3.3.
(

Remark 3.5: 1) In the case of Theorem 3.2 and 3.4, the solutions vt�n�, t � 0,
n 2 R3nf0g are uniformly bounded, as well as u�s; n�. If we now consider

us�x� � m
2p3

Z
eix�nvs�n�

dn

jnj2 ; s � 0; x 2 R3 ;�3:23�

fs�x� � m2

4p3

Z
eix�nu�s; n�dn; s � 0; x 2 R3 ;�3:24�

we can write v � v1�j�j � 1� � v1�j�j > 1�. As a result of Young's inequality,
(i.e. kŵkp0 � kwkp, when 1 � p � 2, 1p � 1

p0 � 1),

us � vs � ~vs ;�3:25�
where the C0�R3� and L3�e norm of vs are uniformly bounded �e > 0�,
whereas the L2 and L3ÿe norm of ~vs are uniformly bounded, for 0 < e < 1. On
the other hand,

the Hÿ2 norm of fs is uniformly bounded :�3:26�
Moreover, reversing the proof of Proposition 1.1, we see that for g 2V and
t � 0:
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hut; gi � hu0; gi �
Z t

0

mhu;Dgi � hu; urgi � h f ; gi ds;�3:27�

where in view of (3.1) and the second line of (3.2),

us; fs are weakly divergence free and real :�3:28�
So (3.27), (3.28) is a type of weak formulation of the 3-d incompressible
Navier±Stokes equation.

2) It should be observed that the class of examples we have discussed in
this section includes situations of in®nite energy (which are beyond the
formulation of (NS)). Indeed, if we choose in the setting of Theorem 3.2

v0�n� � p�n� � e; with jej � 1 ;

u�s; n� � p�n� � r�s�; with jr�s�j � 1; r�s� measurable ;�3:29�

in this case (see Ladyzkenskaya [7] p. 51),

u0�x� � m
2p

e
jxj ÿ

x � �x � e�
jxj3

" #
;�3:30�

fs�x� � 2m2dr�s� ÿ m2

2p
grad

�x � r�s�
jxj3

�
; (distribution sense) :�3:31�

In a similar vein, assume v0;u are measurable C3-valued functions on
R3nf0g, homogeneous of degree 0, (u is time independent), for which (2.1)
and the second line of (2.2) hold, as well as the inequalities

jv0j � 1; juj � 1 :

The formula (3.9) then de®nes a solution vt�n� of (FNS) which enjoys the
scaling relation:

vtk2
n
k

� �
� vt�n�; t � 0; n 2 R3nf0g; k > 0 ;�3:32�

as can easily be deduced from the natural scaling property of the stochastic
cascades. It then follows that us�x� de®ned in (3.23), satis®es:

ut�x� �a:e: 1��
t
p u1

x��
t
p
� �

; t > 0 :�3:33�

These are self similar solutions, which were considered in Cannone±Meyer±
Planchon [2].

3) It follows from an easy calculation that no wa is bigger than wa0 , when
a 6� a0. Moreover no wa satis®es (3.10), even though

R
wa�n� dn

jnj3 <1, when

a > 0. We thus see that Theorem 3.2 and 3.4 do o�er distinct applications.

(
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4 Back to Navier±Stokes equation

We shall now explain how the results we obtained for (FNS) apply to the
study of (NS). We shall not seek the greatest generality, for the sake of
simplicity, and will restrict to the case where f � 0. Our main object is

Theorem 4.1: Assume that u0 2 H ; v0 � 2
m

ÿ
p
2

�3=2jnj2û0 satis®es
jv0j �

a.e.
W ;�4:1�

where W is either one of the wa �� X wa� in (3.1) or X w for w a bounded non
negative rotationally invariant measurable function satisfying (3.10)). Then
there exists a unique solution ut, t � 0, of (NS), with initial data u0 and force
f � 0, for which:

2

m
p
2

� �3=2
jnj2jûtj �

a:e:
W�n�; for t � 0 :�4:2�

Moreover for any t � 0:Z
u20 dx �

Z
u2t dx� 2m

Z t

0

Z
jrusj2 dx�4:3�

(where jruj2 �P3
1 jruij2�:

Proof: The uniqueness part of the statement follows immediately from
Proposition 1.1, Theorem 3.2, 3.4.

We shall therefore mainly be concerned with the existence part. Consider
vt, t � 0, the solution with initial condition v0, (which we choose so that (2.1)
holds and jv0j � W) given by Theorem 3.2 or 3.4. If we de®ne for t � 0

ut � m
2

2

p

� �3=2 vt

jnj2
 !_

;�4:4�

(where �h denotes the inverse Fourier transform of h), we already know that
(3.27) holds, and div ut � 0, for t � 0. Our claim will then follow once we
show that (4.3) holds. Indeed, it will then follow that u 2 L2�0; T ; V � for all
T > 0, and the condition u0 2 L1�0; T ; V 0� is then known to be a consequence
of (3.27), see Temam [13], p. 281.

We de®ne for n � 1; t � 0; n 2 R3nf0g:
vn

t �n� � En;t
�
R�v0; 0;x�;Cn

�
;�4:5�

where

Cn �
�
x 2 X�; jnmj � n; for m 2 N�x� [ @N�x�	 :�4:6�

It follows from dominated convergence that for n 2 R3nf0g; t � 0,

vn
t �n� ÿ!n!1 vt�n�; and jvn

t �n�j � Xt�n� :�4:7�
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Applying the strong Markov property at time t;, we also see that for t � 0,
n 2 R3nf0g:

vn
t �n� � exp

�ÿmjnj2t	1Bnv0�n� �
Z t

0

mjnj2eÿmjnj2�tÿs� 1
2

vn
s �n vn

s �n� ds ;�4:8�

where

Bn �
�
n 2 R3nf0g; jnj � n

	
;�4:9�

and for bounded measurable C3-valued functions on R3nf0g:
f1 �n f2 � 1Bn

��1Bn f1� � �1Bn f2�
�
:�4:10�

Lemma 4.2. If f1; f2; f3 are C3 valued bounded measurable functions on
R3nf0g, for which

fi�n� � n � 0; fi�ÿn� � fi�n�; i � 1; 2; 3; n 2 R3nf0g;�4:11�
then Z

f1 �n f2 � f3 dn

jnj2 � ÿ
Z

f1 �n f3 � f2 dn

jnj2 ;�4:12�

(where we recall that a � b �P3
1 ai

�bi, for a; b 2 C3).

Proof: In view of (4.10), both integrals in (4.12) are absolutely convergent.
Moreover, for w 2 C3; n 2 R3nf0g,

w � fi�n� �
ÿ
p�n�w� � fi�n�; i � 2; 3:

Denoting by f n
i the function 1Bn fi, we thus ®nd:Z

f1 �n f2 � f3 dn

jnj2 � ÿ
i

p3

ZZ
f n
1 �nÿ n2� � n
jnÿ n2j2

f n
2 �n2� � f n

3 �n�
jn2j2jnj2

dn2 dn;�4:13�

observe that in view of (4.11)

f n
1 �nÿ n2� � n � f n

1 �nÿ n2� �
ÿ
nÿ �nÿ n2�

� � f n
1 �nÿ n2� � n2:

The left hand side of (4.12) thus equals

i

p3

ZZ
f n
1 �nÿ n2� � �ÿn2�
jnÿ n2j2

f n
2 �n2�
jn2j2

� f
n
3 �n�
jnj2 dn2 dn :

As a result of (4.11), we also have

f n
2 �ÿn2� � f n

3 �ÿn� � f n
3 �n� � f n

2 �n2� ;
and the above integral therefore equals

i

p3

ZZ
f n
1 �n2 ÿ n� � n2
jn2 ÿ nj2

f n
3 �n�
jnj2 �

f n
2 �n2�
jn2j2

dndn2 � ÿ
Z

f n
1 �n f n

3 � f n
2

dn

jnj2 :

This proves (4.12). (
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Multiplying (4.8) by expfmjnj2tg and di�erentiating, we ®nd:

d
dt

vn
t �n� � mjnj2ÿÿvn

t �n� � 1
2v

n
t �n vn

t �n�
�
;�4:14�

n 2 R3nf0g; t > 0, so that:

d
dt

vn
t �n� � vn

t �n� � ÿ 2mjnj2vn
t � vn

t �
m
2
jnj2ÿvn

t �n vn
t �n� � vn

t �n�
� vn

t �n� � vn
t �n vn

t �n�
�
:

�4:15�

Multiplying both members by jnjÿ4, integrating in n and t, the last two terms
of the right member vanish thanks to (4.12), so that for t � 0:Z jvn

0�n�j2
jnj4 dn �

Z jvn
t �n�j2
jnj4 dn� 2m

Z t

0

Z jvn
s �n�j2
jnj2 dn ds ;�4:16�

where the left hand side of (4.16) is ®nite since u0 2 H . Using (4.7) and
Fatou's lemma in (4.16), we obtainZ jv0�n�j2

jnj4 dn �
Z jvt�n�j2
jnj4 dn� 2m

Z t

0

Z jvs�n�j2
jnj2 dn :�4:17�

This proves our claim (4.3). (
Remark 4.3:

1) The argument we just used shows that in factZ
u2t dx �

Z
u2t0 dx� 2m

Z t0

t

Z
jrusj2dx ds; for any 0 � t < t0 :�4:18�

2) The condition stated in Serrin [10] p. 76, 83, 86, for global existence and
uniqueness in the class of weak solutions satisfying (4.3) is that u0 2 H 2 and

ju0j32 jut0j2 < 768m5 ;

where jwj22 �
R jw�x�j2dx.

Theorem 4.1 covers cases where this condition fails. For instance
choosing w � 1 in (4.1) and

v0�n� � 1
1

n
� jnj � 1

� �
p�n�e ;

with n � 2, 0 < jej � 1, we can make the corresponding

ju0j2 �
m
2

2

p

� �3=2���� v0jnj2
����
2

arbitrarily large (by choosing n large), while keeping

jut0j2 �
m2

2

2

p

� �3=2����ÿv0 �
1

2
v0 � v0

����
2

away from 0. (
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