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Summary. We study the asymptotic behaviour for both asymmetric and
symmetric spin glass dynamics in a Sherrington-Kirkpatrick model as pro-
posed by Sompolinsky-Zippelius. We prove, without any condition on time
and temperature, averaged propagation of chaos results. Extending this re-
sult to replicated systems, we conclude that the law of a single spin converges
to a non Markovian probability measure, in law with respect to the random
interaction.
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1 Introduction

The goal of this paper is to study the asymptotic law of a particle for Lan-
gevin spin glass dynamics with no restriction on time or temperature. These
dynamics, ®rst introduced by Sompolinski and Zippelius [10], have been
studied in [2] and [3] in a short time or high temperature regime. Since we
consider particles in random interaction, this problem can be addressed in
di�erent terms. First, one could be willing to study the mean behaviour of the
system, i.e the law of the system averaged on the interaction. As in [2], we will
call this averaged law the annealed law of the system1. We will prove here
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1As stressed by a referee, we would like to point out that we may be using the term annealed

(originally borrowed to the physics literature) in an improper manner. Nevertheless, we prefer to

stick to this terminology to agree with [2].



that the annealed law of Langevin spin glass dynamics is chaotic in the sense
that the averaged law of a ®nite number of spins converges to a product
measure.

Furthermore, one could wonder if the same kind of results holds for
almost all interaction (i.e if a quenched propagation of chaos occurs). We can
only prove a weak version of this result by showing that the quenched law of
the system is chaotic, in law with respect to the interaction. We have actually
no idea weather this weak convergence can be improved in an almost sure
convergence. Nevertheless, if an almost sure convergence holds, our result
identi®es the quenched limit behaviour. At this point, we would like to
emphasize that, in the case where the system is not submitted to an external
magnetic ®eld, the quenched limit behaviour is identical to the annealed limit
behaviour. In this setting, a true almost sure convergence might be easier to
get. In general, it turns out that the quenched asymptotic law of a spin
depends on a random magnetic ®eld, and, as a consequence, that the random
interaction is not completely averaged at the limit.

Let us now be more precise. We study the weak solution P N
b �J� on a ®nite

time interval �0; T � (which will be ®xed throughout this paper) of the fol-
lowing system SN

b �J� of randomly interacting di�usions:

SN
b �J� �

dxj
t � ÿrU xj

t

ÿ �
dt � dBj

t � b���
N
p
PN
i�1

Jji xi
t dt 81 � i � N

Law of x0 � l
N
0

8<:
where Bj� �1�j�N is a N dimensional Brownian motion.

As in [2] and [3], we will study only bounded spins, i.e we will assume that
l0 is a probability measure on a bounded interval �ÿA;A� which does not put
mass on the boundary fÿA;�Ag and that U�x� is de®ned on �ÿA;A� and
tends to in®nity when jxj ! A su�ciently fast to insure that the spins xj stay
in the interval �ÿA;A�.

We will here be interested by the two models of couplings we have been
considering so far in [2] and [3]. First, we will assume that the whole matrix
Jij
ÿ �

i;j is made of i.i.d N�0; 1� random variables, i.e we will look at asym-
metric dynamics. As already stressed in [2], these dynamics are not reversible
for the S-K Gibbs measure but have the advantage to be easier to study.
Furthermore, they seem to provide a satisfactory model for neural networks
(see [5] and references therein). In a second time, we will impose the sym-
metry Jij � Jji and therefore consider dynamics which are reversible for the
Gibbs measure as studied by Sompolinski and Zippelius.

In both settings, we prove that the annealed law of the empirical measure
l̂N � 1

N

PN
i�1 dxi converges to dQ where Q is the non Markovian law described

in [2] (resp. in [3]) for the asymmetric (resp. symmetric) model, with no
restriction on time and temperature (see section 2.1 and section 3.1).

As a consequence, we deduce an annealed propagation of chaos, that is
convergence of the annealed law of �x1; . . . ; xm� to Q
m (see Theorem 2.2 and
Corollary 3.2).

184 A. Guionnet



For the asymmetric model, we have seen in [2], section 6, that Q can be
seen as an average of non Markovian processes, namely that there exists a
centered Gaussian process h and a non Markovian probability measure Ph

such that Q � Eh Ph� �, where Eh denotes the expectation over h. Thus, if we
denote E the expectation over the random couplings J , we have proved that,
for any bounded continuous function f , for any temperature 1

b:

lim
N!1

E

Z
f x1
ÿ �

dP N
b �J�

� �
� Eh

Z
f dPh

� �
:

Using replica, we improve this last result and deduce a quenched propaga-
tion of chaos, in the sense that, for any bounded continuous test functions
�f1; ::; fm�,

R
f1�x1�::fm�xm�dP N

b �J� converges in law to
Qm

i�1
R

fidPhi where hi

are i.i.d (see section 2.2). In the case where the system is not submitted to an
external magnetic ®eld (which correspond to the case where U is even), we
also saw in [2] that h is almost surely null so that in fact the limit behaviour is
not random.

This simpli®cation as well occurs for the symmetric model (see [4]). In fact,
if U is even and the initial law symmetric, we prove a quenched propagation
of chaos result, i.e the convergence in probability of

R
f1�x1�::fm�xm�dP N

b �J�
towards

Qm
i�1
R

fidQ in this setting too (see subsection 3.6).
We would like ®nally to stress that the two limiting processes for the

averaged law of the asymmetric and symmetric dynamics are di�erent (de-
spite the fact that we use the same notation Q for both of them). Indeed, the
symmetry of the couplings provide an additional drift to the di�usion, called
the response function. This additional drift is a linear function of the whole
past trajectory but depends as well on the whole past law of the process (see
subsection 3.6).

Acknowledgements.My ®rst thanks go to Gerard Ben Arous who introduced
me to the subject and helped me through this research. I thank as well
Stefano Olla for many stimulating discussions and, in particular, for the
crucial suggestion to prove the tightness result of section 5 by entropy esti-
mates. I am very grateful to the Courant Institute for welcoming me for part
of the research period.

2 Asymmetric dynamics

In this ®rst part, we will assume that the whole matrix Jij
ÿ �

i;j is made of i.i.d
N�0; 1� random variables. We will denote E the expectation over the Jij

ÿ �
i;j's

and, more generally, on every Gaussian process describing an interaction we
will encounter.
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2.1 Annealed propagation of chaos

The aim of this section is to prove:

Theorem 2.1 The law of the empirical measure l̂N � 1
N

PN
i�1 dxi under QN

b
� E�P N

b �J�
�
converges to dQ.

The probability measure Q is described in Theorem 2.5.

According to lemma 3.1 of Sznitman [12], Theorem 2.1 gives the annealed
propagation of chaos result:

Theorem 2.2 QN
b � E

�
P N

b �J�
�
is Q-chaotic, i.e for any bounded continuous

functions � f1; . . . ; fm�,

lim
N!1

Z Ym
j�1

fj�xj� dQN
b �x� �

Ym
j�1

Z
fj�x� dQ�x� :

Theorem 2.1 was proved in [2] in the high temperature and small time regime
b2A2T < 1 by use of large deviations. The advantage of this method is that it
implies that the law of the empirical measure of the quenched system con-
verges to a dirac measure at Q for almost all interaction (which of course
does not imply a quenched propagation of chaos since the spins are not
exchangeable for almost all interaction). Nevertheless, we needed in [2] a
high temperature and small time restriction to get an exponential tightness
property which was crucial in our strategy. Here, we deduce Theorem 2.1
from a weak large deviation principle and from a tightness (but not expo-
nential) result. Namely, if W A

T denotes the set of continuous functions from
�0; T � into �ÿA;�A� andM�

1 �W A
T � the set of probability measures on W A

T , we
prove that:

Theorem 2.3 There exists a good rate function H such that, for any compact
subset K ofM�

1 �W A
T �:

lim
N!1

1

N
logQN

b l̂N 2 K
ÿ � � ÿ inf

K
H :

And:

Theorem 2.4 For any real number � > 0, there exists a compact subset K�

of M�
1 �W A

T � such that, for any integer number N ,

QN
b l̂N 2 Kc

�

ÿ � � � :
Theorem 2.3 is proved in section 2.3 and Theorem 2.4 is proved in section

2.4.
To deduce Theorem 2.1 from Theorems 2.3 and 2.4, we need to recall that

we characterized the minima of H in [2], section 5, and proved that:

Theorem 2.5 1) H achieves its minimal value at the probability measures Q
which satisfy:
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Q� P
dQ
dP
� E exp b

Z T

0

GQ
t dBt ÿ b2

2

Z T

0

�GQ
t �2 dt

� �� �
�1�

where E denotes the expectation over a centered Gaussian process GQ with
covariance

E GQ
t GQ

s

h i
�
Z

xsxt dQ�x� :

2) There exists a unique probability measure Q which satis®es (1).

Let us mention that equation (1) is equivalent to the following non linear
stochastic di�erential equation:

dxt � ÿrU�xt� dt � dBt

dBt � dWt � b2
R t
0 dBsE GQ

s GQ
t

expfÿb2

2

R t

0
�GQ

u �2dug

E expfÿb2

2

R t

0
�GQ

u �2 dug
h i24 35 dt

Law of �x� � Q;Law of �x0� � l0

8>>>><>>>>: : �2�

where W is a Q Brownian motion.
Proof of Theorem 2.1 Let d be a strictly positive real number and denote
B�Q; d� the open ball with respect to a metric compatible with the weak
topology onM�

1 �W A
T �, for instance the Wasserstein metric (which de®nition

is given in (7)). We prove that QN
b �l̂N 2 B�Q; d�c� converges to zero for any

positive real number d. Indeed, if K� are the compact sets de®ned in Theorem
2.4, we have, for any � > 0:

QN
b l̂N 2 B�Q; d�cÿ � � QN

b l̂N 2 Kc
�

ÿ �� QN
b l̂N 2 K� \ B�Q; d�cÿ �

� �� QN
b l̂N 2 K� \ B�Q; d�cÿ � �3�

But, since B�Q; d�c is closed, K� \ B�Q; d�c is compact so that we can use
Theorem 2.3:

lim
1

N
logQN

b l̂N 2 K� \ B�Q; d�cÿ � � ÿ inf
K�\B�Q;d�c

H :

But inf
K�\B�Q;d�c

H is strictly positive according to Theorem 2.5. Hence, (3)

implies that, for any � > 0,

lim
N!1

QN
b l̂N 2 B�Q; d�cÿ � � � ;

i.e

lim
N!1

QN
b l̂N 2 B�Q; d�cÿ � � 0 :

(
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2.2 Quenched propagation of chaos and replica

Theorem 2.2 can be extended to replicated systems as follows:
Let r be an integer number and denote Qr;N

b the annealed law of replicated
spin glass dynamics:

Qr;N
b � E P N

b �J�

r

h i
Let Qr be de®ned by:

Qr � P
r dQr

dP
r � E exp b
Z T

0

hGQr
t ; dBti ÿ b2

2

Z T

0

jjGQr
t jj2dt

� �� �
�4�

where GQr is a r-dimensional centered Gaussian process with covariance:

E GQr ;i
t GQr ;j

s

h i
�
Z

xj
sx

i
tdQr�x�

and where h ; i denotes the euclidean scalar product in Rr; k k2 � h ; i.
Then Qr exists and is unique (see [2], section 6), and we have:

Theorem 2.6 For any integer number r, the law of the empirical measure
l̂r;N � 1

N

PN
i�1 dxi

1
;...;xi

r
under Qr;N

b converges to dQr .

The proof of Theorem 2.6 is very similar to that of Theorem 2.2. We omit
it. (

As a consequence:

Theorem 2.7 Qr;N
b is Qr-chaotic, i.e for any bounded continuous functions

�F1; . . . ; Fm� on �W A
T �r,

lim
N!1

E

Z
F1 x11; . . . ; x1r
ÿ �

. . . Fm xm
1 ; . . . ; xm

r

ÿ �
dP N

b �J�

r�x1; . . . ; xr�

� �
�
Ym
i�1

Z
Fi�x1; . . . ; xr� dQr :

In particular, for any bounded continuous functions �f1; . . . ; fm� on W A
T ,

lim
N!1

E

Z
f1 x1
ÿ �

. . . fm�xm� dP N
b �J��x�

� �r� �
�
Ym
i�1

Z
fi�x1� . . . fi�xr� dQr :

To deduce a quenched propagation of chaos from Theorem 2.7, we need to
identify the probability measures Qr themselves as replicated laws. This was
done in [2], section 6, where we proved that there exists a couple �h; Ph� of a
Gaussian process h and a probability measure Ph on W A

T (which depends on h)
such that:

Theorem 2.8

For any integer r; Qr � Eh P
r
h

� �
:

Moreover, the couple �h; Ph� is de®ned by the following non linear procedure:
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For f in L2��0; T ��, let P � f � be the restriction on �0; T � of the law of the
di�usion

dxt � ÿrU�xt� dt � dBt � bf �t� dt
Law of x0 � l0

�
Let �h; g� be two independent centered Gaussian processes and denote Eh

(resp. Eg) the expectation over h (resp. g). We de®ne non linearly the co-
variances of �h; g� by:

Eg�gtgs� � EhEg
Z

xsxt dP�g� h�
� �

ÿ Eh Eg
Z

xs dP�g� h�
� �

Eg
Z

xt dP�g� h�
� �� �

Eh�hths� � Eh Eg
Z

xs dP�g� h�
� �

Eg
Z

xt dP�g� h�
� �� �

Finally Ph is given by:

Ph � Eg P �g� h�� � : �5�
Theorem 2.7 and Theorem 2.8 give:

Corollary 2.9 For any integer r, for any bounded continuous functions
�f1; . . . ; fm� on W A

T ,

lim
N!1

E

Z
f1 x1
ÿ �

. . . fm�xm� dP N
b �J��x�

� �r� �
�
Ym
i�1
Eh

Z
fi�x� dPh�x�

� �r� �
Since the random variables

R
f1�x1� . . . fm�xm� dP N

b �J��x� are bounded, cor-
ollary 2.9 is equivalent to the convergence in law of such random variables,
which gives the quenched propagation of chaos result:

Theorem 2.10 For any bounded continuous functions �f1; . . . ; fm� on W A
T ,R

f1�x1� . . . fm�xm�dP N
b �J��x� converges in law, when N tends to in®nity, toQm

j�1
R

fjdPhj , where hi are independent copies of the centered Gaussian process
h described above.

Moreover, we described in [2], section 6, the case where the limiting law is
deterministic, i.e the case where h is null almost surely. Then
Ph � Eh�Ph� � Q. Roughly speaking, it is the case where the potential U is
even and the initial law is symmetric. Then, Theorem 2.10 becomes:

Corollary 2.11 If U is even and l0 is symmetric, for any bounded continuous
functions fj; 1 � j � m

ÿ �
,
R

f1�x1� . . . fm�xm�dP N
b �J� converges in probability toQm

j�1
R

fj dQ.

Remark 2.12 1) Theorem 2.10 (and corollary 2.11) can also be stated for
®nite vectors

ÿR
f i
1�x1� . . . f i

m�xm�P N
b �J�

�
1�i�n, where � f i

j ; 1� i � n; 1 � j � m�
are bounded continuous functions, and one ®nds that

ÿ R
f i
1�x1� . . . f i

m�xm�
dP N

b �J�
�
1�i�n converges in law to

ÿQm
j�1
R

f i
j dPhj

�
1�i�n. This is obvious since

Theorem 2.7 gives the convergence of every moments of these random
variables.
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2) As stressed by a referee, Theorem 2.10 (and corollary 2.11) raises
several questions. Indeed, one would like the convergence to hold for almost
all interaction and simultaneously for all bounded continuous functions.
Despite our dedication to these problems, we have no answers.

3) It is easy to understand why the hypotheses of Corollary 2.11 (i.e U even
and l0 symmetric) simplify so much the results. In fact, it is known that the
static Sherrington Kirkpatrick model with an external magnetic ®eld is much
more di�cult to study than the model without external magnetic ®eld. Our
dynamic model contains a priori such a magnetic ®eld. Indeed, adding a
magnetic ®eld h to the SK model consists in adding hx to the potential U�x�.
The simple situation where U is even and l0 is symmetric corresponds to the
model without magnetic ®eld. Thus, Theorem 2.1 shows that adding an ex-
ternalmagnetic ®eldmakes the limit law depend on an additional exterior ®eld.

4) Theorem 2.7 gives a complete description of the microscopic behaviour
of asymmetric spin glass dynamics: it shows that the law of a ®nite number of
spins converges to independent laws submitted to independent identically
distributed Gaussian external ®elds. Moreover, it is clear that the limiting
law Ph is non Markovian since it depends on all the past through the law of
the Gaussian process g (see (5)). Because of this non Markovian property,
the study of the static properties of these systems through dynamics does not
seem to be an easy problem.

2.3 Annealed weak large deviation upper bound

To state precisely the main result of this section, i.e the weak large deviation
upper bound for the annealed law of the empirical measure stated in The-
orem 2.3, we ®rst de®ne the rate function H which governs these deviations.

De®nition 2.13 For any l 2M�
1 �W A

T �, we de®ne a centered Gaussian process
Gl by its covariance:

E Gl
s Gl

t

� � � Z xsxt dl�x� �6�

For any probability measure l which is absolutely continuous with respect to P ,
we then de®ne C�l� by:

C�l� �
Z

logE exp b
Z T

0

Gl
t dBt�x� ÿ b2

2

Z T

0

�Gl
t �2 dt

� �� �
dl�x�

where Bt�x� � xt ÿ x0 �
R t
0rU�xs� ds for any x 2 W A

T .
Let then I�l �� P � denotes the entropy of l with respect to P , namely:

I l
�� P

ÿ � � Z
log

dl
dP

dl if l� P

�1 otherwise .

(
Then, we de®ne a function H on M�

1 �W A
T � by:
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H�l� � I l
�� P

ÿ �ÿ C�l� if I l
�� P

ÿ �
<1

�1 otherwise .

�
Remark 2.14 1) One can construct the Gaussian processes fGl; l 2 W A

T g on
the same probability space. For instance, let �X; c� be a probability space and
Ji� �i2N be i.i.d N�0; 1� on X, then, if �el

i �i2N is an orthonormal basis in
L2l�W A

T �,
Gl

s �
X
i2N

Ji

Z
xse

l
i �x� dl�x�

is a centered Gaussian process with covariance (6). In the following pages, we
will suppose that we have constructed all the Gaussian processes
fGl; l 2 W A

T g on the same probability space �X; c� and denote E the expec-
tation under c.

2) For any l� P , C�l� is well de®ned since B is a semimartingale. As a
consequence, C is well de®ned on fl 2M�

1 �W A
T � = I l

�� P
ÿ �

<1g, so that H
is well de®ned.

Then:

Theorem 2.15 1) H is a good rate function, i.e H is positive and, for any real
number M , fl 2M�

1 �W A
T � =H�l� � Mg is compact.

2) For any compact subset K of M�
1 �W A

T �:

lim
N!1

1

N
logQN

b l̂N 2 K
ÿ � � ÿ inf

K
H :

Proof of Theorem 2.15. The ®rst point is proved in [2], section 4.

To prove the second point, we ®rst notice that, according to lemma 3.6 of
[2], we have:

dQN
b � expfNC�l̂N �g dP
N

where P
N � P N
0 is the law of the system without interaction. Thus, if C was

bounded and continuous, Theorem 2.15.2) would be clear. To circumvent the
fact that none of these properties is satis®ed, we shall approximate C by
linear functions. More precisely, for any m 2M�

1 �W A
T �, we de®ne a map Cm

from M�
1 �W A

T � into R by:

Cm�l� :�
Z

logE exp b
Z T

0

Gm
s dBs�x� ÿ b2

2

Z T

0

�Gm
s�2 ds

� �� �
dl�x� :

We denote dt the Wasserstein distance on W A
t , i.e:

dt�l; m� � inf

Z
sup
s�t
jxs ÿ ysj dn�x; y�

� �
�7�
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where the in®mum is taken on the probability measure n with marginals l
and m. In short, we will denote d for dT .

The key of our proof is the following technical lemma:

Lemma 2.16 For any real number a, a > 1, there exists a strictly positive real
number da such that, for any d < da, there exists a function Ca�:� in R such
that lim

d!0
Ca�d� � 0 and:Z

d l̂N ;m� �<d
exp aN Cÿ Cm� ��l̂N � � NCm l̂Nÿ �� 	

dP
N � expCa�d�N : �8�

Proof of lemma 2.16. Let

BN �
Z

d l̂N ;m� �<d
exp aN Cÿ Cm� � l̂Nÿ �� 	

exp NCm l̂Nÿ �� 	
dP
N

Let Qm be the probability measure on W A
T de®ned by:

dQm�x� � E exp b
Z T

0

Gm
s dBs�x� ÿ b2

2

Z T

0

�Gm
s�2 ds

� �� �
dP�x� �9�

Then:

d�Qm�
N � expfNCm�l̂N �g dP
N

Writing down the de®nitions of C and Cm, we ®nd:

BN �
Z

d l̂N ;m� �<d

YN
i�1

E exp b
R T
0 Gl̂N

t dBi
t ÿ b2

2

R T
0 Gl̂N

t

� �2
dt

� �� �
E exp b

R T
0 Gm

t dBi
t ÿ b2

2

R T
0 �Gm

t �2 dt
n oh i

0BB@
1CCA

a

d�Qm�
N :

Assume that we have constructed on the same probability space X; c� � the
Gaussian processes Gl̂N

and Gm and denote:

X j
N � b

Z T

0

Gl̂N

s dBj
s ÿ

b2

2

Z T

0

Gl̂N

s

� �2
ds

X j
m � b

Z T

0

Gm
s dBj

s ÿ
b2

2

Z T

0

Gm
s

ÿ �2
ds :

Then

BN �
Z

d l̂N ;m� �<d

YN
j�1

E exp X j
N

� 	� �
E exp X j

m
� 	� � !a

dQ
N
m

�
Z

d l̂N ;m� �<d

YN
j�1

E
expX j

m

E expX j
m

� � exp X j
N ÿ X j

m

ÿ �" # !a

dQ
N
m

Since a > 1, we can apply Jensen inequality in the last equality:
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BN �
Z

d l̂N ;m� �<d

YN
j�1
E

expX j
m

E expX j
m

� � exp a X j
N ÿ X j

m

ÿ �" #
dQ
N

m

Therefore, if pÿ1 � qÿ1 � 1,

BN �
Z YN

j�1

E exp pX j
m

� �ÿ �
E expX j

m
� �ÿ �p dQ
N

m

( )1
p

�
Z

d l̂N ;m� �<d

YN
j�1
E exp aq X j

N ÿ X j
m

ÿ �� �
dQ
N

m

( )1
q

�10�

We ®rst bound the ®rst term in the right hand side of (10). Gaussian calculus
shows that

9C <1 E expfpX j
mg

� �
E expX j

m
� �ÿ �p � exp C�p ÿ 1� 1� E

�Z T

0

Gm
t dBj

t

�2
" # !( )

So that, if p is close enough to 1, we can ®nd a ®nite constant C�p�, C�p� & 0
when p& 1, such that:

BN
1 :�

Z YN
j�1

E exp pX j
m

� �ÿ �
E expX j

m
� �ÿ �p dQ
N

m �
Z

E exp pX j
m

� �
E expX j

m
� �ÿ �p dQm

 !N

� eC�p�N : �11�

We now bound the second term in the right hand side of (10) using HoÈ lder
inequality with conjugate exponents �g; r� (gÿ1 � rÿ1 � 1):

BN
2 :�

Z
d l̂N ;m� �<d

YN
j�1
E exp aq X j ÿ X j

m

ÿ �� � !
expNCm l̂Nÿ �

dP
N �x�

�
Z

exp NrCm l̂Nÿ �� 	
dP
N

� �1
r

�
Z

d l̂N ;m� �<d

YN
j�1
E exp agq X j ÿ X j

m

ÿ �� 	� �
dP
N

( )1
g

: �12�

The ®rst term in the right hand side of (12) can be bounded if rÿ 1 is small
enough:Z

exp NrCm l̂N
ÿ �� 	

dP
N �x�

�
Z
E exp b

Z T

0

Gm
t dBt�x� ÿ b2

2

Z T

0

Gm
t

ÿ �2
dt

� �� �r

dP �x�
 !N

Averaged and quenched propagation of chaos for spin glass dynamics 193



� E

Z
exp br

Z T

0

Gm
t dBt�x� ÿ b2

2
r
Z T

0

Gm
t

ÿ �2
dt

� �
dP�x�

� �� �N

� E

Z
exp

b2

2
�r2 ÿ r�

Z T

0

Gm
t

ÿ �2
dt

� �� �� �N

:

But Gaussian integrability properties imply, as detailed in appendix A of [2],
that there exists a ®nite constant C�r�, lim

r!1
C�r� � 0, such that:

E

Z
exp

b2

2
�r2 ÿ r�

Z T

0

�Gm
t �2 dt

� �� �
� expfC�r�g �13�

So that we have proved that:Z
exp NrCm l̂Nÿ �� 	

dP
N �x� �
Z

expfrCm dx� �g dP�x�
� �N

< eC�r�N �14�

We bound the second term in the right hand side of (12). By Cauchy Schwarz
inequality, if j � agqb:Z

d l̂N ;m� �<d

YN
j�1
E exp agq X j

N ÿ X j
m

ÿ �� �
dP
N �

Z YN
j�1
E exp 2j

Z T

0

Gl̂N

s ÿ Gm
s

� �
dBj

s ÿ 2j2
Z T

0

Gl̂N

s ÿ Gm
s

� �2
ds

� �� �
dP
N

( )1
2

�
Z

d l̂N ;m� �<d
E exp 2j2

Z T

0

Gl̂N

s ÿ Gm
s

� �2
ds

��(

� bj
Z T

0

Gl̂N

s

� �2
ÿ Gm

s

ÿ �2� �
ds
��N

dP
N

)1
2

�15�

The ®rst term is bounded by one by supermartingale properties. For the
second term, we remark that:

Z T

0

Gl̂N

s

� �2
ÿ Gm

s

ÿ �2� �
ds � 1

2
d
1
2
1

d

Z T

0

Gl̂N

s ÿ Gm
s

� �2
ds�

Z T

0

Gl̂N

s � Gm
s

� �2
ds

� �
�16�

Hence, we can apply as in (13) lemma A.3.2) of [2] to the right hand side of
(16) so that we ®nd that, for any real number j, there exists Cj�d�,
lim
d!0

Cj�d� � 0, such that, for any �xi�1�i�N such that d l̂N ; m� � < d:

E exp

�
2j2

Z T

0

Gl̂N

s ÿ Gm
s

� �2
ds� bj

Z T

0

Gl̂N

s

� �2
ÿ Gm

s

ÿ �2� �
ds
�� �
� eCj�d� :

Thus

194 A. Guionnet



Z
d l̂N ;m� �<d

E exp 2j2
Z T

0

Gl̂N

s ÿ Gm
s

� �2
ds

��
� bj

Z T

0

Gl̂N

s

� �2
ÿ Gm

s

ÿ �2� �
ds
��N

dP
N � eCj�d�N : �17�

Therefore, inequalities (10), (11), (12), (14) and (17) show that, for any real
number a > 1, we can choose p and d close enough to one so that, for d small
enough, we ®nd a ®nite real number Ca�d�, lim

d!0
Ca�d� � 0, such that:

1

N
log

Z
d l̂N ;m� �<d

exp aN Cÿ Cm� � l̂Nÿ �� 	
expNCm l̂Nÿ �

dP
N < expCa�d�N :

(
We ®nally prove the weak large deviation upper bound Theorem 2.15.2):

Let K be a compact set ofM�
1 �W A

T �, K can be covered by a ®nite union of
open balls for the Wasserstein's metric:

K �
[M
i�1

B mi; d� �
Where

B mi; d� � � l 2M�
1 �W A

T � = d�l; mi� < d
� 	

According to (24), we have:

QN
b l̂N 2 K
ÿ � � Z

K
exp NC l̂Nÿ �� 	

dP
N

�
XM
i�1

Z
K\B mi;d� �

expN C l̂Nÿ �ÿ Cmi l̂Nÿ �� 	
exp NCmi l̂Nÿ �� 	

dP
N

With the de®nition of the probability measures Qm as in (9), we get:

QN
b l̂N 2 K
ÿ � �XM

i�1

Z
K\B mi;d� �

expN C l̂Nÿ �ÿ Cmi l̂Nÿ �� 	
dQ
N

mi

HoÈ lder inequality shows that, for p; q conjugate exponents:

QN
b l̂N 2 K
ÿ � �XM

i�1

Z
d�l̂N ;mi�<d

exp qN C l̂Nÿ �ÿ Cmi l̂Nÿ �� 	
dQ
N

mi

 !1
q

� Q
N
mi

B mi; d� � \ K� �1p

So that proposition 2.16 implies that:

QN
b l̂N 2 K
ÿ � � exp

1

q
NCq�d� �

XM
i�1

Q
N
mi

B mi; d� � \ K� �1p
( )
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Thus Sanov Theorem implies that:

lim
N!1

1

N
logQN

b l̂N 2 K
ÿ � � ÿ 1

p
inf

1�i�M
inf

B mi;d� �\K
I
�� Qmi

ÿ �� 1

q
Cq�d� �18�

But one can see (as proved in [2], appendix B) that

I
�� Qmi

ÿ � � I
�� P

ÿ �ÿ Cmi if I
�� P

ÿ �
<1

�1 otherwise.

�
We could prove (see the proof of lemma 2.16) that there exists a ®nite
constant C such that

Cmi�l� ÿ C�l�j j � C 1� I l
��Pÿ �ÿ �

d mi; l� � �19�
So that (18) implies:

lim
N!1

1

N
logQN

b l̂N 2 K
ÿ � � ÿ 1

p
inf
K
�1ÿ Cd�I �� P

ÿ �ÿ C
� 	� 1

q
Cq�d� � Cd

Finally, we proved in [2] that there exists a < 1 and a ®nite constant C such
that C � aI

�� P
ÿ �� C so that:

lim
d&0

inf
K
�1ÿ Cd�I �� P

ÿ �ÿ C
� 	 � inf

K
I
�� P
ÿ �ÿ C

� 	 � inf
K

H

So that, letting d& 0, and then p & 1, we get:

lim
1

N
logQN

b l̂N 2 K
ÿ � � ÿ inf

K
H :

2.4 Annealed tightness

In this section, we prove that the law of the empirical measure under QN
b is

tight, i.e Theorem 2.4:

Theorem 2.17 For any real number � > 0, there exists a compact subset K�

of M�
1 �W A

T � such that, for any integer number N ,

QN
b l̂N 2 Kc

�

ÿ � � � :
Proof. To prove Theorem 2.15, we shall compare the annealed law QN

b and
the law of the system without interaction P
N . To this end, ®rst recall that,
by de®nition of the relative entropy, for any integer N , for any bounded
measurable function f on �W A

T �N ,Z
f dQN

b � I QN
b jP
N

� �
� log

Z
expff g dP
N

Letting A be a measurable subset of �W A
T �N and taking

f � log
ÿ
1� P
N �A�ÿ1�IA, one ®nds that
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QN
b �A� �

log 2� I QN
b jP
N

� �
log 1� P
N �A�ÿ1
� � �20�

But the law of the empirical measure under P
N is exponentially tight (see
lemma 3.2.7 of [7]) so that, for any real number � > 0, we can ®nd a compact
subset K� of M

�
1 �W A

T � such that

P
N l̂N 2 Kc
�

ÿ � � exp ÿN
�

� �
�21�

(20) and (21) imply that, for any real number � > 0,

QN
b l̂N 2 Kc

�

ÿ � � log 2� I QN
b jP
N

� �
log 1� expfN

�g
ÿ � �22�

Thus, (22) implies Theorem 2.17 as soon as we have proved that there exists a
®nite constant C such that, for any integer number N ,

I QN
b jP
N

� �
� CN �23�

To compute I�QN
b jP
N �, we recall that we proved in lemma 3.6 of [2] that

Girsanov Theorem implies that QN
b is absolutely continuous with respect to

P
N and that its Radon-Nykodim derivative is given by:

dQN
b

dP
N �
YN
i�1
E exp b

Z T

0

Gl̂N

t dBi
t ÿ

b2

2

Z T

0

Gl̂N

t

� �2
dt

� �� �
�24�

Where Gl̂N

t � �1=
����
N
p �PN

i�1 Jixi
t and E denotes the expectation on the i.i.d

N�0; 1� random variables Ji (Remark here that Gl̂N
depends on the �xi�, even

if we do not underline it in the notations).
Thus, by de®nition of the relative entropy and of QN

b , we have:

I QN
b jP
N

� �
�
Z

log
dQN

b

dP
N dQN
b

�
Z XN

i�1
logE exp b

Z T

0

Gl̂N

t dBi
t ÿ

b2

2

Z T

0

Gl̂N

t

� �2
dt

� �� �
dQN

b

Since QN
b is exchangeable, we ®nd:

I QN
b jP
N

� �
� N

Z
logE exp b

Z T

0

Gl̂N

t dB1
t ÿ

b2

2

Z T

0

Gl̂N

t

� �2
dt

� �� �
dQN

b

�25�
We now give another formula for the right hand side of (25). Namely:
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E exp b
Z T

0

Gl̂N

t dB1
t ÿ

b2

2

Z T

0

Gl̂N

t

� �2
dt

� �� �
� exp

�
b2
Z T

0

E

�
KN

t Gl̂N

t �
Z t

0

Gl̂N

s dB1
s

�
dB1

t

ÿ b4

2

Z T

0

E KN
t Gl̂N

t

Z t

0

Gl̂N

s dB1
s

� �2
dt
�

where

KN
t �

exp ÿ b2

2

R t
0 Gl̂N

u

� �2
du

� �
E exp ÿ b2

2

R t
0 Gl̂N

u

� �2
du

� �� � :

The equality (26) is due to standard Gaussian computations and integration
by parts formula (see lemma 5.14 in [2] and the related result (2)).

Thus, (25) and (26) imply that:

I QN
b jP
N

� �
� N

Z
b2
Z T

0

E KN
t Gl̂N

t

Z t

0

Gl̂N

s dB1
s

� �
dB1

t

�
ÿ b4

2

Z T

0

E KN
t Gl̂N

t

Z t

0

Gl̂N

s dB1
s

� �2
dt
�

dQN
b �27�

Moreover, Girsanov Theorem implies that, under QN
b , B1 is a semimartingale,

more precisely that there exists a QN
b Brownian motion W 1 such that, for any

time t � T :

B1
t � W 1

t � b2
Z t

0

E KN
s Gl̂N

s

Z s

0

Gl̂N

u dB1
u

� �
ds : �28�

Thus, (27) becomes:

I QN
b jP
N

� �
� 1

2
b4N

Z Z T

0

E KN
t Gl̂N

t

Z t

0

Gl̂N

s dB1
s

� �2
dt dQN

b �29�

We now bound f �t� � R E KN
t Gl̂N

t

R t
0 Gl̂N

s dB1
s

h i2
dQN

b through a Gronwall
lemma argument. Using (28), one ®nds that:

f �t� �
Z
E KN

t Gl̂N

t

Z t

0

Gl̂N

s dB1
s

� �2
dQN

b

� 2

Z
E KN

t Gl̂N

t

Z t

0

Gl̂N

s dW 1
s

� �2
dQN

b

� 2b4
Z Z t

0

E KN
t Gl̂N

t Gl̂N

s

h i
E KN

s Gl̂N

s

Z s

0

Gl̂N

u dB1
u

� �
ds

� �2

dQN
b �30�

But Cauchy Schwartz inequality in the ®rst term in the right hand side of (30)
gives:
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Z
E KN

t Gl̂N

t

Z t

0

Gl̂N

s dW 1
s

� �2
" #

dQN
b �

Z
E KN

t Gl̂N

t

� �2� �
E

Z t

0

Gl̂N

s dW 1
s

� �2
dQN

b

�31�
Moreover, classical Gaussian properties imply (see appendix A of [2] for
details), that, for any x 2 �W A

T �N :

E KN
t Gl̂N

t

� �2� �
� E Gl̂N

t

� �2� �
� 1

N

XN

i�1
�xi

t�2 � A2 �32�

So that (31) is bounded, for any t � T :Z
E KN

t Gl̂N

t

Z t

0

Gl̂N

s dW 1
s

� �2
dQN

b � A2

Z Z t

0

Gl̂N

s dW 1
s

� �2
dQN

b

� A2

Z
E

Z t

0

Gl̂N

s

� �2
ds

� �
dQN

b � A4T �33�

Similarly, we can bound the second term in the right hand side of (30) and
®nally get:

f �t� � 2A4T � 2b4A4T
Z t

0

f �s� ds

Since this inequality holds for any t � T , Gronwall lemma gives:

sup
t�T

f �t� � sup
t�T

Z
E KN

t Gl̂N

t

Z t

0

Gl̂N

s dB1
s

� �2
dQN

b � 2A4T expf2b4A4T 2g

Thus, (29) implies that:

I�QN
b jP
N � � b4A4T 2 expf2b4A4T 2gÿ �

N �34�
which is the bound (23) we needed to get Theorem 2.17. (

3 Symmetric dynamics

Here, we will not assume as in the previous section that the whole matrix
Jij
ÿ �

i;j is made of i.i.d N�0; 1� random variables but rather assume the sym-
metry of the couplings, i.e we will here suppose that the random matrix
Jij
ÿ �

i;j is symmetric. More precisely, we will suppose that under the diagonal,
the Ji;j's are i.i.d N�0; 1�, that Jj;i � Ji;j and that the Ji;i's are N�0; 2�. The fact
that the value of the covariance of the couplings on the diagonal is so speci®c
is not re¯ected by the asymptotic behaviour. Nevertheless, it is a nice choice
on the technical point of view since it makes the law of the couplings in-
variant by rotations. We will denote �X;B;E� the probability space on which
these random variables live.
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Under this symmetry hypotheses, our dynamics described by SN
b �J� are

reversible with respect to the Gibbs measure lN
J .

3.1 Annealed propagation of chaos

Our main result in this case is the convergence of the annealed law of the
empirical measure towards solutions of a non linear martingale problem, or,
equivalently, towards the solutions of a non linear stochastic di�erential
equation. A large deviation upper bound for this averaged law in a large
temperature (or short time) regime, which entails a propagation of chaos
result, has been proved in [3].

The existence and uniqueness problems for this limit law are not obvious
and are the analogue here of the existence and uniqueness problem for
asymmetric spin glass dynamics as in the previous section. We already
proved the uniqueness result for any temperature and time in [3], but on the
set of probability measures with ®nite entropy with respect to the law
without interaction. Here, we will give another proof which shows the
uniqueness on a bigger subset of M�

1 �W A
T � (see section 3.5).

As in the previous section, these results can be generalized to replicated
systems. This generalization and its consequences on quenched properties
will be mentioned in the last part of this paper.

Let us now describe more precisely the results and, in particular, the non
linear stochastic di�erential equation which describes the limit behaviour of
the empirical measure.

The symmetry of the couplings is re¯ected, in the limiting dynamics,
through ``covariance operators'' �Cs�s�T . For any probability measure
l 2M�

1 �W A
s �, Cs is the operator in L2l�W A

s � 
 L2l�W A
s � such that

Cs � I� b2Bs 
 I � b2I 
Bs
ÿ �ÿ1

if I denotes the identity in L2l�W A
s �, I � I 
 I and Bs is the integral operator

on L2l�W A
s � with kernel

bs�x; y� �
Z s

0

xtyt dt :

Let us notice that Bs is a symmetric positive Hilbert-Schmidt in L2l�W A
s � (for

any l 2 M�
1 �W A

s � ) operator so that Cs is always well de®ned and with
spectral radius bounded by one.

Moreover, let us mention that the asymmetric analogue of Cs is

C0s � I � b2Bs
ÿ �ÿ1

which describes the annealed asymptotic law of the asymmetric dynamics
according to (2). Indeed, the non linear drift depends mainly on:
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E GQ
s GQ

t

exp

�
ÿ b2

2

R s
0

�
GQ

u

�2
ds
�

E exp ÿ b2

2

R s
0 GQ

u

� �2
ds

� �� �
2664

3775 � Z xs�C0s:Xt��x� dQ�x� :

For the symmetric dynamics, the non linear drift is described by a more
complicated function F : R� �M�

1 �W A
T � � W A

T ! R de®ned by:

F l
t �x� �

Z
yt�Ct:at��x; y� dl�y� ;

where:

at�x; y� � xtyt ÿ x0y0 �
Z t

0

xsrU�ys� ds�
Z t

0

ysrU�xs� ds

If
R R T

0 jrU�xs�jds
� �2

dl�x� is ®nite, it is quite clear that fF l
t �x�; t � Tg is well

de®ned for any path x such that
R T
0 jrU�xs�jds is ®nite.

The limiting processes will then be characterized as weak solutions Q to
the non linear stochastic di�erential equation on W A

T :

dxt � ÿrU�xt� dt � dBt � b2F Q
t �x� dt

Law of x � Q Q
��
F0
� l0

(
such that

R R T
0 jrU�xs�jds

� �2
dP�x� is ®nite. We recall that our dynamical

system is starting from the product measure l
N
0 so that the initial law of the

limiting process has to be l0.
We will denote El0 the set of solutions to this non linear stochastic dif-

ferential equation.
Our main theorem states as follows:

Theorem 3.1 Let PN
b be the annealed law of the empirical measure on W A

T , i.e:

PN
b �l 2 :� � E P N

b �J�
1

N

XN

i�1
dxi 2 :

" #" #
:

Then:

1) PN
b is tight.

2) If P is a limit of PN
b , then:

P El0

ÿ � � 1 :

3) El0 contains a unique probability measure Q.
4) PN

b;T converges to a dirac measure at Q.

As a consequence, an annealed propagation of chaos phenomenon occurs:

Corollary 3.2 For any continuous bounded functions �fi; 1 � i � m�,

lim
N!1

E

Z
f1 x1
ÿ �

. . . fm�xm� dP N
b �J�

� �
�
Ym
i�1

Z
fi dQ
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Let us now describe the main steps which lead to Theorem 3.1.
The proof of this theorem follows the usual scheme: we ®rst identify

conveniently the annealed law of the empirical measure in section 3.2. We
then check that it is tight by an entropy argument in section 3.3. We ®nally
turn to the identi®cation of the limit; we ®rst show that the limit probability
measures are solutions of a non linear martingale problem, i.e by weak
solutions of a non linear stochastic di�erential equation in section 3.4. We
prove that there exists a unique solution to these non linear problems in
section 3.5.

3.2 Study of the law of the empirical measure

We are going to see that the annealed law of the system is in fact the law of a
system of di�usions in mean ®eld interaction. The main peculiarity of this
system, which is due to the randomness of the interaction, is that the drift
coming from the interaction depends on the whole past trajectories of the
di�usions. Indeed, we have:

Theorem 3.3 The annealed law QN
b of the spin system is described by the fol-

lowing stochastic di�erential system:

dxi
t � ÿrU�xi

t� dt � dBi
t � b2F l̂N

t �xi� dt � 1
N b2Gl̂N

t �xi� dt
Law of x0 � l
N

0

(

where �Bi
t; t � 0; 1 � i � N� is a N dimensional Brownian motion and:

Gl
t �x� � ÿt I � 2b2Bt

ÿ �ÿ1
Xt�x� :

Gl depends on l via the operator Bt in L2l�W A
T �.

This theorem is proved by computing the Radon Nykodym derivative of
QN

b with respect to P
N
T , i.e the analogue of lemma 3.6 in [2] for the symmetric

case. A similar computation has been made in [3], Proposition 2.12. Nev-
ertheless, since it is a key step in our approach, we wish to give some details.
We will here state this result under the following form:

Lemma 3.4 P
N almost surely, we have:

dQN
b

dP
N
T

�
YN
i�1

exp b2
Z T

0

H l̂N

t �xi;N� dBt�xi� ÿ b4

2

Z T

0

H l̂N

t �xi;N��2 dt
� �

;

where Bt�xi� � xi
t ÿ xi

0 �
R rU�xs� ds is a N dimensional Brownian motion

under P
N
T and:

H l̂N

t �xi;N� � F l̂N

t �xi� � 1

N
Gl̂N

t �xi�
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Theorem 3.3 can be deduced from Lemma 3.4 thanks to Girsanov Theorem.

Indeed, MN
b;t �

dQN
b

dP
N
T

��
Ft

is a martingale since it is a supermartingale with mean

1 ( since, for almost all J,
dP N

b;T �J�
dP
N

T

��
Ft

is a martingale). Thus, Girsanov Theorem

applies and, together with Lemma 3.4, shows Theorem 3.3.

Proof of Lemma 3.4. Since �MN
b;t�t�0 is a positive martingale (being the ex-

pectation of exponential martingales), it is enough (by uniqueness of the
semimartingale decomposition) to show that the martingale part of logMN

b;t is

b2
XN

i�1

Z T

0

H l̂N

t �xi;N� dBt�xi� :

In the following, we will write that At �
mart

Bt when two semimartingales A and
B have the same martingale parts.

Let us ®rst recall that, if

at xi; xjÿ � � Z t

0

xi
s dBj

s �
Z t

0

xj
s dBi

s ;

we have shown in [3] that:

logMN
b;t �mart

b2

4
Nhat; �Ct:at�il̂N
l̂N : �35�

thus, if we denote

Yt�x; y� � �Ct:at��x; y� ;
then we have:

logMN
b;t �mart

b2

4
Nhat; Ytil̂N
l̂N

� b2

4N

XN

i;j�1
at xi; xjÿ �

Yt xi; xjÿ �
�
mart

b2

4N

XN

i;j�1

Z t

0

Ys xi; xjÿ �
das xi; xjÿ �

� b2

4N

XN

i;j�1

Z t

0

as xi; xjÿ �
dYs xi; xjÿ � �36�

Moreover, it is not hard to check that, for any functions f ; g in
L2�l̂N � 
 L2�l̂N �,

h f ;Ctgil̂N
l̂N � h f ; gil̂N
l̂N ÿ b2
Z t

0

h f ;Ksgil̂N
l̂N ds �37�

where

Kt � Ct I 
Dt �Dt 
 I� �Ct
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and Dt is the integral operator on L2�l̂N � with kernel dt�x; y� � xtyt. Indeed, if
one would consider a discretized version Cn

t of Ct given by:

Cn
t :� I� b2

n

X�nt�

i�1
I 
D i

n
� b2

n

X�nt�

i�1
D i

n

 I

 !ÿ1
;

one would check that:

Cn
t � I ÿ b2

n

X�nt�

j�1
Cn

j
n

I 
Dj
n
�Dj

n

 I

� �
Cn

jÿ1
n

which is a discretized version of (37). By continuity of the trajectories, it is
then not di�cult to deduce (37).

Thus, Ct is a di�erentiable family of operators with respect to the time.
Therefore:

dYs xi; xjÿ � �
mart

I� b2I 
Bs � b2Bs 
 I
ÿ �ÿ1

das xi; xjÿ �
:

As a consequence, we know that:

logMN
b;t �mart

b2

2N

XN

i;j�1

Z t

0

Ys xi; xjÿ �
das xi; xjÿ �

� b2

N

XN

i;j�1

Z t

0

Ys xi; xjÿ �
Xs�xi� dBs�xj� �38�

Finally, it is not hard to check by Ito formula that:

at�xi; xj� � at�xi; xj� ÿ di;jt

where d denotes the Kronecker symbol. As a consequence, we ®nd that:

�38� � b2
XN

i�1

Z t

0

H l̂N

s �xi;N�dBs�xi� �39�

which ends the proof of the Lemma. (

3.3 Annealed tightness

In this section,we prove that the lawof the empiricalmeasure underQN
b is tight.

Theorem 3.5 For any real number � > 0, there exists a compact subset K� of
M�

1 �W A
T � such that, for any integer number N ,

QN
b l̂N 2 Kc

�

ÿ � � �
Proof. As for Theorem 2.17, we only need to bound:

1

N
I�QN

b jP
N � � b4

2

Z T

0

ZZ
H l̂N

t �x;N�2 dl̂N �x� dQN
b

� �
dt �40�
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But, by de®nition of Hl, for any time tZZ
H l̂N

t �x;N�2 dl̂N �x� dQN
b �

ZZ Z
ytCtat�x; y� dl̂N �y�

� �2

dl̂N �x� dQN
b

�
ZZZ

ytCtat�x; y�� �2 dl̂N �y� dl̂N �x� dQN
b

� A2

ZZZ
Ctat�x; y�� �2dl̂N �y� dl̂N �x� dQN

b

where we have used Jensen inequality and bounded yt by its supremum norm
in the last line. Let us recall that Ct is a symmetric operator in
L2�l̂N � 
 L2�l̂N � with eigenvalues smaller than one. Thus, we deduce that:ZZ

H l̂N

t �x;N�2 dl̂N �x� dQN
b � A2

ZZZ
at�x; y�� �2 dl̂N �y� dl̂N �x� dQN

b �41�

But at is de®ned by:

at�x; y� �
Z t

0

xs dBs�y� �
Z t

0

ys dBs�x� ;

if Bt � xt ÿ x0 �
R t
0rU�xs�ds. And, under QN

b , there exists a N Brownian
motion W such that, for any i 2 �1;N �:

Bi
t � W i

t � b2
Z t

0

H l̂N

s �xi� ds

It is then a triviality to bound the left hand side of (41) and ®nd, for any time
t � T :ZZ

H l̂N

t �x;N�2 dl̂N �x� dQN
b � 2A4T �1�

Z t

0

ZZ
H l̂N

s �x;N�2 dl̂N �x� dQN
b ds�
�42�

so that one can conclude that, for any time t � T :ZZ
H l̂N

t �x;N�2 dl̂N �x� dQN
b � 2A4Te2A4T ;

which ®nishes the proof of Theorem 3.5.

3.4 Identi®cation of the limit probability measures

We are going to characterize any limit points of the law of the empirical
measure as the solutions of a non linear martingale problem. To introduce
this notion, we need to restrict ourselves to probability measures Q so that
the function FQ is well de®ned, namely to the set:

M � P 2M�
1 �W A

T �
�Z Z T

0

jrU�xs�j ds
� �2

dP�x� <1
( )

:
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For any probability measure Q inM, letLt�Q� be the generator de®ned by:

Lt�f ;Q��x� � 1

2
f }�x� � ÿrU�x� � b2F Q

t �x�
� �

f 0�x� :

We will then say that Q is solution of the non linear martingale problem
�Lt; t � 0� with initial condition l0 if:

Q�X0 2 B� � l0�B� 8 B 2 B��ÿA;A�� �43�

and 8 f 2 C2��ÿA;A�� f �Xt� ÿ f �X0� ÿ
Z t

0

Ls� f ;Q��X � ds �44�

is a Q-martingale.
Let us denote El0 the set of such solutions. Then, recalling that l
N

0 is the
initial law of our dynamical system, we are going to prove that:

Theorem 3.6 If P is a limit point of �PN
b;T �N�0,

P�El0� � 1 :

Moreover, there exists a ®nite constant C such that, if P is a limit point of
�PN

b;T �N�0, Z Z �Z T

0

jrU�xs�j ds
�2

dl�x�
 !

dP�l� � C :

Since we have proved in Theorem 3.5 that the law of the empirical measure is
tight, Theorem 3.6 shows that the law of the empirical measure concentrates
on El0 . To recover a result of the same ¯avor that those we got for the
asymmetric dynamics, we translate this theorem in terms of non linear dif-
ferential stochastic equations. Theorem 3.6 then states as follows:

Theorem 3.7 The limit law of the empirical measure is supported by the weak
solutions of the following non linear stochastic di�erential equation:

dxt � ÿrU xt� � dt � dBt � b2F Q
t �x� dt

Law of x � Q Q

����
F0

� l0

8<:
such that Z Z T

0

jrU�xs�j ds
� �2

dQ�x� <1 :

Proof of Theorem 3.6. Let us ®rst notice that, since the spins are initially
independent and with law l, Cramer Theorem implies that any limit point P
of PN

b;T

� �
N�0

satis®es:

P l 2M�
1 W A

T

ÿ �
; X0 � l � l0

� 	ÿ � � 1 ;
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so that the problem boils down to show that the second point in (44) is
satis®ed for P almost all measures on W A

T . In other words, if we de®ne, for
any function f twice continuously di�erentiable on �ÿA;�A� and any
bounded continuous function / r Xu; u � s� � measurable, a function
w: M�

1 W A
T

ÿ �! R by:

w�l� �
Z

f �Xt� ÿ f �Xs� ÿ
Z t

0

Lu�f ; l��X � du
� �

/�X � dl�X � ;

we need to check that w�l� � 0 for P-almost all probability l. Since W A
T is a

metric space, it is not hard to see that this is enough to conclude that, for P
almost all l, l satis®es the non linear martingale problem �Lt; t � 0�. In-
deed, l satis®es this martingale problem i� w � w�t; s; f ;/� is null for a
countable number of times, a countable number of test functions / and two
functions f f �x� � x and x2

ÿ �
.

This approach is very similar to that used by A.S. Sznitman in [11] and C.
Leonard in [8] for di�usions in mean ®eld interaction. We nevertheless have
to be slightly more careful here since the non linear part of our generator
depends on the potential U which is not bounded, and is therefore not a
continuous function on M�

1 W A
T

ÿ �
.

As in [8], we notice that, under QN
b , Ito's formula shows that, for given

smooth functions f and /:

w l̂Nÿ � � 1

N

XN

i�1
/ xiÿ � Z t

s
f 0 xi

s

ÿ �
dBi

s �
b2

N
Gl̂N

s xi
s

ÿ �
ds

� �
�45�

where B is a QN
b Brownian motion. But, let us ®rst remark that a consequence

of Lemma 3.22 in [3] is that there exists a ®nite constant such that:

sup
l2M�

1
W A

T� �
sup
x2W A

T

sup
t�T

Gl
t �x�j j � CTA :

Thus, we ®nd a ®nite constant C � C�A; b; T � so that:Z
w l̂Nÿ �ÿ �2

dQN
b �x� �

1

N
Ck/k21kf 0k21 �46�

where we have assumed in the last line that t and s are smaller than T . If w
were a bounded continuous function, (46) would imply that any limit point
P of PN

b;T would satisfy
R

w�l�2dP�l� � 0. To circumvent the fact that w is
nor bounded nor continuous, we follow the usual approximation scheme.

To this end, let us consider, for any integer M , a smooth function qM on
R� such that:

kqMk1 � 1; qM �x� � 1 if x � M ; qM �x� � 0 if x � 2M :

We then let, for t � T , V M
t X�0;T �
ÿ � � qM

R T
0 jrU�Xt�j dt

� �
rU�Xt�. VM is

bounded and continuous for any ®nite integer number M . Let us then de®ne:
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aM
T �x; y� � xT yT ÿ x0y0 �

Z T

0

xsV M
s �y� ds�

Z T

0

ysV M
s �x� ds

� �
;

and:
F M

t �Q; x� �
Z

ysCsaM
s �x; y� dQ�y� :

It is not di�cult to check that, since the canonical process is uniformly
bounded, F M

t : M�
1 W A

T

ÿ �� W A
T ! R is a bounded continuous function.

We ®nally letLM
t �Q� be the operator on smooth bounded functions such

that

LM
t �Q; f � X�0;T �

ÿ � � 1
2 f 00�Xt� � ÿV M

t X�0;T �
ÿ �� b2F M

t Q;X�0;T �
ÿ �ÿ �

f 0�Xt�
and de®ne accordingly:

wM �l� �
Z

f �Xt� ÿ f �Xs� ÿ
Z t

s
LM

u �l; f � X�0;T �
ÿ �

du
� �

/�X � dl�X � :

It is clear that wM is a bounded continuous function onM�
1 W A

T

ÿ �
. Using (46),

we are going to see that there exists a sequence �M going to zero when M goes
to in®nity and such that, for any limit point P,Z

wM�l��� �� dP�l� � �M : �47�

We will then show that, for any such probability measure P, we as well have
that Z

jw�l�j dP�l� � lim
M!1

Z
wM �l��� �� dP�l� ; �48�

which implies that Z
jw�l�j dP�l� � 0 ; �49�

and thus achieves the proof.

To prove (47), let us ®rst remark that (46) implies that:Z
wM �l��� �� dP�l� � lim

N!1

Z
wM �l��� �� dPN

b;T �l�

� lim
N!1

���������������������������������������Z
jw�l�j2 dPN

b;T �l�
s

� lim
N!1

Z
wM �l� ÿ w�l��� �� dPN

b;T �l�

� lim
N!1

Z
wM �l� ÿ w�l��� �� dPN

b;T �l� ;

so that the problem boils down to prove that there exists a sequence of real
numbers �M going to zero when M goes to in®nity such that:

lim
N!1

Z
wM �l� ÿ w�l��� �� dPN

b;T �l� � �M : �50�

208 A. Guionnet



To prove this last inequality, let us ®rst notice that there exists a ®nite
constant CT such that

wM �l��� ÿ w�l�j

� CTk/k1kf 0k1

������������������������������������������������������������������������������������Z Z T

0

rU�xs� ÿ V M
s X�0;T �
ÿ ��� �� ds

� �2

dl�x�
s

: �51�

But rU�xs� ÿ V M
s X�0;T �
ÿ ��� �� � jrU�xs�j 1ÿ qM

R T
0 jrU�xu�j du

� �� �
, so that

Cauchy Schwartz inequality implies that, for any positive integer number d,
we have:Z

wM �l��� ÿ w�l�j dPN
b;T �l�

� CTk/k1kf 0k1d
ZZ Z T

0

jrU�xs�j ds
� �2

dl�x� dPN
b;T �l�

� CTk/k1kf 0k1
1

d

ZZ
1ÿ qM

Z T

0

jrU�xs�j ds
� �� �2

dl�x� dPN
b;T �l� �52�

To bound the right hand side of (52) we use the entropy inequality (and
monotone convergence Theorem). For the ®rst term in the right hand side of
(52), we have, for any a > 0

aN
Z Z Z T

0

jrU�xs�j ds
� �2

dl�x� dPN
b;T �l�

� I QN
b jP
N

� �
� N log

Z
exp a

Z T

0

jrU�xs�j ds
� �2

( )
dP �x� : �53�

But, one can check that, for a small enough,
R
exp

�
a
ÿ R T

0 jrU�xs�j ds
�2	

dP�x� is ®nite. Thus, since we have seen in the proof of Theorem 3.5 that

I
ÿ
QN

b jP
N
�
grows at most linearly in N , (53) shows thatZ Z T

0

jrU�xs�j ds
� �2

dl�x� dPN
b;T �l� �54�

is bounded uniformly on N . Similarly, we have that, for any positive real
number a:

aN
ZZ

1ÿ qM

Z T

0

jrU�Xs�j ds
� �� �2

dl�x� dPN
b;T �l�

� I QN
b jP
N

� �
� N

Z
exp a 1ÿ qM

Z T

0

jrU�Xs�j ds
� �� �2

( )
dP �x�

� I QN
b jP
N

� �
� N 1� eaP

Z T

0

jrU�Xs�j ds > M
� �� �

�55�
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As a consequence, since P �R T
0 jrU�Xs�j ds > M� goes to zero when M goes to

in®nity, there exists a ®nite constant cT and a sequence of real numbers
�aM �M�0 going to in®nity when M does and so that, for any integer M :

aM

ZZ
1ÿ qM

Z T

0

jrU�Xs�j ds
� �� �2

dl�x� dPN
b;T �l� � cT �56�

Hence, (52), (54) and (56) imply (taking d � �1= ������
aM
p � in (52)), that there

exists a sequence of real numbers ��M �M�0 going to zero when M goes in®nity
and so that, for any integer number N :Z

wM �l� ÿ w�l��� �� dPN
b;T �l� � k/k1kf 0k1�M

which ®nishes the proof of (50).
To achieve the proof of (49), we notice that, since wM �l� converges

pointwise to w�l� onM, which can be seen to have probability one under P
according to (54), Fatou's Lemma implies that:Z

jw�l�j dP�l� � lim
M!1

Z
wM �l��� �� dP�l� :

The right hand side is null according to (47), so that we have proved The-
orem 3.6. (

3.5 Uniqueness of the limit point and characterization

Our ®nal goal is to prove the uniqueness of the solutions Q to the non linear
stochastic di�erential system de®ned in Theorem 3.7 on M.

Thus, since Theorem 3.7 and Theorem 3.5 implies that there exists at least
such a solution Q, we can deduce that there is a unique solution to this
problem. Then, Theorem 3.7 implies Theorem 3.1.

Let us recall that we already proved in [3] that there is at most one solution
to the non linear stochastic di�erential system de®ned in Theorem 3.7 with
®nite entropy with respect to P . In our setting, it is not clear that, for any limit
pointP, forP almost all l, I�ljP � is ®nite ( even if we know that I�R l dP�l�jP �
is ®nite). We could adapt the argument given in [2] to the probability measures
such that (57) is satis®ed.Nevertheless, we prefer to give a new argumentwhich
is simpler but only apply to the case where U can be written as the sum of a
convex and a Lipschitz function. Since we already assumed that U is smooth,
this assumption reduces to the fact that U blows up near the boundary points
fÿAg and fAg like a convex function. Let us ®rst state the result:

Theorem 3.8 If U is the sum of a convex and a Lipschitz function, for any ®nite
time T there exists a unique solution Q to the non linear equation:
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dXt � ÿrU�Xt�dt � dBt � b2F Q
t �X � dt t � T

Law of X � Q Q

����
F0

� l0

8<:
Proof. We will assume that U is convex to simplify the notations. As usual,
we assume that we have two weak solutions Q1 and Q2 to this non linear
stochastic di�erential equation and want to show that they have to be equal.
We can construct these two solutions on the same probability space. Namely,
if we consider the law of the coupled processes X 1;X 2

ÿ �
de®ned by:

dX 1
t � ÿrU X 1

t

ÿ �
dt � dBt � b2F Q1

t X 1
ÿ �

dt
dX 2

t � ÿrU X 2
t

ÿ �
dt � dBt � b2F Q2

t X 2
ÿ �

dt

Law of X 1 � Q1 Law of X 2 � Q2 X 1
0 � X 2

0 Q1

����
F0

� l0

8>>><>>>:
it is clear that the law of X 1 resp. of X 2

ÿ �
is Q1 resp. Q2� �.

We then want to prove that

E sup
t�T

X 1
t ÿ X 2

t

�� ��� �
is null, which will imply that the Wasserstein distance between Q1 and Q2 is
null and thus that Q1 � Q2.

Since rU is not Lipschitz, the strategy will be based on a contraction
argument for the function:

Hs � E sup
t�s

X 1
t ÿ X 2

t

�� ��� �
� E

Z s

0

rU X 1
t

ÿ �ÿrU X 2
t

ÿ ��� �� dt
� �

rather than on

E sup
t�s

X 1
t ÿ X 2

t

�� ��� �
only. We will show indeed that there exists a ®nite constant C such that:

Hs � C
Z s

0

Hu du ; �57�

which, according to Gronwall Lemma, guaranties that H � 0, and thus gives
the result.

Let us now go into the details of the proof. Its ®rst step is to express Hs.
To this end, let us ®rst notice that the process Yt � X 1

t ÿ X 2
t satis®es the

di�erential equation:

dYt � ÿ rU X 1
t

ÿ �ÿrU X 2
t

ÿ �ÿ �
dt � b2 F Q1

t X 1
ÿ �ÿ F Q2

t X 2
ÿ �� �

dt
Y0 � 0

(
Thus, �Yt; t � 0� is a process with ®nite variations and Ito formula gives:
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sup
u�s
jYuj �

Z s

0

sgn�Yu� rU X 1
t

ÿ �ÿrU X 2
t

ÿ �ÿ �
dt

� b2
Z s

0

F Q1
t X 1
ÿ �ÿ F Q2

t X 2
ÿ ���� ��� dt ;

where sgn�0� � 0. But, since we have assumed that U is convex,
rU X 1

t

ÿ �ÿrU X 2
t

ÿ �
has the same sign as Yt so that we have indeed:

sup
u�s
jYuj �

Z s

0

rU X 1
t

ÿ �ÿrU X 2
t

ÿ ��� ��dt � b2
Z s

0

F Q1
t X 1
ÿ �ÿ F Q2

t X 2
ÿ ���� ��� dt �58�

Let us now focus on the right hand side of (58). We proved in [3] (see Lemma
3.21) that:

Lemma 3.9 For any time T , there exists a ®nite constant AT such that, for any
paths x and y, for any probability measures l and m, for any time t � T

F l
t �x� ÿ F m

t �y�
�� �� � AT

Z t

0

�hjrU�Xu�jil � hjrU�Xu�jim� du

� sup
u�t
jxu ÿ yuj � dt�l; m�

� �

� AT Kt�l; m� �
Z t

0

jrU�xs� ÿ rU�ys�j ds
� �

where dt is the Wasserstein distance between l and m and

KT �l; m� � inf

ZZ T

0

jrU�Xu� ÿ rU�Yu�j du dn�X ; Y �
� �

where the in®mum is taken over the probability measures n with marginales m
and l.

This Lemma is enough to get the contraction argument. Indeed, we ob-
viously have the bounds:

dT �Q1;Q2� � E sup
u�T

X 1
u ÿ X 2

u

�� ��� �
and:

KT �l; m� � E
Z T

0

jrU X 1
u

ÿ �ÿrU X 2
u

ÿ �j du
� �

:

Thus, taking the expectation on both sides of (58) and using Lemma 3.9 we
get:
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Hs � b2
Z s

0

E F Q1
t X 1
ÿ �ÿ F Q2

t X 2
ÿ ���� ���h i

dt

� 2b2AT

Z T

0

hjrU�Xu�jiQ1
� hjrU�Xu�jiQ2

� �
du

� �
�
Z s

0

E sup
u�t

X 1
u ÿ X 2

u

�� ��� �
dt � 2b2AT

�
Z s

0

E
Z t

0

rU X 1
u

ÿ �ÿrU X 2
u

ÿ ��� �� du
� �

dt

Thus, since we assumed that
R T
0 < jrU�Xu�j >Q1

du and
R T
0 hjrU�Xu�jiQ2

du
are ®nite, we ®nd a ®nite constant BT such that, for any s � T :

Hs � BT

Z s

0

E sup
u�t

X 1
u ÿ X 2

u

�� ��� �
� E

Z t

0

rU X 1
u

ÿ �ÿrU X 2
u

ÿ ��� �� du
� �� �

dt

� BT

Z s

0

Ht dt ;

that is (57). This ®nishes the proof of Theorem 3.8.

3.6 Quenched propagation of chaos

It is not hard to generalize our strategy to replicated systems as we did in
section 2.2 for the asymmetric model. Let us summarize the analogue of
Theorem 2.7 in the symmetric case:

Theorem 3.10 Let Qr be the unique solution of the non linear stochastic dif-
ferential equation given by:

dxi
t � ÿrU xi

t

ÿ �
dt � dBi

t � b2F i
t Qr; x� � dt 1 � i � r

Law of x � P P
��
F0
� l0

(
such that

R R T
0

Pr
i�1 rU xi

s

ÿ ��� �� ds
� �2

dQr�x� is ®nite. F i
t Qr; x� � is de®ned by:

F i
t �Qr; x� �

Z
yi

t I� b2Br
t 
 I � b2I 
Br

t

ÿ �ÿ1
ar

t �x; y� dQr�y� ;

where

ar
t �x; y� �

Xr

i�1
at xi; yiÿ �

;

and Br
t is an integral operator in L2 Qr� � with kernel br

t given by:

br
t �x; y� �

Xr

i�1
bt xi; yiÿ �

:

Then, for any bounded continuous functions f1; . . . ; fm� � on W A
T , for any integer

number r,
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lim
N!1

E

Z
f1 x1
ÿ �

. . . fm xm� � dP N
b �J��x�

� �r� �
�
Ym
i�1

Z
fi x1� � . . . fi xr� � dQr

We were not able to decouple the probability measures Qr as in Theorem 2.8
in the general case. Nevertheless, we proved in [4] that:

Theorem 3.11 If U is even and l0 symmetric,Z
xt�xs dQ2 x;�x� � � 0 8 �s; t� :

As a consequence,

Qr � �Q1�
r :

In particular, for any bounded continuous functions f1; . . . ; fm� � on W A
T , for

almost all J ,
R

f1 x1
ÿ �

. . . fm xm� � dP N
b �J��x� converges in law to

Qm
i�1
R

fi dQ.

Thus, the overlap goes to zero when the number of particles goes to
in®nity even at very low temperature. This is surprising at the ®rst glance
since the overlap is supposed to exhibit a very interesting behaviour at low
temperature. Nevertheless, we understood that it was expected by the
Physicists community. Let us ®nally compare in this case the limit process Q
to the limit process obtained for asymmetric dynamics.

Indeed, we can see that Q can be written as:

Q � E P Q
g

h i
where Pg is described as the weak solution of:

dxt � dBt ÿrU�xt� dt � bgt dt � b2
R t
0 xsRQ�t; s� ds dt

Law of x0 � l0 :

�
and g is a centered Gaussian process with covariance:

E gsgt� � �
Z

xsxt dQ�x� :

RQ, which was null for asymmetric dynamics, is described here by the fol-
lowing formula:

RQ�t; s� � @

@s
h I � b2Bt
ÿ �ÿ1

Xt;BsiQ

ÿ b2
Z Z

ytzs Ct I � b2Bt
ÿ �ÿ1

:at

� �
�y; z� dQ�y� dQ�z� : �59�

The proof of this result is given in [4].
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