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Summary. V.N. Sudakov [Sud78] proved that the one-dimensional marginals
of a high-dimensional second order measure are close to each other in most
directions. Extending this and a related result in the context of projection pursuit
of P. Diaconis and D. Freedman [Dia84], we give for a probability measureP and
a random (a.s.) linear functionalF on a Hilbert space simple sufficient conditions
under which most of the one-dimensional images ofP underF are close to their
canonical mixture which turns out to be almost a mixed normal distribution.
Using the concept of approximate conditioning we deduce a conditional central
limit theorem (theorem 3) for random averages of triangular arrays of random
variables which satisfy only fairly weak asymptotic orthogonality conditions.
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1 Notations and basic assumptions

If X is a topological space thenProb (X) denotes the set of tight probability
measures on the Borelσ-algebraB (X) of X. The setProb (X) will always be
equipped with the topology of convergence in law, i.e. the coarsest topology for
which P 7−→ P(U ) is lower semicontinuous for all open setU ⊂ X. Let H be
a real Hilbert space with inner product〈·, ·〉 and norm‖ · ‖. For P ∈ Prob (H )
the symbolP̌ denotes the measure obtained by reflection at the origin:P̌(B) =
P(−B). With this we form the symmetrized convolutionP ∗ P̌ = L (X − Z)
whereX,Z are independent with distributionP.

We are interested in random marginals ofP, i.e. its image under random
linear functionals. For the infinite dimensional case we also include a.s. linear
functionals: Let (Ω,A, ν) be a probability space and assume that there is a
B (H )⊗A-measurable mapF : H ×Ω → IR such that for allx, y ∈ H

F (x + y, ω) = F (x, ω) + F (y, ω) ν − a.s. . (1)
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It is essential to allow the exceptional sets in (1) since a Borel measurable
map F (·, ω) on H which is strictly additive is known to be continuous. If
Ω = H = IRn we assume thatF (x, ω) = 〈x, ω〉.

We say that the pair (ν,F ) induces the canonical Gaussian cylindrical measure
([GV61]) on H if the family (F (x, · ))x∈H is a centered Gaussian process with
cov(F (x, · ),F (y, · )) = 〈x, y〉 for all x, y ∈ H . For ω ∈ Ω we are interested in
the ’marginal’ measure

Pω = LP(F (·, ω)) ∈ Prob(IR), (2)

and in the joint distribution of‖ · ‖2 andF (·, ω):

Pω
2 = LP(‖ · ‖2,F (·, ω)) ∈ Prob(IR+ × IR). (3)

Note that the mapω 7−→ Pω ∈ Prob(IR) is A − B (Prob(IR))-measurable
since for ϕ ∈ Cb(IR) the mapω 7−→ ∫

ϕ(u)Pω(du) =
∫
ϕ(F (x, ω))P(dx)

is A-measurable by Fubini. Similarlyω 7−→ Pω
2 is A − B (Prob(IR+ ×

IR))−measurable.
The n-dimensional identity operator is denoted byIn.
For everyP ∈ Prob(H ) with

∫ ‖x‖2P(dx) <∞ let C (P) be its covariance
operator, i.e. the (trace class) operator given by〈C (P)x, y〉 =

∫
H 〈x, y〉 P(dx).

Conversely, given the operatorC , the symbolρ(C ) denotes its spectral
radius andN (C ) denotes the centered Gaussian measure onH with corre-
sponding operatorC (N (C )) = C .

If p is a probability measure onIR+ then p × N denotes the probability
measure onIR+ × IR given by∫

IR+×IR
f (u, v) (p ×N )(dudv) =

∫
IR+

[
∫

IR
f (u, v)N (u)(dv)] p(du).

2 The symmetric, unconditioned second order case

The following is a dimension free version of Sudakov’s theorem and of the
corresponding result of Diaconis and Freedman. It shows that the fluctuation of
the one-dimensional marginals of a second order measureP essentially depends
only on the spectral radiusρ C (P) of its covariance operator. In this paper
we give only applications to asymptotics of finite dimensional situations. But the
proof in the infinite dimensional version requires almost no extra work. Of course,
the result can also be applied if (Ω, ν) is an abstract Wiener space ([Gro65]) with
Cameron-Martin subspaceH and the map which sendsx to theν-equivalence
class ofF (x, ·) is the canonical embedding ofH into L 2(ν). In the next section
we deduce Theorem 1 from a more general result.

Theorem 1. Let H be a real Hilbert space and assume that the pair(ν,F )
induces the canonical Gaussian cylindrical measure onH . Let P∈ Prob (H )
and suppose
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‖ x ‖2 P(dx) ≤ C <∞. (4)

Let P ∈ Prob (IR) be the mixture

P =
∫

N (‖ x ‖2) P(dx). (5)

Then for everyε > 0 and every metricκ which induces convergence in law on
Prob (IR) we have

ν{ ω ∈ Ω : κ(Pω, P) > ε } ≤ f
(
ρ(C (P))

)
(6)

where the function f satisfies f(t) −→
t → 0

0 and f does not depend onH , ν, P

but only onε, C andκ.

Remark 1.The proof (cf. the end of the next section) will give a particular metric

κ∗ for which the functionf satisfiesf (t) = O
(

(Ct)
1
3/ε2

)
.

In order to derive from theorem 1 the results of [Sud78] and of [Dia84] letP′ be
a measure onIRn for largen. The operatorC (P′) corresponds to the nonnegative
definite matrixC ′ with entries

(C ′)ij =
∫

xi xj P′(dx). (7)

Let C ′ have the eigenvaluesσ2
1, . . . , σ

2
n. Sudakov assumes thatIn −C ′ is non-

negative definite which is equivalent to

σ2
i ≤ 1 for all i . (8)

Diaconis and Freedman takeP′ to be the uniform distribution on a finite set such
that the three conditions

n∑
i =1

(C ′)ii = O(n), (9)

n∑
i ,j =1

((C ′)ij )2 = o(n2) (10)

and

P′{x ∈ IRn : | ‖ x ‖√
n
− 1 | > ε} = o(1) (11)

hold. Both papers consider the marginals (P′)ω whereω has the uniform distri-
bution Qn on the unit sphereSn−1, noting thatQn can be replaced byN ( 1

n In)
sinceN ( 1

n In) is rotationally invariant and most points with respect toN ( 1
n In)

are close to the unit sphere.
Now we squeeze this measure: LetP(B) = P′(

√
nB). Then theN ( 1

n In)-
typical behaviour of the marginals ofP′ and theν-typical behaviour of the
marginals ofP coincide forν = N (In).
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Moreover (9) implies (4) with the constantC of theO(n)-condition. The left
hand side in (10) equals the trace ofC ′2. If (10) holds then trC (P)2 converges
to zero which is only possible ifρ(C (P)) = o(1). Thus Theorem 1 implies

Corollary 1. If for P ′ ∈ Prob (IRn) conditions (9) and (10) hold as the dimension
becomes large then for the uniform distribution Qn on Sn−1 one has

Qn{ ω ∈ Sn−1 : κ

(
(P′)ω,

∫
N (

‖ x ‖2

n
) P′(dx)

)
> ε } = o(1). (12)

Clearly Sudakov’s assumption (8) implies (9) and (10). Sudakov’s conclusion
was as in the corollary, except that he proved it only for a special metric.

As for the result of Diaconis and Freedman, in the presence of their condition
(11), of course the mixed normal in (12) can be replaced byN (1). Their paper
moreover gives sufficient conditions for the empirical measures of large samples
chosen from product laws to satisfy (9),(10) and (11). However, in mixed models
with nontrivial correlations between the coordinates, one cannot expect (11) to
hold. Our proof of theorems 1 and 2 uses an idea similar to the approach of
[Dia84].

Here are some instructive elementary examples.

Example a.Let P andP′ be the uniform distribution onSn−1 resp.
√

nSn−1. Then
C (P) = 1

n In andC (P′) = In. All marginalsPω, ω ∈ √nSn−1 andP′ω, ω ∈ Sn−1

are equal and for largen close toN (1). This is a well known geometric fact.

Example b.Let P be the Dirac measureεe in a unit vectore. The marginalPω is
the Dirac measure in〈e, ω〉. ThenEν(Pω) = N (1) but the individual marginals
are far away from this average. Clearly the spectral radius ofC (P) does not
depend on the dimension of the surrounding space.

Example c.Let P′ = 1
n

∑n
i =1 ε

√
nei

for the standard base{ e1, · · · , en } of IRn. Then
C (P′) = In and hence (9) and (10) are satisfied. For everyω = (ω1, · · · , ωn) ∈ IRn

one hasP′ω = 1
n

∑
ε√nωi

. This gives an interesting necessary condition for those
sequences of measuresQn ∈ Prob (IRn) for which (9) and (10) imply (12): In
fact 1

n

∑
ε√nωi

≈ N (1) asymptotically forQn- mostω with respect toQn for
every such sequence (Qn).

Note also that the measureP is centered whereas this is not assumed forP. One
can check directly that the barycenter ofP is within a distanceO

(
ρ(C (P))

)
to

the origin.

Remark 2.It is not difficult but notationally more involved to extend theorem
1 to k-dimensional marginals (k fixed). The typicalk-dimensional marginal is
given by the mixed normal

P
(k)

=
∫

H
. . .

∫
H

N ((〈xi , xj 〉)1≤i ,j≤k) P(dx1) . . .P(dxk). (13)

In this case one works with the canonical cylindrical measure on the product
H k or in finite dimensions with the uniform distribution on the Grassmannian
manifold of k-dimensional subspaces ofIRn.
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3 General cylindrical measures and approximate conditioning

We want to extend theorem 1 in three ways.
Firstly, instead of proving that the marginalsPω are close to the mixtureP

we want to show that conditioned on‖ x ‖2≈ σ2, the measurePω is close to
N (σ2) for ν-most ω. However the following example shows that we cannot
work with the usual conditional lawP( · | ‖ x ‖2):

Example d.Let H = IRn and let h be a measurable bijection of Sn−1 onto
the interval [1, 1 + 1

n ]. Let P be the image of the uniform distributionQn on
Sn−1 under the mapx 7→ h(x)x. Then P differs only little from the uniform
distribution on Sn−1 so ρ(C (P)) = o(1) asn increases. But the vectorx with
law P can be reconstructedP-almost surely from the value‖ x ‖2 and hence the
conditional distribution of〈x, ω〉 given ‖ x ‖2= σ2 is the point mass in〈x, ω〉
which is not close toN (σ2).

As a remedy of this kind of problem, one may speak in general of’ap-
proximate conditional convergence ofL (Zn|Tn ≈ ϑ) to Qϑ’ if the joint law
L (Tn,Zn) converges to the joint lawL (T,Z) of two random variables with
L (Z |T = ϑ) = Qϑ. Following this idea one has to study the convergence of
the joint laws of‖ · ‖2 and 〈·, ω〉 (resp.F (·, ω)) underP, i.e. the measuresPω

2
introduced in (3).

Remark 3.If the pair (ν,F ) induces the canonical Gaussian cylindrical measure
of H then for everyP ∈ Prob(H )

EνPω
2 = LP(‖ · ‖2)×N (14)

and (for the definition ofP see (5))

EνPω = P. (15)

Proof. For everyϕ ∈ Cb(IR+ × IR) and everyP ∈ Prob (H ) we have

Eν

(∫
ϕ(u, v) Pω

2 (du dv)

)
=
∫

H
Eν{ϕ(‖ x ‖2,F (x, ω))} P(dx)

=
∫

H

∫
IR
ϕ(‖ x ‖2, v) N (‖ x ‖2)(dv) P(dx)

=
∫

IR+×IR
ϕ(u, v) LP(‖ · ‖2)×N )(dudv)

proving (14). Then (15) follows from this or directly by a similar calculation.ut

The point of the second generalization is to relax the assumption on the joint law
of the F (x, ·). One can choose this joint law according to the properties ofP.
One needs (14) and (15) only asymptotically and not for all measures onH but
only for two particular measures: for the measureP whose marginals are under
consideration, and for the associated measureP ∗ P̌. Technically this measure



318 H. von Weizs̈acker

P ∗ P̌ appears because its corresponding expectations in (14) and (15) are related
to the ’variance’ of thePω. In order to show that (15) alone cannot suffice for
(6) in the case of arbitrary Gaussianν consider the following example:

Example e.Let P′ = 1
n

∑n
i =1 ε

√
nei

be the measure from example c above and
considerP = 1

n

∑n
i =1 εei . Let ν be the image ofN (1) under the diagonal map

t 7→ (t , · · · , t). Then for theν-typical pointω = (t , · · · , t) the marginalPω is the
Dirac measure in the pointt which is far fromP = N (1). ButEν{Pω} = N (1)
i.e. (15) holds forP. On the other handP∗P̌{∑n

i =1 xi = 0} = 1 and hence (P∗P̌)ω

is the Dirac measure in the point 0 forν-a.a.ω, hence (15) fails forP ∗ P̌ and
this measureν. By the way in this exampleEν{(P ∗ P)ω} = N (2).

The third extension is that we do no longer assume the existence of second
moments. We rather work with the following consequences of the second order
assumptions: Condition (4) implies for everyδ > 0 by Chebyshev’s inequality

P{ ‖ x ‖≥ 1√
Cδ

} ≤ δ (16)

and

P ⊗ P { |〈x, y〉| ≥ δ } ≤ C · ρ(C (P))
δ2

(17)

whereC is the constant in (4). For the proof of (17) choose an ON-basis (ei )
of eigenvectors ofC (P) and note that independentP-distributed vectorsX,Y
satisfy

E {(〈X,Y〉)2} = E{
∞∑
i =1

X2
i Y2

i } ≤ E{
∞∑
i =1

X2
i }(sup

i
σ2

i ) ≤ C · ρ(C (P))

whereXi = 〈X, ei 〉ei andYi = 〈Y , ei 〉ei . The announced result now reads

Theorem 2. Let d, d′ be two metrics for convergence in law on Prob(IR+ × IR).
Let g, h : (0,∞) −→ (0,∞) be two monotone functions such thatg(t) →∞ and
h(t) → 0 as t → 0. Then for allε, η > 0 there is someδ > 0 such that the
following holds:

Let H be a real Hilbert space and let(Ω,A, ν) be a probability space with
a jointly measurable map F: H × Ω → IR which isν-a.s. linear in the first
component (cf. (1)). Suppose that P∈ Prob(H ) satisfies the four conditions

P{ x ∈ H : ‖ x ‖ > g(δ)} ≤ δ (18)

P ⊗ P{(x, y) ∈ H ×H : |〈x, y〉| > h(δ) } ≤ δ (19)

d′
(
EνPω

2 ,LP(‖ ‖2)×N
) ≤ δ (20)

d′
(
Eν(P ∗ P̌)ω2 , LP∗P̌(‖ ‖2)×N

) ≤ δ. (21)
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Then

ν{ω : d
(
Pω

2 , LP(‖ ‖2)×N
)
> ε} < η . (22)

Corollary 2. Let the metricsκ, κ′ inducing convergence in law in Prob(IR) and
the functionsg, h be given. For allε, η > 0 there is someδ > 0 such that

ν{ω : κ
(
Pω,P

)
> ε} < η (23)

holds, whenever (18), (19) and the following conditions are valid:

κ′(EνPω,P) < δ and κ′(Eν(P ∗ P̌)ω,P ∗ P̌) < δ. (24)

Let us now turn to the proofs. In the proof of Theorem 2 we first show by a
tightness argument that the special choice of the metrics does not matter. We then
give in Lemma 1 an example of a special metric for which (18) is not needed
and for which there is an explicit estimate for the choice ofδ.

Proof of Theorem 2.Let d, d′ be arbitrary metrics for convergence in law on
Prob(IR+ × IR) and suppose that there are special metricsd∗, d′∗ for which the
assertion holds. Assume that the theorem does not hold ford, d′. Then there
are someε, η > 0, two functionsg and h and a sequence (Hn,Pn, Ωn, νn,Bn)
such that for eachn (18), (19), (20) and (21) hold withδn = 1

n but (22) fails.
Because of (18) the sequence (LPn (‖ ‖2

n)) is tight. This implies that the sequences
(LPn (‖ ‖2

n)×N ) and (because of (20)) (Eνn (Pn)ω2 ) are also tight. According to
Lemma 2 below the sequence of laws (Lνn (Pn)ω2 ) in Prob (Prob(IR+ × IR)) is
tight. Thus there is a compact subsetK of Prob(IR+× IR) such that for alln one
hasLPn (‖ ‖2)×N ∈ K and

νn{ω : (Pn)ω2 /∈ K} < η

2
.

On this setK all metrics d and d′ which induce the convergence in law are
equivalent which contradicts the fact that the theorem holds ford∗, d′∗.

Thus it suffices to prove the theorem for some choice ofd∗, d′∗. This is done
in the following Lemma. ut

Lemma 1. Define a metric d∗ on Prob(IR+ × IR) by

d∗(p, q) =‖ F p −F q ‖2,λ (25)

whereF denotes the Laplace-Fourier transformF p(s, t) =
∫

IR+×IR exp[−su +
i t v] p(du dv) and whereλ is a probability measure with a positive Lebesgue
density on IR+ × IR such that∫

IR+×IR
4s + 2t2 λ(dsdt) ≤ 1. (26)
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Then for0 < δ < 1 the conditions (19), (20) and (21) for d∗ in the place of d′

imply the estimate

Eν{[d∗(Pω
2 ,LP(‖ · ‖2)×N )]2} ≤ h(δ) + 7δ. (27)

In particular the assertion of the theorem holds in the case d= d′ = d∗. In this
case for everyδ with

h(δ) + 7δ ≤ ε2η (28)

the conditions (19) , (20) and (21) imply (22).

Proof. Suppose that (19), (20) and (21) are satisfied ford∗ instead ofd′. Fix
s, t ∈ IR+ × IR. The idea of the proof is to estimate the variance of the complex
valued random variableF Pω

2 (s, t) with respect to the probability measureν⊗λ
on Ω × IR+ × IR. We use several times the fact that for everyτ > 0 andb ∈ IR
the mapIR+ 3 a 7−→ exp[−τa + ib] has the Lipschitz constantτ . We get for all
s ∈ IR+, t ∈ IR andν-a.a.ω ∈ Ω by (1), Fubini’s theorem and (19)

|F Pω
2 (s, t)|2 =

(∫
exp[−s ‖ x ‖2 + i t F (x, ω)] P(dx)

)
×
(∫

exp[−s ‖ y ‖2 + i t F (y, w)] P(dy)

)
=
∫ ∫

exp[−s(‖ x ‖2 + ‖ y ‖2) + i t F (x − y, ω)] P(dx)P(dy)

≤
∫ ∫

exp[−s(‖ x − y ‖2) + i t F (x − y, ω)] P(dx)P(dy)

+ 2h(δ)s + P ⊗ P{|〈x, y〉| > h(δ)} ≤ F (P ∗ P̌)ω2 (s, t) + 2s h(δ) + δ

By definition of d∗ and (20), (21) and (26) we conclude∫
Eν(|F Pω

2 |2) dλ

≤
∫

EνF ((P ∗ P̌)ω2 ) dλ +
∫

2s h(δ) dλ + δ

≤
∫

F (LP∗P̌(‖ . ‖2)×N ) dλ + h(δ)/2 + 2δ

=
∫ ∫ ∫

exp(−s u + i t v)N (u)(dv)LP∗P̌(‖ . ‖2)(du) dλ + h(δ)/2 + 2δ

=
∫ ∫ ∫

exp(−s− t2

2
) ‖ x − y ‖2 P(dx)P(dy) dλ + h(δ)/2 + 2δ

≤
∫ ∫ ∫

exp(−s− t2

2
)(‖ x ‖2 + ‖ y ‖2) dP⊗ P dλ

+
∫

2(s +
t2

2
) h(δ) dλ + h(δ)/2 + 2δ

≤
∫
|F (LP(‖ ‖2)×N )|2 dλ + h(δ) + 2δ
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≤
∫
|EνF (Pω

2 )|2 dλ + h(δ) + 4δ,

since by the Cauchy-Schwarz inequality we have for allp andq the estimate∫
|F p|2dλ−

∫
|F q|2dλ = 〈F p + F q, F p −F q〉λ ≤ 2d∗(p, q).

Hence using Fubini and (20) once more we get (27):

Eν{ d∗(Pω
2 ,LP(‖ ‖2)×N )2 } ≤ Eν{ (d∗(Pω

2 ,Eν(Pω
2 )))2 } + 2δ + δ2

=
∫

varvFPω
2 dλ + 2δ + δ2

≤
∫

Eν |F Pω
2 − Eν(F Pω

2 )|2 dλ + 3δ ≤ h(δ) + 7δ.

The last statement follows from Chebyshev’s inequality.ut

Lemma 2. Let X be a topological space and let Prob(X) be equipped with the
topology of convergence in law. LetQ be a subset of Prob(Prob (X)) such
that the set{r (Q) : Q ∈ Q } is uniformly tight over X where r(Q)(B) =∫
Prob (X)

ν (B)Q(dν) . ThenQ is uniformly tight over Prob(X).

Proof. Let (Kl ) be a sequence of compact subsets ofX such that

r (Q)(K c
l ) <

1
l

for all Q ∈ Q and l ∈ IN.

Let Mk = {ν ∈ Prob (X) : ν(K c
22m) ≤ 2−m for all m ≥ k}. Then Mk is

uniformly tight and hence relatively compact inProb (X), cf .[Top71]. Moreover
one hasQ{ν : ν(K c

22m) > 2−m} < 2−m for all Q ∈ Q and all m because
otherwise

r (Q)(K c
22m) =

∫
ν(K c

22m)Q(dν) ≥ 2−m · 2−m = 2−2m

in contradiction to the choice ofKl . Thus

Q(M c
k ) ≤

∞∑
m=k

2−m = 2−(k+1)

for all k ∈ IN and all Q ∈ Q which proves thatQ is uniformly tight. ut

Thus the proof of Theorem 2 is complete. We now give the proofs of Corol-
lary 2 and Theorem 1, including Remark 1.

Proof of Corollary 2.The corollary can be deduced from Theorem 2 by choosing
the metricsd, d′ in such a way that the marginal mapProb (IR+ × IR) −→
Prob (IR) is Lipschitz ford′, κ′ and ford, κ. However, it is also possible to give
a simplified direct argument along the lines of the proof for Theorem 2.ut
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Proof of Theorem 1.Let C <∞, ε > 0 andκ be given. Chooseg(t) = 1√
Ct
, h(t) =

t and κ′ = κ. For η > 0 let δ(η) > 0 be maximal such that for all smallerδ
the implication of Corollary 2 holds. Letf : (0,∞) −→ (0,∞) be a monotone
function such thatf (t) −→ 0 as t → 0 and f ( t3

C ) ≥ η whenevert ≥ δ(η). We
claim that Theorem 1 holds with thisf .

Indeed, letη = ν{κ(Pω,P) > ε}. Then (23) fails. Now (18) follows from
(16), and (24) is trivially satisfied by Remark 3 for everyδ > 0. Thus by
definition of δ(η) for all δ < δ(η) the condition (19) must fail, i.e.

P ⊗ P{|〈x, y〉| > δ} > δ.

Because of (17) this impliesρ(C (P)) ≥ δ3(η)
C , and hence by the choice off we

get ν{κ(Pω,P) > ε} = η ≤ f (ρ(C (P))).
In order to prove Remark 1 letκ∗(p, q) =‖ p̂− q̂ ‖2,λ1 where the ˆ indicates

the characteristic function andλ1 is the marginal ofλ in lemma 1. Then in (27)
one can replaced∗ by κ∗. Thusδ(η) ≥ 8ε2η and hence the functionf given by

f (t) = (Ct)
1
3

8ε2 has the desired properties.ut

4 A conditional central limit theorem

In probabilistic language theorem 2 implies results of the following type. As it
turns out, for a triangular array of dependent random variables, even if it does
not satisfy the CLT, one still gets a kind of CLT for weighted averages of the
array if the weights are chosen in advance independently at random. The idea of
the proof is to verify (20) and (21) in theorem 2 with the help of classical central
limit arguments. We only consider the most simple situation ofiid weights.

Theorem 3. Let the triangular array(Xnk)n∈IN,1≤k≤n of random variables on
some probability space(X ,B , IP) satisfy

n∑
k=1

IE(X2
nk) = O(n) (29)

n∑
k,j =1

(IE(XnkXnj ))
2 = o(n2) (30)

IP{max
k
|Xnk| ≥ nε} −→

n →∞ 0 for every ε > 0. (31)

Write S2
n for 1

n

∑n
k=1 X2

nk. Let Y1,Y2, . . . be iid. variables with mean 0 and variance
1, independent of all Xnk. Then the following statements hold.

a) If d is a metric describing convergence in law on Prob(IR+ × IR) then for
everyε > 0

IP

{
d

(
L
(

(S2
n ,

1√
n

n∑
k=1

YkXnk) | Y

)
, L (S2

n )×N

)
> ε

}
−→

n →∞ 0. (32)
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b) If moreover

lim
ζ→0

lim sup
n→∞

IP{ S2
n > ζ } = 0 (33)

(i.e. the limit pointsρ of the (tight) sequence(L (S2
n )) do not charge the origin)

then for every metricκ describing convergence in law on Prob(IR) and every
ε > 0

IP

{
κ

(
L (

∑n
k=1 YkXnk√

nSn
| Y), N (1)

)
> ε

}
−→

n →∞ 0. (34)

c) The assertions a) and b) hold even without the assumption (31) if and only if
the Yk are N (1)-distributed.

Proof.a) Letε, η > 0 be given. LetC be the constant in (29). Chooseδ according
to theorem 2 for the functionsg(t) = 1√

Ct
andh(t) = t . Let P′n be the joint law of

the Xnk, 1 ≤ k ≤ n on IRn. Because of (29)and (30) the conditions (9) and (10)

are satisfied. IfPn is the law of theXnk√
n
, 1 ≤ k ≤ n thenρ(C (Pn)) −→

n →∞ 0 as

was shown in the last paragraph preceding corollary 1. The estimates (16) and
(17) then show that (18) and (19) hold for everyδ > 0 for sufficiently largen.

Now let νn be the joint law of (Y1, · · · ,Yn). If we can verify (20) and (21)
then theorem 2 implies that the left hand side in (32) is< η for sufficiently large
n and we are done.

Let µ be the one dimensional law of theYk and assume (31). Let ˆµ be the

characteristic function ofµ. Thenµ̂(t) = exp(−t2/2) +r (t)t2 wherer (t) −→
t → 0

0.

Now for every (s, t) ∈ IR+ × IR we have by independence

(F (EνPω
2 )−F Lp(‖ ‖2)×N )(s, t)

= IE

(
exp[−sS2

n ](exp

[
it√
n

n∑
k=1

Xnk Yk

]
− exp

[
− t2S2

n

2

]
)

)

= IE

(
exp[−sS2

n ]

(
n∏

k=1

µ̂(
tXnk√

n
)− exp

[
− t2S2

n

2

]))

Using the expansion of ˆµ and the condition (31) it is easy to see that

n∏
k=1

µ̂(
tXnk√

n
)− exp

[−t2S2
n

2

]
−→

n →∞ 0

in IP-measure. By dominated convergence we get (20) for sufficiently largen and
the metricd∗ of Lemma 1. From (31) one also concludes that

IP(max|Xnk − Znk| ≥ nε) −→ 0
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where (Znk) is an independent triangular array with the same distribution as (Xnk).
Thus the measurePn ∗ P̌n allows the same argument and hence (21) holds as
well for d∗.

As for b) the condition (33) allows to assume thatS2
n > ζ holds a.s. for some

ζ > 0: Simply replace for eachn the underlying probability measure IP by the
conditional measure given the event{S2

n > ζ}. By this change the (conditional)
distribution of each of the random variables〈Y,X〉S is changed in total variation
at most by IP{S2

n ≤ ζ} which is asymptotically arbitrarily small for sufficiently
small ζ.

Now let g ∈ Cc(IR) be a continuous function of compact support. Letf be
bounded and continuous onIR+ × IR such thatf (s, t) = g( t√

s
) whenevers ≥ ζ.

Part a) implies for sufficiently largen that with probability close to 1 one has

IE

(
g(
〈Y ,X〉√

nSn
)|Y
)

= IE

(
f (S2

n ,
〈Y ,X〉√

n
)|Y
)
≈ IE

∫
f (S2

n , t) N (S2
n )(dt)

= IE
∫

IR
f (S2

n ,Snt) N (1)(dt) =
∫

g(t) N (1)(dt)

which proves (34) modulo a tightness argument as in the proof of theorem 2.
c) If the Yk have aN (1)-distribution then (20) and (21) follow from (14)

without reference to (31). The examplec implies together with the Glivenko-
Cantelli theorem that without the additional condition (31) the conclusions are
only valid for N (1)-distributedYk , proving part c) of the theorem. ut

Let us stop here by asking two natural questions:
1. Suppose in Theorem 3,Xnk = Xk for some suitable stochastic process

(Xk)k∈IN. Can one get a.s. convergence of the conditional laws instead of con-
vergence in probability?

2. Is there a common generalization of Dvoretzky’s theorem on sections of
convex bodies and the k-dimensional version of theorem 1 (cf. Remark 2) ?
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