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Summary. V.N. Sudakov [Sud78] proved that the one-dimensional marginals
of a high-dimensional second order measure are close to each other in most
directions. Extending this and a related result in the context of projection pursuit
of P. Diaconis and D. Freedman [Dia84], we give for a probability meaBumed
arandom (a.s.) linear functionBlon a Hilbert space simple sufficient conditions
under which most of the one-dimensional image®afnderF are close to their
canonical mixture which turns out to be almost a mixed normal distribution.
Using the concept of approximate conditioning we deduce a conditional central
limit theorem (theorem 3) for random averages of triangular arrays of random
variables which satisfy only fairly weak asymptotic orthogonality conditions.

Mathematics Subject ClassificatioB0B11, 60F05, 28C20, 60G12

1 Notations and basic assumptions

If X is a topological space therob (X) denotes the set of tight probability
measures on the Boretalgebra 72(X) of X. The setProb (X) will always be
equipped with the topology of convergence in law, i.e. the coarsest topology for
which P — P(U) is lower semicontinuous for all open ddtC X. Let.7 be

a real Hilbert space with inner produgt -) and norm|| - ||. For P € Prob (%)

the symbolP denotes the measure obtained by reflection at the oriRfB) =
P(—B). With this we form the symmetrized convolutidh* P = Z(X — Z)
whereX, Z are independent with distributidd.

We are interested in random marginals Bf i.e. its image under random
linear functionals. For the infinite dimensional case we also include a.s. linear
functionals: Let (2,.4,v) be a probability space and assume that there is a
S(F) @ .4-measurable map : .77 x {2 — IR such that for alk,y € . 7%

Fix+y, w)=F(X,w)+F(y,w) v — a.s.. Q)
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It is essential to allow the exceptional sets in (1) since a Borel measurable
map F(-,w) on .7 which is strictly additive is known to be continuous. If
=% =IR" we assume thaf (x,w) = (X,w).

We say that the pairf F) induces the canonical Gaussian cylindrical measure
([GV61]) on.7 if the family (F(X, - ))xe.z iS @ centered Gaussian process with
cov(F(X,-),F(y,-)) =(x,y) for all x,y € .7%. Forw € {2 we are interested in
the 'marginal’ measure

P“ = %p(F(-,w)) € Prob(IR), 2)
and in the joint distribution off - [|? andF (-, w):
Py = %p(|| - I3 F(-,w)) € Prob(IR+ x IR). ()

Note that the mapw —— P“ € Prob(IR) is .4 — .72 (Prob(IR))-measurable
since forg € Cp(IR) the mapw —— [@(u)P¥(du) = [ (F(x,w))P(dx)
is .4-measurable by Fubini. Similarly — Py is .4 — 2(Prob(IR; x
IR))—measurable.

The n-dimensional identity operator is denoted By

For everyP € Prob(.7%) with [ ||x|?P(dx) < o let Z (P) be its covariance
operator, i.e. the (trace class) operator given 6y(P)x,y) = jf%(x,y> P (dx).

Conversely, given the operatdf’, the symbolp(%’) denotes its spectral
radius and./"(¢") denotes the centered Gaussian measurezrwith corre-
sponding operatot (.} (€)= €.

If p is a probability measure olR, thenp x ./~ denotes the probability
measure onR; x IR given by

/ f(u,v) (p x ") (dudv) = / [ / f (u, v). 4" (u)(dv)] p(du).
R: xR R: /R

2 The symmetric, unconditioned second order case

The following is a dimension free version of Sudakov’s theorem and of the
corresponding result of Diaconis and Freedman. It shows that the fluctuation of
the one-dimensional marginals of a second order medwssentially depends
only on the spectral radius Z(P) of its covariance operator. In this paper
we give only applications to asymptotics of finite dimensional situations. But the
proof in the infinite dimensional version requires almost no extra work. Of course,
the result can also be applied i2(v) is an abstract Wiener space ([Gro65]) with
Cameron-Martin subspace? and the map which sendsto the v-equivalence
class ofF (x, ) is the canonical embedding 6% into L?(v). In the next section

we deduce Theorem 1 from a more general result.

Theorem 1. Let .74 be a real Hilbert space and assume that the p@irF)
induces the canonical Gaussian cylindrical measureZh Let P € Prob (%)
and suppose
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/ | x |I> P(dx) < C < . (4)

LetP € Prob (IR) be the mixture

P= / A7() x |12 P(dx). (5)

Then for every: > 0 and every metrie: which induces convergence in law on
Prob (IR) we have

r{weNR: k(PY P)>e} <f (P(Z(P))) (6)

where the function f satisfiegt) . 0 and f does not depend o, v, P
but only one, C andx.

Remark 1The proof (cf. the end of the next section) will give a particular metric
x* for which the functionf satisfiesf (t) = O ((Ct)é /52) :

In order to derive from theorem 1 the results of [Sud78] and of [Dia84pidie
a measure otR" for largen. The operatof”(P’) corresponds to the nonnegative
definite matrixZ”’ with entries

(% = [ xx P, ™

Let Z" have the eigenvalues, ..., 02. Sudakov assumes thit— #” is non-
negative definite which is equivalent to
oZ < 1foralli. (8)

Diaconis and Freedman take to be the uniform distribution on a finite set such
that the three conditions

> (£ =0(n), ©)
i=1
> ((Z7)y)* = o(n?) (10)
ij=1
and
P'{x € R": | ”;n” ~1]> e} =0(1) (11)

hold. Both papers consider the marginds)f wherew has the uniform distri-
bution Q, on the unit spher&" 1, noting thatQ, can be replaced byf/"(rfln)
since. /" (}1n) is rotationally invariant and most points with respect 10°(;1,)
are close to the unit sphere.

Now we squeeze this measure: lR(B) = P’(/nB). Then the./l/'(rfln)-
typical behaviour of the marginals &’ and thev-typical behaviour of the
marginals ofP coincide forv = .47(I).
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Moreover (9) implies (4) with the consta@t of the O(n)-condition. The left
hand side in (10) equals the trace ©6f2. If (10) holds then tZ"'(P)? converges
to zero which is only possible (%2 (P)) = o(1). Thus Theorem 1 implies

Corollary 1. Iffor P’ € Prob (IR") conditions (9) and (10) hold as the dimension
becomes large then for the uniform distribution @ S"~* one has

Q{wes?t: &k <(P’)“’, /(./1//'(” );”2) P’(dx)) > e } =o(1). (12)

Clearly Sudakov's assumption (8) implies (9) and (10). Sudakov’s conclusion
was as in the corollary, except that he proved it only for a special metric.

As for the result of Diaconis and Freedman, in the presence of their condition
(11), of course the mixed normal in (12) can be replacedby1). Their paper
moreover gives sufficient conditions for the empirical measures of large samples
chosen from product laws to satisfy (9),(10) and (11). However, in mixed models
with nontrivial correlations between the coordinates, one cannot expect (11) to
hold. Our proof of theorems 1 and 2 uses an idea similar to the approach of
[Dia84].

Here are some instructive elementary examples.

Example aLet P andP’ be the uniform distribution 08"~ resp.,/nS"~1. Then
7 (P) = Xy and 2’ (P’) = I. All marginalsP*,w € \/nS"~* andP"*,w € S"~*
are equal and for large close to./"(1). This is a well known geometric fact.

Example bLet P be the Dirac measurtg in a unit vectore. The marginaP® is
the Dirac measure ife,w). ThenE, (P“) =.47(1) but the individual marginals
are far away from this average. Clearly the spectral radiug @) does not
depend on the dimension of the surrounding space.

Example cLetP’ = 1 37U € /o for the standard basfeey, - - -, &, } of IR". Then

¢ (P’) =1, and hence (9) and (10) are satisfied. For every(wy, - - - ,wn) € IR"

one haP’v = r11 >~ € nw - This gives an interesting necessary condition for those
sequences of measur€s € Prob (IR") for which (9) and (10) imply (12): In
fact ; > €nw = -J7(1) asymptotically forQ,- mostw with respect toQ, for
every such sequencé)).

Note also that the measulreis centered whereas this is not assumed®oOne
can check directly that the barycenterPfis within a distanceD (p(Z’(P))) to
the origin.

Remark 2.1t is not difficult but notationally more involved to extend theorem
1 to k-dimensional marginalsk(fixed). The typicalk-dimensional marginal is
given by the mixed normal

pY = /7/ . /7/ Xt <) PE) . Px). (19)

In this case one works with the canonical cylindrical measure on the product
77X or in finite dimensions with the uniform distribution on the Grassmannian
manifold of k-dimensional subspaces R".
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3 General cylindrical measures and approximate conditioning

We want to extend theorem 1 in three ways.

Firstly, instead of proving that the margind®$’ are close to the mixtur®
we want to show that conditioned dhx ||?~ o2, the measuré* is close to
" (c?) for v-mostw. However the following example shows that we cannot
work with the usual conditional law( - | || x ||?):

Example d.Let .77 = IR" and leth be a measurable bijection of"S' onto
the interval [11 + rll]. Let P be the image of the uniform distributio@, on
S"~! under the mapx — h(x)x. ThenP differs only little from the uniform
distribution on 87! so p(Z(P)) = o(1) asn increases. But the vector with
law P can be reconstructed-almost surely from the valugx ||> and hence the
conditional distribution of(x,w) given || x ||>= o2 is the point mass ifx,w)
which is not close to} " (c?).

As a remedy of this kind of problem, one may speak in generdbpf
proximate conditional convergence &(Z,|T, =~ 9) to Qy’ if the joint law
S (Th, Zy) converges to the joint law/Z (T, Z) of two random variables with
Z(Z|T = 9) = Qy. Following this idea one has to study the convergence of
the joint laws of|| - || and (-,w) (resp.F(-,w)) underP, i.e. the measureBy
introduced in (3).

Remark 3If the pair ¢/, F) induces the canonical Gaussian cylindrical measure
of .77 then for everyP € Prob(.7#)

E.Py = Zo(| - |5 x A~ (14)
and (for the definition oP see (5))
E.PY =P. (15)
Proof. For everyy € Cy(IR+ x IR) and everyP € Prob (%) we have
E, (/w(uvv) P>’(du dv)) = /7/ E, {@(ll x |12, F (x,w))} P(dx)
= [ [ tix 20 07(x [P P
7 JR
:/ p(u,v) Ze(| - |[%) x .4”)(dudv)
R: xR
proving (14). Then (15) follows from this or directly by a similar calculationz
The point of the second generalization is to relax the assumption on the joint law
of the F(x,-). One can choose this joint law according to the propertieP .of
One needs (14) and (15) only asymptotically and not for all measure#&adout

only for two particular measures: for the measBrevhose marginals are under
consideration, and for the associated mea$ureP. Technically this measure
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PP appears because its corresponding expectations in (14) and (15) are related
to the ’'variance’ of theP“. In order to show that (15) alone cannot suffice for
(6) in the case of arbitrary Gaussianconsider the following example:

Example eLet P’ = 3" ¢ o be the measure from example ¢ above and
considerP = %Zi":l € - Let v be the image of /(1) under the diagonal map

t — (t,---,t). Then for thev-typical pointw = (t, - - -, t) the marginalP* is the
Dirac measure in the poittwhich is far fromP =./7(1). Butg,{P«} =.47(1)

i.e. (15) holds folP. On the other han@+P {31, x, = 0} = 1 and henceR+P)~

is the Dirac measure in the point 0 fora.a.w, hence (15) fails folP = P and
this measure.. By the way in this exampl&,{(P * P)~} =.17(2).

The third extension is that we do no longer assume the existence of second
moments. We rather work with the following consequences of the second order
assumptions: Condition (4) implies for evefy> 0 by Chebyshev’s inequality

P{IIxI= p<é (16)

1
VCé
and
C- (7 (P))

52
where C is the constant in (4). For the proof of (17) choose an ON-bas)s (
of eigenvectors of£"(P) and note that independeRt-distributed vectors<, Y
satisfy

PaP{|xyl=6}< (17)

E{((X,Y))*} = E{i X2Yi?} < E{i X?}(supaf) < C - p(7Z (P))

i=1 i=1
whereX; = (X,e)e andY; = (Y,e)e . The announced result now reads

Theorem 2. Let d,d’ be two metrics for convergence in law on P(b. x IR).
Letg, h : (0,00) — (0, o0) be two monotone functions such tlgt) — oo and
h(t) — 0ast — 0. Then for alle,» > O there is som& > 0 such that the
following holds:

Let.7Z be a real Hilbert space and I€t2,. 2, ) be a probability space with
a jointly measurable map E .77 x 2 — IR which isv-a.s. linear in the first
component (cf. (1)). Suppose thatePProb(.7%) satisfies the four conditions

P{xe.Z:|x|>g06)}<é (18)
P®P{(x,y)e. 7 x.7 : |(x,y)| >h()} <6 (19)
d' (E.Ps, Lo ) x.47) <6 (20)

d' (E,(P % P)s, Zos(l[P) x.47) <6. (21)
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Then

v{w:d Py, Zp(|[?) x A7) > e} <. (22)

Corollary 2. Let the metrics:, «’ inducing convergence in law in ProfiR) and
the functiongy, h be given. For alk, n > 0 there is somé > 0 such that

{w ik (PY,P)>c} <n (23)
holds, whenever (18), (19) and the following conditions are valid:
k' (E,P¥,P) < § and /(E, (P = P)“,P % P) < 6. (24)

Let us now turn to the proofs. In the proof of Theorem 2 we first show by a
tightness argument that the special choice of the metrics does not matter. We then
give in Lemma 1 an example of a special metric for which (18) is not needed
and for which there is an explicit estimate for the choicé .of

Proof of Theorem 2Let d,d’ be arbitrary metrics for convergence in law on
Prob(IR. x IR) and suppose that there are special meticd’* for which the
assertion holds. Assume that the theorem does not holdi fdf. Then there
are somes,n > 0, two functionsg andh and a sequencer,, Pn, {n, vn, Bn)
such that for eacim (18), (19), (20) and (21) hold witla, = rﬁ but (22) fails.
Because of (18) the sequencg, (|| [|2)) is tight. This implies that the sequences
(“%p, (I 2) x .47) and (because of (20)E(, (Pn)y) are also tight. According to
Lemma 2 below the sequence of lawgy (P,)3) in Prob (Prob(IR: x IR)) is
tight. Thus there is a compact subg&ebf Prob(IR. x IR) such that for alh one
has %p. (|| ||?) x .7~ € K and

vnfw: (P ¢ K} < g

On this setK all metricsd and d’ which induce the convergence in law are
equivalent which contradicts the fact that the theorem holdsifod’*.

Thus it suffices to prove the theorem for some choicd*ofd’*. This is done
in the following Lemma. O

Lemma 1. Define a metric d on Prob(IR. x IR) by

d*(p,a) = -7 p—-7q |2 (25)

where.7 denotes the Laplace-Fourier transforga p(s,t) = fme exp[—su+
i t v] p(du dv) and where) is a probability measure with a positive Lebesgue
density on IR x IR such that

/ 4s + 2t? \(dsdf) < 1. (26)
R+ xR
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Then for0 < § < 1 the conditions (19), (20) and (21) for*dn the place of ¢
imply the estimate

EA{1d"(PS, Zo(|| - %) x .4} < h(s) +76. (27)

In particular the assertion of the theorem holds in the case d' = d*. In this
case for every with
h(6) + 76 < &%p (28)

the conditions (19) , (20) and (21) imply (22).

Proof. Suppose that (19), (20) and (21) are satisfieddbrinstead ofd’. Fix

s,t € IR x IR. The idea of the proof is to estimate the variance of the complex
valued random variable” P5’(s, t) with respect to the probability measured \

on 2 x IR+ x IR. We use several times the fact that for every 0 andb € IR

the maplR: > a —— exp[—7ra +ib] has the Lipschitz constant We get for all
s€lRs, t € IR andr-a.a.w € 2 by (1), Fubini’'s theorem and (19)

| ZPS (s, 1) = (/ expl—s || x ||+t F(x,w)] P(dx))
x ( [explslly B+t Fiy.u P(dy))
= / / expls(| x |2+ y D+ i t F(x —y.w)] P(dx)P(dy)

< / / expl-s(| X —y [ +i t F(x —y,w)] P(dx)P(dy)
+ 2h(0)s+P ® P{|<x,y>| > h(6)} <.7 (P x |5)§’(S,t) +2s h(6) +6
By definition of d* and (20), (21) and (26) we conclude

/ E,(:7P5 ) dA

< /Eyﬁ((P + B)3) d)\+/25 h(s) d + 6

< [Tl 1 <) drsh(e)/2+ 2

= [ [ [expts uri t o1 @) Zop(l- [0 dr+h(e)/2+ 2
=[]/ expis — ) || x—y |2 P@)P(dy) dA +h(e) 2+ 2

< [ [ [ewes-Sxix ey aper a

t2
+ /2(s+ ) h(s) dA+h(e)/2+ 25

< [17 B x ) dr+h) 25
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< [ETE)E e+ 4
since by the Cauchy-Schwarz inequality we have foipadindq the estimate
/\.;7p\2d)\ — / |7 ql2dA = (Zp+.7q, Zp—.7q) < 2d*(p,q).
Hence using Fubini and (20) once more we get (27):

EA{ d*(Ps, Zo(|| IIP) x A47)? } <E{ (d* (P, E(P5)))* } + 26 +6°
= /varUFP; dX+26+6°

< /E,,|.7P; —E,(ZP%)|? d\+ 36 < h(6) + 76.

The last statement follows from Chebyshev’s inequality

Lemma 2. Let X be a topological space and let Pieh be equipped with the

topology of convergence in law. L&¥ be a subset of Prol§Prob (X)) such

that the set{r(Q) : Q € ¢} is uniformly tight over X where (Q)(B) =
/' v(B)Q(dv) . Then¢ is uniformly tight over Prob(X).

Prob (X)

Proof. Let (K|) be a sequence of compact subsetXdfuch that

r(Q)KF) < Il forall Qe ¢ and | € N.

Let My = {v € Prob (X) : v(K%,) < 27™forall m > k}. Then M is
uniformly tight and hence relatively compactkmob (X), cf.[Top71]. Moreover
one hasQ{v : v(Kgs,) > 27M} < 27™ for all Q € ¢ and allm because
otherwise

(QKE) = [KEIQE) 2™ 2 =2

in contradiction to the choice df,. Thus

QM¢) <y 2rm=27(e

m=k

for all k € N and allQ € ¢ which proves thaty is uniformly tight. O

Thus the proof of Theorem 2 is complete. We now give the proofs of Corol-
lary 2 and Theorem 1, including Remark 1.

Proof of Corollary 2.The corollary can be deduced from Theorem 2 by choosing
the metricsd,d’ in such a way that the marginal mdrob (IR: x IR) —
Prob (IR) is Lipschitz ford’, x’ and ford, x. However, it is also possible to give

a simplified direct argument along the lines of the proof for Theorem 2.
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Proof of Theorem lLetC < oo,e > 0 andx be given. Choosg(t) = th, h(t) =
t andx’ = k. Forn > 0 let §(n) > 0 be maximal such that for all smallér
the implication of Corollary 2 holds. Lét : (0,00) — (0, 00) be a monotone
function such thaf (t) — 0 ast — 0 andf(tg) > n whenevert > 6(n). We
claim that Theorem 1 holds with thfs

Indeed, lety = v{xk(P“,P) > ¢}. Then (23) fails. Now (18) follows from
(16), and (24) is trivially satisfied by Remark 3 for evefy> 0. Thus by
definition of §(n) for all 6 < 6(n) the condition (19) must fall, i.e.

P @ P{|{x,y)| > 6} > 4.

Because of (17) this implies(7 (P)) > *” and hence by the choice bfwe
getv{s(P¥,P) > e} =7 < f(o(Z (P))).

In order to prove Remark 1 let*(p,q) =|| p — § ||2,», where the " indicates
the characteristic function ankj is the marginal of\ in lemma 1. Then in (27)
one can replacd* by x*. Thusé(n) > 8<%y and hence the functioh given by

f(t) =€’ has the desired properties.O

4 A conditional central limit theorem

In probabilistic language theorem 2 implies results of the following type. As it
turns out, for a triangular array of dependent random variables, even if it does
not satisfy the CLT, one still gets a kind of CLT for weighted averages of the
array if the weights are chosen in advance independently at random. The idea of
the proof is to verify (20) and (21) in theorem 2 with the help of classical central
limit arguments. We only consider the most simple situatiofidbfweights.

Theorem 3. Let the triangular array(Xnk)nen,1<k<n Of random variables on
some probability spacé?”,. 72, P) satisfy

> EXG) = 0O (29)
k=1
D ERaXq)? = o) (30)
k,j=1
P{mkax|xnk| >ne} — 0 foreverye>0. (31)

Write § for } 371, X3 Let i, Y, ... be iid. variables with mean 0 and variance
1, independent of all 3. Then the following statements hold.

a) If d is a metric describing convergence in law on P{ist x IR) then for
everye > 0

P{d (4 ((Sﬁ, \/ln > YiXaw) | Y), () x z) > g} —_ 0. (32
k=1
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b) If moreover
!imolim supP{S?>¢1}=0 (33)

n—oo

(i.e. the limit pointsp of the (tight) sequence” (S?)) do not charge the origin)
then for every metria: describing convergence in law on Pr@R) and every
e>0

P{Fa (sf(z%n\;khx“ﬂ Y), ./V'(l)) > 5} —— (34)

c) The assertions a) and b) hold even without the assumption (31) if and only if
the Y are . /(1)-distributed.

Proof.a) Lete,n > 0 be given. LeC be the constant in (29). Choosaccording
to theorem 2 for the functiong(t) = fm andh(t) =t. Let P, be the joint law of
the Xk, 1 < k < n on IR". Because of (29)and (30) the conditions (9) and (10)

are satisfied. IP, is the law of theéﬂg,l < k < n thenp(%Z'(Py)) 2, Oas

was shown in the last paragraph preceding corollary 1. The estimates (16) and
(17) then show that (18) and (19) hold for evéry- O for sufficiently largen.
Now let v, be the joint law of Y1,-- -, Ys). If we can verify (20) and (21)
then theorem 2 implies that the left hand side in (32xig for sufficiently large
n and we are done.
Let 1 be the one dimensional law of thé and assume (31). Let be the

characteristic function of.. Then/i(t) = exp(~t?/2) +r (t)t* wherer (t) —, O.
Now for every §,t) € IR x IR we have by independence
(7 (EP3) =7 (| I7) x . H7)(s,1)
it o t252
=E (exp[ssf](exp [\/n > Xk Yic| —exp { ?}))
k=1

L Xk 1252
= E [ exp[-sS] < (,)—exp|— >>
( g“¢n { 2}

Using the expansion gi and the condition (31) it is easy to see that

L Xk 1252
gmwgwﬁ z}n:&o

in P-measure. By dominated convergence we get (20) for sufficiently raegel
the metricd* of Lemma 1. From (31) one also concludes that

P(max|Xpk — Znk| > ne) — 0
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where &) is an independent triangular array with the same distributioXag. (
Thus the measur®, * P, allows the same argument and hence (21) holds as
well for d*.

As for b) the condition (33) allows to assume tiggt> ¢ holds a.s. for some
¢ > 0: Simply replace for each the underlying probability measure P by the
conditional measure given the evel@? > (}. By this change the (conditional)
distribution of each of the random variablégéX> is changed in total variation
at most by RS? < ¢} which is asymptotically arbitrarily small for sufficiently
small .

Now let g € C.(IR) be a continuous function of compact support. Edte
bounded and continuous dR: x IR such thaff (s,t) = g( ts) whenevers > (.
Part a) implies for sufficiently large that with probability close to 1 one has

e (s ) = (1. 2 ) < [rsto . s

_ 2 e _ Ve
-E /R (S50 .1 WE) = [ 901 W)

which proves (34) modulo a tightness argument as in the proof of theorem 2.

c) If the Yy have a 47 (1)-distribution then (20) and (21) follow from (14)
without reference to (31). The exampteimplies together with the Glivenko-
Cantelli theorem that without the additional condition (31) the conclusions are
only valid for .7/7'(1)-distributedYy, proving part c) of the theorem. O

Let us stop here by asking two natural questions:

1. Suppose in Theorem X, = X¢ for some suitable stochastic process
(X)ken- Can one get a.s. convergence of the conditional laws instead of con-
vergence in probability?

2. Is there a common generalization of Dvoretzky’s theorem on sections of
convex bodies and the k-dimensional version of theorem 1 (cf. Remark 2) ?
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