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Summary. We study the following growth model on a regular d-ary tree. Points
at distance n adjacent to the existing subtree are added with probabilities pro-
portional to �−n, where � ¡ 1 is a positive real parameter. The heights of
these clusters are shown to increase linearly with their total size; this comple-
ments known results that show the height increases only logarithmically when
�= 1. Results are obtained using stochastic monotonicity and regeneration
results which may be of independent interest. Our motivation comes from two
other ways in which the model may be viewed: as a problem in �rst-passage
percolation, and as a version of di�usion-limited aggregation (DLA), adjusted
so that “�ngering” occurs.

Mathematics Subject Classi�cation (1991): 60K40, 60K30, 60K99, 60F05,
60F15, 60K35

1 Introduction

Consider the following dynamical method for growing a subtree of the regular
d-ary tree B. Initially the subtree consists of only the root. Vertices are then
added one by one from among those neighbouring the current subtree. The
choice of which vertices to add is random, with vertices in generation n chosen
with probabilities proportional to �−n, where � ¿ 0 is a �xed parameter. Let
An denote the subtree at step n and let h(An) = max{|x| : x ∈ An} denote the
maximum height of a vertex in An. We are interested in the form of the in�nite
cluster A∞ :=

⋃∞
n=0 An, as well as the behaviour of h(An) and related quantities

as n→∞. In this paper we treat the case � ¡ 1; the case �= 1 has already
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been studied. Our main result, contained in Theorem 6.4 and Corollary 6.5, is
as follows.

Theorem 1.1 (Strong Law and CLT) Let B be the regular d-ary tree and 0¡
� ¡ 1. There exist constants �0(�; d) ∈ (0; 1) and �2 = �2(�; d)¿ 0 such that

(a) limn→∞ n−1h(An) = �0(�; d) a.s.
(b) n−1=2(h(An)− n�0(�; d))

w→N (0; �2) as n→∞ :

This model has arisen in a number of di�erent contexts, and, as we will
see below, can be interpreted both as di�usion limited aggregation and as �rst
passage percolation on the tree B.
The case � = 1 for binary trees arises in binary search algorithms in

computer science and has been studied by numerous authors including Pit-
tel (1984) and Devroye (1986). The case � = 2 (again for d = 2) arises in
an entropy estimation procedure of Ziv (1978) and has been studied by Pittel
(1985) and (along with �¿1) by Aldous and Shields (1988). A discussion
of the cases � = 1 and � = 2 within the general context of random search
trees in computer science may be found in Chaps. 2 and 6, respectively, of
Mahmoud (1992).
If �= 1 it is easy to see that A∞ :=

⋃∞
n=0 An is almost surely the entire

d-ary tree. Simply look at the vacant node x0 closest to the root, note that @An
has (d− 1)n+ 1 points of which x0 is the most likely to get �lled, and use
the fact that

∏∞
k=n(1− ((d− 1)k + 1)−1) = 0. (This argument also works for

any tree B of bounded degree.) In the case �= 1 it is therefore natural to
look at the growth rates of both h(An) and l(An) = min{|x| : x ∈ Ac

n}:
Theorem 1.2 Let B be a binary tree (i.e. d = 2).

(a) (Pittel 1984; Devroye 1986) If � = 1; then; writing �1 = 4:311; : : : ; �0 =
0:373 : : : for the roots of the equation 1

2�e
(1−�)=� = 1;

lim
n→∞ h(An)(log2 n)

−1 = �1 and lim
n→∞ l(An)(log2 n)

−1 = �0 a.s.

(b) (Aldous and Shields 1988) If � ¿ 1; then

lim
n→∞ h(An)(log2 n)

−1 = lim
n→∞ l(An)(log2 n)

−1 = 1 a:s:

The case � = 2 is also in Pittel (1985, Corollary 1). We remark that Aldous
and Shields (1988) also study the form of the cluster between l(An) and h(An),
and that while they do not state explicitly the result for l(An) and � ¿ 1, this
is readily derived using their methods. In addition, they mention the growth
dynamics for � ¡ 1 as an interesting open problem.
Comparing Theorems 1.1 and 1.2 we see that there is a dramatic phase

transition at � = 1. For � ¿ 1 the process {An} exhibits the same balanced
growth as a deterministic procedure in which vertices are added in lexicographic
order. Thus the subtree is essentially as short as possible, (h(An) ≈ log2 n)
and l(An)=h(An)→ 1. For � = 1 the results of Pittel and Devroye show that
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uctuations on a logarithmic scale arise, while for � ¡ 1 Theorem 1.1(a) im-
plies that the subtree is essentially as long as possible (h(An) ≈ n). (In this
case it is also easy to see that A∞-B – see Theorem 2.1 and Remark 2.2
below).
It would be of interest to study this “phase transition” at � = 1 more closely.

An understanding of the asymptotics of �0(�; d) as � ↑ 1 would be a step in this
direction. The bounds in (6.9) show that �0(�; d)= c1(d) exp(−�(d)=(1− �)),
(where �(d)¿ 0), and we suspect that

(1:1) 0¡ lim
�↑1
(1− �) log �0(�; d)−1 ¡∞ :

Our original motivation for studying this model was that it is a version of
di�usion-limited aggregation (DLA) on a tree. DLA on Zd was introduced by
Witten and Sander (1981) to model aggregates of a condensing metal vapour,
and since then it has been attracted much interest as a model for various
physical phenomena (see for example Vicsek (1989)). DLA is a Markov chain
taking values in the space of connected �nite subsets of Zd. Given the current
con�guration, particles di�use in from in�nity according to a random walk
conditioned to hit the “boundary” of the current cluster and attach themselves
to the �rst point they hit which is adjacent to the current cluster. Although the
process has quite a simple description, there are very few rigorous mathematical
results. If An is the cluster at step n, A0 = {0} and h(An) = max{|x| : x ∈ An},
then one hard open problem is to prove the existence, and �nd the value of

�d = lim
n→∞

log h(An)
log n

:

Kesten (1987, 1990) has shown the lim sup of the above ratio is at most
2=(d+ 1). A conjectured value of �d which agrees quite well with numerical
simulations is (d+ 1)(d2 + 1)−1 (Lawler 1991, Sect. 2.6). There is no rigorous
lower bound for �d aside from the trivial �d = d−1, and hence no rigorous
proof of the existence of the “�ngering” (�d ¿ d−1) which simulations suggest.
For some further surveys of DLA from a mathematical perspective see Lawler
(1991) and Barlow (1993).
Analyzing DLA on Zd is a hard problem, but the same process on a tree

is tractable for two reasons:

(i) There is a simple formula for harmonic measure on the boundary of a
cluster (see Lemma 1.3 below).
(ii) The absence of loops in the graph means that disjoint parts of the cluster
evolve nearly independently.

While the usual heuristic is that a d-ary tree (or Bethe Lattice) will exhibit
the limiting behaviour for Zd as d→∞, we do not know to what extent our
model is relevant to DLA on Zd. However, it may be interesting to note that,
even though the harmonic measure of any cluster is easy to calculate, the proof
of Theorem 1.1(a) is still quite long and hard.
To describe more precisely the connection between the model given above

and DLA on a tree, we need some more notation. We begin by presenting
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the notation used to describe an abstract rooted tree with no leaves. In order
to be able to move pieces of trees around, we �nd it convenient to view
an arbitrary rooted tree (with countably many vertices) as a subset of the
universal rooted tree T =

⋃∞
n=0N

n where N0 = {0} and 0 denotes the root of
each tree. (Here N is taken not to include zero.) First, the notation for T itself
is as follows. If x ∈ T; |x| = n if and only if x ∈ Nn and x|j = (x1; : : : ; xj)
for j 5 |x| (we set x|0 = 0). If x; y ∈ T, let x ⊕ y = (x1; : : : ; x|x|; y1; : : : ; y|y|)
(0⊕ x = x) and x ∧ y = (x1; : : : ; xj) where j is the largest integer such that
x|j = y|j (x ∧ y = 0 if j = 0). We write x 5 y if x is an ancestor of y,
i.e. y = x ⊕ z for some z, and we say x is the parent of y if in addition,
|y| = |x|+ 1, and write x = par(y). Next, we view an arbitrary ordered (the
children of each node come with an order) tree as a subtree of T. Given
m : T→ N, inductively de�ne the associated locally �nite rooted tree (with no
leaves) B ⊂ T by

B(0) = {0}; B(n+ 1) = {x ⊕ i : x ∈ B(n); i ∈ {1; 2; : : : ; m(x)}};(1:2)

B =
∞⋃
n=0
B(n) :

Note that m(x) is the number of children of x: the condition m(x)= 1 is
equivalent to the assertion that B has no leaves. If m(x) = d for all x we
obtain the regular d-ary tree. The values of m(x) for x ∈|B are of course irrel-
evant. Intervals B(j; k), B(j;∞), etc. are de�ned, for example, by B(j; k) =⋃

j5n5 k B(n).
A subset A of B is a rooted subtree if par(x) ∈ A for all x ∈ A. S

(respectively, S0) denotes the set of all (respectively, all �nite) such subtrees.
For A ∈ S, the (external) boundary of A is

@A = {x ∈ Ac: par(x) ∈ A} ;

and the height of A is h(A) = sup{|x| : x ∈ A}.
Assume, until we indicate otherwise, that B is the regular d-ary tree. Fix

� ¿ 0. Let Q� denote the law of the random walk (Y0; Y1; : : :) on B started from
initial distribution �, with transition probabilities given by p(x; y) = �=(�+ d)
when y is the parent of x, p(x; y) = 1=(�+ d) when y is a child of x and x is
not the root, and p(0; y) = 1=d when y is a child of 0. Thus (Yn; n ∈ Z+) is
the random walk on B obtained by assigning conductances �−n to each edge
from generation n to generation n+ 1. Write �(A) = min{n ∈ Z+ : Yn ∈ A} for
the hitting time of A ⊂ B.

The following lemma describes harmonic measure on the boundary of an
arbitrary subtree of B.

Lemma 1.3 Let A ∈ S0 be a non-empty rooted subtree of B and �x an N ¿
h(A); let �N = d−N ∑

x∈B(N ) �x be the uniform measure on B(N ). If �0 =
� ∧ d then

(1:3) Q�N (Y�(@A) = x|�(@A)¡∞) = �−|x|0

( ∑
y∈@A

�−|y|0

)−1
; x ∈ @A :
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Proof. Note that |Yn| is a simple reecting random walk on Z+ which moves
to the right with probability p = d�−1(1 + d�−1)−1 and to the left with prob-
ability 1− p. Therefore if y ∈ B(N ) and 05 j 5 N , then

Q�y (|Yn| = j for some n= 0) = (((1− p)=p) ∧ 1)N−j = (�0=d)N−j :

If �(@A)¡∞; x ∈ @A, and |Y0| = N ¿ h(A), then Y�(@A) = x if and only if Y0
is one of the dN−|x| descendants of x in B(N ). Therefore if x ∈ @A, then

Q�N (Y�(@A) = x; T (@A)¡∞) = ∑
y∈B(N )

d−N1(x 5 y)Q�y (�(@A)¡∞)

= dN−|x|d−N (�0=d)N−|x|

= (�0=d)N�
−|x|
0 ;

and the result follows.

As the hitting distribution in (1.3) is independent of N we arrive at the
following de�nition.

De�nition If A ∈ S0 and A-∅; then harmonic measure on @A with parameter
� ¿ 0 is given by

H�
@A(x) = �−|x|

( ∑
y∈@A

�−|y|
)−1

; x ∈ @A :

Strictly speaking, in view of Lemma 1.3, we should restrict to �5 d, but
allowing � ¿ d is harmless, and in any case in this work we are only interested
in � ∈ (0; 1).
De�nition DLA on B with parameter � ¿ 0 is the S0-valued Markov chain
(An; n ∈ N) such that A1 = {0} and An+1 = An ∪ {Dn+1}, where

(1:4) P(Dn+1 = x|An) = H�
@An
(x); x ∈ @An :

It is clear from (1.4) that (for 0¡ �5 d) the growth model described at
the beginning of the Introduction is exactly DLA on B.
For � ¡ 1, H�

@An
favours large |x| values in @An, for � ¿ 1 it favours small

|x| values and for � = 1 we have the uniform law on @An (the “Eden model”).
From the perspective of classical DLA the case � ¡ 1 is of greater interest as it
is here that we obtain “�ngering”, i.e. h(An)� (log2 n)

� for some � ¿ 1. This
model has been studied in the physics literature – see Vannimenus et al. (1984).
As well as some calculations in the case � = 1, this paper describes computer
simulations which suggested that h(An) ∼ c(�)n when d = 2 and � ¡ 1.

A second motivation is that our model is equivalent to �rst-passage per-
colation. In �rst-passage percolation, each edge is assigned a positive random
variable, called a passage time, and thought of as the time it takes for water
(or information, etc.) to pass from one endpoint to the other. To each vertex
x one associates a time T (x), which is the minimum over paths from the root
to x of the sum of the transit times. This represents the time before x gets wet
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when the root is a source of water from time 0 onward. The model has been
widely studied on Zd, and some quite nontrivial results have been obtained
on trees as well (see Bramson (1978) and Pemantle and Peres (1994) for two
examples). On a tree, it is natural to rescale edges so that ones more distant
from the root are shorter. For example, the tributaries of a river system behave
this way; see also the limit trees of Aldous (1991), whose edge lengths decay
exponentially in the distance from the root. While the edge random variables
in �rst passage percolation may, of course, have any distribution on [0;∞), the
simplest case is that of exponentials. In this case the lack of memory property
of the exponential distribution implies that the cluster C(t) of vertices which
are wet at time t will be a continuous time Markov process on the space of
rooted subtrees S.
In Sect. 2, we prove that DLA on B arises from �rst-passage percolation

when the passage times are independent exponential random variables with
mean �n (for an edge from B(n) to B(n+ 1)). Throughout the paper, we
will use these various viewpoints interchangeably; thus we usually refer to the
subtree as a cluster or as the DLA, but keep the notion of passage times in
the foreground as well, and in fact, most of our analysis takes place in the
continuous-time setting of �rst-passage percolation.
The organization of the paper is as follows. In Sect. 2 we show that DLA

can be embedded in �rst-passage percolation, and give a number of general
results on the model. Theorem 2.1 proves that either A∞ = B a.s. or else the
cluster A∞ has unique in�nite line of descent (the “backbone”). In the latter
case it is possible to decompose A∞ into the backbone plus a sequence of
�nite clusters attached to successive points of the backbone. These clusters
are i.i.d. given the “percolation times” along the backbone (Theorem 2.5).
If � ¡ 1=d, a simple law of large numbers argument, based on estimates of
cluster sizes in Lemma 2.4, shows that lim inf n→∞ n−1h(An)= c(�; d)¿ 0
a.s. (Theorem 2.6). This result exhibits our basic approach while avoiding the
technical problems involved when considering the case when � is close to 1.
Finally, Theorem 2.8 gives a general strong Markov property.
The hard work is in Sects. 3 and 4. Sect. 4 contains the key estimates on

the sizes of the �nite clusters, giving bounds in L1 (Theorem 4.4) and in L2

(Theorem 4.6). To handle the dependence which arises in these proofs it is
necessary along the way to prove stochastic monotonicity results for the condi-
tional distribution of the clusters given the backbone times, and this is done in
Sect. 3 (Lemmas 3.1 and 3.3). Sect. 5 shows that the percolation times along
the backbone form a Markov chain, and that this chain converges exponentially
fast to its stationary measure (Theorem 5.2 and Corollary 5.7). This paves the
way for a Strong Law of Large Numbers (Theorem 6.1) and Central Limit
Theorem (Theorem 6.2) holding for a general class of functionals of the �nite
clusters. In Sect. 7 we �nd a sequence of regeneration times for cluster, which
allow it to be decomposed into i.i.d. pieces. Combining these results with the
theorems in Sect. 6 we complete the proof of Theorem 1.1. Finally, Sect. 8
adds some remarks on the asymptotics of the growth dynamics as � ↑ 1, and
on a related particle system.
In most of this work we will only be concerned with the regular d-ary

tree, and the DLA model described above. However, we may note that most
of the results of Sects. 2 and 3 hold for a more general model. First, we may
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consider a general locally �nite rooted tree B, de�ned by (1.2). Secondly, we
can �x a function f : B→ (0;∞), and take the passage time between par(x)
and x to be exponential with mean f(x). We can then consider a process An
which has growth probabilities given by

P(An+1 = An ∪ {x}|An) = f(x)−1
( ∑

y∈@An

f(y)−1
)−1

:

While these extensions involve no new ideas, describing the tree and
the process in this more general setup does require some quite cumbersome
notation. Apart from Theorem 2.1, and some simple estimates on cluster size
in Lemma 2.4, we will therefore restrict our proofs to the case of a regular
tree and f(x) = �|x|. An earlier version of this paper, which treats the general
case in Sects. 2 and 3, is available by anonymous ftp from ftp.math.ubc.ca
(directory pub/barlow.)
A general notational convention is that ci·j denotes a globally de�ned con-

stant introduced in Section i, whereas c, c′, c(�); : : : may represent di�erent
values in di�erent lines. Dependence of ci·j on parameters such as (�; d) will
at times be suppressed if there is no ambiguity. The integral of a function ’
with respect to a measure � (or P) is written �(’) (or P(’)).

2 The continuous time model for general trees

Let B be a general locally �nite rooted tree with no leaves and let f : B→
(0;∞). Consider the S0-valued Markov chain {An} such that A1 = {0} and
An+1 = An ∪ {Dn+1} where

(2:1) P(Dn+1 = x|An) =

f(x)−1(
∑

y∈@An
f(y)−1)−1 for x ∈ @An ;

0 for x ∈| @An .

Note that f(x) = �|x| on the regular d-ary tree gives the cluster dynamics of
the previous section. Set A∞ =

⋃∞
n=0 An. We now embed (An; n= 0) in a

continuous time process.
On some complete (
;F;P) let {Ux : x ∈ B} be i.i.d. exponential random

variables with mean one, and de�ne T (x) =
∑

y5x f(y)Uy. (We set T (par(0))
= 0). In terms of �rst passage percolation, if f(y)Uy is the time for liquid to
percolate from par(y) to y and f(0)U0 is the time it takes for 0 to get wet,
then T (x) is the time it takes to percolate to x. Let C(t) = {x : T (x)5 t} be
the nodes which are wet at time t and de�ne a(t) : C(t)→ [0;∞) by a(t)(x) =
t − T (x). Let S = {(C; a) : C ∈ S; a : C → [0;∞)} and let S0 denote the
same set with S0 in place of S. If � is added to R as a discrete point, de�ne
�x : S→ R ∪ {�} for x in B by �x(C; a) = a(x)1(x ∈ C) + �1(x ∈|C). Give
S (respectively S0) the smallest �-�eld F(S) (respectively, F(S0)) gen-
erated by the maps {�x : x ∈ B} (respectively their restrictions to S0). The
process Y (t) = (C(t); a(t)) is an S-valued process. G0t = �(T (x) ∧ t; x ∈ B)
and Gt = G0t+ are �ltrations on (
;F) and T (x) is a (Gt)-stopping time
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for all x in B because {T (x)¡ t} = {T (x) ∧ t ¡ t} ∈ G0t . Clearly Y is (Gt)-
adapted because �x(Y (t)) takes on the value t − T (x) on {T (x)5 t} and the
value � elsewhere.
Let cardn = inf{t : #C(t) = n}: thus {cardn} is a sequence of a.s. �nite

(Gt)-stopping times. Clearly C(cardn+1) = C(cardn) ∪ {Dn+1} where Dn+1 ∈
@C(cardn). Using the lack of memory property of the exponential, it is easy to
see, as in Sect. 1 of Aldous and Shields (1988), that the process An = C(cardn)
satis�es (2.1). We therefore may, and shall, take An = C(cardn) throughout
this work.

Notation. Let T (∞) = limn→∞ cardn 5∞ be the time to percolate to ∞. It
is clear that A∞ = C(T (∞)−) := {x : T (x)¡ T (∞)}. Set T (x; y) = T (y)−
T (x) if x 5 y and T (x; y) =∞ otherwise. Let

T (x;∞) = lim
n→∞min{T (x; y) : y = x; y ∈ B(n)} ;

T (x−;∞) = lim
n→∞min{T (par(x); y) : y = x; y ∈ B(n)} = f(x)Ux + T (x;∞) :

Thus T (x;∞) is the time to percolate from x to ∞, while T (x−;∞) is the
time to percolate from par(x) to ∞ through x. If x ∈ B, let [x;∞) denote
{y ∈ B : y = x} and similarly de�ne (x;∞); [0; x], etc. For G ⊂ B let FG =
�(Ux : x ∈ G) and de�ne Fn = �(Ux : |x|5 n).

The next result is due to Brennan and Durrett (1986, Sect. 3), but we
include a proof because the settings are a little di�erent.

Theorem 2.1 (a) P(T (∞)¡∞) = 0 or 1.
(b) If P(T (∞) =∞) = 1 then A∞ = B a.s.
(c) If P(T (∞)¡∞) = 1 then there is a.s. a unique in�nite line of descent
in A∞; i.e. there is a unique sequence {spinen; n= 1} such that

(2:2) spinen ∈ B(n) ∩ A∞; spinen = par(spinen+1); for all n= 1 :

Remark. 2.2. If B is a regular d-ary tree and f(x) = g(|x|) then by comparing
T (∞) with the time to percolate to ∞ along a �xed path we see that

∞∑
n=0

g(n)¡∞ implies P(T (∞)¡∞) = 1 :

Rather surprisingly, if g is monotone then the converse is also true:∑
g(n) =∞ implies P(T (∞)¡∞) = 0 – see Pemantle and Peres (1994).

Proof. (a) The event {T (∞) =∞} = ⋂ x∈B(n){T (x;∞) =∞} is clearly in
T =

⋂∞
n=1FB(n;∞). The latter is a 0–1 �-�eld by the Kolmogorov 0–1

theorem.
(b) Clearly T (∞) =∞ a.s. implies A∞ = {x : T (x)¡ T (∞)} = B a.s.
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(c) Fix j ∈ N. To show that for each j there is a unique choice of spinej it
is enough to show that

(2:3) There exists a unique X j ∈ B(j) such that A∞ ∩ [X j;∞) is in�nite ;
Assume (2.3) fails. Then there are distinct vertices x1; x2 in B(j) such that
with positive probability A∞ ∩ [xi;∞) is in�nite for both i = 1; 2. It follows
that, with positive probability,

T (par(x1)) + T (x1−;∞) = T (∞) = T (par(x2)) + T (x2−;∞) :
Therefore conditional on Fj−1; T (x1−;∞)− T (x2−;∞) has an atom at the
Fj−1-measurable point T (par(x2))− T (par(x1)) ∈ R. On the other hand
T (x1−;∞) and T (x2−;∞) are independent random variables with densities
(because T (xi−;∞) = Uxif(xi) + T (xi;∞) with T (xi;∞) independent of the
exponential random variable Uxi) and are jointly independent of Fj−1. There-
fore T (x1−;∞)− T (x2−;∞) has a conditional density given Fj−1. This con-
tradiction completes the proof.

Similar arguments later will require the following quantitative estimate on
densities of sums of the variables Ux. The elementary proof is omitted.

Notation. Let sp(�) =
∏p

i=1(1− �i)−1, � ∈ (0; 1), p ∈ Z+ ∪ {∞}, and write
s(�) = s∞(�).

Lemma 2.3 If {Ui; i ∈ Z+} are i.i.d. exponential r.v. with mean 1; and
� ∈ (0; 1); then for p ∈ Z+ ∪ {∞}; Sp =

∑p
i=0 �

iUi has a density up(t)5
sp(�)e−t .

Notation. If x ∈ B, then Bx = {y : x ⊕ y ∈ B} is the locally �nite rooted tree
of descendants of x (properly translated) and Bx(n) = {y ∈ Bx : |y| = n} is
the nth generation of the nodes in Bx. If x-0 and y ∈ Bx, let

T (x)(y) = f(x)−1T (par(x); x ⊕ y)

be the rescaled percolation times for the tree Bx. Let

T (n) = inf{T (x) : x ∈ B(n)} ;

T (x)(n) = inf{T (x)(y) : y ∈ Bx(n)}
be the percolation and rescaled percolation times, respectively, to the nth gen-
eration in B and Bx. Finally, let

T (x)(∞) = T (x−;∞)f(x)−1

be the rescaled time to percolate to in�nity in Bx. Note that if B is a regular
d-ary tree and f(x) = �|x|, then Bx = B for all x, and {T (x)(y) : y ∈ B} has
the same distribution as {T (y) : y ∈ B}.
We now derive upper bounds on the L1 and L2 norms of the cluster size

at a �xed time, conditioned on being �nite. These bounds are crude but their
proofs are fairly simple, and the bounds are good enough to enable us to prove
that lim inf n−1h(An)¿ 0 in the case when f(x) = �|x| and � supx m(x)¡ 1



10 M.T. Barlow et al.

(c.f. Theorem 2.6 and Remark 2.7). In Sects. 3 and 4 we will have to work
much harder to obtain better bounds (e.g. Theorem 4.4) which lead to the
linear growth of h(An) for a regular d-ary tree and all � ∈ (0; 1).

Lemma 2.4 Let f(x) = �|x| for some � ∈ (0; 1).
(a) P(#C(t)|T (∞)¿ t)5 c(�)

∑∞
n=0 #B(n)�

n for all t = 0.

(b) P(#C(t)2|T (∞)¿ t)5 c(�)
∑

z∈B �|z|(
∑∞

m=0 �
m#Bz(m))2 for all t = 0:

Proof. (a) If x ∈ B; t = 0 and S∞ is as in Lemma 2.3, then

P(T (x)5 t ¡ T (∞))5 P(P(t − T (x;∞)¡ T (x)5 t|T (x;∞)))(2:4)

5 s(�)P(e−(t−T (x;∞))T (x;∞)) (Lemma 2.3)

5 s(�)e−tP(exp(�|x|+1S∞)�|x|+1S∞)

5 (s(�)=(1− �))2e−t�|x|+1 (Lemma 2.3) :

Using the fact that P(T (∞)¿ t)= P(U0 ¿ t) = e−t , we conclude that

P(#C(t)|T (∞)¿ t) =
∑
x∈B

P(T (x)5 t ¡ T (∞))P(T (∞)¿ t)−1

5 (s(�)=(1− �))2
∞∑
n=0
#B(n)�n+1 :

(b) Let xi ∈ B, i = 1; 2 be both distinct from x1 ∧ x2. Let p = |x1 ∧ x2|, x′i =
xi|(p+ 1), and write xi = x′i ⊕ yi. Then

P(T (x1) ∨ T (x2)5 t ¡ T (∞))(2:5)

5 P(T (x1 ∧ x2) + �p+1T (x
′
i )(yi)

5 t ¡ T (x1 ∧ x2) + �p+1T (x
′
i )(∞); i = 1; 2)

= P
(

2∏
i=1
P(T (x

′
i )(yi)5 (t − T (x1 ∧ x2))�−p−1 ¡ T (x

′
i )(∞)|Fp)

)
5 c(�)P(1(T (x1 ∧ x2)¡ t)

× exp(−2�−p−1(t − T (x1 ∧ x2)))�|x1|+|x2|−2p) (by (2.4))

5 c(�)e−t�|x1|+|x2|−p :

In the last line we again used Lemma 2.3 with Sp = T (x1 ∧ x2). If either x1
or x2 equals x = x1 ∧ x2 the above inequality is clear from (2.4). Decomposing
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the sum over x1; x2 in B according to the value of z = x1 ∧ x2, we obtain

P(#C(t)21(T (∞)¿ t))

=
∑

x1 ; x2∈B
P(T (x1) ∨ T (x2)5 t ¡ T (∞))

5
∑
z∈B

∞∑
m=0

∞∑
n=0
#Bz(m)#Bz(n)c(�)e−t�m+n+|z| (by (2.5))

5 c(�)P(T (∞)¿ t)

( ∑
z∈B

�|z|
( ∞∑

m=0
#Bz(m)�m

)2)
:

These bounds are far from optimal. The very �rst inequality in the proof of
(a) ignores the critical fact that T (x)¡ T (∞) only holds for a small proportion
of vertices x in B(n). This leads to the more restrictive conditions on � in
Theorem 2.6 below.

In the remainder of the paper we will assume B is a regular d-ary tree
and f(x) = �|x| with � ∈ (0; 1). By Remark 2.2 we have T (∞)¡∞ a.s. The
unique in�nite line of descent in A∞, de�ned by (2.2), is called Spine =
{spinen; n ∈ N}, or the “backbone” of the cluster A∞. The cluster A∞ may
be partitioned into Spine and a collection of disjoint �nite clusters which
branch o� Spine.

Notation. For n ∈ Z+ and x ∈ B(n+ 1), let {sibj(x) : j¡d} denote the sib-
lings of x, i.e. the points in {(x|n)⊕ i : i-xn+1; i 5 d} in increasing order of
i. We write en; j for sibj(spinen+1) and for n ∈ Z+ and 15 j ¡ d, set

Clustn; j = {x ∈ B : en; j ⊕ x ∈ A∞} :

Thus {Clustn; j : j ¡ d} are the (possibly empty) clusters which branch o� the
backbone in generation n. De�ne an; j : Clustn; j → [0;∞) by

an; j(x) = (T (∞)− T (en; j ⊕ x))�−n−1 ;

and let Yn; j = (Clustn; j ; an; j), which is almost surely in S0 by Theorem 2.1.
Let Wn = T (spinen;∞)�−n−1 denote the normalized time to percolate along
the backbone from generation n to in�nity. Let W denote the sequence {Wn :
n = 0; 1; 2; : : :}. For each t = 0, de�ne a law �t on S0 by

�t(·) = P(Y (t) ∈ ·|T (∞)¿ t) :

Theorem 2.5 Conditional on (Spine;W); the collection {Yn; j : n ∈ Z+; j ¡ d}
is independent as n and j vary; and the joint conditional distribution of each
Yn; j is given by

P(Yn; j∈·|Spine;W)(!) = �Wn(!) :

The intuitive explanation of this is that the only information passed to the
subtree beneath en; j by conditioning on the backbone is that the time to in�nity
inside this subtree has to be greater than the time along the backbone.
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Proof. Choose N ∈N and x∈B(N ). Consider an event D =
⋂
05n¡N;15j¡d

Dn; j, where Dn; j is of the form

Dn; j = {Yn; j = (bn; j; a) for some a ∈ Fn; j} ;

where bn; j ∈ S0 and Fn; j is the set of nonnegative functions ’ on bn; j such that
’(y) ∈ Fn; j;y for each y, where {Fn; j;y} is a speci�ed collection of measurable
sets. This class of events generates �(Yn; j : n ∈ Z+; j ¡ d) and is closed under
�nite intersection, so it su�ces to show that

P(D|Spine;W) =∏ �Wn(Dn; j) :

If Vn = Uspinen , then clearly �(W) = �(Vn : n ∈ N). For n ¡ N , let Rn =
T (x|n; x) + T (x;∞) be the time to percolate from x|n to in�nity through x.
Note that spineN = x if and only if for each 05 n5 N − 1, the fastest route
from x|n to in�nity is through x, that is,

(2:6) {spineN = x} = ⋂
05n¡N

⋂
15j¡d

{Rn ¡ T (sibj(x|(n+ 1))−;∞)} :

Note also that on {spineN = x} we have
Clustn; j = {y′ : T (sibj(x|n+1))(y′)¡ Rn�−n−1}

and for y ∈ Clustn; j,
an; j(y) = (T (∞)− T (sibj(x|n+ 1)⊕ y))�−n−1

= (T (x|n) + Rn − T (sibj(x|n+ 1)⊕ y))�−n−1

= (Rn − T (x|n; sibj(x|n+ 1)⊕ y))�−n−1

= Rn�−n−1 − T (sibj(x|n+1))(y) :

If Bn are measurable subsets of the positive reals, then using (2.6) and the
above, we have

P(Vn ∈ Bn for 15 n5 N; spineN = x; Yn; j ∈ Dn; j

for 05 n ¡ N; 15 j ¡ d)

= P
(
1(Ux|n ∈ Bn for 15 n5 N )

×
N−1∏
n=0

d−1∏
j=1
{1(Rn ¡ T (sibj(x|n+ 1)−;∞))

× 1({y : T (sibj(x|n+1))(y)¡ Rn�−n−1} = bn; j)

× 1(Rn�−n−1 − T (sibj(x|n+1))(y) ∈ Fn; j;y for all y ∈ bn; j)}
)

:

Let G(x) =F[0; x] ∨F[x;∞). Observe that Rn is G(x)-measurable and that
T (sibj(x|n+1))(y) and T (sibj(x|n+ 1)−;∞) are F[sibj(x|n+1);∞)-measurable. The
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collection of �-�elds F[sibj(x|n+1);∞) for j ¡ d and 05 n ¡ N , together with
G(x), are all mutually independent. Condition the above integrand with respect
to G(x) to see that it equals

∫
1(Ux|n(!) ∈ Bn; 15 n5 N )

N−1∏
n=0

d−1∏
j=1

{P(Rn(!)¡ T (sibj(x|n+ 1)−;∞))

× P({y : T (sibj(x|n+1))(y)¡ Rn(!)�−n−1} = bn; j;

× Rn(!)�−n−1 − T (sibj(x|n+1))(y) ∈ Fn; j;y for all y ∈ bn; j∣∣∣Rn(!)�−n−1 ¡ T (sibj(x|n+1))(∞))}dP(!) :

By (2.6) the product of the �rst factors in the curly braces equals P(spineN =
x|G(x))(!). On {spineN = x} we have Rn�−n−1 = Wn for n ¡ N , and so the
above leads to

P(Vn ∈ Bn for 15 n5 N; spineN = x; D)

=
∫
1(spineN = x; Uspinen ∈ Bn for 15 n5 N )

×
N−1∏
n=0

d−1∏
j=1

P({y : T (sibj(x|n+1))(y)¡ Wn(!)} = bn; j;

×Wn(!)− T (sibj(x|n+1))(y) ∈ Fn; j;y for all y ∈ bn; j

× |T (sibj(x|n+1))(∞)¿ Wn(!))dP(!)

=
∫
1(Vn ∈ Bn for 15 n5 N; spineN = x)

N−1∏
n=0

d−1∏
j=1

�Wn(!)(Dn; j)dP(!) :

We have used the equivalence in law of {T (x)(y) : y ∈ B} and {T (y) : y ∈ B}
in the last line.

The above decomposition and the L1 and L2 bounds in Lemma 2.4 allow
us to use the law of large numbers to establish linear growth of h(An) for
su�ciently small �. The proof illustrates the basic approach we will take in
Sect. 6 to obtain the result for all � ¡ 1.

Theorem 2.6 Assume � ∈ (0; d−1). Then

lim inf
n→∞ n−1h(An)= c2:1(�; d)¿ 0 a.s.

Proof. If �(n) = inf{k : h(Ak) = n}, the result is equivalent to

(2:7) lim sup
n→∞

n−1�(n)5 c ¡∞ a.s.

Decompose C(T (n)) into the backbone vertices in C(T (n)) (there are at most
n+ 1) and the portions of the clusters {ek; i ⊕ Clustk; i ; k ¡ n; i ¡ d} which
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are contained in C(T (n)). This shows that

(2:8)
�(n)
n

=
#C(T (n))

n
5

n+ 1
n

+ n−1
n−1∑
k=0

(
d−1∑
i=1
#Clustk; i

)
:

Conditional on (W;Spine), {#Clustk; i : k = 0; i ¡ d} are independent ran-
dom variables (Theorem 2.5) such that

P(#Clust2k; i|Spine;W)(!) = �Wn(!)((#C)
2)

5 c(�)
∑
z∈B

�|z|
( ∞∑

m=0
�mdm

)2
(Lemma 2.4)

5 c(�)(1− �d)−3 :

Therefore �k; i(!) = P(#Clustk; i|Spine;W)(!) is also uniformly bounded by
c(�; d) say, and the strong law of large numbers (applied conditionally) implies
that

lim sup
n→∞

n−1
n−1∑
k=0

d−1∑
i=1
(#Clustk; i − �k; i) = 0 a.s.

Use this in (2.8) to see that lim supn→∞ �(n)n−1 5 1 + dc(�; d) a.s., thus
proving (2.7).

Remark. 2.7. In the more general setting of Theorem 2.1 (general B and f),
it is just as easy to decompose A∞ into Spine (the backbone) and clusters
{Clustn; j : j ¡ m(spinen); n ∈ Z+} which branch o� the backbone in gener-
ation n. With only notational changes in the proof, it is then possible to derive
an analogue of Theorem 2.5. The lack of scaling means the conditional law
of Yn; j will also depend on the tree Ben; j(!) and the appropriately shifted and
rescaled version of f. One can then show that Theorem 2.6 remains valid if
B is a rooted tree with no leaves such that m(x)5 d for all x and f(x) = �|x|
for some � ∈ (0; d−1). The proof is the same.

Notation. The wide sense past up to x is de�ned by Ex =F(x;∞)c and we let
Ex− =F[x;∞)c .

The following strong Markov property will be used in Sect. 6. It states that
if you stop at a stopping time when par(x) has been reached, but x has not
been reached, then the remaining times to hit vertices from the subtree rooted
at x, rescaled, are equal in law to the original system of hitting times. As might
be expected, the main di�culty in obtaining this strong Markov property is in
getting the statement right.

Theorem 2.8 If � is an a.s.-�nite (Gt)-stopping time and x ∈ B; then for each
measurable B ∈ [0;∞)B;
(2:9)
P(((T (x ⊕ y)− �)�−|x| : y ∈ B) ∈ B|G� ∨ Ex−) = P((T (y) : y ∈ B) ∈ B)

almost surely on {x ∈ @C(�)}.
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Proof. Note that {x ∈ @C(�)} = {T (par(x))5 � ¡ T (x)} is in G�. (Recall
that T (par(0)) = 0). Assume �rst that �= 0 is constant and consider (2.9)
with Go

t in place of Gt . Let � be the exponential law with mean 1 and let �F

denote product measure on [0;∞)F . De�ne Ũ 0 = (T (x)− �)�−|x| and Ũ y =
Ux⊕y for y ∈ B \ {0}. We claim that

(2:10)

P((Ũ y : y ∈ B) ∈ ·|Go
� ∨ Ex−) = �B(·) a.s. on the event {x ∈ @C(�)} :

Indeed, Go
� ∨ Ex− = �(T (y) ∧ � : y = x) ∨ Ex− ∨ �(1(T (x)¿ �)), and T (y) ∧

� = � for all y = x on {x ∈ @C(�)}; the latter event is measurable with respect
to Ex− ∨ �(1(T (x)¿ �)), and so (2.10) is equivalent to

P((Ũ y : y ∈ B) ∈ ·|Ex− ∨ �(1(T (x)¿ �))) = �B(·)(2:11)

a.s. on the event {x ∈ @C(�)} :

Let F1 and F2 be �nite subsets of B \ {0} and [x;∞)c respectively, let B0 be
a measurable set of nonnegative reals, and let Bj be Borel subsets of [0;∞)Fj

for j = 1; 2. If G1 = {(Ux⊕y : y ∈ F1) ∈ B1} and G2 = {(Uy : y ∈ F2) ∈ B2},
then

P(Ũ 0 ∈ B0; G1; G2; x ∈ @C(�))

= P(1((T (x)− �)�−|x| ∈ B0; G2; T (par(x))5 � ¡ T (x))P(G1|Ex))

= �F1(B1)P(1(G2; T (par(x))5 �)P(Ux − (� − T (par(x)))�−|x| ∈ B0;

Ux ¿ (� − T (par(x)))�−|x||Ex−)) :
Since T (par(x)) ∈ Ex− and Ux is independent of Ex−, the lack of memory
property of the exponential shows that the conditional expectation term in the
last line above is equal to

�(B0) exp[−�−|x|(� − T (par(x)))] = �(B0)P(Ux ¿ �−|x|(� − T (par(x)))|Ex−)
on the event {T (par(x))5 �}. Substitute this in the previous equation to
conclude that

P(Ũ 0 ∈ B0; (Ũy : y ∈ F1) ∈ B1; G2; x ∈ @C(�))

= �(B0)�F1(B1)P(G2; x ∈ @C(�)) :

It is easy to see this implies (2.11) and hence (2.10). Noting that

(T (x ⊕ y)− �)�−|x| =
∑

z∈B; z5y
Ũ z�−|z| ;

one derives (2.9) for � constant and Go
� in place of G�. The entire argument

generalizes easily to the case where � is a (Go
t )-stopping time taking countably

many values.
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For a general (Gt)-stopping time �, choose (Go
t )-stopping times �n ¿ �

so that �n is a multiple of 2−n with �n ↓ �. Note that x ∈ @C(�) implies that
x ∈ @C(�n) for su�ciently large n. Taking limits in the above result, we arrive
at (2.9) with

⋂
n (G

o
�n ∨ Ex−) in place of the smaller �-�eld G� ∨ Ex−. The

result follows.

Remark. 2.9. This result justi�es our earlier assertion that the process An =
C(cardn) is a Markov chain satisfying (2.1). (Recall that cardn is the time
C(t) reaches size n.)

3 Some stochastic monotonicity lemmas

The stochastic monotonicity results derived in this section will play a pivotal
role in the proof of the key L1 and L2 estimates in Sect. 4.

There is an obvious isomorphism between RB(0;n) and R{0}×(RB(0;n−1))B(1)
which we denote u 7→ �u and we extend this isomorphism to functions ’ :
RB(0; n) → R by de�ning �’( �u) = ’(u). We will use the same notation (u → �u)
to denote the isomorphism between RB(n) and

∏
y∈B(1) R

By(n−1) and hence
de�ne �’( �u) = ’(u) for ’ : RB(n) → R. The purpose of this notation is to
allow test functions ’ to be built recursively, yielding inductive proofs of dis-
tributional inequalities.
If (B;B;5) is a partially ordered measurable space and �; � are probability

laws on (B;B); � is stochastically smaller than � (write � ≺ �) if and only if∫
 d�5

∫
 d� for every bounded measurable non-decreasing  : B → R. If

the law of X is stochastically smaller than that of Y , write X ≺ Y . If B = AT

for A ⊂ R and T a countable set, we always partially order B by f 5 g if
and only if f(t)5 g(t) for all t ∈ T . Partially order S by (C; a)5 (C′; a′)
if and only if C ⊂ C′ and a5 a′ on C.

If � is a �nite subset of B, t ∈ R, and n ∈ Z+, de�ne a probability �(�; n; t)
on (−∞; 0)� by

�(�; n; t)(·) = P((t − T (x) : x ∈ �) ∈ ·|T (n)¿ t)

(for t 5 0 the conditioning is trivial).

Lemma 3.1 �(B(0; n); n; s) ≺ �(B(0; n); n; t) whenever −∞¡ s5 t ¡∞ and
n ∈ Z+.

Proof. If n = 0, �(B(0); 0; s) = �(B(0); 0; 0) for s= 0 by the lack of mem-
ory property of the exponential distribution and is trivially stochastically non-
decreasing for s5 0.
Assume for induction that the result holds for n− 1. Fix t ∈ R and for z ∈

B(1), let ’z be bounded measurable functions on RB(0; n−1). Let ’0 be
bounded and measurable on R and de�ne ’ on RB(0; n) by �’( �u) = ’0( �u0)∏

z∈B(1) ’z( �u(z)). Also let ’(�)(u) = ’(�u), and set g(u) = P(T (n− 1)¿ u)d.
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Use the independence of the vectors Vz = (T (z)(x) : x ∈ B(0; n− 1)) and inte-
grate out the exponential variable U0 to see that

P(T (n)¿ t)�(B(0; n); n; t)(’)

=
∞∫
0

e−s’0(t − s)P
( ∏

z∈B(1)
1(s+ �T (z)(n− 1)¿ t)

× ’z(t − s− �T (z)(x) : x ∈ B(0; n− 1))
)

ds

=
∞∫
0

e−sg((t − s)�−1)’(�)0 ((t − s)=�)
∏

z∈B(1)
P
(
’(�)z ((t − s)�−1

− T (z)(x) : x ∈ B(0; n− 1))|T (z)(n− 1)¿ t − s
�

)
ds

=
∞∫
0

e−sg((t − s)�−1)

×
[

d⊗
j=1

�(B(0; n− 1); n− 1; (t − s)�−1)

]
(’(�)((t − s)�−1; ·))ds :

The restriction on ’ is then easily removed, to yield the above equality for all
bounded measurable ’ on RB(0; n). If

 (v) =

[
d⊗

j=1
�(B(0; n− 1); n− 1; v)

]
(’(�)(v; ·)) ;

a change of variables in the above integral leads to

�(B(0; n); n; t)(’) = (etP(T (n)¿ t))−1�
t=�∫

−∞
e�vg(v) (v)dv :

Take ’ to be the constant function 1, hence  ≡ 1 also, to see that

etP(T (n)¿ t) = �
t=�∫

−∞
e�vg(v)dv ;

and therefore conclude

(3:1) �(B(0; n); n; t)(’) =
t=�∫

−∞
e�vg(v) (v)dv

(
t=�∫

−∞
e�vg(v)dv

)−1
:

If ’ is non-decreasing, then  is nondecreasing by the induction hypothesis.
Since (3.1) expresses �(B(0; n); n; t)(’) as a weighted average of values of  
with respect to a weighting measure that stochastically increases in t, it follows
that �(B(0; n); n; t)(’) is nondecreasing in t and the induction is complete.

Corollary 3.2 �s ≺ �t whenever 05 s5 t.



18 M.T. Barlow et al.

Proof. De�ne �: [0;∞)→ RB by �(t)(x) = t − T (x) and  : RB →S by

 () = (C; a); C = {x : (x)= 0}; a(x) = (x) for x ∈ C :

here  ∈ RB. Then  is non-decreasing and Y (t) =  (�(t)). It therefore suf-
�ces to show that t → P(�(t) ∈ ·|T (∞)¿ t) is stochastically non-decreasing,
and for this it su�ces to �x m ∈ N and show that if �m(t) = �(t)|B(0; m),
then t → P(�m(t) ∈ ·|T (∞)¿ t) is stochastically non-decreasing (see Kamae
et al. (1977, Proposition 2)). By taking limits, one reduces this in turn to
proving

(3:2)

t → P(�m(t) ∈ ·|T (n)¿ t) is stochastically non-decreasing for all n= m :

It su�ces to consider (3.2) with m = n since decreasing m only weakens the
conclusion. But (3.2) with m = n is precisely the conclusion of Lemma 3.1.

The inductive arguments from here on require a second set of percolation
times, de�ned analogously to the �rst but not including the percolation time at
the root of each subtree. We apologize for doubling the notation but promise
not to do it again.

Notation. Let

Tnot(n) = inf{T (0; x) : x ∈ B(n)} = T (n)− U0 ;

T (x)not(y) = T (x; x ⊕ y)�−|x| = T (x)(y)− Ux ;

T (x)not(n) = inf{T (x)not(y) : y ∈ B(n)} = T (x)(n)− Ux :

In short, the T (x)’s include a contribution from Ux while the T (x)not’s do not;
times with superscripts are rescaled. It is evident that {T (x)not(y) : y ∈ B} is
equal in law to {T (0)not(y) : y ∈ B}. For |z|= 1, let Firstn(z) denote the a.s.
unique vertex in B(n) such that T (z)(n) = T (z)(Firstn(z)), so that z ⊕ Firstn(z)
is the �rst descendant of z in generation |z|+ n to be reached. (Of course, this
is not necessarily the one through which in�nity is reached from z). Let Firstn
be the a.s. unique vertex in B(n) such that T (n) = T (Firstn). For z ∈ B(n)
let Pz(·) = P(·|Firstn = z) and {�(z; t) : t = 0} be a set of regular conditional
probabilities on (−∞; 0]B(n) for

Pz((Tnot(n)− T (0; x) : x ∈ B(n)) ∈ ·|Tnot(n) = t) :

With the available symmetry, we could have de�ned �(n; t) instead of
�(z; t), but in this case keeping greater generality also reduces confusion of
types.

Lemma 3.3 For any z ∈ B\{0}; there is a version of the set {�(z; t) : t = 0}
such that

�(z; s) ≺ �(z; t) for 05 s5 t :
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Question. Is there a useful description of the increasing limit, �(z;∞) of the
measures �(z; t)? How about the measure �(z; 0)? In either case, sending |z| to
in�nity and rescaling by �−|z| should then yield a locally �nite point process
on (−∞; 0].

Proof. We start by establishing a pair of auxiliary results, (3.3) and (3.4),
whose proofs could be omitted on a �rst reading. Let z = (z1; z2; : : : ; zn) =
z1 ⊕ z′ ∈ B(n), n= 1. The �rst result is that, conditional on Firstn = z and
on the percolation times from the vertex z1, the vectors {T (x)(y) : y ∈ B}
are i.i.d. as x ranges over the other �rst generation vertices, and distributed
as {T (y) : y ∈ B} conditioned on T (n− 1)¿ Tnot(n)(!)�−1. More precisely,
letting T denote the vector (T (x) : x ∈ B), we show that

Pz((T (x) : |x| = 1; x-z1) ∈ ·|F[z1 ;∞))(!)(3:3)

=
d−1⊗
j=1
P(T ∈ ·|T (n− 1)¿ Tnot(n)(!)�−1) ;

i.e. the RHS of (3.3) de�nes a regular conditional probability for the left side.
To prove (3.3), note that

{Firstn = z} = {T (z1)(n− 1) = �−1T (0; z)}
∩ ⋂
|x|=1; x-z

{T (x)(n− 1)¿ �−1T (0; z)}

almost surely. This shows that if ’x : RB → R are bounded and measurable
for x ∈ B(1), then

P

(
1(Firstn = z)

∏
|x|=1

’x(T (x))

)

= P
(
’z1(T

(z1))1(T (z1)(n− 1) = �−1T (0; z))

× ∏
x∈B(1)\{z1}

1(T (x)(n− 1)¿ �−1T (0; z))’x(T (x))
)

:

The term in front of the product is F[z1 ;∞)-measurable (since F[z1 ;∞) is just
�(T (z1))) and conditional on F[z1 ;∞), the vectors T (x) for x-z1 are i.i.d. copies
of T . Thus

Pz

( ∏
x∈B(1)

’x(T (x))

)
P(Firstn = z)

=
∫
’z1(T

(z1)(!))
∏

x∈B(1)\{z1}
P(’x(T )|T (n− 1)¿ �−1T (0; z)(!))

×
[
1(T (z1)(n− 1)(!) = �−1T (0; z)(!))

× ∏
x∈B(1)\{z1}

P(T (x)(n− 1)¿ �−1T (0; z)(!))
]
dP(!) :
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The term in square brackets equals P(Firstn = z|F[z1 ;∞))(!) and so we may
conclude that

Pz

( ∏
x∈B(1)

’x(T (x))

)
=
∫
’z1(T

(z1))
∏

x∈B(1)\{z1}
P(’x(T )|T (n− 1)¿ �−1T (0; z)(!))dPz(!) :

From this, (3.3) follows immediately upon noting that T (0; z) = Tnot(n) a.s.
with respect to Pz.

The second result is that if the joint distribution of the times T (z1)not (·)
is conditioned on T (z1)not (n− 1), on Uz1 and on Firstn = z, then the value of
Uz1 is irrelevant, and the information Firstn = z may be replaced by the
weaker Firstn−1(z1) = z′. Formally, if P′z′(·) denotes P(·|Firstn−1(z1) = z′)
and ’ : RB → R is bounded and measurable, then, letting T z1

not denote the
vector (T z1

not(x) : x ∈ B), we claim

(3:4) Pz(’(T
(z1)
not )|T (z1)not (n− 1); Uz1) = P

′
z′(’(T

(z1)
not )|T (z1)not (n− 1)) a.s.

Note that Pz is absolutely continuous with respect to P′z′ , so that in (3.4) we
are asserting that the right side de�nes a version of the left side.
To prove (3.4), �rst drop the conditioning on Uz1 from the LHS by

observing Uz1 to be independent of �(T
(z1)
not (·)). Next, write

{Firstn = z} = {Firstn−1(z1) = z′}
∩ ⋂

x∈B(1)\{z1}
{Uz1 + T (z1)not (n− 1)¡ T (x)(n− 1)} :

The independence of T (z1)not and (Uz1 ; T
(x) : x ∈ B(1) \ {z1}) shows that

P(Firstn = z|T (z1)not ) = P(Firstn = z|1(Firstn−1(z1) = z′); T (z1)not (n− 1)) a.s.
If  is a bounded, measurable real function, then

P(Firstn = z)Pz(’(T
(z1)
not ) (T

(z1)
not (n− 1)))

= P(’(T (z1)not ) (T
(z1)
not (n− 1))

× P(Firstn = z|1(Firstn−1(z1) = z′); T (z1)not (n− 1)))

= P(P(’(T (z1)not )|1(Firstn−1(z1) = z′); T (z1)not (n− 1))

×  (T (z1)not (n− 1))1(Firstn = z)) :

A separate consequence of the de�nition of conditional expectation is that
almost surely on {Firstn−1(z1) = z′} (which contains {Firstn = z})

P(’(T (z1)not )|1(Firstn−1(z1) = z′); T (z1)not (n− 1)) = P′z′(’(T (z1)not )|T (z1)not (n− 1)) :
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Combining this with the previous identity shows that

Pz(’(T
(z1)
not ) (T

(z1)
not (n− 1)))

= P(P′z′(’(T
(z1)
not )|T (z1)not (n− 1))

×  (T (z1)not (n− 1))1(Firstn = z))P(Firstn = z)−1

= Pz(P′z′(’(T
(z1)
not )|T (z1)not (n− 1)) (T (z1)not (n− 1)))

and (3.4) follows.
The lemma is now proved by induction on n as follows. For n = 1, let

Qz = �0 and for x ∈ B(1)\{z}, let Qx be the law of −� times an exponential
of mean 1. The lack of memory property for the exponential law shows that⊗

x∈B(1)Qx is a version of �(z; t) for all t = 0, so the result holds with equality
of all the laws.
Assume the result now for |z| ¡ n, retaining the above notation. Let

’x : RB(n−1) → R be bounded and measurable, with ’ : RB(n) → R given
by �’( �u) =

∏
x∈B(1) ’x( �u(x)), i.e. by ’(u(·)) =∏x∈B(1) ’x(u(x ⊕ y) : y ∈ B

(n− 1)). Note that if x ∈ B(n− 1) then almost surely with respect to Pz,

Tnot(n) = �(Uz1 + T (z1)not (n− 1))(3:5)

Tnot(n)− �T (z1)(x) = �(Uz1 + T (z1)not (n− 1))− �(Uz1 + T (z1)not (x))

= �(T (z1)not (n− 1)− T (z1)not (x)) :

Condition on F[z1 ;∞) and use (3.3) and (3.5) to see that

Pz(’(Tnot(n)− T (0; x) : x ∈ B(n))|T (z1)not (n− 1); Uz1)(!)

= Pz

( ∏
y∈B(1)

’y(Tnot(n)− �T (y)(x) : x ∈ B(n− 1))|T (z1)not (n− 1); Uz1

)
(!)

=
∏

y∈B(1)\{z1}
P(’y(�(Tnot(n)(!)�−1 − T (x)) : x ∈ B(n− 1))|T (n− 1)

¿ Tnot(n)(!)�−1)Pz(’z1(�(T
(z1)
not (n− 1)

− T (z1)not (x)) : x ∈ B(n− 1))|T (z1)not (n− 1); Uz1)(!) :

Recall the notation ’(�)(u) = ’(�u). The previous line now becomes

Pz(’(Tnot(n)− T (0; x) : x ∈ B(n))|T (z1)not (n− 1); Uz1)(!)

=

{ ∏
y∈B(1)\{z1}

[�(B(n− 1); n− 1; Tnot(n)(!)�−1)(’(�)y )]

}

× Pz(’(�)z1
(T (z1)not (n− 1)− T (z1)not (x) : x ∈ B(n− 1))|T (z1)not (n− 1); Uz1)(!) :
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Now use (3.4) to equate the above to{ ∏
y∈B(1)\{z1}

[�(B(n− 1); n− 1; Tnot(n)(!)�−1)(’(�)y )]

}

× P′z′(’(�)z1
(T (z1)not (n− 1)− T (z1)not (x) : x ∈ B(n− 1))|T (z1)not (n− 1))(!) :

Use the identity P′z′((T
(z1)
not (x) : x ∈ B) ∈ ·) = Pz′((T (0; x) : x ∈ B) ∈ ·) (in

words: looking in the subtree from z1 conditioned on z1 ⊕ z′ being the �rst
of its generation reached among the subtree is the same as looking in the
whole tree conditioned on z′ being the �rst in its generation) to get

Pz(’(Tnot(n)− T (0; x) : x ∈ B(n))|T (z1)not (n− 1); Uz1)(!)

= �(z′; T (z1)not (n− 1)(!))(’(�)z1
)

× ∏
y∈B(1)\{z1}

[�(B(n− 1); n− 1; Tnot(n)(!)�−1)(’(�)y )] :

Condition both sides of the above with respect to �(Tnot(n)) which is contained
in �(T (z1)not ; Uz1) ∨ {Pz-null sets} and use (3.5) together with the independence
of Uz1 and T (z1)not (n− 1) to conclude that
Pz(’(Tnot(n)− T (0; x) : x ∈ B(n))|Tnot(n))(!)

=
Tnot(n)(!)=�∫

0

[
�(z′; s)× ⊗

y∈B(1)\{z1}
�(B(n− 1); n− 1; Tnot(n)(!)�−1)

]

× (’(�)) exp(−((Tnot(n)(!)=�)− s))Pz(T
(z1)
not (n− 1) ∈ ds)

×
(

Tnot(n)(!)=�∫
0

exp(−((Tnot(n)(!)=�)− s))Pz(T
(z1)
not (n− 1) ∈ ds)

)−1

=
Tnot(n)(!)=�∫

0

[
�(z′; s)× ⊗

y∈B(1)\{z1}
�(B(n− 1); n− 1; Tnot(n)(!)�−1)

]

× (’(�))esPz(T
(z1)
not (n− 1) ∈ ds)

(
Tnot(n)(!)=�∫

0
esPz(T

(z1)
not (n− 1) ∈ ds)

)−1
:

Let �(z; t)(’) be de�ned by the above expression with t in place of Tnot(n)(!).
The above shows that {�(z; t) : t = 0} are regular conditional probabilities for
the required conditional distributions. By induction, there is a version of the
measures �(z′; s) that is stochastically nondecreasing in s, while Lemma 3.1
shows that

⊗
y∈B(1)\{z1} �(B(n− 1); n− 1; t�−1) is stochastically nondecreas-

ing in t. Thus for each bounded, nondecreasing function, ’ on RB(n), �(z; t)(’)
may be written as a weighted average on [0; t=�] of a nondecreasing
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function:
t=�∫
0
 (s; t)(ds)([0; t=�])−1 ;

where  is nondecreasing in each variable (combining the e�ects of �(z′; s) and
the measures �(B(n− 1); n− 1; t=�)), and  is the locally �nite measure given
by the e s term times the density of T (z1)not (n− 1). Such a weighted average is
clearly nondecreasing in t.

Corollary 3.4 If �= 0 and n ∈ N; there is a nondecreasing version of

Kn(t) = P

( ∑
x∈B(n)

exp(−�(T (0; x)− Tnot(n))) | Tnot(n) = t

)
:

Proof. For z ∈ B(n), let

Kn; z(t) = P

( ∑
x∈B(n)

exp(−�(T (0; x)− Tnot(n))) | Firstn = z; Tnot(n) = t

)
:

Since the sum is increasing in each Tnot(n)− T (0; x), Lemma 3.3 implies that
each Kn; z(t) has a nondecreasing version. But by symmetry, Kn; z is indepen-
dent of z, so is equal to Kn almost surely.

The following elementary result is proved by an integration by parts and
is stated for future reference.

Lemma 3.5 Assume p; q : R→ [0;∞) with p non-decreasing and q non-
increasing. Then for any random variable X;P(p(X )q(X ))5P(p(X ))P(q(X )):

4 L2 bounds for the clusters

As we saw in the proof of Theorem 2.6, the key in establishing the linear
growth of h(An) is a good bound on the size of each cluster o� the backbone.
These clusters are governed by the laws (�t ; t = 0) of C(t) conditioned to
still be �nite at time t (Theorem 2.5). The main results of this section are
Theorems 4.4 and 4.6, which give uniform bounds on �t(#(C)) and �t(#(C)2)
for t = 0.

Notation. Set H (t) = P(T (∞)¿ t) and G(t) = etH (t).

Lemma 4.1 (a) The functions G and H satisfy

H (t) = e−t

(
1 + �

t=�∫
0
e�uH (u)d du

)
; t = 0 ;(4:1)

G(t) = 1 + �
t=�∫
0
e−u(d−�)G(u)d du; t = 0 :(4:2)
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(b) G(t) increases to a �nite limit c4:1(�; d) as t ↑ ∞ and

15 c4:1(�; d)5 exp(log(d=(d− �))=(1− �)) :

Proof. Condition on U0 and use scaling to conclude that

H (t) = e−t +
t∫
0
e−sH ((t − s)=�)d ds :

Setting u = (t − s)=� gives (4.1), and (4.2) is then immediate. Equation (4.2)
shows that G(t) increases to a (possibly in�nite) limit c4:1(�; d)= 1 as t →∞.
Lemma 2.3 shows that H (t)5 s(�)e−t and therefore H (t)5 e−(t−t0)

+
where

t0 = log(s(�)). Hence from (4.1),

H (t)5 e−t + �e−t
t0∫
0
e�u du+ 1(t=� ¿ t0)�e−t

t=�∫
t0

e�ue−d(u−t0) du

5 e�t0−t + �(d− �)−1e−t+dt0−(d−�)t0 = e−(t−t1) ;

where t1 = h(t0) := �t0 + log(d=(d− �)). Iterating this procedure, we obtain
H (t)5 e−(t−tn)+ for n= 1, where tn+1 = h(tn) and limn→∞ tn= log(d=(d−�))
(1− �)−1. Let n→∞ in G(t)5 etn to complete the proof.

Remark. (4.1) and (4.2) are rather nasty equations since they are non-linear
and (worst of all) anticipative. (See Athreya (1985) for some similar equations,
arising from the distribution function of the random variable supx∈B T (x).)
Solutions to these equations are not unique because H ≡ 1 also satis�es (4.1).
It is, however, not hard to show that P(T (∞)¿ t) is the unique non-increasing
solution H to (4.1) for which etH (t) is bounded. Although it seems di�cult
to get sharp estimates from these equations, in the next section some closely
related equations will help us analyze the process (Wn; n ∈ Z+), and in Sect. 8
we will derive some asymptotic results as � ↑ 1. In particular, the upper bound
on c4:1 in (b) is by no means optimal (see Remark 8.3).

Notation. If n is a non-negative integer, de�ne a Laplace transform with respect
to the real variables � ∈ [0; 1] and = 1 by

r(n; �; ) = P
( ∑

x∈B(n)
exp(�Tnot(n)

− �−n−1(T (0)not(x)− Tnot(n)))
)
; n ∈ Z+ :

Let
d0 = 1

2d(d− 1)− 1 :

For  ¿ �, n ∈ N and 05 �5 t, let

S(n; ; �; t) =
∑

x∈B(n)
1(t − �5 T (x)5 t) exp(−�−n−1(t − T (n))) :
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To get a feeling for S, set � = t, and integrate over t to get

∞∫
0
S(n; ; t; t)dt = (�n+1=)

∑
x∈B(n)

exp(−�−n−1(T (x)− T (n))) :

This is O(�n+1), provided that not too many times T (x)− T (n) are near 0 on
a scale of �n. The next result gives the critical technical estimate on r, which
is then used to show that S is indeed O(�n) when = �+ 1. This will in turn
lead to Theorems 4.4 and 4.6 on the respective L1 and L2 behaviours of the
cluster size. Recall that s(�) =

∏∞
k=1(1− �k)−1.

Lemma 4.2 For all n ∈ Z+; = 1;

r(n; 1; )5 c4:2(�; ; d) := d2(d− 1)−1(1− �)s(�)2 exp(d0=((1− �))) :

Proof. The result is trivial if n = 0, thus assume n= 1 and �x = 1. For the
induction, assume the result for all n′ ¡ n and all �′ (what is actually needed is
�′ = �j�). Fix z1 ∈ {1; : : : ; d} and set � = min{T (y)(n− 1) : y ∈ B(1) \ {z1}}.
Using the symmetry of the tree when computing r(n; �; ), we may sum over
only those x with x1 = z1 and then multiply by d. This leads to

r(n; �; ) = d · P
( ∑

x∈B(n−1)
exp(�Tnot(n)− �−n−1(�Uz1 + �T (z1)not (x)

− �T (z1)(n− 1))− �−n−1(�T (z1)(n− 1)− Tnot(n)))
)

= d · P
( ∑

x∈B(n−1)
exp(�Tnot(n)− �−n(T (z1)not (x)− T (z1)not (n− 1))

− �−n(T (z1)(n− 1)− �−1Tnot(n)))
)

:

Divide the above expectation into two terms corresponding to the events
{T (z1)(n− 1)¿ �} and {T (z1)(n− 1)5 �}. Use the fact that on the latter event
T (z1)not (n− 1) = �−1Tnot(n) while on the former event � = �−1Tnot(n) to see that

r(n; �; ) = I1 + I2 ;

where

I1 = d · P
(
1(T (z1)(n− 1)¿ �) exp(���− �−n(T (z1)(n− 1)− �))(4:3)

× ∑
x∈B(n−1)

exp(−�−n(T (z1)not (x)− T (z1)not (n− 1)))
)
;

I2 = d · P
(
1(T (z1)(n− 1)5 �) exp(��T (z1)(n− 1))

× ∑
x∈B(n−1)

exp(−�−n(T (z1)not (x)− T (z1)not (n− 1)))
)

:
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The plan is to bound these terms by constant multiples of r(n− 1; ��; ) and
then apply the induction hypothesis. (In fact I1 will be of smaller order).
Consider I1 �rst. The term 1(T (z1)(n− 1)¿ �) exp(���− �−n(T (z1)(n− 1)

− �)) will make this term relatively small as n becomes large; heuristically,
the typical di�erence between T (n) and T (x) will be of order 1 when x1-z1,
and so the factor of �−n in the exponent makes these terms small. To verify
this, �x z2 ∈ B(1) \ {z1} and set R = T (z1)not (n− 1)− T (z2)not (n− 1). Focus on the
expression in front of the sum in I1 and integrate over the pair (Uz1 ; Uz2) to
see that

P(1(T (z1)(n− 1)¿ �) exp(���− �−n(T (z1)(n− 1)− �)) |F(z1 ;∞))

= (d− 1)P(1(Uz1 + T (z1)not (n− 1)¿ � = Uz2 + T (z2)not (n− 1))
× exp(��(Uz2 + T (z2)not (n− 1))− �−n(Uz1 − Uz2 + R)) |F(z1 ;∞))

5 (d− 1)P
([ ∞∫

0

∞∫
0
1(u2 − u1 5 R)

× exp(��u2 − �−n(u1 − u2))e−u1 du1 e−u2 du2

]
× exp(��T (z2)not (n− 1)− �−nR) |F(z1 ;∞)

)
:

First integrate u2 over (0; u1 + R) and then integrate u1 over ((−R)+;∞) to
bound the above by

(d− 1)(��+ �−n − 1)−1(2− ��)−1P(exp(��T (z2)not (n− 1)
− (2− ��)(−R)+ + (��− 1)R) |F(z1 ;∞))

= (d− 1)�n(+ �n+1�− �n)−1(2− ��)−1 exp(��T (z1)not (n− 1))
× P(exp(−(2− ��)(−R)+ − R)|F(z1 ;∞)) :

Note that −(2− ��)(−R)+ − R5 0 for �; � ∈ [0; 1], and so this is bounded by

(d− 1)�n(− �n)−1(2− ��)−1 exp(��T (z1)not (n− 1)) :
Substitute this bound into the expression for I1 (the summation being F(z1 ;∞)-
measurable) to conclude that I1 is at most

(4:4)
d(d− 1)(2− ��)−1�n(− �n)−1

× P

( ∑
x∈B(n−1)

exp(��T (z1)not (n− 1)− �−n(T (z1)not (x)− T (z1)not (n− 1)))
)

= (d0 + 1)(1− ��=2)−1�n(− �n)−1r(n− 1; ��; ) :
Consider now I2. By symmetry, as � becomes small the terms in front of

the summation in the expression for I2 should have mean close to 1, and so
I2 should be close to r(n− 1; ��; ). This is true, but to make the argument
rigorous we must control the possible correlations between the summation and
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the remaining terms in the integrand. This makes use of the monotonicity results
from Sect. 3, and in particular Corollary 3.4.
Let q(t) = P(exp(��Uz1)1(Uz1 + t 5 �)) and note that q is decreasing in

t. Use the independence of F(z1 ;∞) and Ez1 ⊃ �(Uz1 ; �) to see that

(4:5)
P(1(T (z1)(n− 1)5 �) exp(��T (z1)(n− 1)) |F(z1 ;∞))

= P(1(Uz1 + T (z1)not (n− 1)5�) exp(��(Uz1 + T (z1)not (n− 1)))|T (z1)not (n− 1))
= exp(��T (z1)not (n− 1))q(T (z1)not (n− 1)) :

The joint independence of �; Uz1 and T (z1)not (n− 1) shows that
q̃(u) = P(Uz1 + T (z1)not (n− 1)5 � |Uz1 = u)

is decreasing in u. The same independence and Lemma 3.5 give

P(q(T (z1)not (n− 1))) = P(exp(��Uz1)q̃(Uz1))(4:6)

5 P(exp(��Uz1))P(q̃(Uz1)) = (1− ��)−1d−1

by symmetry. Using (4.5) in the expression for I2 we get

I2 = dP(q(T (z1)not (n− 1)) exp(��T (z1)not (n− 1))

× P
( ∑

x∈B(n−1)
exp(−�−n(T (z1)not (x)− T (z1)not (n− 1))) | T (z1)not (n− 1)

)
:

Corollary 3.4 shows we may assume the conditional expectation is a nonde-
creasing function of T (z1)not (n− 1). Recalling that q is nonincreasing, we again
use Lemma 3.5 to conclude that

I2 5 dP(q(T (z1)not (n− 1)))P
(
exp(��T (z1)not (n− 1))

× ∑
x∈B(n−1)

exp(−�−n(T (z1)not (x)− T (z1)not (n− 1)))
)

5 (1− ��)−1r(n− 1; ��; ) ;
by (4.6).
Combine the above with (4.3) and (4.4) to see that

r(n; �; )5 (1− ��)−1(1 + (d0 + 1)�n(− �n)−1)r(n− 1; ��; )
= (1− ��)−1(1− �n−1)

−1
(1 + d0−1�n)r(n− 1; ��; ) :

We now use induction, recalling that = 1, to conclude that

(4:7)

r(n; 1; )5
[

n−1∏
k=1
(1− �k)−1

n∏
k=2
(1− �k−1)−1

n∏
k=2
(1 + d0−1�k)

]
r(1; �n−1; )

5 s(�)2(1− �) exp(d0−1(1− �)−1)r(1; �n−1; ) :
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Note that

r(1; �n−1; )5 dP(exp(�n−1Tnot(1)))5 dP
(
exp

(
min

x∈B(1)
Ux

))
= d2=(d− 1) ;

and use this in (4.7) to complete the argument.

Lemma 4.3 For = 1 + �; n ∈ Z+; 05 �5 t;

P(S(n; ; �; t))5 e−tc4:2(�; − �; d)(�n+1 ∧ �) :

Proof. Let ; �; t be as above, and let n ∈ Z+; for x ∈ B(n) we evaluate the
corresponding summand in S(n; ; �; t). First, integrate out U0 to see that

P(1(t − �5 T (x)5 t) exp(−�−n−1(t − T (n))))

= P
(
1(T (0)not(x)5 t)

t−T (0)not(x)∫
(t−�−T (0)not(x))

+

exp(−u− (t − u− T (0)not(x))�
−n−1)du

× exp(−(T (0)not(x)− Tnot(n))�−n−1)
)

:

Change variables to s = t − u− T (0)not(x) and bound the Lebesgue integral from
above on the event {T (0)not(x)5 t} by

�∧(t−T (0)not(x))∫
0

exp(−(�−n−1 − 1)s)ds exp(−(t − T (0)not(x)))

5 �n+1(− �n+1)−1(1− exp(−(�−n−1 − 1)�)) exp(−t + T (0)not(x))

5 e−t�n+1(− �n+1)−1 min{1; (�−n−1 − 1)�} exp(T (0)not(x))
5 e−t min{�n+1(− �)−1; �} exp(T (0)not(x)) :

Thus
P(1(t − �5 T (x)5 t) exp(−�−n−1(t − T (n))))

5 e−t min{�n+1(− �)−1; �}P(exp(Tnot(n)
− (�−n−1 − 1)(T (0)not(x)− Tnot(n))))

5 e−t min{�n+1(− �)−1; �}P(exp(Tnot(n)
− (− �)�−n−1(T (0)not(x)− Tnot(n)))) :

Summing over x in B(n) and recalling that = 1 + �,

P(S(n; ; �; t))5 e−t min(�n+1(− �)−1; �)r(n; 1; − �)

5 e−tc4:2(�; − �; d)(�n+1 ∧ �) (by Lemma 4.2) :

Notation. Let c4:3(�; d) = c4:1(�; d)dc4:2(�; d− �; d)(1− �)−1:
In the following result we set C(0−) = ∅:
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Theorem 4.4 (a) For all 05 �5 t and n in Z+

P(#((C(t)− C((t − �)−)) ∩B(n)) | T (∞)¿ t)

5 c4:1(�; d)dc4:2(�; d− �; d)(�n+1 ∧ �) :

(b) For all 05 �5 t;

P(#(C(t)− C((t − �)−)) | T (∞)¿ t)

5 c4:1(�; d)dc4:2(�; d− �; d)(1− �)−1(log+(1=�) + 1)(� ∧ 1)
5 c4:3(�; d) ;

and so in particular; P(#C(t) | T (∞)¿ t)5 c4:3(�; d) for all t = 0.
(c) P(#(C(t ∧ T (∞)) ∩B(n)))5 c4:3(�; d)(1− e−t) for all t = 0; n ∈ Z+:
Proof. Clearly T (∞)5 T (n) + T (Firstn;∞) and if z ∈ B(n) then Lemma 4.1
shows

(4:8) P(T (z;∞)¿t) = P(T (∞)¿t�−n−1)d 5 c4:1(�; d)d exp(−dt �−n−1) :

Therefore,

P(#((C(t)− C((t − �)−)) ∩B(n))1(T (∞)¿ t))
=

∑
x∈B(n)

P(t − �5 T (x)5 t ¡ T (∞))

5
∑

x∈B(n)
P(1(t − �5 T (x)5 t) P(T (Firstn;∞)¿ t − T (n) |Fn))

5 c4:1(�; d)d P(S(n; d; �; t)) (by (4.8)) :

Lemma 4.3 therefore shows that

P(#((C(t)− C((t − �)−)) ∩B(n))|T (∞)¿ t)(4:9)

5 c4:1(�; d)dc4:2(�; d− �; d)(�n+1 ∧ �)(etP(T (∞)¿ t))−1

5 c4:1(�; d)dc4:2(�; d− �; d)(�n+1 ∧ �) :

This proves (a), and (b) follows upon summing over n ∈ Z+.
(c) As in (a) we have

P(#(C(t ∧ T (∞)) ∩B(n)))
5

∑
x∈B(n)

P(1(T (x)5 t)P(T (Firstn;∞)¿ T (x)− T (n)|Fn))

5
∑

x∈B(n)
P(1(T (x)5 t)c4:1(�; d)d exp(−d(T (x)

− T (n))�−n−1)) (as in (4.8)) :
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Integrate out U0 to see that the last summation equals

c4:1(�; d)d
∑

x∈B(n)
P(exp(−d(T (0)not(x)− Tnot(n))�−n−1)1(T (0)not(x)5 t)

× [1− exp(−(t − T (0)not(x)))])

5 c4:1(�; d)d(1− e−t)r(n; 0; d)

5 c4:1(�; d)dc4:2(�; d; d)(1− e−t) (by Lemma 4.2)

5 c4:3(�; d)(1− e−t) :

Remark. 4.5. If x∈(0; 1) and N = [(log 1=x)=(log 1=�)] then

s(�)5
{

N∏
1
(1− �)−1(1 + · · ·+ �k−1)−1

}
exp

( ∞∑
k=N+1

�k(1− �k)−1
)

5 (1− �)−N
N∏

k=1
(k x)−1 exp(x(1− x)−1(1− �)−1) :

Use Stirling’s Formula and optimize over x to see there are constants, c4:4;
c4:5 ¿ 0 such that

(4:10) s(�)5 c4:4 exp(c4:5(1− �)−1) for all � ∈ (0; 1) :
Using (4.10) and Lemma 4.1(b) it follows that

c4:3(�; d) = c4:1(�; d)dc4:2(�; d− �; d)(1− �)−1(4:11)

5 c24:4d
2(d− 1)−1 exp((2c4:5 + (d0=(d− 1))

+ d log(d=(d− 1)))=(1− �))

= c4:6(d) exp(c4:7(d)=(1− �)) :

The Central Limit Theorem in Sect. 6 will require the following L2 bounds
on the conditioned clusters.

Theorem 4.6 There is a c4:8(�; d)¿ 0 such that

P(#C(t)2 | T (∞)¿ t)5 c4:8(�; d) for all t = 0 :

Proof. (In this proof, we suppress the dependence of c4:i on (�; d).) Let
∑′

denote summation over x1; x2 in B for which x1 ∧ x2 is distinct from both x1
and x2. Then

(4:12)

P(#C(t)21(T (∞)¿ t)5 2P

(∑
x1

∑
x2
1(x2 = x1)1(T (x2)5 t ¡ T (∞))

)
+ P(

∑′1(T (x1) ∨ T (x2)5 t ¡ T (∞))) :
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If y-0 let T̂ (y) = inf{T (x) : |x| = |y|; x-y} and let Ẑ(y) be the a.s. unique
vertex in B(|y|)− {y} at which this minimum time is attained. De�ne T̂ (0) =
∞ and Ẑ(0) = 0. Note that (T̂ (y); Ẑ(y)) is F|y|-measurable and T (Ẑ(y);∞) is
Ey-measurable (recall from the beginning of Sect. 2 that Ey is the“wide-sense”
past up to y). In the second summation in (4.12), write x1 = v⊕ i ⊕ y1 and
x2 = v⊕ j ⊕ y2 where v = x1 ∧ x2 and i-j ∈ {1; : : : ; d} to get

P(
∑′ 1(T (x1) ∨ T (x2)5 t ¡ T (∞)))

5 P
{∑

v
1(T (v)5 t ¡ T̂ (v) + T (Ẑ(v);∞))

× P
[∑
15i

∑
-j5d

(∑
y1
1(T (v) + T (v⊕i)(y1)�|v|+1

5 t ¡ T (v) + T (v⊕i)(∞)�|v|+1)
)

×
(∑

y2
1(T (v) + T (v⊕j)(y2)�|v|+1

5 t ¡ T (v) + T (v⊕j)(∞)�|v|+1)
) ∣∣ Ev]} :

(T (v⊕i)(·); T (v⊕j)(·)), i-j, are independent and are jointly independent of Ev.
The above therefore equals

(4:13)

d(d− 1)∫ ∑
v
1(T (v)(!)5 t)P(T (Ẑ(v);∞)¿ t − T̂ (v)|F|v|)(!)

× [P(#C((t − T (v)(!))�−|v|−1)1(T (∞)¿ (t − T (v)(!))�−|v|−1))]2 dP(!)

5 d(d− 1)∫ ∑
v
1(T (v)(!)5 t)P(T (0;∞)¿ (t − T̂ (v)(!))�−|v|)

× c24:3[P(T (∞)¿ (t − T (v)(!))�−|v|−1)]2 dP(!) :

The time T (0;∞) is equal in law to the minimum of d independent copies
of �T (∞). Lemma 4.1(c) and the fact that T (|v|) = min{T̂ (v); T (v)} therefore
show that if T (v)(!)5 t, then

P(T (0;∞)¿ (t − T̂ (v)(!))�−|v|)[P(T (∞)¿ (t − T (v)(!))�−|v|−1)]2

5 cd+24:1 exp
{− d�−|v|−1(t − T̂ (v)(!))+ − 2�−|v|−1(t − T (v)(!))

}
5 cd+24:1 exp

{− 2�−|v|−1(t − T (|v|)(!))} :

Substitute this into the RHS of (4.13), thus bounding the second term on the
RHS of (4.12) by

d(d− 1)c24:3cd+24:1

∫ ∑
v
1(T (v)(!)5 t) exp

{− 2�−|v|−1(t − T (|v|)(!))}dP(!)
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which is equal to

d(d− 1)c24:3cd+24:1 P
( ∞∑

n=0
S(n; 2; t; t)

)
and hence at most c(�; d)e−t by Lemma 4.3.

The �rst term on the right side of (4.12) equals

2P
(∑

x
|x|1(T (x)5 t ¡ T (∞))

)
= 2P

( ∞∑
n=1

n#(C(t) ∩B(n))|T (∞)¿ t
)
P(T (∞)¿ t)

5 c′(�; d)P(T (∞)¿ t) (by Theorem 4.4(a)) :

Use this and the above bound in (4.12) to conclude

P(#C(t)2|T (∞)¿ t)5 c′(�; d) + c(�; d)(etP(T (∞)¿ t))−1

5 c′(�; d) + c(�; d) :

5 The process W

Recall from Sect. 2 that Wn = T (spinen;∞)�−n−1 is the rescaled time to per-
colate along the backbone from generation n to ∞, and W = {Wn : n ∈ Z+}: In
this section we will show W is an ergodic Markov chain which stochastically
decreases to its unique invariant measure. Moreover there is an exponentially
fast coupling mechanism for the chain.

Notation. For each x ∈ B, set
W (x) = T (x;∞)�−|x|−1 = �−1T (x)not(∞) :

Let F denote the c.d.f. for W0. Then W (x) is equal in law to W0 for each
x ∈ B; since W0 is the minimum of d independent copies of T (∞), Lemma 4.1
shows that

(5:1) 1− F(t) = P(W0 ¿ t)5 c4:1(�; d)de−dt :

Hence we can de�ne a law on (0;∞), which “tilts” W0 to the right by �:

�(A) = P(e�W01(W0 ∈ A))=P(e�W0) :

Write �(t) = �((0; t)):
To de�ne the �ltration on which the sequence W is Markov, we introduce

two more pieces of notation.

Notation. Let �Fx = Ex ∨ �(W (x)). Then x 5 y implies �Fx ⊂ �Fy and if x ∈
B(n), then

{spinen = x} = {T (x) + �n+1W (x)

¡ min{T (x′) + �n+1W (x′) : x′ ∈ B(n)− {x}}} ∈ �Fx :
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Therefore spinen is an “ �Fx-stopping point” and we may de�ne a �ltration
{Wn} by

Wn = �Fspinen = {A ∈F : A ∩ {spinen = x} ∈ �Fx for all x ∈ B} :

The veri�cation that {Wn} is adapted to {Wn} is immediate.
Theorem 5.1 (a) W = {Wn : n ∈ Z+} is a (Wn)-Markov chain such that for
Borel sets B ⊆ (0;∞);

P(Wn+1 ∈ B|Wn) = p(B|Wn) := �(B|(0; Wn=�)) :

(b) (Wn; n ∈ Z+) is stochastically non-increasing.
Proof. (a) Let A ∈Wn; x ∈ B(n+ 1) and B a Borel subset of (0;∞). Then

P(Wn+1 ∈ B; A; spinen+1 = x)(5:2)

= P
[
1(A; spinen = x|n)P(W (x) ∈ B;

Ux + �W (x)¡ min
15i5d−1

Usibi(x) + �W (sibi(x))
∣∣ �Fx|n)

]
:

Both W (x|n) and the event in the conditional probability are F(x|n;∞)-measur-
able. Since F(x|n;∞) and Ex|n are independent, while �Fx|n = Ex|n ∨ �(W (x|n)),
it follows that (5.2) equals

P
[
1(A; spinen = x|n)P

(
W (x) ∈ B;Ux + �W (x)(5:3)

¡ min
15i5d−1

(Usibi(x) + �W (sibi(x)))
∣∣ W (x|n))] :

Let B(1) = {z1; : : : ; zd}, and set

q(· |w) = d · P
(
W (zd) ∈ ·; Uzd + �W (zd)¡ min

15i5d−1
(Uzi + �W (zi))∣∣∣ min

15i5d
(Uzi + �W (zi)) = w

)
:

In other words, q(· |w) is a regular conditional probability for the right side.
The collections (W (x); Ux, ((W (sibi(x)), Usibi(x)): i ¡ d)) and (W (zd); Uzd ;
((W (zi); Uzi) : i ¡ d)) are equal in law, and

W (x|n) = min{Ux + �W (x); Usibi(x) + �W (sibi(x)) : i ¡ d} :

Therefore, using this in (5.3), we deduce that

P(Wn+1 ∈ B; A; spinen+1 = x) = d−1P(1(A; spinen = x|n)q(B|W (x|n)))
= d−1P(1(A; spinen = x|n)q(B|Wn)) :
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Sum over x ∈ B(n+ 1) to conclude
(5:4) P(Wn+1 ∈ B |Wn) = q(B|Wn) a.s.

If h(y)=P(min15i5d−1(Uzi +�W (zi))¿y) then clearly for A ∈ B((0;∞)),

dP
(
W (zd) ∈ B; min

15i5d
(Uzi + �W (zi)) ∈ A;Uzd

+�W (zd)¡ min
15i5d−1

(Uzi + �W (zi))
)

= d
∫ ∫

1(w ∈ B; u+ �w ∈ A)h(u+ �w)e−u du dF(w)

= d
∫ ∫

1(w ∈ B; y ∈ A)1(w 5 y=�)h(y)e−y+�w dF(w)dy

=
∫
A
 (y)�(B|(0; y=�])dy ;

where  (y) = dh(y)e−y�(y=�). Take B = (0;∞) to see that  is the density
of mini5d(Uzi + �W (zi)). It follows that �(· |(0; y=�]) is a version of q(· |y)
and (a) is a consequence of (5.4).
(b) We have

P(W1 = t) = dP
(
1(W (zd)= t)P

(
Uzd + �W (zd)

¡ min
15i¡d

(Uzi + �W (zi))|W (zd)
))

5 dP(W (zd)= t)P
(
Uzd + �W (zd)

¡ min
15i¡d

(Uzi + �W (zi))
)

(Lemma 3.5)

= P(W (zd)= t) (symmetry)

= P(W0 = t) :

This proves W1 ≺ W0. The result now follows by induction and the fact that
p(· |w) is stochastically non-decreasing in w.

Since Wn decreases stochastically in n, the laws converge weakly, and we
shall now show that the limit is nontrivial. The other goals for the remainder
of this section are to understand the stationary distribution for {Wn} (including
existence and convergence to stationarity) and to prove an exponential rate of
convergence through a coupling mechanism. The �rst goal is achieved in the
next result.

Theorem 5.2 (a) W = {Wn : n ∈ Z+} converges to a stationary distribution
� on (0;∞).
(b) � is the unique stationary distribution for W and the stationary chain is
ergodic.
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(c) There are positive constants c5:1(p)(p ¿ 0); and c5:2 such that for all
w = 0 and for all p ¿ 0

�((0; w])5 c5:1(p)wp ;(5:5)

�([w;∞))5 c5:2e−dw :

We begin the proof with an integral equation that leads to an important
bound (5.9) on the left tail of F . Let F1(t) = P(T (∞)5 t) and g(x) = 1−
(1− x)d. W0 is the minimum of d independent copies of T (∞) and so

(5:6) F(t) = g(F1(t)) ∈ [F1(t); dF1(t)] :

By conditioning on U0 we also have

(5:7) F1(t) = �e−t
t=�∫
0
e�sF(s)ds5 F(t=�)(1− e−t) :

Equations (5.6) and (5.7), together with the easy fact that F1(t)¿0 for positive
t, imply that F and F1 are in�nitely di�erentiable and satisfy

(5:8) F ′1(t) = −�e−t
t=�∫
0
e�sF(s)ds+ F(t=�); F ′(t) = g′(F1(t))F ′1(t) ;

(5:9) 0¡ F(t)=F(t=�)5 d(1− e−t)5 td for all t ¿ 0 :

Next, we let � be the midpoint between 1 and �−1, and show that when Wn
is small, the probability is at least 1=4 that Wn+1 = Wn�:

Lemma 5.3 (a) There is a t0 ¿ 0 such that F(t�)=F(t=�)¡ 2
3 and �(t�)=�(t=�)

¡ 3
4 for t ∈ (0; t0).

(b) For all 0¡ w 5 1; �(w)=�(w=�)5 dew:

Proof. Di�erentiate in (5.8) to see

(5:10) F ′′(t) = g′′(F1(t))F ′1(t)
2 + g′(F1(t))F ′′1 (t) ;

and as t ↓ 0,

F ′′1 (t) = o(F(t=�))− F(t=�) + F ′(t=�)�−1

= o(F(t=�))− F(t=�) + g′(F1(t=�))F ′1(t=�)�
−1

= o(F(t=�))− F(t=�) + g′(F1(t=�))�−1(o(F(t=�2))

+ F(t=�2)) (from (5.8))

= o(F(t=�2))− F(t=�) + d�−1F(t=�2) :
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Use the latter in (5.10) to conclude that as t ↓ 0
F ′′(t) = o(F(t=�)) + d(o(F(t=�2))− F(t=�) + d�−1F(t=�2)) ((5.8) again)

= o(F(t=�2)) + d2�−1F(t=�2)− dF(t=�)

¿ 0 for small t :

Therefore F is convex near 0 and for t ∈ (0; t0) we have
(F(t=�)− F(t�))=F(t=�)= 1

2 (F(t=�)− F(t))=F(t=�)= 1
2 (1− dt) (by (5.9))

¿ 1
3 (for t0 small enough):

For the second inequality in (a) note that for t ∈ (0; t0);
�(t�)=�(t=�)5 F(t�)et=F(t=�)¡ 3

4 ;

where we have taken t0 su�ciently small for the last inequality. This proves
(a), and (b) is a trivial consequence of (5.9), just as above.

Proof of Theorem 5.2. (a), (c). The stochastic monotonicity in Theorem 5.1
shows that (Wn) converges in distribution to a law � on [0;∞). We must show
�({0}) = 0. If t0 ¿ 0 is as in Lemma 5.3, then for w ∈ (0; t0 ∧ 1],
P(Wn 5 w)5 P(Wn+1 5 w)

= P(�((Wn=�) ∧ w)�(Wn=�)−1)

5 P(Wn 5 �−1w) + P(1(�−1w ¡ Wn 5 w)�(�Wn)�(Wn=�)−1)

+ P(1(Wn ¿ w)�(w)�(w=�)−1)

5 P(Wn 5 �−1w) + 3
4P(�

−1w ¡ Wn 5 w) + dew P(Wn ¿ w) ;

by Lemma 5.3. Rearrange terms to conclude from the above that

P(�−1w ¡ Wn 5 w)5 4dew = cw for w ∈ (0; t0 ∧ 1] :
Iterating the above we �nd that for k = k0,

P(0¡ Wn 5 �−k) =
∞∑
j=k

c�−j = c(1− �−1)−1�−k ;

and therefore

(5:11) P(05 Wn 5 w)5 c�(1− �−1)−1w = c5:1w for 0¡ w ¡ w0 :

Let n→∞ to get the �rst inequality in (5.5) for p = 1, �rst for w a continuity
point of �((0; w]) in (0; w0), and then (increase c5:1 if necessary) for all w ¿ 0.
This proves the �rst part of (c) for p = 1 and also shows �({0}) = 0. Since
F is atomless, so is �, and p(· |w) is weakly continuous in w. Taking limits in
P(Wn+1∈·) = P(p(· |Wn)), we see that � is a stationary law. The upper bound
on �([w;∞)) is immediate from (5.1) and � ≺ F (again increase c5:1 if need
be).
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To prove the upper bound on the left tail of � for general p we consider
p = 2. The induction argument which will give the result for general p in N
will then be clear. The fact that � is stationary implies that for w ∈ (0; t0),

�([0; w]) =
∞∫
0

�( x� ∧ w)
�( x� )

d�(x)

5 �([0; �−1w]) +
∫
1(�−1w ¡ x 5 w)

�(w)
�( x� )

d�(x)

+
∫
1
(
w ¡ x 5

w
�

) �(w)
�( x� )

d�(x) +
∫
1(

w
�

¡ x)
�(w)
�( x� )

d�(x) ;

and therefore,

�((�−1w; w])5
�(w)

�(w�−1�−1)
�((�−1w; w]) +

�(w)
�(w� )

�
((

w;
w
�

])
+
�(w)
�( w

�2
)

5 3
4 �((�−1w; w]) + (dew)c5:1(1)

w
�
+ (de)2

w2

�
;

using Lemma 5.3 and the p = 1 case. The above implies

�((�−1w; w])5 4(dec5:1(1) + (de)2)�−1w2

and the result for p = 2 now follows as for p = 1 in the above.
(b) (5.8) and (5.9) show that F ′1(t)= e−tF(t=�)¿ 0 for all t ¿ 0. This and
the second part of (5.8) imply F ′(t)¿ 0 and hence �′(t)¿ 0 for all t ¿
0. Therefore p(· |w) has a strictly positive continuous density on (0; w=�]. It
follows easily that (Wn) is an indecomposable Markov chain and (b) is a
consequence of (a) and Theorem 7.16 of Breiman (1968).

There is a natural coupling technique for W which, in addition to re�ning
the above convergence result, will also play an important role in the limit
theorems of Sect. 6. Let D = {(w1; w2) : w1 = w2 ¿ 0} and de�ne a Markov
kernel on D by (set 0=0 ≡ 0)

�p(A1 × A2|(w1; w2)) =
w2=�∫
0
1A1×A2(x; x)d�(x)�(w2=�)

−1(�(w2=�)=�(w1=�))

+
w1=�∫
w2=�

1A1(x1)d�(x1)(�(w1=�)− �(w2=�))−1

×
w2=�∫
0
1A2(x2)d�(x2)�(w2=�)

−1(1−(�(w2=�)=�(w1=�))) :
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If �pi(· |(w1; w2)) is the ith marginal of �p(· |(w1; w2)) (i = 1; 2), then

�p1(A1|(w1; w2)) =
w2=�∫
0
1A1(x)d�(x)�(w1=�)

−1 +
w1=�∫
w2=�

1A1(x)d�(x)�(w1=�)
−1

= p(A1|w1) ;
and similarly one sees that �p2(A2|(w1; w2)) = p(A2|w2). We extend this cou-
pling of W to a Markov kernel on (0;∞)2 by setting

�p(A1 × A2|(w1; w2)) = �p(A2 × A1|(w2; w1)) if w2 ¿ w1 :

Then �p is a Markov kernel on (0;∞)2 with marginals �pi(· |(w1; w2)) = p(· |wi)
and so the induced Markov chain ((W 1

n ;W 2
n ); n ∈ Z+) will be a coupling of

(Wn). Clearly W 1
0 = W 2

0 (respectively, W
1
0 5 W 2

0 ) implies W 1
n = W 2

n (respec-
tively W 1

n 5 W 2
n ) for all n= 0 a.s., and if �couple = min{n : W 1

n = W 2
n } then

W 1
n = W 2

n for all n= �couple a.s.
If W 1

0 = W 2
0 , the chains will couple at the �rst time n for which W 1

n 5
W 2

n−1=� and hence it is possible for W 2
n to jump onto W 1

n . Unfortunately if
W 2

n−1 is small the probability of W
1
n 5 W 2

n−1=� will be small, and to get a good
coupling rate we must bound the time spent by W 2

n in (0; �] for � small. We
start with a stochastic lower bound on the left tail of the Markov kernel of W.

Lemma 5.4 There is a w0 ∈ (0; 1] and a probability � on (0; �−1] such that

p((0; wx] |w)5 �((0; x]) for all x = 0 and w ∈ (0; w0] ;(5:12) ∫
log x d�(x) = m ¿ 0 ;(5:13)

�((0; x])5 w0 dex 5 x for all x ¡ �2 :(5:14)

Proof. Let w1 = (2de)−1 and de�ne � on (0; w1]× (0; 1) by

�(w; x) =
n−1∏
k=0
(de�kw) = (dew)n�n(n−1)=2 if �n 5 x ¡ �n−1; n ∈ N :

Then � is non-decreasing in each variable, �5 1=2, �(w; ·) is right-continuous,
and �(w; 0+) = 0 ≡ �(w; 0). Let t0 be as in Lemma 5.3, 0¡ w0 5 w1 ∧ t0, and
de�ne

�(x) =


�(w0; x) if x ¡ 1 ;
3
4 if 15 x ¡ � ;

1 if �5 x 5 �−1 :

� is the distribution function of a law (also denoted by �) on (0; �−1]. If
(x; w) ∈ (0; 1)× (0; w0] and n ∈ N satis�es �n 5 x ¡ �n−1, then

�(xw)5 �(�n−1w)5
n−1∏
k=0
(de �kw)�(�−1w) (by Lemma 5.3(b))

= �(w; x)�(w=�)5 �(x)�(w=�) :
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Therefore

p((0; wx]|w) = �(xw)=�(w=�)5 �(x) for (x; w) ∈ (0; 1)× (0; w0] :

For (x; w) ∈ [1; �)× (0; w0] we have, from Lemma 5.3(a),

p((0; wx]|w) = �(xw)=�(w=�)5 �(�w)=�(w=�)5 3
4 = �(x) ;

which proves (5.12).
If �n 5 x ¡ �n−1 for some n= 3, then

�(x) = �(w0; x) = (dew0)n �n(n−1)=2

5 (dew0)x(n−1)=2 5 (dew0)x ;

which proves (5.14).
Finally,

1=�∫
0
log x d�(x)=

�2∫
0
(log x)(dew0)dx + (log �2)�(w0; 1−) + (log �)=4

= (dew0)
�2∫
0
(log x)dx + (log �2)dew0 + (log �)=4 ;

which is positive if we choose w0 su�ciently small.

For w ¿ 0, let Pw be the law of (Wn; n ∈ Z+) starting at W0 = w, and
for (w1; w2) ∈ [0;∞), let Pw1 ;w2 be the law of ((W

1
n ;W

2
n ); n ∈ Z+) starting at

(W 1
0 ; W

2
0 ) = (w1; w2). If � is a law on (0;∞) or (0;∞)2, then write P� for the

law of the appropriate chain (W or (W 1; W 2)) with initial distribution �.

Lemma 5.5 For all �; � ¿ 0; there exist �5:1; c5:3; �5:1 ¿ 0 (depending on
(�; �)) such that

Pw

(
n∑

j=0
1(Wj 5 �5:1)¿ �n

)
5 c5:3(w−� + 1)e−�5:1n for all n ∈ Z+; w ¿ 0 :

Proof. De�ne a Markov kernel q on (0;∞) by

q((0; y]|w) =
{

�((0; y=w]) if w 5 w0 ;

p((0; y]|w0) if w ¿ w0 :

Lemma 5.4 implies that q(· |w) ≺ p(· |w) for all w ¿ 0. This, the stochastic
monotonicity of p(· |w), and a standard coupling argument (Kamae et al. 1977,
Theorem 2) show that for each w ¿ 0 we may construct Markov chains (Wn)
and (Xn) with transition kernels p and q, respectively, on the same probability
space such that X0 = W0 = w and Wn = Xn for all n= 0. We abuse notation
slightly and let Pw denote the underlying probability. De�ne a sequence of
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stopping times (Tj; j ∈ Z+) by
T0 = min{k = 0: Xk ¿ w0} ;

Tj+1 = min{k ¿ Tj : Xk ¿ w0} :

Let {Vj : j ∈ N} be i.i.d. random variables, on some (
;F;P), with law �,
and set Sn =

∑n
j=1 logVj. Let T ′0(w) = min{k = 0: w

∏k
j=1 Vj ¿ w0}, w ¿ 0.

The de�nition of q implies that

(5:15)

Pw(((log Xk∧T0 ; k = 0); T0) ∈·)
= P(((log w + Sk∧T ′0

; k = 0); T ′0(w)) ∈·) for all w ¿ 0 :

(5.14) implies (�) ≡ P(exp(−� logV1))¡∞ for � ¡ 1 and by (5.13) ′(0) =
−P(logV1)¡ 0. Choose 0¡ � ¡ 1 su�ciently small (0¡ �5 �0 say) so
that (�)¡ 1. Then

Pw(T0 ¿ n) = P(logw + Sk 5 logw0 ∀k 5 n) (by (5.15))(5:16)

5 P(exp(−�Sn))(w0=w)�

5 w−�(�)n (recall w0 5 1) :

The strong Markov property of X now shows that Tj ¡∞ for all j = 0 a.s.
If � ¿ 0 de�ne

Yj =
Tj∑

k=Tj−1+1
1(Xk 5 �); j ∈ N; Y0 =

T0∑
k=0
1(Xk 5 �) :

For j ∈ N, the strong Markov property of X implies (Gj = �(X0; : : : ; Xj))

(5:17)

Pw(Yj ∈ A|GTj−1) = PX (Tj−1)(PX (1)(Y0 ∈ A))

=
∫
Px(Y0 ∈ A)p(dx|w0) (since XTj−1 ¿ w0) :

Therefore {Yj : j ∈ N} are i.i.d. and
(5:18)

Pw(Yj) =
∫
Px(Y0)p(dx|w0)

5
∫
P
( ∞∑

k=0
1(log x + Sk ¡ log �)

)
p(dx|w0) (by (5:15))

5
∞∑
k=0

∫
P(e−�Sk )��x−�p(dx|w0)

= (1− (�))−1
∫
x−�p(dx|w0)�� = c(�)�� ;
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where c(�)¡∞ by (5.12) and (5.14). Use (5.17) and (5.16) to show that for
su�ciently small positive �

Pw(e�Yj) =
∫
Px(e�Y0)p(dx|w0)5 e�

∫
Px(e�T0)p(dx|w0)¡∞ :

(5.18) implies
d
d�
Pw(e�Yj)|�=0 5 c(�)��

and so for some � = �(�)¿ 0 we have

(5:19) Pw(e�Yj)5 1 + 2c(�)��� 5 exp(2c(�)���):

Given � ¿ 0 choose � ¿ 0 so that c(�)��� 5 �=8. Then

Pw

(
n∑

j=0
1(Wj 5 �)¿ �n

)
5 Pw

(
n∑

j=0
1(Xj 5 �)¿ �n

)

5 Pw

(
T0 + 1 +

n∑
j=1

Yj ¿ �n

)
5 Pw(T0 ¿ �n=2− 1) + exp(−��n=2)Pw(e�Y1)n

5 w−�(�)[�n=2]−1 + exp(−��n=2 + 2c(�)���n)

(by (5.16) and (5.19))

5 c(w−� + 1)e−�n

for some c = c(�; �)¿ 0 and � = �(�; �)¿ 0 (by the choice of �). This proves
the result for 0¡ �5 �0, and it follows trivially for all � ¿ 0.

Proposition 5.6 For any � ¿ 0 there are c4:4(�); �5:2(�)¿ 0 such that the
coupling time �couple satis�es

Pw1 ;w2(�couple ¿ n)5 c5:4((w1 ∧ w2)−� + 1)e−�5:2n

for all n ∈ Z+; (w1; w2) ∈ (0;∞)2 :
In particular; �couple ¡∞ P�− a.s. for all laws � on (0;∞)2.
Proof. Fix 0¡ w2 5 w1, write P for Pw1 ;w2 , and let Gn = �((W 1

j ; W
2
j ); j 5

n). Note that M (n) = 1(�couple ¿ n) exp(
∑n−1

j=0 �(W
2
j =�)) is a (Gn)-super-

martingale because w.p. 1.

P(M (n+ 1)|Gn) = M (n) exp(�(W 2
n =�))P(�couple ¿ n+ 1|Gn)

= M (n) exp(�(W 2
n =�))(1− �(W 2

n =�)=�(W
1
n =�))

(by the de�nition of �p)

5 M (n) :
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If � ¿ 0 and � = 1=2 in Lemma 5.5, then that result gives (for � = �5:1)

P(�couple ¿ n)5 P

(
�couple ¿ n;

n−1∑
j=0
1(W 2

j 5 �)5 n=2

)

+ P

(
n−1∑
j=0
1(W 2

j 5 �)¿ n=2

)
5 P(M (n)) exp(−�(�=�)n=2) + c5:3(w−�

2 + 1)e−�5:1n

5 exp(�(w2=�)− �(�=�)n=2) + c5:3(w−�
2 + 1)e−�5:1n :

The result follows because �(�=�)¿ 0 (by (5.9)) and �(w2=�)5 1.

Corollary 5.7 (a) There are Markov chains (Wn; n ∈ Z+) with law PF
and (Wn; n ∈ Z+) with law P�; de�ned on the same probability space; such
that if

�couple = min{n ∈ Z+ : Wn = Wn}
then
(i) Wn = Wn for all n= �couple;
(ii) P(�couple ¿ n)5 c5:5e−�5:3n for all n ∈ Z+ for some c5:5; �5:3 ¿ 0.
(b) If Wn = T (X |n;∞)�−n−1 and |L(Wn)− �| denotes the total variation
distance between the law of Wn and its weak limit � then |L(Wn)− �|5
2c5:5e−�5:3n; n= 0.

Proof. (a) Since F � � by Theorem 5.1(b), there is a law � on D =
{(w1; w2):w1 = w2 ¿ 0} with �rst and second marginals F and �, respec-
tively. Let (Wn;Wn) be a chain with law P�. Then by Proposition 5.6 with
� = 1

2

P�(�couple ¿ n)5 c5:4e−�5:2(1=2)n
∫
w−1=2 + 1d�(w)5 c5:5e−�5:3n (by (5.5)) :

(b) is immediate because (Wn) has law PF .

The same argument as in (a) also gives the following corollary.

Corollary 5.8 There exists c5:6 ¿ 0 such that

(5:20) P�×�(�couple ¿ n)5 c5:6e−�5:3n for all n ∈ Z+ :

6 Limit theorems

In this section we use the results of the previous sections to prove a Law of
Large Numbers (Theorem 6.1) and a Central Limit Theorem (Theorem 6.2),
for functionals of the clusters which branch o� the backbone. The next section
then lists speci�c limit theorems that follow from these. Recall the setting of
Theorem 2.5: the backbone is spine1; spine2; : : :, the clusters o� the backbone,
and associated percolation times to in�nity are given by Yn; j = (Clustn; j ; an; j),
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and are conditionally independent with distributions �Wn . Let Ỹn denote the
vector (Yn;1; : : : ; Yn; d−1) ∈Sd−1

0 .

Notation. If ’ : Sd−1
0 → R, let

�t(’) =
∫

Sd−1
0

’(y1; : : : ; yd−1)
d−1∏
j=1

�t(dyj) ;

��(’) =
∞∫
0
�t(’)d�(t) :

Thus �t is the law of (d− 1) independent copies of �t .

Theorem 6.1 If ’ : Sd−1
0 → R is measurable and ��(’) is �nite; then

lim
n→∞ n−1

n−1∑
j=0

’(Ỹ j) = ��(’) a.s. :

Theorem 6.2 Suppose that

(6:1)
∞∫
0
�t(’2)

2
log+(�t(’2))d�(t)¡∞ :

Then

n−1=2
n−1∑
j=0
(’(Ỹ j)− ��(’)) w−→N (0; �2’) as n→∞ ;

where

(6:2) �2’ = 2

(
∞∑
j=1
P�(�Wj (’)�W0(’)− ��(’)2)

)
+ ��(’2)− ��(’)2 ¡∞ :

Proof of Theorem 6.1. Let (Wj; j ∈ Z+) and (Wj; j ∈ Z+) be the chains
with laws PF and P�, respectively, which are coupled as in Corollary 5.7(a).
Let {Uj : j ∈ Z+} be an independent sequence of i.i.d. random variables
which are uniformly distributed on [0; 1]. De�ne Gt(x) = �t({(y1; : : : ; yd−1) :
’(y1; : : : ; yd−1)5 x}) and let Vj(t) = G−1

t (Uj) where G−1
t (u) = inf{x : Gt(x)

¿ u}. Therefore {Vj(t) : j ∈ Z+} are i.i.d. and have distribution �t(’(·) ∈ ·).
Moreover Vj(t; !) is jointly measurable because G−1

t (x) is. Theorem 2.5 shows
that (Vj(Wj); j ∈ Z+) and (’(Y ( j)); j ∈ Z+) are equal in law. By the coupling
in Corollary 5.7 it su�ces to show

(6:3) lim
n→∞ n−1

n−1∑
j=0

Vj(Wj) = ��(’) a.s.

However, Vj(Wj) = G−1
Wj
(Uj) and since {(Wj; Uj); j ∈ Z+} is clearly stationary

and ergodic by Theorem 5.2, {Vj(Wj); j ∈ Z+} is too. ��(’) is the mean of
Vj(Wj) and therefore the ergodic theorem implies (6.3).
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Proof of Theorem 6.2. Let {(Wj;Wj; Vj) : j ∈ Z+} be as in the previous proof.
As in the above argument it su�ces to show

�n = n−1=2
n−1∑
j=0
(Vj(Wj)− ��(’)) w−→N (0; �2’) :

Write �n = Xn + Zn, where

Xn = n−1=2
n−1∑
j=0
(Vj(Wj)− �Wj

(’)) and Zn = n−1=2
n−1∑
j=0
(�Wj

(’)− ��(’)) :

We will use the Lindeberg Central Limit Theorem to show that, conditional on
W = (Wj), Xn

w−→ N (0; �21) and then use a Central Limit Theorem for stationary
ergodic processes to prove that Zn

w−→N (0; �22). Introduce

s2n =
n−1∑
j=0
P((Vj(Wj)− �Wj

(’))
2
∣∣∣W) = n−1∑

j=0
�Wj

(’2)− �Wj
(’)2 :

The Ergodic Theorem implies

(6:4) lim
n→∞ s2nn

−1 = ��(’2)− ∫ �t(’)2 d�(t) ≡ �21 a.s.

We claim that

(6:5) lim
n→∞P(e

i�Xn |W) = e−�2�21=2 for all � ∈ R :

If �21 = 0 this is clear from (6.4). Assume �21 ¿ 0, let � ¿ 0 and check the
Lindeberg condition, conditional on W. For any �xed K ¿ 0, use (6.4) and
the Ergodic Theorem to conclude

lim sup
n→∞

s−2n

n−1∑
j=0
P((Vj(Wj)− �Wj

(’))
2
1(|Vj(Wj)− �Wj

(’)| ¿ �sn)|W)

5 lim
n→∞�−21 n−1

n−1∑
j=0

∫
(’(y)− �Wj

(’))21(|’(y)− �Wj
(’)| ¿ K)

× d�Wj
(y) a.s.

= �−21
∫ ∫

(’(y)− �t(’))
21(|’(y)− �t(’)| ¿ K)d�t(y)d�(t) a.s.

The last expression approaches zero as K →∞ because �(’2)¡∞ by (6.1).
This gives us the Lindeberg condition with respect to P(·|W) a.s., and (6.5)
then follows from the Lindeberg Central Limit Theorem and (6.4).
It is easy to use the exponentially fast coupling given by Corollary 5.8 to

see that {Wj} is strongly mixing with an exponential mixing rate (with the
notation of Rio (1995)), �(n)5 2c5:6 exp(−�5:3n). This means that the same
is true of the ergodic process {�Wj

(’)− �(’)}, and (6.1) allows us to apply
a Central Limit Theorem for strongly mixing stationary processes (Rio, 1995,
Theorem 1, Eq. (1.5)) to conclude that

(6:6) lim
n→∞P(e

i�Zn) = e−�2�22=2 ;
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where

�22 =
∫
�t(’)2 d�(t)− ��(’)2 + 2

∞∑
j=1
P(�Wj

(’)�W 0
(’)− ��(’)2) :

The required result now follows from (6.5) and (6.6) because �2’ = �21 + �22.

Example 6.3. De�ne ’1 : Sd−1
0 → [0;∞) by ’1((C1; a1); : : : ; (Cd−1; ad−1)) =∑d−1

i=1 #Ci. Then

�t(’21) = (d− 1)
∫
(#C)2d�t + (d− 1)(d− 2)(

∫
#Cd�t)2

5 (d− 1)c4:8(�; d) + (d− 1)(d− 2)c4:3(�; d)2
(Theorems 4.4 and 4.6) :

If Cn =
⋃d−1

i=1 Clustn;i, then ’1(Y (n)) = #Cn, and Theorems 6.1 and 6.2 show
that

(6:7) lim
n→∞ n−1

n−1∑
j=0
#Cj = �� ≡ (d− 1)∫ ∫ #C d�t d�(t) a.s. ;

and

(6:8) n−1=2
n−1∑
j=0
(#Cj − ��) w−→N (0; �2’1) as n→∞ ;

where a (not very helpful) expression for �2’1 ¿ 0 may be retrieved from
Theorem 6.2. The expression for �� is more tractable and Theorem 4.4(b) and
(4.11) imply that

0¡ �� = ��(�; d)5 (d− 1) sup
t

∫
#C d�t(6:9)

5 (d− 1)c4:3(�; d)
5 c6:1(d) exp(c4:7(d)=(1− �)) :

We now consider some processes which describe aspects of the growth
dynamics of {An}. The size of the cluster at the �rst time a node of height n
is �lled is minsize(n) = min{k : h(Ak) = n}. The size of the cluster at the last
time a node of height n or less is added is maxsize(n) = max{k : Ak − Ak−1 ∈
B(0; n)}. Let size(n) = #(A∞ ∩B(0; n)) be the number of nodes in A∞ of
height n or less. Then clearly

(6:10) minsize(n)5 size(n)5maxsize(n) :

Note that each point in A∞ ∩B(0; n) is in a cluster Clustk; i for some k ¡ n or
is one of the �rst n+ 1 vertices along the backbone. If N (n) =

∑n−1
k=0 #(Ck),

this gives

(6:11) size(n)5 N (n) + n+ 1 :
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For the next result �2’1 is de�ned in Theorem 6.2 with ’1 as in Example 6.3,
and we de�ne

(6:12) rate = ��(�; d) + 1¿1 :

Theorem 6.4 For {L(n)} = {size(n)}; {maxsize(n)} or {minsize(n)} the
following results hold.
(a) lim

n→∞ n−1L(n) = rate a.s.

(b) n−1=2(L(n)− n rate) w−→N (0; �2’1) as n→∞.
It is not hard to prove this by �rst using the bounds in Theorem 4.4 to show

that maxsize(n)−minsize(n) and N (n) + n+ 1− size(n) remain bounded
in probability as n→∞, and then applying Example 6.3. The interested reader
may �nd this argument in Lemma 6.5 of the earlier version of this work referred
to in the introduction. We will prove Theorem 6.4 in the next Section by
showing that the above di�erences are bounded in L1 by means of a dynamical
decomposition of A∞ into independent blocks.

Let ‘(n) = min{|x| : x ∈ A∞ − An} be the height of the shortest vertex
which is added after step n. Hence Ak ∩B(0; ‘(n)− 1) is “frozen” for k ¿ n.
Clearly ‘(maxsize(k)− 1)5 k ¡ ‘(maxsize(k)) and so

maxsize(k) = min{n : ‘(n)¿k} :

It is a simple matter to read o� limit theorems for h(An) and ‘(n) from the
corresponding results for their inverses, minsize and maxsize, respectively.
Let �0 = �0(�; d) = rate−1:

Corollary 6.5 (a) limn→∞ n−1h(An) = limn→∞ n−1‘(n) = �0 a.s.
(b) (i) n−1=2(h(An)− n�0)

w−→ N (0; �2’1�
3
0) as n→∞.

(ii) n−1=2(‘(n)− n�0)
w−→ N (0; �2’1�

3
0) as n→∞.

Proof. (a) is a trivial consequence of Theorem 6.4(a) with L(n) =minsize(n)
or maxsize(n).
(b) Let H (n) = n−1=2(h(An)− n�0) and �(k) = k−1=2(minsize(k)− k�−10 ).
Fix x ∈ R and set k(n) = [n�0 + x

√
n ] + 1 where [z] is the greatest integer

not exceeding z. If xn = (n− k(n)�−10 )k(n)
−1=2, then for n large enough so

that k(n) ∈ N,

P(Hn 5 x) =P(h(An)¡ k(n)) =P(minsize(k(n))¿ n) =P(�(k(n))¿ xn) :

Since lim xn = −�−3=20 x, Theorem 6.4(b) with L(k) = �(k) implies that

lim
n→∞P(Hn 5 x) = P(Z ¿ −�−3=20 x) = P(Z 5 �−3=20 x) ;

where Z is a N (0; �2’1) random variable. (i) follows and a similar argument
proves (ii).
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It is easy to translate these a.s. limit theorems as n→∞ into continuous
time results as t ↑ T∞. Note that

Wk+1 5 (T∞ − T (k))�−k−1 5 W (Firstk) ;

where Firstk is the �rst vertex in B(k) which is added to the cluster. Note that
W (Firstk) is equal in law to W0, and Wk+1 � � for all k by Theorem 5.1(b).
Use the above with the estimates (5.1) and (5.5) (for the left-hand tail of �)
and a Borel–Cantelli argument to see that

(k − 1)−1�k−1 5 T∞ − T (k) 5 (log k)�k for large k a.s.

By considering T (k) 5 t ¡ T (k+1) this gives

h(Ct)−1�h(Ct) ¡ T∞ − t ¡ log (h(Ct))�h(Ct)(6:13)
for 0¡ T∞ − t su�ciently small, a.s.

Theorem 6.6 (a) limt↑T∞ h(C(t))(log�(T∞ − t))−1 = 1 a.s.
(b) limt↑T∞ #(C(t))(log�(T∞ − t))−1 = rate a.s.

Proof. (a) is immediate from (6.13). Corollary 6.5(a) and a trivial interpolation
(recall An = C(cardn)) shows that limt↑T∞ h(C(t))=#C(t) = �0 a.s. (b) follows
from this and (a).

Theorem 6.7 (a) limn→∞ n−1(log�(T∞ − cardn)) = �0 a.s.
(b) n−1=2(log�(T∞ − cardn)− n�0)

w−→N (0; �2’1�
3
0) as n→∞.

Proof. For (a) set t = cardn in Theorem 6.6(b). (b) follows from Corollary
6.5(b)(i) and

(6:14) lim
n→∞ n−1=2(h(C(cardn))− log�(T∞ − cardn)) = 0 a.s.

(6.14) is an easy consequence of (6.13) and the trivial bound h(C(cardn))5 n:

7 A decomposition of the in�nite cluster into i.i.d. blocks

The drawback of the decompositions of A∞ into clusters o� the backbone
(Theorem 2.5) is that it is not a dynamical decomposition. This means that
some additional work is needed before the results on the growth rate of h(An)
such as Corollary 6.5 can be derived from the limit theorems for the clusters
(Clustn; i) given in Example 6.3. We now establish a dynamical decomposition
of A∞ into i.i.d. pieces, which will lead to a proof of Theorem 6.4, and will
also be used in Sect. 8 to establish properties of the shape of the cluster “as
viewed from the tip”.
Let Cn = �(Yk; i; Wk : k ¡ n; i ¡ d) ∨ �(1(Wn 5 �0)) ∨ �(spinen). Here

�0 is a su�ciently small positive number whose precise value will be prescribed
below. Let �Cn = Cn ∨ �(Wn). Clearly both (C:) and ( �C:) are �ltrations.
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Let Mn = min{an; i(x) : x ∈ Clustn; i; i ¡ d} and recall Cn =
⋃

i¡d Clustn; i.
Inductively de�ne regeneration times {Rj : j ∈ Z+} by R0 = 0 and

Rj+1 = min
{
k ¿ Rj : min

R j5n¡k
Mn�n ¿ �0�k ; Cn ⊂ B(0; k − n− 2)

for all n ∈ [Rj; k); Wk−1 ¿ ��0; Wk 5 �0

}
:

Here �0 ¿ 0 will be chosen below. Clearly Rj is a (Cn)-stopping time for all
j ∈ Z+. The �rst two and last conditions in the above inductive de�nition will
imply that all the points in A∞ ∩B(0; Rj) are added to the cluster before all
the points in A∞ ∩B(Rj;∞) and that {spineR j

} is the only point in A∞ of
generation Rj. The next to last condition will ensure the independence of the
blocks B(j), de�ned by

B(j) = A∞ ∩B(Rj; Rj+1 − 1) :
Our goal is to prove the following theorem (for a su�ciently small �0 ¿ 0).

Theorem 7.1 The sequence of (Cn)-stopping times; {Rj : j ∈ Z+}; is a.s. �nite
and satis�es
(a) A∞ ∩B(Rj)={spineR j

} and minsize(Rj)=maxsize(Rj) for all j ∈ Z+:
(b) P((#B(j))2)5 c7:1(�; d) for all j ∈ Z+:
(c) By (a) we may de�ne Dj ∈ S0 by

B(j) = {(spineR j
)⊕ x : x ∈ Dj}; j ∈ Z+ :

Also let T (j; x) = T (spineR j
; (spineR j

)⊕ x)�−R j for x ∈ Dj. Then {(Dj;
T (j)) : j ∈ Z+} are independent S0-valued random vectors and are iden-
tically distributed for j = 1. Moreover for j = 1;

P((Dj; T (j)) ∈ · |CR j) =
�0∫
0
P((D0; T

(0)
not) ∈ ·|W0=w)d�(w)�([0; �0])−1 :

Remark. We abuse notation slightly, and extend the de�nition of T (j; x) to all
x ∈ B. Clearly T (0; x) = T (0)not(x) for all x ∈ B:

Lemma 7.2 �Cn ⊂Wn for all n ∈ Z+:
Proof. By Theorem 5.1 Wn is Wn-measurable, and spinen is trivially Wn-
measurable. Fix k ¡ n, i ¡ d; and x; x′ in B. Then for a Borel set B

{ak; i(x′) ∈ B; spinen = x}
= {W (x|k)− T (x|k; ei(x|k + 1)⊕ x′)�−k−1 ∈ B; spinen = x} ∈ �Fx :

Therefore Yk; i is Wn-measurable.

Proof of Theorem 7.1(a). Assume Rj ¡∞ for a �xed j ∈ N. If n ¡ Rj; i ¡
d and x ∈ Clustn; i, then

T (eni ⊕ x)=T (∞)−�n+1an; i(x)¡T (∞)−��0�Rj(7:1)

5 T (∞)− �Rj+1WRj = T (spineR j
) :
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Note we have used the fact that if Rj ¡∞ and j ∈ N, then Mn�n ¿ �0�Rj

for all n ¡ Rj (and not just Rj−1 5 n ¡ Rj). Similarly we have Cn ⊂ B(0; Rj
− n− 2) for all n ¡ Rj and this clearly implies that all the clusters which break
o� the backbone before Rj are in B(0; Rj − 1) and therefore
(7:2) T (Rj) = T (spineR j

); minsize(Rj) = #C(T (spineR j
)) :

By (7.1) no new points are added to the �rst Rj clusters (C0; : : : ; CR j−1) after
time T (spineR j

). Hence spineR j
is the last node in B(0; Rj) added to A∞.

This means

(7:3) maxsize(Rj) = #C(T (spineR j
)) :

Clearly A∞ ∩B(Rj) = {spineR j
} since spineR j

is the last point added to A∞
in B(0; Rj) and the �rst point added to A∞ in B(Rj). (7.2) and (7.3) also give
minsize(Rj) =maxsize(Rj) and hence (a) is proved once we show Rj ¡∞
for all j ∈ Z+.

The proof of Theorem 7.1(b) requires several preparatory lemmas.

Lemma 7.3 (a) �t(minx∈C a(x)5 �)5 c4:3(log
+(1=�) + 1)(� ∧ 1) ≡ g(�) for

all t; �= 0.
(b) There exists � ∈ (�; 1) such that �t(C ⊂| B(0; j − 1))5 �j+1 for all j ∈
Z+; t = 0.

Proof. (a) We have

�t

(
min
x∈C

a(x)5 �
)
5 P

(
max
x∈C(t)

T (x)= t − �|T (∞)¿ t
)

5 P(#(C(t)− C((t − �)−))|T (∞)¿ t)

5 g(�) (by Theorem 4.4(b)) :

(b) Using Theorem 4.4(a) we have

�t (C ⊂| B(0; j − 1))5 P

(∑
n=j

#(C(t) ∩B(n))|T (∞)¿ t

)
5
∑
n=j

cd4:1c4:2�
n+1 = c4:3�j+1 ;

while

�t(C = ∅) = P(U0 ¿ t|T (∞)¿ t) = (etP(T (∞)¿ t))−1

= c−14:1 (by Lemma 4.1) :

The result follows trivially from the above two inequalities.

Lemma 7.4 If 0¡ �0 5 �5:1(1=2; 1=2) (�5:1 as in Lemma 5.5) there exist
c7:2; c7:3 ¿ 0 such that Nm =

∑m
k=1 1(Wk−1 ¿ ��0; Wk 5 �0) satis�es

P(exp (−Nm)|W0)5 c7:2(W
−1=2
0 + 1)e−c7:3m for all m ∈ N :
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Proof. For �0 as above and a �xed q¿0 let Mm =
∑m

k=1 1(Wk−1 ¿ ��0)
(q− 1(Wk 5 �0)). Then

P(eMm |Wm−1)

= exp (Mm−1 + q1(Wm−1 ¿ ��0))

× [exp (−1(Wm−1 ¿ ��0))�([0; �0 ∧Wm−1=�)])�([0; Wm−1=�])−1

+ �((�0; Wm−1=�])�([0; Wm−1=�))−1] (Theorem 5.1)

5 exp (Mm−1)[1(Wm−1 5 ��0)

+ 1(Wm−1 ¿ ��0)eq(e−1�([0; �0]) + �((�0;∞)))�([0;∞))−1] :
As �((0; �0])¿ 0 (see (5.9)), we may choose q = q(�0)¿ 0 small enough
such that eMm is a supermartingale. If N ′

m =
∑m

k=1 1(Wk 5 ��0), then

eMm = exp (qm− qN ′
m − Nm)= 1(N ′

m 5 m=2) exp (qm=2− Nm)

and therefore

P(exp(−Nm)|W0)5 P(N ′
m ¿ m=2|W0) + e−qm=2P(eMm |W0)

5 c5:3(W
−1=2
0 + 1)e−�5:1m + e−qm=2 :

In the last line we used Lemma 5.5 and the supermartingale property of eMm:

Lemma 7.5 P(WRj ∈ B|CR j) = �(B| [0; �0]) a.s. on {Rj¡∞} for all j ∈ N:

Proof. If A ∈ Cn we claim that

(7:4) P(A|W) = P(A|W0; : : : ; Wn−1; 1(Wn 5 �0)) :

To see this consider

A =
n−1⋂
k=0

⋂
i¡d

{Yk; i ∈ Ak; i} ∩ {spinen = x} ∩ {(W0; : : : ; Wn−1) ∈ B;Wn ∈ D}

where D = [0; �0] or (�0;∞). (7.4) is then an easy consequence of Theo-
rem 2.5 and the independence of spinen and W (which holds by symmetry).
(7.4) follows for general A ∈ Cn by a monotone class argument.

Assume A ∈ Cn is a subset of {Wn−1 ¿ ��0; Wn 5 �0}. Then
P(A;Wn ∈ B) =

∫
P(A|W0; : : : ; Wn−1; 1(Wn 5 �0))1(Wn ∈ B)dP (by (7:4))

=
∫
P(A|Wn−1; 1(Wn 5 �0))P(Wn ∈ B|Wn−1; 1(Wn 5 �0))dP ;

by the Markov property of W. Use the form of the transition kernel found in
Theorem 5.1 to see that

P(Wn ∈ B|Wn−1; 1(Wn 5 �0)) = �(B|[0;min(�0; Wn−1=�)])1(Wn 5 �0)

+ �(B|(�0; Wn−1=�])1(Wn ¿ �0;

Wn−1=� ¿ �0) :
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Therefore we have (by our assumption on A)

P(A;Wn ∈ B) =
∫
P(A|Wn−1; 1(Wn 5 �0))�(B|[0; �0])dP(7:5)

= P(A)�(B|[0; �0]) :
Let j ∈ N; A ∈ CR j and An = A ∩ {Rj = n} ∈ Cn: Clearly An ⊂ {Wn−1 ¿
��0; Wn 5 �0} and so by (7.5)

P(A; Rj ¡∞; WRj ∈ B) =
∞∑
n=1
P(An;Wn ∈ B)

= P(A; Rj ¡∞)�(B|[0; �0]) :
The next result is an easy consequence of Theorem 2.5.

Lemma 7.6 Let K be a (Cn)-stopping time (possibly in�nite). Then condi-
tional on CK ∨ �(W) and on {K¡∞}; {YK+n; i : n ∈ Z+; i ¡ d} are
independent S0-valued random vectors such that

P(YK+n; i ∈ A|CK ∨ �(W)) = �WK+n(A) a.s. on {K ¡∞} :

Proof of Theorem 7.1(b). Choose � ¡ �0 5 �5:1( 12 ;
1
2 ) ∧ 1 small enough so

that

(7:6) p1(�0) = 1−
∞∏
j=1
(1− g(�0�j))d−1 + 1−

∞∏
j=1
(1− �j)d−1 ¡ 1 :

Here g and � are as in Lemma 7.3. Choose n0 ∈ N su�ciently large so that if
h(�0) = c4:3�0(1 + log 1=�0 + log 1=�), then (recall � ¿ �)

(d− 1)h(�0)j�j 5 �j for j ¿ n0 and  = �n0(p1(�0)− �n0)(7:7)

× d(1− �)−1 + p1(�0)¡ 1 :

Fix j ∈ Z+ and let k(0) ≡ Rj, and k(0)¡ k(1)¡: : : ¡ k(n)¡ · · · denote the
successive times for which Wk(n) 5 �0 and Wk(n)−1 ¿ ��0 (n ∈ N). If Rj =∞
set k(n) =∞ for all n. Each k(n) is a (Cn)-stopping time. Lemma 7.4 and
the strong Markov property of W show that each k(n) is �nite if Rj is. Let
K(i) = k(in0) and de�ne

Bi = {min{Mn�n : Rj 5 n ¡ K(i)}5 �0�K(i)} ;

Di = {Cn⊂| B(0; K(i)− n− 2) for some n in [Rj; K(i))} ;

AN =
N⋂
i=1
(Bi ∪ Di) :

Note that Rj+1 − Rj ¿ m and K(N )5 m+ Rj together imply AN (since each
K(i) for i 5 N must violate one of the de�ning conditions for Rj+1). If

N ′
m =

m∑
k=1
1(WRj+k 5 �0; WRj+k−1 ¿ ��0) ;
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this easily gives for �¿0

(7:8) {Rj+1 − Rj¿m} ⊂ {N ′
m 5 �m} ∪ A[�m=n0] :

If ! ∈ AN and Rj(!)¡∞; then ! ∈ BN ∪ DN ; and so for some n in [Rj; K(N ));
either Cn is not contained in B(0; K(N )− n− 2) or Mn�n 5 �0�K(N ): Choose
i = i(!) ∈ {1; : : : ; N} such that K(i − 1)5 n ¡ K(i) and note that ! ∈ Ai−1
as well (! ∈ Aj for all j 5 N ). This shows that on {Rj ¡∞},
P(AN |CR j ∨ �(W))

5
N∑
i=1
P(Ai−1 ∩ {min(Mn�n : K(i − 1)5 n ¡ K(i))5 �0�K(N )}

|CR j ∨ �(W))

+ P(Ai−1 ∩ {Cn⊂| B(0; K(N )− n− 2) for some n ∈ [K(i − 1); K(i))}
|CR j ∨ �(W))

=
N∑
i=1
P(1(Ai−1)

{
1−

K(i)−1∏
n=K(i−1)

�Wn

(
min
x∈C

a(x)¿ �0�K(N )−n
)d−1

+ 1

−
K(i)−1∏

n=K(i−1)
�Wn(C ⊂ B(0; K(N )− n− 2))d−1

}
|CR j ∨ �(W)) (by Lemma 7.6)

5
N∑
i=1
P(Ai−1|CR j ∨ �(W))

{
1−

K(i)−1∏
n=K(i−1)

(1− g(�0�K(N )−n))d−1

+1−
K(i)−1∏

n=K(i−1)
(1− �K(N )−n)d−1

}
(Lemma 7.3)

5 P(AN−1|CR j ∨ �(W))p1(�0)

+
N−1∑
i=1
P(Ai−1|CR j ∨ �(W))(d− 1)

(
K(i)−1∑

n=K(i−1)
g(�0�K(N )−n) + �K(N )−n

)
5 P(AN−1|CR j ∨ �(W))p1(�0)

+
N−1∑
i=1
P(Ai−1|CR j ∨ �(W))

∞∑
m=n0(N−i)+1

d�m :

In the last line we used the �rst part of (7.7) and the inequality K(N )− K(i)=
(N − i)n0. A simple induction argument using the above and the de�nition of
 in (7.7) gives

(7:9) P(AN |CR j ∨ �(W))5 N for all N ∈ N a.s. on {Rj ¡∞} :
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Use (7.8) with � = c7:3=2 and the strong Markov property of W with respect
to ( �Cn) (recall Lemma 7.2 and Theorem 5.1) to see that if m ∈ N (recall Pw
is the law of W starting at w)

P(Rj+1 − Rj ¿ m| �CR j)

5 P(N ′
m 5 �m| �CR j) + P(A[�m=n0]| �CR j)

5 exp(�m)PW (R j)(e
−Nm) + −1(�=n0)m (by (7.9))

5 c(W (Rj)−1=2 + 1)e−c′m (by Lemma 7.4 and the choice of �) :

Now condition on CR j , use F(t)5 dt (see (5.9)) if j = 0, and this together
with Lemma 7.5 if j = 1, to derive

(7:10) P(Rj+1 − Rj ¿ m|CR j)5 c7:4e−c7:5m for all j ∈ Z+; m ∈ N :

Let

M ′
n =

n−1∑
i=0
1(Rj 5 i ¡ Rj+1)(#Ci − (d− 1)�Wi (#C)); n ∈ Z+ :

Lemma 7.6 shows (M ′
n;Cn ∨ �(W)) is a martingale and Theorems 2.5 and

4.6, and (7.10) readily show it is L2-bounded. By (a) each point in B(j)
either belongs to a cluster which branched o� the backbone at generation
i ∈ [Rj; Rj+1) or to the backbone itself. Therefore

P(#(B(j))2) = P

((∑
i
1(Rj 5 i ¡ Rj+1)(#(Ci) + 1)

)2)

5 2(P(M ′
∞)

2) + P

((∑
i
1(Rj 5 i ¡ Rj+1)

×(�Wi (#(C))(d− 1) + 1)
)2)

5 2P((M ′
∞)

2) + cP((Rj+1 − Rj)2) (Theorem 4.4)

5 c7:6

by the above and (7.10). This proves (b), and also shows that Rj ¡∞ for all
j a.s.
For (c), one more lemma is required.

Lemma 7.7 For all j ∈ N and measurable A ∈ [0;∞)B we have
P((T (j; x); x ∈ B) ∈ A|CR j)

=
�0∫
0
P((T0(x); x ∈ B) ∈ A|W0 = w)d�(w)�([0; �0])−1 :
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Proof. Let p((Ux; x ∈ B− {0}) ∈ ·|w) be a regular conditional probability for
(Ux; x ∈ B− {0}) given W0 = w. Let U (j; x) = U ((spineR j

)⊕ x) and choose
F ⊂ B− {0} �nite and B a measurable subset of [0;∞)F . We will prove
(7:11)
P((U (j; x); x ∈ F) ∈ B|WR j)(!) = p((Ux; x ∈ F) ∈ B|WRj (!)) a.s.

Since T (j; x) =
∑

0-y5x U (j;y)�
|y|, we can condition on CRj ⊂WRj and use

Lemma 7.5 to obtain the desired result. Turning to (7.11), note that for A ∈
WR j and x0 ∈ B,

P((U (j; x); x ∈ F) ∈ B; A; spineR j
= x0)(7:12)

= P
((

Ux0⊕x; x ∈ F
) ∈ B; A; spineR j

= x0
)

;

that A ∩ {spineR j
= x0} is in �Fx0 = Ex0 ∨ �(W (x0)), and that {(Ux0⊕x; x ∈

F) ∈ B} ∈F(x0 ;∞). The independence of Ex0 and F(x0 ;∞) and the inclusion
�(W (x0)) ⊂F(x0 ;∞) therefore shows that (7.12) equals

P(P((Ux0⊕x; x ∈ F) ∈ B|W (x0)) 1(A; spineR j
= x0))

= P(p((Ux; x ∈ F) ∈ B|WRj) 1(A; spineR j
= x0)) :

Sum over x0 to obtain (7.11).

Since W and (Yn; i) are measurable functions of T
(0)
not(·); there is a measur-

able map r : [0;∞)B → N such that R1 = r(T (0)not). It is straightforward to check
that Rj+1 − Rj = r(T (j; ·)) for all j ∈ Z+ (use (a)). De�ne � : [0;∞)B →S0
by

�(T (0)not(·)) = (D0(T (0)not(·)); T (0)not(·)|D0) ;
where

D0(T
(0)
not(·))=

{
x ∈ B : T (0)not(x)¡ lim

n→∞ inf{T
(0)
not(y) : |y| = n}; |x|¡r(T (0)not)

}
Then (Dj; T (j; ·)) = �(T (j; ·)) for all j ∈ Z+ and so Lemma 7.7 shows that if
A ⊂S0 is measurable, then

P((Dj; T (j; ·)) ∈ A|CR j) =
�0∫
0
P(�(T (0)not) ∈ A|W0 = w)d�(w)�([0; �0])−1

=
�0∫
0
P((D0; T

(0)
not) ∈ A|W0 = w)d�(w)�([0; �0])−1 :

To complete the proof of Theorem 7.1(c) it su�ces to show that
(Dj; T (j; ·)) is CRj+1-measurable for all j ∈ Z+. This reduces to showing that
for a �xed x ∈ B,

T (0)not((spineR j
)⊕ x)1(T (0)not((spineR j

)⊕ x)(7:13)

¡ �W0; |x| ¡ Rj+1 − Rj) is CRj+1-measurable :
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If n ∈ Z+ and x0 ∈ B satisfy n+ |x| ¡ |x0| then on {spineRj+1
= x0; Rj = n}

we consider the following two cases:

Case 1: (x0|n)⊕ x 5 x0. Then (spineR j
)⊕ x = x0|(n+ |x|); T (0)not(spineR j

⊕ x)

= �W0 − �n+|x|Wn+|x|, and so

{T (0)not((spineR j
)⊕ x) ∈ B; T (0)not((spineR j

)⊕ x)¡�W0;

spineRj+1
= x0; Rj=n}

= {�W0 − �n+|x|Wn+|x| ∈ B; Rj+1 = |x0|;
spine|x0| = x0; Rj = n} ∈ C|x0| (because n+ |x| ¡ |x0|) :

Case 2: Case 1 fails. Then there exists m ∈ [n; |x0| − 1) ∩ Z+, i ¡ d and x′
in B (depending on (x; x0)) such that (spineR j

)⊕ x = ei(x0|m+ 1)⊕ x′.

Now T (0)not((spineR j
)⊕ x)¡ �W0 if and only if x′ ∈ Cm; i in which case

T (0)not((spineR j
)⊕ x) = �W0 − �m+1am; i(x′). Therefore

{T (0)not((spineR j
)⊕ x) ∈ B; T (0)not((spineR j

)⊕ x)¡ �W0;

spineRj+1
= x0; Rj = n}

={�W0−�m+1am; i(x′) ∈ B; x′ ∈ Cm; i; spine|x0|=x0; Rj+1= |x0|; Rj=n}
∈ C|x0| (because n5 m ¡ |x0|) :

Taking the union over n ¡ k − |x| and |x0| = k in the above cases we have

{T (0)not((spineR j
)⊕ x) ∈ B; T (0)not((spineR j

)⊕ x)¡ �W0 ;

for |x| ¡ Rj+1 − Rj; Rj+1 = k} ∈ Ck

and so (7.13) follows.

We will now use Theorem 7.1 to complete the proof of the main limit
theorem, Theorem 6.4. Let I(n) = [Rk−1; Rk) ∩ Z+ i� Rk−1 5 n ¡ Rk and let

Zn =
∞∑
j=0
#Cj1(j ∈ I(n)); n ∈ Z+ ;

be the size of the “regeneration block” spanning generation n. Theorem 7.1(a)
implies that

(7:14) maxsize(n)5minsize(n) + Zn

and (recall that N (n) =
∑n−1

k=0 #(Ck))

(7:15) N (n) + n+ 15minsize(n) + Zn :

Lemma 7.8 The sequence {Zn} is bounded in L1.
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Proof. It follows easily from the exponential estimate (7.10) on the tail of
Rk − Rk−1 and the Renewal Theorem (see (4.16) in Ch. XI of Feller (1971))
that

(7:16) sup
n
P((#I(n))q)¡∞ for all q ¿ 0 :

Note that Theorems 2.5 and 4.4 together with the de�nition of Cj imply

(7:17) P(#Cj|Cj)5 (d− 1)c4:3 ;
and that

Zn =
∞∑
j=0

∞∑
k=1
#Cj1(j; n ∈ [Rk−1; Rk)) :

Take means in the above to conclude that if p¿1,

P(Zn)5
n−1∑
j=0

∞∑
k=1
P(1(j ∈ [Rk−1; Rk))#Cj(Rk − j)p(n− j)−p)

+
∞∑
j=n

∞∑
k=1
P(1(Rk−1 5 n5 j ¡ Rk)P(#Cj|Cj))

5
n−1∑
j=0
P((#Cj)(#I(j))

p)(n− j)−p + (d− 1)c4:3P
(

∞∑
j=n
1(j ∈ I(n))

)

5
n−1∑
j=0
P((#Cj)2)

1=2
P(#I(j)2p)

1=2
(n− j)−p + (d− 1)c4:3P(#I(n)) :

Use (7.16) and Theorems 2.5 and 4.6 to see that the �nal expression above is
uniformly bounded in n.

Proof of Theorem 6.4. For each choice of L(n), writing

L(n) = N (n) + n+ 1 +�n;

the inequalities (6.10), (6.11), (7.14) and (7.15) imply that |�n|5 Zn and
so is bounded in L1 by the previous Lemma. The Borel–Cantelli Lemma
implies n−2�n2 → 0 a.s. and so Example 6.3 gives a.s. convergence along the
subsequence {n2}. A standard interpolation argument completes the proof of
(a). Since n−1=2�n → 0 in probability, (b) is now immediate from the Central
Limit Theorem for N (n) (Example 6.3).

8 Some concluding remarks

While equations (4.1) and (4.2) specify the law of T (∞) (see the Remark fol-
lowing Lemma 4.1), precise estimates on its distribution seem quite di�cult to
obtain. It is however possible to derive some asymptotic results as � ↑ 1. Our
starting point is the following
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Proposition 8.1 (Kingman 1975) If � = 1 then n−1T (n)→ c8:1(d) a.s. as n→
∞; where c = c8:1(d) is the unique root in (0; 1) of dce1−c − 1 = 0.

As � ∈ (0; 1) will vary in the following, we will use notation such as T�(x)
or T�(∞) to denote dependence on �. Bear in mind that the times T�(x) are
all de�ned on a common probability space as sums of the same variables Ux
with di�erent weights.

Theorem 8.2 (1− �)T�(∞)→ c8:1(d) as � ↑ 1 a.s. and in L1:

Proof. Fix � ¿ 0, and use Proposition 8.1 to choose K(�; !) such that n−1T1(n)
¿ c8:1 − � for n= K(�; !). If x ∈ B, then

T�(0; x) =
|x|∑
i=1

�i(T1(0; x|i)− T1(0; x|i − 1))

=
|x|∑

i=K(�)
(�i − �i+1)T1(0; x|i) + �|x|+1T1(0; x)

= (c8:1 − �)
|x|∑

i=K(�)
(1− �)i�i

= (c8:1 − �)(1− �)� K(�)
|x|−K(�)∑

i=0
i�i :

Take the minimum over |x| = M and let M →∞ to see that

(8:1) lim inf
�↑1

(1− �)T�(∞)= c8:1(d) a.s.

For the other direction, note that T1(n)=n is uniformly L2-bounded (being
stochastically smaller than the average of n i.i.d. exponentials) and so the
convergence in Proposition 8.1 holds in L1 as well. Choose N large enough
so that P(T1(N ))5 (c8:1 + �)N . Now choose random vertices xk inductively
N generations apart so that x0 = 0 and xk+1 minimizes T1(xk ; xk+1) among all
descendants of xk : The times T1(xk ; xk+1) = T1(xk+1)− T1(xk) will be i.i.d. Use
the crude bound

T�(∞)5
∞∑
k=0

�kNT1(xk ; xk+1)

together with summation by parts and the Strong Law (as above) to see that
lim sup�↑1(1− �)T�(∞)5 c8:1 + � almost surely, and that

(8:2) P[(1− �)T�(∞)]5
∞∑
k=0
(1− �)�kN (c8:1 + �)N → c8:1 + �

as �↑1 for �xed N . The �rst conclusion and (8.1) give the required almost
sure convergence. Fatou’s Lemma and (8.2) then show that the mean value of
(1− �)T�(∞) approaches c8:1 as �↑1. Convergence in L1 now follows.
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Remark 8.3. Recall from Lemma 4.1 that etP(T�(∞)¿ t) increases to a �nite
limit c4:1(�; d) as t →∞. It is possible to show that
(8:3) lim

�↑1
(1− �) log c4:1(�; d) = c8:1(d) :

The lower bound is an easy consequence of (8.1) and the monotonicity of
etP(T�(∞)¿ t) in t. The upper bound is more involved and we will not
give a proof. It uses the anticipating equation (4.2). Equation (8.3) shows that
the bound on c4:1 in Lemma 4.1 is far from optimal. For example if d = 2,
then c8:1(d) ≈ 0:23 and (8.3) implies c4:1(�; 2)5 exp((0:23 + �)=(1− �)) for �
close to 1; Lemma 4.1 gives the same kind of bound but with 0:23 + � replaced
by log 2 ≈ 0:69.
We conclude this paper by mentioning an associated particle system. Set

ut(n) = #(@Ct ∩B(n)); t = 0; n ∈ Z+ :

The “particles” (i.e. sites in B on the boundary of the cluster Ct) evolve
independently: each u-particle at a site n ∈ Z+ dies at rate �n, and is replaced
by d particles at n+ 1. The process U = (ut(·) : t = 0) captures the essential
features of the DLA processes Ct and An: only the labels of the branches are
lost. For various limit theorems on the process U in the case �¿1 see Aldous
and Shields (1988).
To study the evolving cluster for �¡1 it is more helpful to consider the

following modi�cation of U . De�ne a random time change �t so that C�t
always adds neighbours to its deepest vertices at a constant rate:

Mt = max{n : ut(n)¿ 0} ;

Lt =
t∫
0
�−Ms ds; 0¡ t ¡ T (∞) ;

�t = inf{s : Ls ¿ t} ;

Vt(n) = u�t (M�t − n); t = 0; n ∈ Z+ ;

where ut(n) is taken to be zero for n¡0. At each time t; Vt is a function on Z+
counting how many vertices are in @C�t at each level below the highest one.
Note that Lt ¡∞ if t¡T (∞), and that limt↑T (∞) Lt =∞; thus �t ¡ T (∞)
for all t = 0. Straightforward calculations show that the process V = (Vt(·):
t = 0) evolves as follows:
(i) Particles at site n, n= 1, die at rate �n and are replaced by d particles at
site n− 1.
(ii) Particles at 0 die at rate 1, and are replaced by d particles at site −1. The
whole con�guration is then immediately shifted to the right by 1 step.
We call V the “tip process”: it describes the form of the cluster when

viewed backwards from the tip. The size of the process V near 0 arises from
the interaction of two e�ects: �rst the strongly supercritical branching (at an
accelerating rate as particles approach 0), and secondly the right shifts, which
move particles away from 0, and so slow down their branching. Since the
process V is a functional of C, it should be possible to deduce many properties
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of V from our results on C. However, just as some work was needed to obtain
results such as Corollary 6.5 (giving the growth rate of An) from the cluster
decomposition, so also passing from C to V is not completely straightforward.
A further study of V may be the subject of a future paper: here we will just
give a sketch proof that V is (in a certain sense) recurrent.
For f : Z+ → R and � ∈ (0; 1), set ‖f‖� =

∑∞
n=0 �n|f(n)|:

Theorem 8.4 Let � ∈ (0; 1). Then the process ‖Vt‖� is recurrent in the sense
that there exists c8:2¡∞ such that

{t : ‖Vt‖� ¡ c8:2} is unbounded :

Proof. Recall from Sect. 7 the de�nition of the regeneration times Rj, and set

�j = #(B(j − 1)) ;
S j = inf{t = 0: M�t = Rj} :

It is clear that Sj¡∞ for all j and that limj→∞ Sj =∞. Then

‖VSj‖� =
R j∑
n=0

�Rj−nu�S j
(n)

=
j∑

i=1

∑
n
1(Ri−1 5 n ¡ Ri)�Rj−nu�S j

(n) + u�S j
(Rj)5

j∑
i=1

�j−i�i + 1 :

Here we have used the facts that Rj = Rj−1 + 1, and that the cluster An ∩
B(0; Ri) is frozen for n=maxsize(Ri). By Theorem 7.1 �j; j = 1, are i.i.d.
with P(�2j)¡∞. Thus (b) follows by comparison with the interval recurrent
Markov chain Zn =

∑n
i=1 �

n−i�i.
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